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Abstract

Retrieval-augmented generation (RAG) sys-001
tems can effectively address user queries by002
leveraging indexed document corpora to re-003
trieve the relevant contexts. Ranking tech-004
niques have been adopted in RAG systems to005
sort the retrieved contexts by their relevance to006
the query so that users can select the most use-007
ful contexts for their downstream tasks. While008
many existing ranking methods rely on the sim-009
ilarity between the embedding vectors of the010
context and query to measure relevance, it is im-011
portant to note that similarity does not equate to012
relevance in all scenarios. Some ranking meth-013
ods use large language models (LLMs) to rank014
the contexts by putting the query and the can-015
didate contexts in the prompt and asking LLM016
about their relevance. The scalability of those017
methods is contingent on the number of candi-018
date contexts and the context window of those019
LLMs. Also, those methods require fine-tuning020
the LLMs, which can be computationally ex-021
pensive and require domain-related data. In this022
work, we propose a scalable ranking framework023
that does not involve LLM training. Our frame-024
work uses an off-the-shelf LLM to hypothesize025
the user’s query based on the retrieved contexts026
and ranks the contexts based on the similarity027
between the hypothesized queries and the user028
query. Our framework is efficient at inference029
time and is compatible with many other con-030
text retrieval and ranking techniques. Experi-031
mental results show that our method improves032
the ranking performance of retrieval systems in033
multiple benchmarks.034

1 Introduction035

RAG systems have gained significant attention in036

natural language processing (NLP) research. It em-037

powers LLMs to draw information from a wider038

spectrum of knowledge beyond the context win-039

dows of LLMs. Standard RAG systems utilize con-040

text retrieval techniques to efficiently fetch from041

dedicated databases the contexts that are relevant042

to user-given queries. Then, LLMs can generate 043

responses to those queries based on the retrieved 044

contexts, reducing the likelihood of generating hal- 045

lucinated information (Ram et al., 2023; Asai et al., 046

2023a). This integration of retrieval and genera- 047

tion components in RAG systems allows them to 048

demonstrate superior performance in tasks that may 049

require retrieving information from prohibitively 050

long contexts. 051

The accuracy of ranking the relevance of the 052

context is a core determinant of the performance of 053

RAG systems (Shi et al., 2023). Classical retrieval 054

methods such as TF-IDF and BM25 (Robertson 055

and Zaragoza, 2009) rely on lexical similarities 056

to rank contexts. Recent advancements in embed- 057

ding models such as BERT (Kenton and Toutanova, 058

2019; Reimers and Gurevych, 2019) have enabled 059

the capture of the semantic similarity between texts 060

through dense vector representations. To improve 061

the zero-shot performance in unseen contexts, Con- 062

triever (Izacard et al., 2021) and other successive 063

embedding models are trained via contrastive learn- 064

ing techniques. However, retrieval with these em- 065

bedding models focuses on similarity, but similarity 066

alone does not always ensure that the context effec- 067

tively addresses the query. 068

LLMs have been incorporated to address this 069

issue. For instance, LLM-based re-rankers (Sun 070

et al., 2023; Pradeep et al., 2023) can determine 071

whether a context addresses a query better than oth- 072

ers. However, those re-rankers require fine-tuning, 073

which demands extensive dedicated datasets and 074

significant computational resources. Other meth- 075

ods include using LLM to expand the query before 076

retrieval. HyDE (Gao et al., 2023a), for instance, 077

utilizes an LLM to generate hypothetical contexts 078

based on the query, subsequently retrieving con- 079

crete contexts that are close to these hypothetical 080

contexts in the embedding space. However, the 081

LLM must have sufficient background knowledge 082

about the context to be retrieved so that it can gen- 083
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erate semantically similar contexts. Otherwise, the084

hypothesis space of the generated contexts would085

be indefinitely large, and the LLM can generate086

outdated, irrelevant, hallucinated, and even counter-087

factual contexts (Brown et al., 2020; Mallen et al.,088

2022). We provide an example later in Fig.3(b),089

where GPT-3.5-turbo generates outdated informa-090

tion that fails to reflect recent developments on a091

specific topic.092

In this paper, we propose a novel context rank-093

ing framework. Our approach uses an LLM to094

generate hypothetical queries based on the existing095

contexts. It then measures the relevance between096

the context and any user-given query based on the097

similarity between the hypothetical queries and the098

user-given query. While our method does not re-099

quire the LLM to have prior knowledge about the100

query or the context, the hallucination of the LLM101

is restrained since a context has limited information102

and can only provide answers to a certain range of103

queries. Furthermore, while HyDE has to use an104

LLM to generate hypothetical contexts online for105

every input query, our approach allows retrieving106

previously generated hypothetical queries for fu-107

ture input queries. Our method also differs from108

the LLM-based re-ranker in two-fold. First, our109

method does not require fine-tuning an LLM. Sec-110

ond, our approach uses text embedding for ranking,111

while an LLM-based re-ranker has to call an LLM112

to answer the relevance between every input query113

and context. However, our method can be used in114

conjunction with other ranking methods to itera-115

tively refine the ranking of the retrieved contexts.116

Besides introducing our approach, we compare117

our approach with existing approaches from the the-118

oretical lens. We analyze the causality relationship119

between the queries and contexts within a class120

of context ranking approaches, identifying their121

potential issues, such as their susceptibility to spu-122

rious causality relationships. We then show that123

our approach mitigates these issues by following124

a variational inference approach. Our experimen-125

tal results demonstrate improvements in ranking126

the retrieved contexts across multiple information127

retrieval benchmarks while maintaining efficiency128

and scalability. Our major contribution is listed as129

follows.130

• We propose to use LLMs to generate hypothet-131

ical queries and rank contexts by comparing132

the similarity between input queries and hypo-133

thetical queries.134

• We examine the causal relationships between 135

queries and contexts in existing context rank- 136

ing methods and develop a variational infer- 137

ence framework for context ranking. 138

• We evaluate our method in multiple informa- 139

tion retrieval benchmarks by combining differ- 140

ent embedding models with different LLMs. 141

The results show that our method can improve 142

the ranking accuracy in most of the bench- 143

marks. 144

2 Related Work 145

Retrieval Augmented Generation (RAG) sys- 146

tems have become a focal point in NLP research, 147

enhancing LLMs by accessing broader knowledge 148

bases beyond LLM context windows (Lewis et al., 149

2020; Gao et al., 2023b). These systems use in- 150

formation retrieval techniques to fetch relevant 151

contexts from dedicated databases based on user 152

queries, improving performance in tasks requiring 153

extensive context (Mialon et al., 2023). 154

Information Retrieval methods, such as TF-IDF 155

and BM25, rely on lexical similarities to rank 156

contexts (Robertson and Zaragoza, 2009). Re- 157

cent advancements in embedding models such as 158

BERT (Kenton and Toutanova, 2019; Reimers and 159

Gurevych, 2019) allow capturing text semantics 160

through dense vector representations (Asai et al., 161

2021). Contrastive learning techniques have further 162

improved the zero-shot performance of embedding 163

models such as Contriever (Izacard et al., 2021) in 164

unseen contexts by training the models to differen- 165

tiate between similar and dissimilar contexts (Gao 166

et al., 2021). 167

Document Expansion and Query Expansion are 168

classical techniques to improve retrieval quality and 169

have been widely adopted in RAG systems (Wang 170

et al., 2023). Query expansion, which dates back to 171

(Carpineto and Romano, 2012), typically involves 172

rewriting the query based on labels (Lavrenko and 173

Croft, 2001). When labels are not available, the 174

query can be expanded with generated contexts 175

(Liu et al., 2022). For instance, HyDE (Gao et al., 176

2023a) uses LLMs to generate hypothetical con- 177

texts based on the input query and uses the embed- 178

dings of the query and the hypothetical contexts 179

for retrieval. However, when the LLM lacks knowl- 180

edge about the query, query expansion can be sus- 181

ceptible to hallucinated or counterfactual content 182

(Brown et al., 2020). 183
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Document expansion (Nogueira et al., 2019) in-184

volves appending each context with a generated185

query and creating indexes for the expanded con-186

text in the database. Our framework also generates187

queries based on the contexts but does not expand188

the contexts. Studies on generating high-quality189

queries to build synthetic datasets (Almeida and190

Matos, 2024) can be helpful for our framework, but191

that is not the focus of this paper.192

Large Language Models (LLMs), from the small-193

size open source models such as Mistral-7b (Jiang194

et al., 2023) to the large-size proprietary mod-195

els such as GPT-4 (Achiam et al., 2023), are196

pre-trained on trillions of tokens, exhibiting un-197

paralleled emergent and generalization abilities198

across tasks (Schaeffer et al., 2023). LLMs can199

be fine-tuned to rank the relevancy between con-200

texts and queries (Asai et al., 2023b; Sun et al.,201

2023; Pradeep et al., 2023). Although effective,202

fine-tuning requires significant computational re-203

sources and extensive annotated data (Bajaj et al.,204

2016). Furthermore, those methods have to face205

the challenges related to the context window size206

(Wang et al., 2024; Kaddour et al., 2023; Child207

et al., 2019; Gu and Dao, 2023), as they combine208

the query and contexts into a single prompt. Our209

method does not use LLMs to evaluate the query-210

context relevancy.211

Variational Inference (Blei et al., 2017) sits at the212

core of our proposed framework. It has been ex-213

tensively studied across many fields of machine214

learning (Kingma and Welling, 2013; Hoffman215

et al., 2013; Zhou and Li, 2022; Fellows et al.,216

2019). In this work, we treat queries and contexts217

as random variables with causal relationships and218

reformulate the ranking problem as a probability219

inference problem. It is widely known that genera-220

tive models that respect the causality relationships221

are more robust to distribution shifts because they222

can avoid learning spurious relationships between223

random variables (Ahuja et al., 2021; Schölkopf224

et al., 2021; Lu et al., 2022). In this work, we use225

an LLM to simulate the query-context relationship226

while avoiding the intervention of prior knowledge,227

thereby preserving the causal structure.228

3 Background229

A RAG system retrieves information from a docu-230

ment corpus C = {c1, c2, . . . , ci, . . .} where each231

ci is a context. Assuming that Q is the whole set232

of user input queries, given an input query q ∈ Q,233

a retriever returns a ranked list of relevant con- 234

texts from C. The ranking of those contexts can 235

be evaluated by using Normalized Discounted Cu- 236

mulative Gain (NDCG) (Järvelin and Kekäläinen, 237

2002) which measures the ranking with graded rel- 238

evance. After the retrieval step, one or multiple 239

ranking procedures can be adopted to iteratively re- 240

fine the quality of the ranking. We assume that each 241

ranking procedure, including that during retrieval, 242

uses a scoring function rq : C → R to quantify 243

the relevance between any context c ∈ C and the 244

query q. We can rank the contexts with this rq, i.e., 245

∀c1, c2 ∈ C, c1 ⪯ c2 ⇔ r(q, c1) ≤ rq(c2). 246

A ranker can only target the first K contexts 247

as ordered by some scoring function of the pre- 248

vious ranking procedure. We denote the set that 249

includes the first K contexts as Cq,K ⊆ C such 250

that |Cq,K | = K. After ranking those contexts, a 251

new scoring function rq over Cq,K is generated. 252

When using an embedding model for ranking, 253

we use the cosine similarity between query em- 254

bedding and context embedding to determine the 255

relevance of the query and context. We use E to 256

denote the embedding model. The cosine similarity 257

between a query q and a context c is 258

sim(q, c) = ⟨E(q),E(c)⟩
||E(q)||2·||E(c)||2 (1) 259

As a result, given any query q, an embedding 260

model-based ranker’s scoring function is defined 261

as rq(c) = sim(q, c). 262

4 Method 263

In this section, we introduce our framework for 264

ranking contexts with hypothetical queries. We first 265

illustrate our context ranking procedure, explain 266

how to obtain those hypothetical queries, and then 267

discuss its complexity. 268

For each context c ∈ C, we hypothesize the 269

probable queries that the context c can address or 270

the topics it discusses. We refer to these queries as 271

hypothetical queries, denoted as q̂. For each c ∈ C, 272

we let H(c) denote the set of hypothetical queries 273

associated with c. Our ranking method determines 274

the relevance of a given query q and a context c 275

based on the similarity between the embedding of q 276

and the embedding of c, as well as the similarity be- 277

tween those of q and the hypothetical queries H(c) 278

as in Eq.2 where we introduce a hyperparameter λ 279

to balance the two similarities. 280

rq(c) := sim(q, c) + λ · max
q̂∈H(c)

sim(q̂, q) (2) 281
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Figure 1: A flow chart of HyQE ranking framework. Given a query q and a retrieved context c, an LLM H is used
to generate a set of hypothetical queries q̂ from c. Then an embedding model E is used to evaluate the semantic
similarity between q and q̂’s. Then cosine similarity is used to determine whether c is relevant to q as in Eq.2.

Algorithm 1 outlines our context ranking proce-282

dure. We start with a set Cq,K of K candidate con-283

texts, which are typically the top-K results from284

a prior ranking step. For each context c ∈ Cq,K ,285

we generate a set of hypothetical queries H(c) by286

using an LLM, compute the embedding of c and287

each q̂ ∈ H(c) with an embedding model E, and288

then calculate the relevance score rq(c) using Eq.1.289

Algorithm 1 HyQE

1: Input: A query q; a set Cq,K of K candidate
contexts; an LLM H; an embedding model E

2: foreach context c in Cq,K

3: Compute sim(q, c) via Eq.1
4: Collect hypothetical queries H(c)
5: Compute rq(c) via Eq.2
6: Order Cq,K by rq(c)
7: Output: The ordered-set Cq,K

Hypothetical Query Generation. Our framework290

allows utilizing various LLMs to generate hypothet-291

ical queries ranging from Mistral 7b to GPT-3.5 and292

GPT-4. Fig.1(a) shows a flowchart of this query293

generation process. For each context c, we generate294

a set of hypothetical queries H(c) by instructing295

an LLM H . Specifically, we use a single prompt296

to generate multiple queries for each context to297

avoid generating repetitive queries, as shown in298

Fig.2. The prompt is designed to ensure that the299

generated queries are diverse and relevant to the300

given context. If the length of the context c and the301

lengths of queries to be generated will exceed the302

window size of the LLM, we partition c, call the303

LLM to generate queries for one portion at a time,304

and collect all generated queries in the end.305

Complexity. Although generating hypothetical306

queries for each c with an LLM can be time-307

Which kinds of questions can be answered
based on the following passage

```<passage >
{context}
</passage >'''

Questions must be very short , different ,
and be written on separate lines.
If the passage provides no meaningful
content , respond with a 'No Content '.

Figure 2: Prompt for hypothetical query generation.
‘{context}’ is the placeholder for the context to be filled.

consuming, this overhead can be mitigated. Since 308

the hypothetical queries H(c) are independent of 309

the input q, once H(c) and the corresponding em- 310

beddings are obtained, they can be stored and 311

reused for future queries that involve the same 312

context c. This eliminates the repetitive query- 313

generation step in line 4 of the algorithm. When a 314

previously seen context c is retrieved for some new 315

input query q′, we can quickly retrieve the stored 316

H(c) and embeddings of the queries in H(c). Then 317

we only need to perform a similarity search to find 318

the hypothetical query h ∈ H(c) with the closest 319

embedding to the new query q′ to compute rq′(c) 320

in line 5. By leveraging stored hypothetical queries 321

and their embeddings, our framework ensures effi- 322

cient and scalable query processing, reducing the 323

computational overhead of real-time LLM calls. 324

The complexity of our ranking framework can be 325

broken down as follows. Generating hypothetical 326

queries H(c) for each context c ∈ C and comput- 327

ing their embeddings can incur a one-time com- 328

putational cost. If each context c can generate M 329

hypothetical queries, the total complexity of this 330

one-time computation is O(|C| ·M) where |C| is 331
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the total number of contexts and M is limited by332

the information encompassed in the context. This333

complexity is amortized as the number of input334

queries increases, making our approach more scal-335

able. If a c is retrieved for a new query q′ and336

its hypothetical query set H(c) has been indexed,337

the one-time computational complexity of retriev-338

ing the closest hypothetical query q̂ ∈ H(c) via339

similarity search is typically sub-linear in |H(c)|.340

In comparison, query expansion methods typi-341

cally generate contexts for each input query. Thus,342

the total complexity cannot be amortized by the343

growing number of input queries. For instance,344

HyDE (Gao et al., 2023a) requires generating a345

group of hypothetical documents for each query,346

leading to a total complexity of O(|Q| ·N) where347

|Q| is the number of queries and N is the number348

of hypothetical contexts, both of which are indepen-349

dent of the document corpus C and can be infinite.350

Similar comparisons apply to LLM-based re-351

rankers (Sun et al., 2023; Pradeep et al., 2023),352

where the complexity is proportional to the lengths353

of the input query and the retrieved contexts, as354

the re-rankers require concatenating the query and355

contexts in the prompts to generate responses. This356

complexity cannot be amortized, making ranking357

contexts expensive as the number of queries in-358

creases, considering that LLM-based re-rankers359

are often large, proprietary models. HyQE allows360

using small pre-trained LLMs and open-source em-361

bedding models, significantly reducing operational362

costs while maintaining efficiency and effective-363

ness.364

5 A Variational Inference Perspective365

In this section, we explain how to use variational366

inference to derive Eq.2 by establishing the causal367

relationship between queries and contexts.368

5.1 Causal Relationship between Queries and369

Contexts370

In Fig.3, we treat context c and query q as two371

random variables. We can think of calculating the372

ranking score rq(c) as measuring the probability373

p(c|q) of context c answering question q in the374

causality model. Different ranking methods model375

the causal relationship between c and q in different376

ways, resulting in different p(c|q) and rq(c). For377

instance, the standalone cosine similarity sim(q, c)378

can produce a spurious p(c|q) since c and q be-379

ing similar does not necessarily imply that c pro-380

vides answers to q, as shown by the example in 381

Fig.3(a). Query expansion methods such as HyDE 382

(Gao et al., 2023a) introduce a hypothetical context 383

ĉ as a latent variable and employ a generative model 384

to simulate p(ĉ|q). However, this causality mod- 385

eling inevitably involves LLM’s prior knowledge 386

as an intervention (Wachter et al., 2017), which 387

can lead to spurious causality. The external knowl- 388

edge from LLM is represented as an additional 389

variable D from another context space that is indef- 390

initely larger than that of c. As shown in Fig.3(b), 391

it can influence the generation of ĉ by introducing 392

outdated, irrelevant, or even counterfactual infor- 393

mation (Brown et al., 2020). 394

In contrast, HyQE, as shown in Fig.3(c), intro- 395

duces a hypothetical query q̂ as a latent variable 396

and employs a generative model to simulate p(q̂|c) 397

without involving the prior knowledge of the LLM. 398

This confines the generation of hypothetical query 399

q̂ strictly within the scope of the context c, avoid- 400

ing the pitfalls of spurious causality and ensuring 401

that the causal relationships remain accurate and 402

relevant. This allows us to use cosine similarity to 403

simulate p(q|q̂) where q̂ and q are both queries. 404

5.2 Ranking Contexts from a Variational 405

Inference Perspective 406

Now we show how we derive Eq.2 based on 407

Fig.3(c). Given a user query q and a context set 408

Cq,K , we define p(c) as some prior confidence 409

over the context set Cq,K that satisfies p(c) ∝ 410

exp(sim(q, c)). We let p(q|c) be the probability 411

of context c providing answers to the query q, and 412

let p(q) be some prior probability of accepting an 413

input query q, which can be seen as a constant 414

when q is already given. Based on p(c), p(q|c), and 415

p(q), we aim to learn p(c|q) := p(c)p(q|c)/p(q), 416

which can be seen as the confidence of the context 417

c addressing the given query q. Then, we learn 418

p(c|q) by finding a distribution pq(c) that matches 419

p(c|q) so that we can establish a scoring function 420

based on pq(c), i.e., rq(c) ∝ log pq(c). This learn- 421

ing objective can be formulated as minimizing the 422

KL-divergence DKL(pq(c)||p(c|q)) which can be 423

achieved by maximizing the evidence lower-bound 424

(ELBO) of DKL(pq(c)||p(c|q)) as shown in Eq.3. 425

ELBO(rq) := 426

DKL(pq(c)||p(c))− Ec∼pq(c)[log p(q|c)] (3) 427

Eq.3 uses a regularization term DKL(pq(c)||p(c)) 428

to penalize pq if pq(c) deviates from p(c). There- 429

fore, we include sim(q, c) as a part of rq such that 430
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(a) Cosine Similarity (b) Query Expansion (c) HyQE

Figure 3: The random variables c and q respectively indicate context and user input query. (a) Cosine similarity
prioritizes semantic similarity rather than retrieving a better context for answering the query. (b) The causality
relationship in query expansion methods such as HyDE. The random variable ĉ is a hypothetical context, and D
indicates the prior knowledge of the LLM used to generate ĉ. In this example, we use GPT-3.5-turbo to generate a
hypothetical context ĉ to answer the question in q. However, ĉ contains outdated information and cannot be used to
retrieve the most relevant context c through semantic search. (c) The causality relationship in HyQE. An LLM H is
used to generate the hypothetical query q̂. The causal relationship q and q̂ can be simulated with causal similarity.

the greater p(c) ∝ exp(sim(q, c)) is, the greater431

pq(c) ∝ exp(rq(c)) becomes. Meanwhile, the432

second term in Eq.3 indicates that pq should also433

align with p(q|c), the probability of c providing434

answers to q. To estimate p(q|c), we factorize435

log p(q|c) = logEq̂∼p(q̂|c)[p(q|q̂)] where p(q̂|c) is436

the probability of c addressing a hypothetical query437

q̂ and p(q|q̂) is the probability of obtaining an input438

query q given that the semantics of q is equivalent439

to a given hypothetical query q̂. We can safely use440

semantic similarity to approximate relevance be-441

tween queries, i.e., p(q|q̂) ∝ exp(sim(q̂, q)). We442

estimate the expectation w.r.t p(q̂|c) by uniformly443

sampling from the set H(c) of hypothetical queries444

such that log p(q|c) = logEh∼p(q̂|c)[p(q|q̂)] ≈445

log 1
|H(c)|

∑
q̂∈H(c) p(q|q̂). We then have the fol-446

lowing two options for further approximation:447

Option 1. Based on the soft-max approximation,448

log 1
|H(c)|

∑
q̂∈H(c) p(q|q̂) ≈ max

q̂∈H(c)
log p(q|q̂) =449

λ · max
q̂∈H(c)

sim(h, q) + const where λ is a hyper-450

prameter. Then we recover Eq.2 by ignoring the451

constant and adding sim(q̂, q) mentioned earlier.452

Option 2. Based on Jensen’s inequality (Jensen,453

1906), we derive a lower bound of the estimated454

log p(q|c) as shown in Eq 4, This allows us to max-455

imize ELBO in Eq.3 by maximizing Eq.4, resulting456

in an alternative of Eq.2 as shown in Eq.5.457

log 1
|H(c)|

∑
q̂∈H(c) p(q|q̂)458

≥ 1
|H(c)|

∑
q̂∈H(c) log p(q|q̂)459

= λ · 1
|H(c)|

∑
q̂∈H(c) sim(q, q̂) + const (4)460

In our HyQE framework, we mainly focus on Op-461

tion 1. We will compare Option 1 with Option 2 in 462

our evaluation. 463

rq(c) := sim(q, c) + 464

λ · 1

|H(c)|
∑

q̂∈H(c)

sim(q, q̂) (5) 465

6 Experiments 466

We test our method on multiple benchmarks to 467

investigate the main question: whether HyQE im- 468

proves the nDCG@10 in the benchmarks? In addi- 469

tion, we also investigate the following questions. 470

A. Does changing the LLMs influence the results? 471

B. Does changing the λ in Eq.2 influence the re- 472

sults? 473

C. Is HyQE compatible with different retrieval 474

methods such as HyDE (Gao et al., 2023a)? 475

D. How well does Eq.5 perform in comparison 476

with Eq.2? 477

Datasets. We test our methods on the fol- 478

lowing datasets: COVID (Thakur et al., 2021), 479

NEWS (Thakur et al., 2021), Touche2020 (Thakur 480

et al., 2021), DL19 (Craswell et al., 2020), and 481

DL20 (Craswell et al., 2020). We use the 482

same prompt for all the datasets except for the 483

touche2020 dataset, in which the queries represent 484

topics of arguments while the contexts consist of di- 485

alogues in those arguments. The prompt designed 486

for this dataset can be found in Appendix B. 487

Baselines. We use two kinds of retrievers: one 488

is embedding model-based retrievers, including 489

contriever and bge-base-en-v1.5; the other is 490

SPLADE++_EnsembleDistil (Formal et al., 2022), 491
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Retrieval Model Embedding Model HyQE Model DL19 DL20 COVID NEWS Touche

contriever contriever

- 44.54 42.13 27.32 34.84 16.68
GPT-4o 53.97 51.93 35.03 41.27 17.78
GPT-3.5-turbo 53.19 50.04 35.06 42.33 21.02
Mistral-7b-instruct 52.28 49.62 35.54 42.56 20.78

bge-base-en-v1.5 bge-base-en-v1.5

- 70.39 68.30 69.96 40.94 18.99
GPT-4o 72.04 69.42 80.29 43.01 19.44
GPT-3.5-turbo 71.77 68.33 80.13 44.03 20.14
Mistral-7b-instruct 70.72 69.02 78.93 43.34 21.36

SPLADE++ ED

contriever
- 53.47 53.51 67.35 39.01 20.45
GPT-4o 60.68 61.66 64.90 44.45 19.17
GPT-3.5-turbo 60.08 58.27 65.97 44.79 23.01
Mistral-7b-instruct 57.99 59.59 65.78 44.33 22.32

bge-base-en-v1.5
- 71.25 68.58 80.45 46.21 21.53
GPT-4o 72.35 68.96 80.82 46.25 22.11
GPT-3.5-turbo 71.66 68.83 81.55 46.18 23.15
Mistral-7b-instruct 71.78 69.06 80.82 45.97 22.80

E5-large-v2
- 70.18 72.50 76.73 40.65 18.03
GPT-4o 72.69 71.46 75.87 50.43 20.50
GPT-3.5-turbo 72.23 71.88 78.29 50.16 23.08
Mistral-7b-instruct 69.92 72.97 76.90 48.67 22.52

nomic-embed-text-v1.5

- 66.68 67.28 79.37 45.80 23.93
GPT-4o 71.45 69.69 78.60 45.94 24.22
GPT-3.5-turbo 68.87 67.80 80.42 46.05 25.73
Mistral-7b-instruct 69.20 70.56 78.83 45.93 27.18

text-embedding-3-large
- 72.52 72.86 83.81 54.14 26.25
GPT-4o 75.57 72.24 83.40 54.33 25.49
GPT-3.5-turbo 74.44 72.18 83.59 53.85 27.36
Mistral-7b-instruct 73.97 72.44 83.30 54.51 26.99

Table 1: NDCG@10 results produced by different retrievers, embedding models, and hypothetical query generators
(LLMs) across various datasets. The ‘−’ sign indicates that the results in the associated row are generated with the
baseline embedding model. The light gray color indicates that using HyQE with all three LLMs outperforms the
baseline embedding model for the associated dataset. The blue color indicates that the highest NDCG@10 value for
a combination of retriever and embedding models under a dataset is achieved by HyQE. According to the MTEB
leaderboard (Muennighoff et al., 2022), increasing NDCG@10 by 1 can improve the ranking by up to 10 positions.

which is a sparse retrieval model that does not gen-492

erate text embeddings. We use the pre-built Lucene493

indexes in Pyserini (Lin et al., 2021) for retrieval.494

We use five embedding models as the baselines for495

ranking: contriever (Izacard et al., 2021), bge-base-496

en-v1.5 (Xiao et al., 2023), E5-large-v2 (Wang497

et al., 2022), text-embedding-3-large, and nomic-498

embed-text-v1.5 (Nussbaum et al., 2024). We also499

use those embedding models as the backbones of500

HyQE and compare the results produced by HyQE501

with those produced by the baseline embedding502

models. We use three different LLMs to generate503

the hypothetical queries: Mistral-7b-instruct-v0.2504

(Jiang et al., 2023), GPT-3.5 turbo, and GPT-4o.505

Implementation Details. We first retrieve 100 con-506

texts with a retriever. Then, we use an embedding507

model to rank the contexts based on the cosine508

similarity between the context and the query and509

produce an ordered-set Cq,K of candidate contexts510

where we set K = 30. Then, we use the proposed511

method to obtain rq and re-rank these 30 contexts. 512

Then, we compare these results with the ranking 513

produced by the embedding model. 514

Main Results. Table 1 shows the NDCG@10 pro- 515

duced by our methods and baseline embedding 516

models on the benchmarks. The Retrieval Model 517

and Embedding Model columns indicate which 518

models provide the initial list of 100 contexts and 519

which model is used for providing the Cq,30 candi- 520

date contexts. The HyQE Model column indicates 521

which LLMs are used to generate the hypothetical 522

queries. The symbol ‘−’ indicates that the results 523

in the associated rows are produced by the baseline 524

embedding models without hypothetical queries. 525

The other rows are obtained by HyQE framework 526

with different combinations of retrieval models, 527

embedding models, and hypothetical query genera- 528

tors. Our methods outperform the associated base- 529

line embedding models most of the time. These 530

results answer our main question and Question A, 531
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showing that locally hosted small-sized models and532

closed-source proprietary large models can gener-533

ate high-quality hypothetical queries that result in534

high-quality rankings in our framework.535

Changing the hyperparameters. Next, we answer536

Question B by changing the hyperparameters λ in537

Eq.2 to examine how sensitive the HyQE frame-538

work is to the changes. We pick 2 datasets, 4 em-539

bedding models, i.e., contriever, bge-base-en-v1.5,540

E5-large-v2, and nomic-embed-text-v1.5, and use541

SPLADE++ ED as the retriever so that the can-542

didate contexts are the same. Fig.4 shows that543

NDCG@10 decreases as λ increases for most em-544

bedding models, suggesting choosing small λ for545

these models. In Appendix C, we will present the546

results of modifying λ for other datasets, and we547

will also explore the impact of changing the num-548

ber of candidate contexts, i.e., the K in Cq,K , from549

30 to other values.

(a) DL19 (b) DL20

Figure 4: NDCG@10 changes with λ.

550

Compatibility with HyDE. To examine whether551

HyQE is compatible with other methods, we com-552

bine our method with HyDE (Gao et al., 2023a)553

by using HyDE for context retrieval and HyQE for554

context ranking. We use the identical embedding555

models for context retrieval and ranking, and use556

GPT-4o for the hypothetical context and query gen-557

eration. Since HyDE generates hypothetical con-558

texts and uses the average of the query embedding559

and hypothetical embeddings for context retrieval,560

we implement this combination in two ways. The561

first is to only use HyDE to collect 100 contexts562

and repeat the context ranking with HyQE as in563

Algorithm 1. The second is to use HyDE to not564

only collect the 100 contexts but also replace the565

query embedding with the mean of the query and566

hypothetical context embeddings during execution567

of Algorithm 1. In Table 2, we compare the results568

obtained in these two ways as well as those of us-569

ing HyDE alone. The results answer Question C570

by showing that HyQE is not only compatible with571

Embedding Model HyDE DL19 DL20 COVID NEWS Touche

contriever
- 62.60 57.69 53.86 38.76 17.92
+HyQE 65.58 62.72 54.39 43.59 18.81
×HyQE 67.38 63.35 57.52 45.49 20.41

bge-base-en-v1.5
- 75.37 70.55 75.49 43.55 17.92
+HyQE 75.16 71.36 78.98 46.12 20.69
×HyQE 75.96 72.07 78.81 46.85 20.39

Table 2: NDCG@10 results produced by combining
HyDE with HyQE. In the ‘HyDE’ column, the ‘-’ sym-
bol indicates that the results in the associated rows are
generated by HyDE; ‘+ HyQE’ indicates that HyDE is
used to retrieve contexts, but the query embedding is
not changed when HyQE ranks the contexts; ‘×HyQE’
indicates that the query embedding has been changed
into the average embedding of the query and hypotheti-
cal contexts when HyQE ranks the contexts. The font
color scheme is similar to that in Table 1.

Embedding Model DL19 DL20 COVID NEWS Touche
contriever 51.33 46.76 33.10 38.87 15.33
bge-base-en-v1.5 71.04 66.48 79.52 43.57 18.40

Table 3: NDCG@10 results produced by using Eq.5 for
HyQE.

HyDE but also can further improve the ranking 572

quality beyond that in Table 1. 573

Using the Alternative Scoring Function. We next 574

answer Question D by evaluating the alternative 575

scoring function in Eq.5. We use two embedding 576

models, i.e., contriever and bge-base-en-v1.5, for 577

both context retrieval and ranking. The hyperpa- 578

rameter λ for each embedding model stays the 579

same as that produces the main results. We still 580

use GPT-4o to generate hypothetical queries. The 581

results are included in Table 3. By comparing with 582

the results in Table 1, it is obvious that using Eq.5 583

outperforms the baseline embedding models and 584

cannot outperform using Eq.2. 585

7 Conclusion 586

In this paper, we introduce a novel framework for 587

context ranking using hypothetical queries gener- 588

ated by LLMs. Our method is grounded in vari- 589

ational inference, aiming to preserve the causal 590

relationship between queries and the contexts. The 591

experimental results demonstrate that our approach 592

not only outperforms baselines but also can be in- 593

tegrated seamlessly with existing techniques, al- 594

lowing for iterative refinement and continuous im- 595

provement. Furthermore, our method can amortize 596

the overhead in text generation with LLM as the 597

input queries increase, offering a scalable and effi- 598

cient solution for context retrieval and ranking. 599
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8 limitation600

While our proposed framework demonstrates sig-601

nificant improvements in context ranking and is602

scalable, there are several limitations to consider:603

1. Overhead of Query Generation and Stor-604

age. The effectiveness of our method relies605

on using an LLM to generate the queries. The606

computational complexity for the query gen-607

eration is amortized as the input queries grow.608

However, this amortization is built on the609

premise that the generated queries are stored610

for future retrieval. And such storage will611

raise the memory complexity of this frame-612

work. As a result, extremely large datasets613

could still pose challenges.614

2. Dependency on the Type of Query. The in-615

put query can have different types, e.g., ques-616

tions asking for specific information, a se-617

quence of keywords, etc. However, in the618

prompt we only ask the LLM to generate the619

questions that can be addressed by the context,620

which may not have different structures than621

the input query.622

3. Adaptability to Context Chunk Sizes. Our623

framework has been validated on well-known624

TREC and MS-MARCO datasets, where the625

contexts are provided. However, when deal-626

ing with document retrieval, the contexts are627

created by segmenting the documents into628

chunks. The documents may be segmented629

with different chunk sizes depending on the630

requirement. Each time the document is seg-631

mented, the hypothetical queries have to be632

regenerated from the contexts. This issue633

could potentially be mitigated by generat-634

ing hypothetical queries from smaller, fixed-635

sized chunks of contexts and composing those636

queries for larger chunks of contexts. How-637

ever, the specifics of this approach require fur-638

ther investigation to ensure its effectiveness639

and efficiency.640

Addressing these limitations in future work will641

be essential for enhancing the robustness, effi-642

ciency, and applicability of our proposed context643

ranking framework across a broader range of sce-644

narios.645

References 646

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama 647
Ahmad, Ilge Akkaya, Florencia Leoni Aleman, 648
Diogo Almeida, Janko Altenschmidt, Sam Altman, 649
Shyamal Anadkat, et al. 2023. Gpt-4 technical report. 650
arXiv preprint arXiv:2303.08774. 651

Kartik Ahuja, Ethan Caballero, Dinghuai Zhang, Jean- 652
Christophe Gagnon-Audet, Yoshua Bengio, Ioan- 653
nis Mitliagkas, and Irina Rish. 2021. Invariance 654
principle meets information bottleneck for out-of- 655
distribution generalization. Advances in Neural In- 656
formation Processing Systems, 34:3438–3450. 657

Tiago Almeida and Sérgio Matos. 2024. Exploring 658
efficient zero-shot synthetic dataset generation for 659
information retrieval. In Findings of the Association 660
for Computational Linguistics: EACL 2024, pages 661
1214–1231, St. Julian’s, Malta. Association for Com- 662
putational Linguistics. 663

Akari Asai, Sewon Min, Zexuan Zhong, and Danqi 664
Chen. 2023a. Retrieval-based language models and 665
applications. In Proceedings of the 61st Annual Meet- 666
ing of the Association for Computational Linguistics 667
(Volume 6: Tutorial Abstracts), pages 41–46. 668

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and 669
Hannaneh Hajishirzi. 2023b. Self-rag: Learning to 670
retrieve, generate, and critique through self-reflection. 671
arXiv preprint arXiv:2310.11511. 672

Akari Asai, Xinyan Yu, Jungo Kasai, and Hannaneh 673
Hajishirzi. 2021. One question answering model for 674
many languages with cross-lingual dense passage 675
retrieval. In Advances in Neural Information Pro- 676
cessing Systems. 677

Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, 678
Jianfeng Gao, Xiaodong Liu, Rangan Majumder, 679
Andrew McNamara, Bhaskar Mitra, Tri Nguyen, 680
et al. 2016. Ms marco: A human generated ma- 681
chine reading comprehension dataset. arXiv preprint 682
arXiv:1611.09268. 683

David M Blei, Alp Kucukelbir, and Jon D McAuliffe. 684
2017. Variational inference: A review for statisti- 685
cians. Journal of the American statistical Associa- 686
tion, 112(518):859–877. 687

Tom Brown, Benjamin Mann, Nick Ryder, Melanie 688
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind 689
Neelakantan, Pranav Shyam, Girish Sastry, Amanda 690
Askell, Sandhini Agarwal, Ariel Herbert-Voss, 691
Gretchen Krueger, Tom Henighan, Rewon Child, 692
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens 693
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma- 694
teusz Litwin, Scott Gray, Benjamin Chess, Jack 695
Clark, Christopher Berner, Sam McCandlish, Alec 696
Radford, Ilya Sutskever, and Dario Amodei. 2020. 697
Language models are few-shot learners. In Ad- 698
vances in Neural Information Processing Systems, 699
volume 33, pages 1877–1901. Curran Associates, 700
Inc. 701

9

https://aclanthology.org/2024.findings-eacl.81
https://aclanthology.org/2024.findings-eacl.81
https://aclanthology.org/2024.findings-eacl.81
https://aclanthology.org/2024.findings-eacl.81
https://aclanthology.org/2024.findings-eacl.81
https://openreview.net/forum?id=e8blYRui3j
https://openreview.net/forum?id=e8blYRui3j
https://openreview.net/forum?id=e8blYRui3j
https://openreview.net/forum?id=e8blYRui3j
https://openreview.net/forum?id=e8blYRui3j
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf


Claudio Carpineto and Giovanni Romano. 2012. A702
survey of automatic query expansion in information703
retrieval. ACM Comput. Surv., 44(1).704

Rewon Child, Scott Gray, Alec Radford, and705
Ilya Sutskever. 2019. Generating long se-706
quences with sparse transformers. arXiv preprint707
arXiv:1904.10509.708

Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel709
Campos, and Ellen M Voorhees. 2020. Overview710
of the trec 2019 deep learning track. arXiv preprint711
arXiv:2003.07820.712

Matthew Fellows, Anuj Mahajan, Tim GJ Rudner, and713
Shimon Whiteson. 2019. Virel: A variational in-714
ference framework for reinforcement learning. Ad-715
vances in neural information processing systems, 32.716

Thibault Formal, Carlos Lassance, Benjamin Pi-717
wowarski, and Stéphane Clinchant. 2022. From dis-718
tillation to hard negative sampling: Making sparse719
neural ir models more effective. In Proceedings of720
the 45th international ACM SIGIR conference on721
research and development in information retrieval,722
pages 2353–2359.723

Luyu Gao, Xueguang Ma, Jimmy Lin, and Jamie Callan.724
2023a. Precise zero-shot dense retrieval without rel-725
evance labels. In Proceedings of the 61st Annual726
Meeting of the Association for Computational Lin-727
guistics (Volume 1: Long Papers), pages 1762–1777,728
Toronto, Canada. Association for Computational Lin-729
guistics.730

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.731
SimCSE: Simple contrastive learning of sentence em-732
beddings. In Proceedings of the 2021 Conference733
on Empirical Methods in Natural Language Process-734
ing, pages 6894–6910, Online and Punta Cana, Do-735
minican Republic. Association for Computational736
Linguistics.737

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia,738
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and Haofen739
Wang. 2023b. Retrieval-augmented generation for740
large language models: A survey. arXiv preprint741
arXiv:2312.10997.742

Albert Gu and Tri Dao. 2023. Mamba: Linear-time743
sequence modeling with selective state spaces. arXiv744
preprint arXiv:2312.00752.745

Matthew D Hoffman, David M Blei, Chong Wang, and746
John Paisley. 2013. Stochastic variational inference.747
Journal of Machine Learning Research.748

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Se-749
bastian Riedel, Piotr Bojanowski, Armand Joulin,750
and Edouard Grave. 2021. Towards unsupervised751
dense information retrieval with contrastive learning.752
CoRR, abs/2112.09118.753

Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumu-754
lated gain-based evaluation of ir techniques. ACM755
Trans. Inf. Syst., 20(4):422–446.756

J. L. W. V. Jensen. 1906. Sur les fonctions convexes 757
et les inégalités entre les valeurs moyennes. Acta 758
Mathematica, 30:175–193. 759

AQ Jiang, A Sablayrolles, A Mensch, C Bamford, 760
DS Chaplot, D de las Casas, F Bressand, G Lengyel, 761
G Lample, L Saulnier, et al. 2023. Mistral 7b (2023). 762
arXiv preprint arXiv:2310.06825. 763

Jean Kaddour, Joshua Harris, Maximilian Mozes, Her- 764
bie Bradley, Roberta Raileanu, and Robert McHardy. 765
2023. Challenges and applications of large language 766
models. arXiv preprint arXiv:2307.10169. 767

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina 768
Toutanova. 2019. Bert: Pre-training of deep bidirec- 769
tional transformers for language understanding. In 770
Proceedings of naacL-HLT, volume 1, page 2. 771

Diederik P Kingma and Max Welling. 2013. Auto- 772
encoding variational bayes. arXiv preprint 773
arXiv:1312.6114. 774

Victor Lavrenko and W. Bruce Croft. 2001. Relevance 775
based language models. In Proceedings of the 24th 776
Annual International ACM SIGIR Conference on Re- 777
search and Development in Information Retrieval, 778
SIGIR ’01, page 120–127, New York, NY, USA. As- 779
sociation for Computing Machinery. 780

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio 781
Petroni, Vladimir Karpukhin, Naman Goyal, Hein- 782
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock- 783
täschel, et al. 2020. Retrieval-augmented generation 784
for knowledge-intensive nlp tasks. Advances in Neu- 785
ral Information Processing Systems, 33:9459–9474. 786

Jimmy Lin, Xueguang Ma, Sheng-Chieh Lin, Jheng- 787
Hong Yang, Ronak Pradeep, and Rodrigo Nogueira. 788
2021. Pyserini: A Python toolkit for reproducible 789
information retrieval research with sparse and dense 790
representations. In Proceedings of the 44th Annual 791
International ACM SIGIR Conference on Research 792
and Development in Information Retrieval (SIGIR 793
2021), pages 2356–2362. 794

Linqing Liu, Minghan Li, Jimmy Lin, Sebastian Riedel, 795
and Pontus Stenetorp. 2022. Query expansion us- 796
ing contextual clue sampling with language models. 797
arXiv preprint arXiv:2210.07093. 798

Chaochao Lu, Yuhuai Wu, José Miguel Hernández- 799
Lobato, and Bernhard Schölkopf. 2022. Invariant 800
causal representation learning for out-of-distribution 801
generalization. In International Conference on 802
Learning Representations. 803

Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das, 804
Daniel Khashabi, and Hannaneh Hajishirzi. 2022. 805
When not to trust language models: Investigating 806
effectiveness of parametric and non-parametric mem- 807
ories. arXiv preprint arXiv:2212.10511. 808

Grégoire Mialon, Roberto Dessi, Maria Lomeli, Christo- 809
foros Nalmpantis, Ramakanth Pasunuru, Roberta 810
Raileanu, Baptiste Roziere, Timo Schick, Jane 811

10

https://doi.org/10.1145/2071389.2071390
https://doi.org/10.1145/2071389.2071390
https://doi.org/10.1145/2071389.2071390
https://doi.org/10.1145/2071389.2071390
https://doi.org/10.1145/2071389.2071390
https://doi.org/10.18653/v1/2023.acl-long.99
https://doi.org/10.18653/v1/2023.acl-long.99
https://doi.org/10.18653/v1/2023.acl-long.99
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://arxiv.org/abs/2112.09118
https://arxiv.org/abs/2112.09118
https://arxiv.org/abs/2112.09118
https://doi.org/10.1145/582415.582418
https://doi.org/10.1145/582415.582418
https://doi.org/10.1145/582415.582418
https://api.semanticscholar.org/CorpusID:120669169
https://api.semanticscholar.org/CorpusID:120669169
https://api.semanticscholar.org/CorpusID:120669169
https://doi.org/10.1145/383952.383972
https://doi.org/10.1145/383952.383972
https://doi.org/10.1145/383952.383972
https://openreview.net/forum?id=-e4EXDWXnSn
https://openreview.net/forum?id=-e4EXDWXnSn
https://openreview.net/forum?id=-e4EXDWXnSn
https://openreview.net/forum?id=-e4EXDWXnSn
https://openreview.net/forum?id=-e4EXDWXnSn


Dwivedi-Yu, Asli Celikyilmaz, Edouard Grave, Yann812
LeCun, and Thomas Scialom. 2023. Augmented lan-813
guage models: a survey. Transactions on Machine814
Learning Research. Survey Certification.815

Niklas Muennighoff, Nouamane Tazi, Loïc Magne, and816
Nils Reimers. 2022. Mteb: Massive text embedding817
benchmark. arXiv preprint arXiv:2210.07316.818

Rodrigo Nogueira, Wei Yang, Jimmy Lin, and819
Kyunghyun Cho. 2019. Document expansion by820
query prediction. arXiv preprint arXiv:1904.08375.821

Zach Nussbaum, John X. Morris, Brandon Duderstadt,822
and Andriy Mulyar. 2024. Nomic embed: Training a823
reproducible long context text embedder. Preprint,824
arXiv:2402.01613.825

Ronak Pradeep, Sahel Sharifymoghaddam, and Jimmy826
Lin. 2023. Rankzephyr: Effective and robust zero-827
shot listwise reranking is a breeze! arXiv preprint828
arXiv:2312.02724.829

Ori Ram, Yoav Levine, Itay Dalmedigos, Dor Muhlgay,830
Amnon Shashua, Kevin Leyton-Brown, and Yoav831
Shoham. 2023. In-context retrieval-augmented lan-832
guage models. Transactions of the Association for833
Computational Linguistics, 11:1316–1331.834

Nils Reimers and Iryna Gurevych. 2019. Sentence-835
BERT: Sentence embeddings using Siamese BERT-836
networks. In Proceedings of the 2019 Conference on837
Empirical Methods in Natural Language Processing838
and the 9th International Joint Conference on Natu-839
ral Language Processing (EMNLP-IJCNLP), pages840
3982–3992, Hong Kong, China. Association for Com-841
putational Linguistics.842

Stephen Robertson and Hugo Zaragoza. 2009. The843
probabilistic relevance framework: Bm25 and be-844
yond. Found. Trends Inf. Retr., 3(4):333–389.845

Rylan Schaeffer, Brando Miranda, and Sanmi Koyejo.846
2023. Are emergent abilities of large language mod-847
els a mirage? In Thirty-seventh Conference on Neu-848
ral Information Processing Systems.849

Bernhard Schölkopf, Francesco Locatello, Stefan Bauer,850
Nan Rosemary Ke, Nal Kalchbrenner, Anirudh851
Goyal, and Yoshua Bengio. 2021. Toward causal852
representation learning. Proceedings of the IEEE,853
109(5):612–634.854

Freda Shi, Xinyun Chen, Kanishka Misra, Nathan855
Scales, David Dohan, Ed H Chi, Nathanael Schärli,856
and Denny Zhou. 2023. Large language models can857
be easily distracted by irrelevant context. In Inter-858
national Conference on Machine Learning, pages859
31210–31227. PMLR.860

Weiwei Sun, Lingyong Yan, Xinyu Ma, Shuaiqiang861
Wang, Pengjie Ren, Zhumin Chen, Dawei Yin, and862
Zhaochun Ren. 2023. Is ChatGPT good at search?863
investigating large language models as re-ranking864
agents. In Proceedings of the 2023 Conference on865

Empirical Methods in Natural Language Process- 866
ing, pages 14918–14937, Singapore. Association for 867
Computational Linguistics. 868

Nandan Thakur, Nils Reimers, Andreas Rücklé, Ab- 869
hishek Srivastava, and Iryna Gurevych. 2021. Beir: 870
A heterogenous benchmark for zero-shot evalua- 871
tion of information retrieval models. arXiv preprint 872
arXiv:2104.08663. 873

Sandra Wachter, Brent Mittelstadt, and Chris Russell. 874
2017. Counterfactual explanations without opening 875
the black box: Automated decisions and the gdpr. 876
Harv. JL & Tech., 31:841. 877

Liang Wang, Nan Yang, Xiaolong Huang, Binxing 878
Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder, 879
and Furu Wei. 2022. Text embeddings by weakly- 880
supervised contrastive pre-training. arXiv preprint 881
arXiv:2212.03533. 882

Liang Wang, Nan Yang, and Furu Wei. 2023. 883
Query2doc: Query expansion with large language 884
models. arXiv preprint arXiv:2303.07678. 885

Xindi Wang, Mahsa Salmani, Parsa Omidi, Xiangyu 886
Ren, Mehdi Rezagholizadeh, and Armaghan Eshaghi. 887
2024. Beyond the limits: A survey of techniques to 888
extend the context length in large language models. 889
arXiv preprint arXiv:2402.02244. 890

Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas 891
Muennighoff. 2023. C-pack: Packaged resources 892
to advance general chinese embedding. Preprint, 893
arXiv:2309.07597. 894

Weichao Zhou and Wenchao Li. 2022. A hierarchical 895
bayesian approach to inverse reinforcement learning 896
with symbolic reward machines. In International 897
Conference on Machine Learning, pages 27159– 898
27178. PMLR. 899

11

https://openreview.net/forum?id=jh7wH2AzKK
https://openreview.net/forum?id=jh7wH2AzKK
https://openreview.net/forum?id=jh7wH2AzKK
https://doi.org/10.48550/ARXIV.2210.07316
https://doi.org/10.48550/ARXIV.2210.07316
https://doi.org/10.48550/ARXIV.2210.07316
https://arxiv.org/abs/2402.01613
https://arxiv.org/abs/2402.01613
https://arxiv.org/abs/2402.01613
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://openreview.net/forum?id=ITw9edRDlD
https://openreview.net/forum?id=ITw9edRDlD
https://openreview.net/forum?id=ITw9edRDlD
https://doi.org/10.18653/v1/2023.emnlp-main.923
https://doi.org/10.18653/v1/2023.emnlp-main.923
https://doi.org/10.18653/v1/2023.emnlp-main.923
https://doi.org/10.18653/v1/2023.emnlp-main.923
https://doi.org/10.18653/v1/2023.emnlp-main.923
https://arxiv.org/abs/2309.07597
https://arxiv.org/abs/2309.07597
https://arxiv.org/abs/2309.07597


A Visualizing the Hypothetical Query Emebeddings900

We demonstrate the difference between the contexts ranked by cosine similarity and those by HyQE. We901

conduct an independent component analysis (ICA) on each high-dimensional text embedding and project902

the embeddings onto a 2-D plane, using the two principal dimensions as the axes.903

Figure 5: ICA on the bge-base-env-v1.5 embeddings for the COVID dataset, which contains 50 input queries. Each
figure corresponds to one of the input queries. The purple circles represent the queries. The red squares represent
the top 5 contexts ranked using cosine similarity, and the red triangles represent the corresponding hypothetical
queries. The green squares represent the top 5 contexts ranked using our method, and the green triangles represent
the corresponding hypothetical queries.

It can be observed from Fig.5 that the contexts ranked by cosine similarity tend to cluster near the904

input query in the embedding space. In contrast, the contexts ranked by HyQE and their corresponding905

hypothetical queries are more scattered. This suggests that, in the embedding space, the queries are not906
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necessarily adjacent to the contexts that provide answers to them. Our experimental results in Table.1 907

show that the ranking produced by our HyQE has a higher NDCG@10 value than that of cosine similarity. 908

Therefore, both the ICA visualization and the evaluation results support our proposition that cosine 909

similarity should be applied only when comparing queries with queries to ensure better preservation of 910

the causal structure and to avoid spurious correlations. 911

B Additional Implementation Details 912

In our implementation, we have used Mistral-7b-instruct-v0.2, GPT-3.5-turbo, and GPT-4o to generate 913

hypothetical queries. 914

For Mistral-7b-instruct-v0.2, we use the pre-trained model. We set the context window size as 3900, 915

and the maximum number of outputs as 1024. We also use an instruction prompt as shown in Fig.6 to 916

wrap the prompt in Fig.2. 917

<s>[INST]\nYou are an AI assistant. Here are some rules you always follow:
- Generate human readable output , avoid creating output with gibberish text.
- Don 't plainly replicate the given instruction.
- Generate only the requested output , don 't include any other language before or

after the requested output.
- Never say thank you , that you are happy to help , that you are an AI agent , etc.

Just answer directly.
- Generate professional language typically used in business documents in North

America.
- Never generate offensive or foul language.

The user prompt is as follows :\n\n\{ prompt }[/ INST]</s>

Figure 6: Instruction Prompt for Mistral-7b-instruct-v0.2. ‘{prompt}’ is the placeholder for the prompt shown in
Fig.2.

We show examples of the hypothetical queries generated by Mistral-7b-instruct-v0.2 in Fig.7. 918

Figure 7: Contexts and the corresponding hypothetical queries generated by Mistral-7b-instruct-v0.2. The contexts
are in the yellow bubble. The hypothetical queries are in the blue bubbles.

For GPT-3.5-turbo and GPT-4o, we send the following message to OpenAI API with the parameters 919

temperature = 0.1, top_k = 1 and n = 1 in the request. For the same contexts in Fig.7, GPT-4o 920

generates the queries as shown in Fig.9. 921
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{
"role": "system",
"content ": "

You are an AI assistant. Here are some rules you always follow:
- Generate human readable output , avoid creating output with gibberish text.
- Don 't plainly replicate the given instruction.
- Generate only the requested output , don 't include any other language

before or after the requested output.
- Never say thank you , that you are happy to help , that you are an AI agent ,

etc. Just answer directly.
- Generate professional language typically used in business documents in

North America.
- Never generate offensive or foul language ,
"

},
{

"role": "user",
"content ": {prompt},

}

Figure 8: Messages sent to OpenAI API. ‘{prompt}’ is the placeholder for the prompt shown in Fig.2.

Figure 9: Contexts and the corresponding hypothetical queries generated by GPT-4o. The contexts are in the yellow
bubble. The hypothetical queries are in the blue bubbles.

We mentioned in Section 6 that we use a different prompt from that in Fig.2 for the Touche dataset.922

The prompt is shown in Fig.10. We designed this prompt because each query in this dataset is about the923

topic of an argument, and the contexts record the dialogues in the argument, which may deviate from the924

topic. An example is provided in Fig.1.925

In Table 4 we show the hyperparameter λ we set for each embedding model to obtain the results in926
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Which topics could the 'Content ' section of the following passage be arguing about.
If the 'Content ' section provides no meaningful argument , respond with a single 'No

content '.

```<passage >
{context}
</passage >```

Topics are questions.
Each question must be very short , different , and be written on separate lines.
Do not mention the passage itself or the author of the passage ...

Figure 10: Prompt designed for the Touche2020 dataset. ‘{context}’ is the placeholder for the context.

Table 1. Note that for bge-base-env-v1.5, we use a much smaller λ than other models because we do not 927

normalize the product between the embeddings of the input queries and hypothetical queries but normalize 928

the product between the embeddings of the queries and contexts. In this way, we obtain better and more 929

stable results than those when we normalize all the products.

contriever bge-base-en-v1.5 E5-large-v2 nomic-embed-text-v1.5 text-embedding-3-large
λ 2.0 0.03 0.5 0.5 0.3

Table 4: Hyperparameter λ used for each embedding model to produce results in Table 1.

930
Next, we show the derivation of ELBO in Eq.3. 931

DKL(pq(c)||p(c|q)) 932

= Ec∼pq(c)[log pq(c)− log p(c|q)] 933

= Ec∼pq(c)[log pq(c)− log
p(q|c)p(c)

p(q)
] 934

= Ec∼pq(c)[log pq(c)− log p(c)]− Ec∼pq(c)[log p(q|c)] + Ec∼pq(c)[log p(q)] 935

= DKL(pq(c)||p(c))− Ec∼pq(c)[log p(q|c)] + log p(q) 936

≤ ELBO 937

C Additional Experimental Results 938

In Section 6, we have shown how changing the hyperparameter λ affects HyQE on the DL19 and DL20 939

datasets. We now show the results on 3 other datasets. Most of the results align with those in the main 940

text, suggesting choosing a small λ for all models except for contriever. 941

(a) COVID (b) NEWS (c) Touche

Figure 11: NDCG@10 changes with λ.

We have also tried to use different embedding models for retrieval and ranking. As shown in Table 942
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5, the results align with those reported in the main text, indicating that HyQE can enhance the ranking943

quality.944

Retrieval Model Embedding Model HyQE Model DL19 DL20 COVID NEWS

contriever

bge-base-en-v1.5
- 65.52 62.29 51.60 42.59
GPT-3.5-turbo 66.16 62.15 53.80 42.69

E5-large-v2
- 66.24 65.20 47.08 46.72
GPT-3.5-turbo 66.44 64.94 51.51 47.17

nomic-embed-text-v1.5
- 63.27 60.07 54.07 43.34
GPT-3.5-turbo 64.52 62.09 53.39 44.20

bge-base-en-v1.5

contriever
- 52.78 51.10 63.57 40.17
GPT-3.5-turbo 59.56 56.73 73.62 45.47

E5-large-v2
- 69.48 71.01 66.19 48.10
GPT-3.5-turbo 71.92 71.36 77.62 48.41

nomic-embed-text-v1.5
- 68.20 65.61 77.25 43.60
GPT-3.5-turbo 71.28 67.20 77.69 44.30

Table 5: NDCG@10 results produced by different combinations of embedding models across various datasets. The
‘−’ sign indicates that the results in the associated row are generated without HyQE. The blue color highlights that
using HyQE for ranking results in a higher NDCG@10 value compared to not using HyQE for the combination of
embedding models and dataset.

In Algorithm 1, the parameter K in the candidate context set Cq,K functions can also be considered945

as a hyperparameter. Setting a small value for K limits the range of contexts to be ranked, resulting946

in fewer calls to the LLM. Conversely, a large value of K allows for low-rank but potentially highly947

relevant contexts to be re-ranked. However, this increases the number of calls to the LLM and the risk of948

erroneously assigning a high rank to a low-relevant context. In Section 6, the results are obtained with K949

set to 30. In Table 6, we show how the performance of HyQE changes with the value of K. Compared950

with Table 1, the results for K = 20 and K = 30 are close to each other.

Retrieval Model Embedding Model HyQE Model K DL19 DL20 COVID NEWS

contriever

contriever
GPT-3.5-turbo

10 46.35 43.56 28.84 36.74
20 51.38 48.59 32.82 41.33

Mistral-7b-instruct
10 46.14 42.94 28.63 36.24
20 50.85 48.16 32.90 40.18

bge-base-en-v1.5
GPT-3.5-turbo

10 66.55 61.84 52.66 42.09
20 66.16 62.15 53.80 42.69

Mistral-7b-instruct
10 66.58 61.94 52.62 42.31
20 65.89 62.40 53.93 42.99

E5-large-v2
GPT-3.5-turbo

10 66.55 64.85 27.32 34.84
20 66.48 64.98 27.32 34.84

Mistral-7b-instruct
10 66.41 64.84 48.38 46.08
20 65.67 65.09 52.78 46.28

nomic-embed-text-v1.5
GPT-3.5-turbo

10 62.12 61.77 53.92 44.83
20 64.11 62.08 53.26 43.86

Mistral-7b-instruct
10 64.48 61.54 55.46 43.09
20 63.47 63.69 54.71 44.22

Table 6: NDCG@10 results produced by embedding models and hypothetical query generators (LLMs) across
various datasets. The values in the K column indicates HyQE is used to re-rank the top-K contexts ordered by the
embedding model.

951
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