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ABSTRACT

Function encoders are a recent technique that learn neural network basis functions
to form compact, adaptive representations of Hilbert spaces of functions. We
show that function encoders provide a principled connection to feature learning
and kernel methods by defining a kernel through an inner product of the learned
feature map. This kernel-theoretic perspective explains their ability to scale inde-
pendently of dataset size while adapting to the intrinsic structure of data, and it
enables kernel-style analysis of neural models. Building on this foundation, we
develop two training algorithms that learn compact bases: a progressive training
approach that constructively grows bases, and a train-then-prune approach that
offers a computationally efficient alternative after training. Both approaches use
principles from PCA to reveal the intrinsic dimension of the learned space. In par-
allel, we derive finite-sample generalization bounds using Rademacher complex-
ity and PAC-Bayes techniques, providing inference time guarantees. We validate
our approach on a polynomial benchmark with a known intrinsic dimension, and
on nonlinear dynamical systems including a Van der Pol oscillator and a two-body
orbital model, demonstrating that the same accuracy can be achieved with substan-
tially fewer basis functions. This work suggests a path toward neural predictors
with kernel-level guarantees, enabling adaptable models that are both efficient and
principled at scale.

1 INTRODUCTION

Learning methods face a persistent trade-off between computational efficiency and theoretical guar-
antees. Neural networks learn flexible representations and scale effectively to massive datasets, but
their theoretical guarantees remain limited. Existing neural network bounds often rely on restrictive
assumptions or yield vacuous estimates. Kernel methods provide precise statistical guarantees and
well-developed theory, but scale poorly in practice. The source of this limitation lies in the dual
formulation: kernel solutions are linear combinations of the training data, meaning inference cost is
proportional to the number of training points m. Many applications, such as robotics and scientific
modeling, demand both: scalable predictors that also come with theoretical guarantees.

We study function encoders, a recent technique in transfer and representation learning that bridges
this gap by learning neural basis functions that act as explicit feature maps in the primal (Ingebrand
et al., 2025). Function encoders learn a finite set of basis functions {1;}""_; that define an explicit

feature map ¢(z) = [11 (), ..., ¥, (x)]". Any function in the span of these basis functions can be

written as f(z) = (¢, ¢(x)) for some coefficient vector ¢ € R™, which is computed by solving a
regularized least-squares problem. The key points are that the features are learned, not chosen, and
inference cost depends only on the number of basis functions n, not the dataset size m. This makes
function encoders computationally comparable to linear models in n dimensions, while retaining the
structure of kernel-based approaches.

Our results establish the theoretical role of function encoders. Function encoders can be understood
from both the primal and dual perspectives. In the primal space, they provide an explicit feature
map ¢(x) that supports efficient linear prediction with cost O(n) per test point. In the dual space,
the inner product (¢ (z), ¢(z')) corresponds to a kernel evaluation. This dual perspective makes it
possible to analyze function encoders with the same theoretical tools used for kernels and design
flexible neural training algorithms.



We present three key contributions: (1) We connect function encoders to feature learning and kernel
methods by showing that function encoders define a kernel through the inner product of the learned
feature map. This perspective unifies neural basis learning with kernel theory and explains why
function encoders scale while retaining structure. (2) We develop two training algorithms based on
principal component analysis (PCA) for learning compact bases: a progressive training approach
that constructively grows bases and a train-then-prune approach that removes them after training.
(3) We derive finite-sample generalization bounds using Rademacher complexity and PAC-Bayes
analysis, giving inference-time guarantees for neural predictors. We validate our approach on an
illustrative polynomial benchmark with a known intrinsic dimension, and demonstrate the capability
of our approach on two nonlinear dynamical systems: a Van der Pol oscillator and a two-body model.
Our results show that using our approach, we retain the same accuracy as an overparameterized
model, but with significantly fewer basis functions.

2 RELATED WORK

Function encoders: Our work builds on the recent formulation of function encoders introduced
in Ingebrand et al. (2025; 2024b;a). Function encoders have applications in robotics (Ward et al.,
2025a;b), dynamics modeling (Ingebrand et al., 2024a), and transfer learning (Ingebrand et al.,
2024b; 2025), but existing analysis is limited. Prior work established asymptotic results (Ingebrand
et al., 2025, Theorem 1) showing that as n — oo the span of these basis functions can represent the
entire Hilbert space. However, theoretical gaps remain in the existing work: (i) there is no formal
connection between function encoders and Hilbert space techniques, (ii) there are no principled
methods to choose the number of basis functions n, and (iii) existing work lacks finite sample
guarantees that quantify the quality of the approximation once the basis functions are learned. We
extend the existing foundation to fill this gap.

Kernel methods and kernel approximation: Kernel methods such as Gaussian processes, kernel
ridge regression, and support vector machines provide strong guarantees through RKHS theory and
often support closed-form training (Scholkopf & Smola, 2002; Christmann & Steinwart, 2008).
Despite this, two persistent challenges limit their use in practice: scalability and kernel choice.
Approximations such as Nystrom sampling (Drineas & Mahoney, 2005), random Fourier features
(Rahimi & Recht, 2007), and Fastfood (Le et al., 2013) mitigate these costs, but predictions still
fix the kernel in advance and cannot adapt to data. Function encoders differ by learning a data-
dependent feature map in the primal that can be viewed as an adaptive, kernel-like predictor.

Deep kernel learning: Deep kernel learning adapts kernels by parameterizing them with a neu-
ral network fy, giving kg (z, ") = k(fo(x), fo(x')), where k is a base kernel such as RBF (Wilson
et al., 2016). This improves expressiveness but retains the computational bottlenecks of kernel meth-
ods: inference still requires evaluating against all m training points in the dual. Recent work has
established generalization guarantees for deep kernels through capacity analysis and deep kernel
regression (Zhang & Zhang, 2023; Ji & Fu, 2024) that complement our bounds for function en-
coders. By contrast, function encoders move fully to the primal: the network directly defines the
explicit feature map ¢(x), and prediction cost depends only on 7. This shift eliminates dataset-size
dependence at inference while still enabling kernel-style analysis.

Dictionary learning: Dictionary learning methods (Aharon et al., 2006), SINDy (Brunton et al.,
2016), and Koopman approaches (Mezi¢, 2005; Williams et al., 2015) also seek compact representa-
tions by combining basis elements with coefficients. Neural variants (Lee et al., 2022; Lusch et al.,
2018; Takeishi et al., 2017) learn dictionaries or observables jointly with the model and resemble the
neural basis learning of function encoders. These methods, however, have fundamentally different
objectives and problem settings: sparsity for model discovery (SINDy, dictionaries) or lineariza-
tion of dynamics (Koopman). Their guarantees typically concern sparsity recovery or consistency.
Function encoders instead learn basis functions to span a subspace across tasks, followed by ridge
regression per task, and admit RKHS-style prediction bounds.

3  FUNCTION ENCODERS AS LEARNED FEATURE REPRESENTATIONS

Function encoders can be viewed as feature maps learned through neural basis functions. The func-
tion encoder optimization exactly matches the primal feature learning problem in a Hilbert space



‘H. For the purpose of illustration, we first consider the scalar case, and show that function encoders
naturally extend to the vector-valued case in Appendix B. Let H be a Hilbert space. A function
encoder learns a set of basis functions {1); %=1, which together define a feature map ¢ : X — R",

o(x) = Y1), ¥n ()], M
so that any function f in the span of these basis functions can be written as f(z) = (¢, ¢(z)) for
some coefficient vector ¢ € R™. Given training data (x1,41), - - ., (Zm, Ym ), the coefficients c of the
function approximation f are computed by solving a regularized least-squares problem,
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which has a closed-form solution,
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A function encoder learns in two stages. In the offline phase, the function encoder is trained on a
collection of datasets {D1,..., Dy}, where each D; = {(x;, fj(x;))}/~, comes from a different
function f; € H. The function encoder minimizes the loss given by,
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After training, the basis functions {wj }1:1 are fixed. Then at inference time, we can compute and
update the coefficients ¢ using a small amount of online data via least squares (2). See Ingebrand
et al. (2025) for more details.

Note that the basis functions are generally not unique, do not need to be orthonormal. Since we com-
pute the coefficients via least squares, we only require the basis functions to be linearly independent.
To enforce orthonormality, it is possible to use the Gram-Schmidt process during training, but this
significantly increases training time. In practice, regularization or soft penalties are preferable to
keep the bases well-conditioned without incurring large computational overhead.

3.1 FUNCTION ENCODERS ARE LEARNABLE KERNELS

Function encoders define a kernel k£ : X x X — R through the inner product, which is automatically
a valid (symmetric, positive semi-definite) kernel.

Proposition 1. Let ¢(z) = [tb1(), ..., ¥n(x)]". The kernel k, defined by
k(z,a') = ((x), é(a")) = Dy (2)e;(a). 5)
Jj=1
is a valid reproducing kernel.

Proof. Forany o € R™ and {z; }7, ||>°; cid(z;)||* > 0, and k(z, 2") = k(z', z) by symmetry of
the inner product. Thus, k is symmetric positive semi-definite, and therefore a valid kernel. O

In the dual space, learning is expressed in terms of kernel evaluations between data points. By the

representer theorem (Scholkopf et al., 2001), the optimal solution to the primal problem (2) lies in

the span of features over the training data. In particular, with m training points, the solution can be

expressed as w* = Z;”:l a;¢(x;). Substituting this into the primal objective function in (2) yields
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The solution can be computed as the solution to the linear system (K + AmI)a = Y, where

Kij = k(z;,z;) and Y = [y1,...,ym] . Solving the primal problem (2) is more efficient when

n < m, while solving the dual (6) is preferable when m < n. This shows that function encoders
not only provide explicit feature maps in the primal, but also instantiate valid kernels in the dual.



4 LEARNING COMPACT FEATURE REPRESENTATIONS

A central question for function encoders is how many basis functions are needed for a given dataset.
Existing theory ensures completeness as n — oo, but there is currently no principled rule for se-
lecting a compact set of basis functions. Without such a rule, models risk either underfitting (too
few basis functions) or overfitting, which leads to redundancy and inefficiency (too many). We de-
velop two PCA-guided training strategies to address this question and identify compact bases: a
sequential, progressive training approach and a parallel train-then-prune approach.

4.1 PROGRESSIVE TRAINING OF BASIS FUNCTIONS

Progressive training builds the basis set sequentially, ensuring each new function captures variance
not explained by the previous ones. This method explicitly leverages PCA in the space of coefficients
and offers interpretability, but at the cost of sequential training.

Progressive training learns the basis functions one at a time, starting with a single basis function.
After training, the basis function is frozen. We then create a new basis function, add it to the basis
set, and repeat training on the new basis function. In particular, at step b = 1, we train a single basis
1)1 using the function encoder objective in (4). After training, we freeze 1/,. At step b = 2, we add
a second basis 15 to form ¢o(x) = [1h1(x),v2(z)] . We compute coefficients ¢/ for each dataset
D; via (3). During optimization, we update only the parameters of 13 so that it fits the residual
fi(z) = (7,41 (x)). Ateach step b, the new basis 1 is trained while {11, ..., 1,_1 } remain fixed.
While freezing the previous basis functions is not strictly necessary, it means each new basis captures
variance not explained by the frozen bases and prevents collapse or redistribution of variance among
earlier bases. This creates a natural ordering of basis functions analogous to PCA.

We then compute the coefficients {c', ..., "} across all training datasets { D1, ..., Dy} and form
the mean-centered covariance matrix,

¥y = 72(&—5)(&—5)? 7)

Let Ay > ... > X be the eigenvalues. The cumulative explained variance, CEV,. = Z:Il EVR;,

where EVR;, = A/ Zi’:l A; is the explained variance ratio, gives a principled proxy for the effec-
tive dimension of the space. Training stops once CEV,. > 7 for a user-specified threshold 7 (e.g.
99%). This rule selects the effective rank of the coefficient covariance, which serves as a proxy for
the intrinsic dimension of the data. PCA is used in exactly this same fashion, where the eigenvalue
spectrum often shows a sharp elbow once the bases span the intrinsic dimension.

The main limitation is that training is inherently sequential in b, which prevents parallelization on
GPUs. The primary benefit is an ordered, interpretable basis with a clear stopping rule that signals
when added capacity no longer improves representation quality. As in PCA, the stopping threshold
remains primarily heuristic, however. We summarize the training loop as Algorithm 1.

Algorithm 1 Progressive Training

Require: Datasets {D;},, variance threshold 7
1: Initialize B < @, CEV < 0,b <+ 0
2: while CEV < 7 do
3: b + b+ 1; add new basis 1), to B; freeze {t1,...,¥p_1}

4: Train vy

5 for each dataset D; do

6: Compute coefficients ¢/ via (3)
7: end for

8:  Collect {¢/}}L,, compute ¥

9: Update CEV from eigenvalues of
10: end while
11: return B = {¢1,...,¢p}




4.2 TRAIN-THEN-PRUNE

Train-then-prune takes advantage of parallel computation. This approach is more computationally
efficient, but requires careful pruning and retraining. Instead of building bases sequentially, we
overparameterize with B bases {11, ..., 1 p} and train them jointly using (4). We then compute the
coefficients for each function in the datasets and compute the covariance matrix X g as in (7). From
the eigenvalues of X g, we compute the effective rank,

D1 i
r:min{n: % 27‘}, (8)
> j=1 Aj

which is the minimum number of basis functions required to capture at least 7 of the variance.

Because the bases are trained jointly, they are not naturally ordered. To prune the basis functions,
we need to select the » most informative basis functions. We score each basis v, by

sp=>_ NUp, )
=1

where U contains eigenvectors of X p. Alternative scoring rules, such as cosine similarity between
bases and eigenvectors, ignore eigenvalue magnitudes and yield higher reconstruction error.

We then keep the top-r basis functions and prune the rest. In a multi-headed MLP, this corresponds
to removing parameters from the final layer to form a reduced-size network. Unlike the progressive
training algorithm, the basis functions selected by the train-then-prune algorithm are not guaranteed
to capture the desired variance. We then perform a short fine-tuning step to retrain the basis functions
to capture the residual variance. We summarize the procedure in Algorithm 2.

Algorithm 2 Train-Then-Prune

Require: Datasets {D;},, initial B >> r, variance threshold 7
1: Initialize function encoder with {t1, ..., p}; train jointly on all tasks
for each dataset D; do
Compute coefficients ¢/ via (3) with ¢
end for
Form covariance ¥, eigendecompose to (U, \;)
Compute r = min{n : Y .-, \;/ Zle A\ >T1}
Score each basis s, = Y7 U2,
Keep top-r bases, prune others
Fine-tune the reduced model
return Top-r bases

A A A i

—

5 DETERMINING COMPLEXITY AND GENERALIZATION BOUNDS

Once the basis functions are fixed, a function encoder reduces to ridge regression in a finite-
dimensional feature space. The central question then becomes: how does generalization depend
on the number of bases n, the sample size m, and regularization A? We address this by analyzing
the complexity of the induced hypothesis class using two complementary analyses: Rademacher
complexity and PAC-Bayes.

5.1 RADEMACHER COMPLEXITY BOUNDS

The Rademacher complexity measures how “rich” a function class is (Bartlett & Mendelson, 2003).
A high Rademacher complexity indicates that a function class is able to closely model more com-
plex functions. Intuitively, the Rademacher complexity helps quantify the balance between model
expressiveness and the ability to generalize to unseen data.

Let ¢, denote the solution to (2) with regularization parameter A > 0,

1
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with corresponding loss function of interest £(f.(z),y) = (f.(z) — y)? = ({¢, ¢(x)) — y)?. Define
the population risk L(f.) := E[¢(f.(x),y)]. Then, given an empirical sample of i.i.d. data S =

{(z,9:)}™, C X x Y, define the empirical risk L,,(f.) = + S fe(s)s vi)

Under some mild assumptions on the boundedness of the basis functions {11, ..., %, } and outputs
y € ), we have that the learning scheme of (2) satisfies the following result:
Theorem 1. Let vy, ...,v%, C H be a fixed set of basis functions, where each p; : X — Y is a

fixed, bounded neural network satisfying sup,cx [1j(x)| < R. Assume that the output space for
the regularized least-squares problem of (2) is uniformly bounded as sup,cy|lyll2 < Y. Given
regularization parameter A > 0, then for any 6 > 0 we have that with probability greater than or
equal to 1 — ¢ the least-squares solution fz, from (10) satisfies

L(fs,) < Lon(fa,) + 2Y2R\/X<R\/§+ 1) (2 + bg(;”) (11)

Sim(féx)+@(Y2R2A3a). (12)

The proof follows from the Rademacher complexity of regularized linear predictors (Kakade et al.,
2008), and is presented in Appendix C.1. The key takeaway is the scaling: complexity grows with
the number of bases n, but decreases with data size m and regularization A. Thus, more bases
increase expressivity but also the risk of overfitting unless compensated for by sufficient data or
stronger regularization.

5.2 PAC BAYES

PAC-Bayes analysis provides probabilistic guarantees that hold for randomized predictors, but ap-
plying it to function encoders is not straightforward. Existing results typically assume fixed features,
scalar outputs, and bounded loss functions, whereas function encoders involve learned, multivariate
bases and regularized least-squares coefficients.

To address this, we overcome two primary challenges: we work in the fixed basis setting and use
truncated Gaussian distributions for the prior and posterior to handle the unbounded loss function
in the regularized least squares problem. This extension is non-trivial, and handles multivariate
outputs, accommodates learned feature maps, and yields non-vacuous guarantees. More broadly,
the techniques for controlling the KL divergence between truncated Gaussians extend beyond our
setting, offering a general-purpose tool for PAC-Bayes analysis for unbounded loss function settings.

For the fixed basis setting, we obtain:

Theorem 2. Let in,...,%, C H be a fixed set of basis functions, where each v; : X — Y
is a fixed, bounded neural network satisfying sup,cx |¢;(x)] < R. Assume furthermore that Y
is uniformly bounded as sup,cyl|lylla < Y and that the mapping ®(c) = Y i, cia; is injective.
Given regularization parameter X > 0, then for any § > 0 we have that with probability greater
than or equal to 1 — 6 the least-squares solution f;, from (10) satisfies

. ~ 3/
L(fey) S Lin(fsy) + O Y2R? 7Y, (13)
Av/m

The proof is presented in Appendix C.2. This result highlights the stability of the predictor under
posterior perturbations, aligning with Bayesian interpretations of kernel ridge regression.

6 EXPERIMENTAL RESULTS

We evaluate our approach on an illustrative polynomial benchmark with a known, finite intrinsic
dimension, and on two dynamical systems examples to showcase our approach: a Van der Pol
oscillator and a planar two-body orbital model. The polynomial benchmark serves as a controlled
setting where the intrinsic dimension is known, while the dynamical system examples extend our
approach to practical nonlinear dynamics modeling problems of practical relevance in robotics and
orbital mechanics.
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Figure 1: Function encoders recover the intrinsic polynomial dimension using our proposed algo-
rithms. Scree plots of the coefficient covariance (top row) show rapid eigenvalue decay with a clear
elbow at the same cutoff, confirming that both the loss curves and variance analysis identify the cor-
rect number of bases. The explained variance ratio of the eigenvalues (bottom row) shows a sharp
drop when the intrinsic dimension (d + 1) is reached.

6.1 AN ILLUSTRATIVE EXAMPLE ON POLYNOMIAL SPACES

We first consider an illustrative benchmark to validate our two proposed algorithms on polynomial
spaces of varying degrees d € {3,4,5}, where the intrinsic dimension is d 4+ 1. Scree plots of
the coefficient covariance matrix in Fig. 1 show rapid eigenvalue decay with clear elbows at the
expected dimensionality. Both approaches recover the correct number of basis functions: four basis
functions for degree-3 polynomials (Fig. 5 and 6 in Appendix D.1), five for degree-4, and six
for degree-5. The train-then-prune approach selects the same cutoff points, and fine-tuned pruned
models achieve reconstruction accuracy that is identical to the original overparameterized networks.
The progressive algorithm training curves initially show sharp reductions in mean squared error,
followed by a plateau once the intrinsic dimension is reached (Fig. 4 in Appendix D.1). We evaluated
both a multi-headed MLP architecture that is more computationally efficient since it shares hidden
parameters across the basis functions, as well as a basis specified by independent MLPs.

6.1.1 COMPARISON AND CONNECTIONS WITH DEEP KERNELS

For comparison, we train an RBF deep kernel (Wilson et al., 2016) on the same space of degree-3
polynomials. Deep kernels are designed to adapt a kernel for a single supervised task, whereas our
setting requires learning a function space across many training functions. We adapt the deep kernel
training to our setting for a direct comparison. Details are provided in Appendix D.1.1. Withm = 20
evaluation points, the deep kernel takes about ten times longer than a comparable function encoder
to reach the same MSE ~ 10~%. The slowdown arises from the m x m Gram matrix inversion in the
dual formulation, which introduces a per-function-per-batch cost of O(m?) that accumulates across
training functions. In contrast, the function encoder solves a fixed-size least-squares problem in the
primal, so its training time only grows with n and is independent of m. At inference, runtimes are
similar as both models use comparable network architectures. For m = 20 and n = 4, the one-time
coefficient estimation cost is negligible. The main difference comes from the prediction step, where
deep kernels rely on kernel evaluations and function encoders on basis evaluations. Thus, despite
the comparable inference time (basis vs. kernel evaluations), the function encoder avoids the O(m?)
training overhead, resulting in the ~ 10X speedup observed for m = 20 and n = 4.
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Figure 2: Gram matrices from a deep kernel (left) and a function encoder (right) on degree-3 polyno-
mials. Both yield nearly identical geometry, but function encoders obtain it with a fixed-size primal
formulation, while deep kernels require cubic-cost Gram matrix inversions in m.

We compare function encoders with a linear deep kernel to examine the induced geometry. Training
with the linear deep kernel remains slower than with function encoders, though faster than with an
RBF kernel (roughly twice as fast in our setup), highlighting that the nonlinear kernel in deep kernel
training directly impacts scalability. Increasing the example set to m = 50 does not change training
time. Figure 2 shows that the Gram matrices from both approaches have nearly identical structure.
This is consistent with theory: a function encoder can be viewed as a deep linear kernel trained in the
primal, recovering the same geometry up to rescalings of the basis. The key difference is efficiency
since function encoders achieve this geometry more effectively when m > n.

6.2 MODELING DYNAMICAL SYSTEMS WITH NEURAL ODE BASIS FUNCTIONS

We next evaluate our approach on two dynamical systems examples, where compact feature rep-
resentations are critical for real-time robotics, control, and autonomous systems. We focus on the
Van der Pol oscillator to compare with prior work in Ingebrand et al. (2025; 2024a) and the planar
two-body system to demonstrate our approach on a challenging, real-world satellite orbit prediction
problem. We implement basis functions as neural ODEs (Ingebrand et al., 2024a), which are useful
for capturing long-term dynamical behaviors.

For both tasks, we generate trajectories by sampling initial conditions from a bounded region of the
state space. We then use an RK4 integration scheme to compute the trajectories to form datasets D;
with data of the form (z;, At, 2441 — x¢) (c.f. Ingebrand et al., 2024a).

6.2.1 VAN DER POL

The Van der Pol oscillator is a nonlinear system with nontrivial limit-cycle behavior. Prior work
in Ingebrand et al. (2024b) used 100 neural ODE basis functions to model the space of dynamics.
However, our results show that only 2 basis functions are sufficient to capture the space. Both the
progressive training algorithm (Algorithm 1) and train-then-prune (Algorithm 2) identify the same
cutoff point. We see a sharp decline in the explained variance ratios after two basis functions, and
the training loss plateaus once two basis functions are trained. Despite reducing the number of bases
by an order of magnitude, the compact representation achieves the same predictive accuracy as the
original overparameterized encoder. This indicates that most of the additional bases in prior work
are redundant. While they do not degrade accuracy, they add unnecessary computational overhead.

6.2.2 Two0-BoDY PROBLEM

We consider the normalized planar two-body problem with a gravitational parameter. Initial condi-
tions are sampled to yield bound elliptical orbits. The planar two-body setting serves as a more de-
manding benchmark because, unlike the Van der Pol oscillator, which has a single low-dimensional
attractor, it is a conservative system with a continuous family of elliptical orbits determined by en-
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Figure 3: The first row shows the progressive training, where the predicted trajectories follow ground
truth orbits using only five to six bases. The second row shows the comparison of the overparam-
eterized model (blue), the pruned model (green), and the refined version (red) against the ground
truth (black). The pruned and refined model meets or surpasses the original model after retraining.

ergy and angular momentum. This diversity leads to longer-term correlations and makes the function
space effectively higher-rank. Consequently, the effective rank is not sharply defined: the eigenvalue
spectra of the coefficient covariance decay more gradually.

In the planar two-body setting (Fig. 3), the space of possible orbits is five-dimensional: one dimen-
sion for the central mass p, and four for the orbital parameters (a, e, w, ) describing size, shape, in-
plane orientation, and phase. Consistent with this structure, the explained variance analysis shows
that five to six bases capture more than 99% of the variance. This is consistent with the gradual
eigenvalue decay in the scree plot. Unlike the Van der Pol oscillator, where variance concentrates in
a few dominant modes, the two-body system requires additional bases to represent its richer dynam-
ics. Streamplots of the learned bases reveal interpretable structures aligned with orbital dynamics,
highlighting that the bases are compact and physically meaningful.

The key takeaway is that function encoders adapt to the complexity of the system. For Van der
Pol, they uncover a simple two-dimensional structure. For the two-body problem, they scale up to
model more intricate behavior while still yielding a compact and informative representation. This
is especially valuable for real-world applications such as embedded controllers, onboard satellite
orbit determination, or autonomous navigation, where compact models that also offer guarantees of
correctness are required under strict computational limits.

7 CONCLUSION & FUTURE WORK

We develop a principled connection between function encoders, neural models that learn compact
feature maps, and RKHS theory. Our contributions include PCA-guided algorithms for selecting
compact bases and finite-sample generalization bounds that extend kernel-style analysis to neural
predictors. Function encoders combine the efficiency of parametric models with the rigor of kernel
methods, enabling scalable yet principled learning. Several open directions remain: developing non-
heuristic criteria for basis selection, deepening theoretical links with kernel methods, and extending
the framework to applications such as statistical and scientific modeling. These opportunities point
toward a broader role for function encoders as efficient neural models with kernel-level guarantees.



8 REPRODUCIBILITY STATEMENT

All code, data generation scripts, and hyperparameter settings will be released on GitHub. Addi-
tional implementation details and results are provided in the appendix. Proofs of the theoretical
results, including Rademacher complexity and PAC-Bayes bounds, are provided in the appendix
with explicit assumptions stated. For experiments, we describe the polynomial benchmark, Van
der Pol oscillator, and two-body problem in detail in the appendix. Additional diagnostic plots and
training details are also included.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used a large language model as a general-purpose writing and editing assistant. Its role was
limited to suggesting alternative phrasings, improving clarity and flow, and helping with the struc-
tural organization of the manuscript. All technical ideas, theoretical results, proofs, algorithms, and
experiments were developed entirely by the authors.

B THE VECTOR-VALUED CASE

Many tasks require vector-valued outputs (e.g., multi-output regression and dynamical systems). We
extend function encoders to the vector-valued setting. Let )V = R< be the output space and consider

vector-valued basis functions ¢; : X — ) for j = 1,...,n. The feature map ¢ : X — RIX7 jg
given by,
¢(z) = [Yr(2), .., Yn(x)]. (14)
A predictor is of the form
n
fa) = o(@)e =" cjipy(w), (15)
j=1
where c € R™.
Given training data (21, y1), - . ., (T, Ym) With 3; € RY, the regularized least-squares problem is
minceR”l i\lyﬁ — ¢(xi)ell3 + Mlcll3 (16)
miz L o .
The normal equations are
1 = T 1 - T n
— > b)) d(wi) + ALy e = — > (i) Ty e R (17)
i=1 1=1

This setting induces an operator-valued kernel (Micchelli & Pontil, 2005),

k(z,2') = Zzpj(a:)%(x')T. (18)
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In matrix form, the predictor can be expressed as,

fla) =" kla,z:)o, (19)

m
i=1

where the coefficients « are found as the solution to the linear system, (K + AmlI,,)a =Y, where
Y = [y1,...,Ym] € R*™ and K is the Gram matrix with blocks K;; = r(x;, ;).

C GENERALIZATION BOUNDS

C.1 PROOF OF THEOREM 1

Here we provide a proof of Theorem 1, restated below.

Theorem 1. Let i, ...,%, C H be a fixed set of basis functions, where each ; : X — Y is a
fixed, bounded neural network satisfying sup, ¢ [1j(x)| < R. Assume that the output space for
the regularized least-squares problem of (2) is uniformly bounded as sup,cyllyll2 < Y. Given
regularization parameter A\ > 0, then for any 6 > 0 we have that with probability greater than or
equal to 1 — § the least-squares solution fz, from (10) satisfies

L(féx)gﬁm(fax)+2Y2R\/g<R\/§+ 1) <2+ 10g(21/6)) (11)

S Ln(fe) + @<Y2R2 A%) (12)

This result follows straightforwardly from well-known results from (Kakade et al., 2008) that iden-
tify the corresponding Rademacher complexity when using regularization.

Proof. We leverage the result of Theorem 3 and Corollary 5 in (Kakade et al., 2008) to obtain
generalization bounds for our regularized least-squares setting (2). To apply these results, we begin
by establishing a few simple bounds. First, note that the least-squares solution from (10) can be
bounded as

R . R - 1 &
Méls < Ln(fe) + Aleal3 < Ln(fo) +0=—=> y7 <V (20)
m =1

= [leallz < @21

VA
where we have used the boundedness of the outputs y; € ). Define the relevant set of coefficients

as
Y

Cr={ceR": |2} < \?)\ 22)
From this, we define the function class of interest for our setting as
Fe, ={fc(x) = (o(x),c) : c € Cr} C F = span{ey1,¢a, ..., ¢¥n}. (23)

Appealing to the boundedness of each fixed basis function, we can also bound the features from the
mapping = — ¢(x) € R™ as

sup [|¢(z)l2 < Rv/n. 24)
reX

We now establish a Lipschitz bound with respect to the first input of the squared-error loss function.
Indeed, this loss function is unbounded for arbitrary inputs, but the boundedness of ¢(x) and y
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yields the following bound. Given two inputs z = f.(x), 2z’ = fe(2'), we have that foray € Y

(2, y) — U2 y)| = [(z —y)* = (£ —y)*| (25)
et = 2yljz— 2] 26)
< 2(sup |z| + Y) |z — 2| 27
< z(suw(x)nz sup leflz + Y) 2~ 2| 28)
TEX CEC)\

§2Y<R\/§+ 1>|zz/. (29)

From these bounds, we can apply Theorem 3 from (Kakade et al., 2008) to establish that the
Rademacher complexity of F¢, can be bounded as

1 i n
Rm(Fe,) =E|— su c(ri)e | < YRy —, 30)
Fo) = smp 3o fiea] < YRy (

since the regularization function in our case is simply the 2-norm of the coefficients, c. Further-
more, this leads to the straightforward application of Rademacher-based generalization bounds for
bounded, Lipschitz loss functions, as in Corollary 5 in (Kakade et al., 2008),

L(fo,) < Ln(fa)) + 4(R\/?+ 1>YR\/X+ 2<R\/§+ 1)YR %ﬂ/é) (31)
= L (fa)) + 2Y2R\/X<R\/?+ 1) <2 + bgg”‘”) (32)

sim(f@)+@<Y2R2 z ) (33)

as desired. O

The Rademacher complexity of a class of functions indicates the inherent tradeoff between data and
the number of basis functions. In our setting, we see that the Rademacher complexity for the relevant
function class scales as R,,,(Fx) € O(y/n/mA). As we increase the number of basis functions n,
the Rademacher complexity increases, indicating we can model more complex functions, but also
risks overfitting unless we have enough data. On the other hand, increasing the number of data
points m and/or the regularization parameter A > 0 makes the model less prone to overfitting and
improves generalization performance.

C.2 PROOF OF THEOREM 2

In this section, we provide a proof of Theorem 2, restated below:

Theorem 2. Let in,...,%, C H be a fixed set of basis functions, where each vp; : X — Y
is a fixed, bounded neural network satisfying sup,cx [¢;(x)| < R. Assume furthermore that Y
is uniformly bounded as sup,cyl|lylla < Y and that the mapping ®(c) = Y 7, cit; is injective.
Given regularization parameter X > 0, then for any § > 0 we have that with probability greater
than or equal to 1 — 6 the least-squares solution f;, from (10) satisfies

3/2
L(foy) S Lm(fa) + O V2R2ZZ— ). 1
o) S L) + O (V2R 13)

Prior to the proof, we provide a few useful lemmas.
Lemma 3. Given 1 = N(a,a?l,) and the domain R = {z € R" : ||z — a2 < 7} =: B(a,r),
then the truncated distribution n™® of n has density dn™ (z) = dn(x)/Z, where
1(n/2,%/2)

L(n/2)

7 =
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and furthermore we have that
3,27 (1/2 4 1,72/2)
v(n/2,r2/2)

where I'(z) = [ e~t*='dt is the Gamma function and (s, z) = [, e~'t*~dt is the incomplete
gamma functzon

= [l — all3] = (34)

Proof. For both desired equalities, we appeal to the fact that the norm squared of a multivariate
normal random variable in R™ follows a chi-squared distribution with n degrees of freedom. From
this, we can write the desired integrals in terms of incomplete gamma functions and the standard
Gamma function.

First, note that we can apply a change of variables y = (z — a)/« to obtain

» —llo—allZ/20? el e—uyuégd

/ (@ /n @ra?)n2 T /|y||2<r @mz® 59)
=Py no) (Y2 <7) (36)
=Pcye (C<7r?) (37)
~ v(n/2,7%/2)

= T (38)

Now, we apply a similar change of variables to obtain

o2 e—lll?/2
E = [|z—al3] = — Y|z —=——=dy (39)
| ] =7 lylla<r I2 (2m)"/2
—a—2E Y|21{||Y], < 40
= By (IYI31{Y ]l <r}] (40)
—ajE Cc1{C <r? 41
= ZEon [CHC <7} 1)

202T'(n/2) v(n/2+1,7%/2)

Fn2.22) T(n)2) 2
L7 (n/2+1,72/2)
T “
as desired.
O

Lemma 4. For s,a > 0, the incomplete gamma function v(s,a) = foa e t571dt satisfies the
following bound

< 45, 44)

Proof. Utilizing a u-substitution, we can write

v(s,4a) f04a etttaldt 4% [femtuteTldu

= = = n 45
v(s,a) Jo e~ttotdt Jo e~ttatdt )
—utu 1d
oy et du (46)
Jo et Ldt
=4, 47)
where in the second line we have used the fact that e 4% < e, O

Now we turn to the proof of Theorem 2.
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Proof. We begin by bounding the squared error loss function on an appropriate domain of interest,
namely

So = {CGR" el < %mﬁ}, (48)

where the constant o > 0 will defined hereafter, n is the number of basis functions for the feature
¢(x) € R™, \is the regularization parameter, and Y is the uniform bound on outputs, y € ). Notice
that, given our boundedness assumptions on ¢(z) and ), we can bound the loss function as

(((6(2), ) y) < max{||¢<x>|2||cz,y}2 < max{ Ry T+ m)7y}2 S
forall c € Sy.

Now, consider the scaled loss function, £(z,y) = £(z,y) /A, so that £(z,5) € [0,1]. Then, we can
apply Corollary 8 from (Kakade et al., 2008) to obtain the following PAC-Bayes bound:

Bay [Efw [Z(f( H = *ZEfw[ )}+4 5\/maX{DKL( vllvo), 2} \/IOg 1/5)

(50
where vy and v are respectively prior and posterior distributions over f € F.

Let ®(c) = D1, ¢;th; € F C H represent the mapping of coefficient in R™ to functions in .
Furthermore, introduce the domain

S={ceS8:|c—2éil2 <ovn}, (51)

and we then define the following distributions:

« 15" = Ns,(0,021,), an isotropic, mean-zero multivariate Gaussian truncated to the do-
main Sy.

« uo = N(0,031,,), the untruncated counterpart of 115° defined above. That is, the density
dus® (z) = duo(x)/Zo for some normalization constant Zy > 0.

o 1S = Ns(é,0?1,), an isotropic multivariate Gaussian truncated to the domain S C S.

o 11 = N(éx,021,), the untruncated counterpart of S defined above. That is, the density
dus (z) = du(x)/Z for some normalization constant Z > 0.

We define the prior v to be the push-forward of the truncated multivariate Gaussian, ,u‘g , under the
mapping ¢

frvg=®upus. (52)
Similarly, we define the posterior v as:

fwy:CI)#,uS. (53)
We choose o, o in what follows to simplify the terms of the PAC-Bayes bound in (50).

Due to the convenient form of the v as the push forward of a multivariate Gaussian truncated to a
ball centered at ¢), the expectations with respect to v of the squared error loss in (50) can be replaced
by the mean of v, f = ®(¢é)):

Ep [((f(2),9)] < %i f(@i),y:) +45\/maX{DKL(V|V°) }+\/10g2(71n/5). (54)

m

Furthermore, due to the injectivity of the mapping ® : R® — F, the KL divergence between the
posterior, v, and prior, v, can be replaced by the KL divergence between ;° and %90; that is,

Dicr(v]|v0) = Dicr(@pp®||®pps°) = Drcr(1%]|15°). (55)
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Now, since S C Sy, the KL divergence between these truncated, multivariate Gaussians can be

computed as follows:
n/2 2 NI
Zo (o0 [z]® [l =l
1 - 56
8 ( Z <02 P 203 202 (56)

Zy n 0(2) 1 9 1 . 12
() (IT)

Dir(i%||i§°) = By

Note that (I) can be written as follows

s [12]1?] = Eus [llz — éx + %] (58)
(II) el + 28 Es [z — &) (59)
= (1) + [léxl?, (60)

so we can write (57) as

Z n o2 éxll? 02 o2 .

Applying Lemma 3, we choose o = Y/+/n from which we can simplify and bound the ratio

2
n 1 Y
ZO_W(WQ(\&—FU\/E) ) _7(3’21; ) <2n

z v (% 42) BEICE <

where in the last inequality we have used Lemma 4. Finally, we choose 02 = 402, and recalling
that ||éx||2 < Y/+/A, we can use Lemma 3 again to bound

(62)

[eall3 | =30

Sy, S n 12
Dics (") < mlog2 + Tlog (1) + 122 | e e a7 @)
n n  3y(n/2+1,0%n/2)
<nlog2+ =1 - — = 64
Snlog2+5los()+ g — 1 0 a9 ©4)

B n n o 3y(n/2+41,Y%/2X)

—n10g2+§log(4)+§—z NEYCREIEI (65)
<n (2 log 2 + ;) (66)
< 2n. (67)

Furthermore, our choice of ¢ = Y/v/n) gives that (49) simplifies to A, = Y2 max{"TRQ, 1} =
nR?Y? /). Combining it all together, we can multiply both sides of (54) by A, to obtain

E., [Z(f(x),y)} < %Zf(f(%),yz) LA, (4.5\/maX{DKL(V||VO)a2} + \/log(1/5)>

m 2m
(63)
1 nR*Y? log(1/4)
1 ~ [ R?Y?n3/2
S m ;E(f(ml)vyz) +0O <W> ) (70)
as desired. ]
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Figure 4: Mean squared error of the progressive training algorithm. We see a plateau in the MSE
reduction after the number of basis functions matches the intrinsic dimension of the data.
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Figure 5: As expected, the progressive approach produces basis functions that mirror the natural
ordering found in polynomial basis expansion, where the basis are approximately constant, linear,
quadratic, and cubic. This structure emerges because each new basis is trained to capture remaining
variance after freezing the previous ones, resulting in interpretable features.

D ADDITIONAL RESULTS, EXPERIMENTAL SETUP, AND PARAMETERS

D.1 POLYNOMIAL REGRESSION

For each degree d, we sample random polynomials by drawing coefficients independently and iden-
tically distributed from [—1, 1]. For each polynomial, we generate 1000 input-output pairs to form
a dataset D; = {(z;, fi(x;))};2% (c.f. Ingebrand et al., 2025). We use 100 sampled evaluation
points to compute the coefficients at inference time. Each learned basis function is implemented as
a one-hidden-layer MLP with width 32.

For the progressive training approach in Algorithm 1, we begin with a single basis function and
add new basis functions sequentially. After training each basis function, we compute the coefficient
matrix C' across all datasets, perform PCA, and check the explained variance of the latest component.
Training ends once the explained variance drops below a user-specified threshold (7 = 1% in our
experiments). For the train-then-prune algorithm (Algorithm 2), we begin with an over-specified
function encoder with n = 20 basis functions. After training, we determine the effective rank using
PCA as before, i.e., the smallest n such that the cumulative explained variance is greater than 99%.
We then select the basis functions corresponding to the principal directions, prune the remaining
basis functions, and fine-tune the network for a small number of epochs.

D.1.1 DEEP KERNEL
Deep kernel learning (DKL) combines neural networks with kernel methods by using a learned

feature map ¢ inside a kernel, typically ko (z,2') = Kpase(do (), do(x’)) (Wilson et al., 2016). In
its standard form, DKL is trained for a single supervised dataset by optimizing the kernel parameters
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Figure 6: Pruning from an overparameterized encoder yields basis functions with less interpretable
structure. Since we trained all bases at the same time, they lack the ordered progression seen in the
progressive approach.

0 (and possibly kernel hyperparameters) to maximize marginal likelihood in a Gaussian process or
to minimize empirical loss in kernel ridge regression. The method is designed to adapt the kernel
geometry for a specific task rather than to learn a function space shared across tasks.

Our setting differs: function encoders learn basis functions that span a reusable function class across
many training functions. To compare fairly, we adapt deep kernels to the multi-task setting.

Specifically, for each mini-batch of training functions {D;}, we construct the evaluation Gram ma-
trix K;; = kg(x;, x;), and solve the kernel ridge regression system (K +AmlI)a = y for coefficients
«. Training then backpropagates through the O(m?) Gram matrix inversion, updating # via gradient
descent. This procedure is repeated across functions, treating DKL as if it were learning a space of
functions rather than a single-task kernel.

We train the deep kernels and function encoders over the same space of degree-3 polynomials as
in Appendix D.1. We separate the data into a set of query points and a set of evaluation points
to compute the coefficients. The inputs are mapped through the feature network 6 to produce the
evaluation embedding Zp € R™*% and the query embedding Zg € R9*<, with m the number of
evaluation points, ¢ the number of query points, and d the output dimension of the network.

The first deep kernel is an RBF kernel in feature space with automatic relevance determination
lengthscales,

d ’
29 = e L35 = 0°) o

where ¢ € R7 are learnable lengthscales and o2 > 0 is the output scale. These embeddings define
Gram matrices Kgp = ko(Zg, Zg) and Kgp = ko(Zq, ZE). A kernel ridge regression predictor
is fitted on the example set by solving ap = (Kgg + M)~ 'yz, and predictions for the full dataset
are given by § = Kpgag. The model parameters, including both the feature extractor 6 and the
kernel parameters, are optimized by minimizing the mean-squared error on 3 against the full targets
1y, averaged across functions in the batch.

For the second part of the experiments, we replace the RBF kernel with a linear kernel. With the
same feature extractor § and embeddings Zg, Zg as above, the kernel is

ko(xz,z") = 0(z) " 0(a'). (72)

This induces the Gram matrices Kpr = ZrZ}, and Kgp = ZgZ},. The training and prediction
follow the same kernel ridge regression procedure described in the previous paragraph

The neural network for the RBF deep kernel is a one-hidden-layer MLP with a width of 64. The
function encoder is the same as in D.1. The linear deep kernel uses the same neural network archi-
tecture as the function encoder.
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Figure 7: Mean squared error for the progressive training algorithm (left) and the train-then-prune
algorithm (right) on the Van der Pol system.
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Figure 8: (Left) Eigenvalue spectra of the covariance matrix for both the progressive and train-
then-prune approaches reveal a similar trend and identify that only two basis functions are needed
to capture nearly all variance. (Middle and Right) Predicted trajectories using the two methods
accurately capture the nonlinear oscillatory dynamics using just two basis functions.

D.2 VAN DER POL OSCILLATOR

We evaluate our method on the Van der Pol oscillator, defined by @7 = 9 and 2 = pu(1 —
22) wy — 2 with p € [0.5,2.5]. Training data are generated by uniformly sampling initial conditions
xo € [—3.5,3.5)% and integrating trajectories over ¢ € [0, 10] with time step At = 0.1. We generate
a dataset with 1000 query points and 100 evaluation points. Both the progressive training and train-
then-prune methods use an MLP with two hidden layers of width 64, mapping inputs (x1, z2, 1) to
a two-dimensional output. The progressive training starts with 5 basis functions, whereas train-then-
prune starts with 10. The mean squared error is plotted in Figure 7. After training, our algorithms
produce accurate models with fewer basis functions. A representative trajectory from each algorithm
on the Van der Pol system is shown in Fig. 8.

D.3 Two-BODY PROBLEM
We study the planar two-body problem with point-mass dynamics i = —pur/||r||>. We generate

initial conditions by sampling Keplerian elements with semi-major axis a € [1.0, 3.0], eccentricity
e € [0,0.7] (to avoid singularities), argument of periapsis w € [0, 27], and gravitational parameter
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Figure 9: Training loss (MSE) curves for the two-body system. (Left) Progressive training gradually
reduces error over multiple stages as each basis function is added and optimized. Unlike the Van
der Pol system, the MSE loss shows a more gradual decrease due to the complexity of the system.
(Right) Train-then-prune training proceeds with all bases jointly, showing steady but slower conver-
gence.
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Figure 10: (Left) For the two-body problem, eigenvalue decay is more gradual, reflecting the in-
creased complexity of elliptical orbits. Both methods require 5-6 bases to capture the function space.
Unlike the Polynomial and Van der Pol systems, the two approaches show more distinct behavior.
Both methods (middle and right) successfully learn a compact function encoder that accurately re-
produces elliptical dynamics.

wu € [0.8,1.1]. The sampled elements are converted to Cartesian states and propagated over ¢ €
[0, 50] with time step At = 0.05. Each trajectory is sampled at 1,000 time points, with 100 points
held out for evaluation. Both training variants share an MLP with two hidden layers of width 64 and
take as input the gravitational parameter together with the Cartesian coordinates generated from the
orbital elements; the progressive variant is initialized with 5 basis functions, while the train-then-
prune variant is initialized with 10 basis functions and pruned afterward.

The mean squared error of the two algorithms is shown in Fig. 9. A representative trajectory from
the two algorithms is shown in Fig. 10. Streamplots of the selected basis functions after training are
shown in Fig. 11 and Fig. 12.

20



\ ;’///1/ ; N XN 7 m
=\

Figure 11: The progressive approach yields basis functions that exhibit more complex patterns
across the state space for the two-body problem.
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Figure 12: Train-then-prune approach produces more uniform basis functions for the two-body
problem.
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