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Abstract

StarCraft II is one of the most challenging reinforcement learning (RL) envi-
ronments; it is partially observable, stochastic, and multi-agent, and mastering
StarCraft II requires strategic planning over long-time horizons with real-time
low-level execution. It also has an active human competitive scene. StarCraft II
is uniquely suited for advancing offline RL algorithms, both because of its chal-
lenging nature and because Blizzard has released a massive dataset of millions
of StarCraft II games played by human players. This paper leverages that and
establishes a benchmark, which we call StarCraft II Unplugged, that introduces
unprecedented challenges for offline reinforcement learning. We define a dataset (a
subset of Blizzard’s release), tools standardising an API for ML methods, and an
evaluation protocol. We also present baseline agents, including behaviour cloning,
and offline variants of V-trace actor-critic and MuZero. We find that the variants of
those algorithms with behaviour value estimation and single-step policy improve-
ment work best and exceed 90% win rate against previously published AlphaStar
behaviour cloning agents.

1 Introduction

Deep Reinforcement Learning (RL) is dominated by online RL algorithms, where agents must interact
with the environment to explore and learn. This online RL paradigm achieved considerable success
on Atari [34], Go [44], StarCraft II [51], DOTA 2 [7], and robotics [2]. However, the requirements
of extensive interaction and exploration make these algorithms unsuitable and unsafe for many
real-world applications. In contrast, in the offline setting [14, 15, 17], agents learn from a fixed
dataset previously logged by humans or other agents. While the offline setting would enable RL in
real-world applications, most offline RL benchmarks such as D4RL [14] and RL Unplugged [17]
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have mostly focused on simple environments with data produced by RL agents. More challenging
benchmarks are needed to make progress towards more ambitious real-world applications.

To rise to this challenge, we introduce StarCraft II Unplugged, an offline RL benchmark, which uses
a dataset derived from replays of millions of humans playing the multi-player competitive game of
StarCraft II. StarCraft II continues to be one of the most complex simulated environments, with partial
observability, stochasticity, large action and observation spaces, delayed rewards, and multi-agent
dynamics. Additionally, mastering the game requires strategic planning over long time horizons, and
real-time low-level execution. Given these difficulties, breakthroughs in StarCraft II Unplugged will
likely translate to many other offline RL settings, potentially transforming the field.

Additionally, unlike most RL domains, StarCraft II has an independent leaderboard of competitive
human players over a wide range of skills. It also constitutes a rich and abundant source of data to
train and evaluate offline RL agents.

With this paper, we release the most challenging large-scale offline RL benchmark to date, including
the code of a canonical agent and data processing software. We note that removing the environment
interactions from the training loop significantly lowers the compute demands of StarCraft II, making
this environment accessible to far more researchers in the AI community.

The paper introduces several offline RL agents that can learn competitive policies purely from human
replays. This has been made possible by innovations in architectures and algorithms. Extensive
experimentation and evaluations, with proposed metrics, have taught us that many existing offline
RL algorithms fail in this benchmark. However, they have also provided us with insights on how
to design successful agents. Chiefly among these insights is the following recipe for constructing
successful agents: first train a policy and value function network to estimate the behavior policy
and value function. Then, during evaluation, either perform a single-step of policy improvement or
improve the policy with the fixed and pretrained behavior value function. We believe sharing these
insights will be valuable to anyone interested in offline RL, especially at large scale.

2 Background

The underlying system dynamics of StarCraft II can be described by a Markov decision process
(MDP; [6]).2 An MDP, M def

= (S,A, P, r, d), consists of finite sets of states S and actions A, a
transition distribution P (s0|s, a), s, s0 2 S, a 2 A, a reward function r : S ⇥A ! R, and an initial
state distribution d : S ! [0, 1]. In the offline setting, the agent does not interact with the MDP
but learns only from a dataset D containing sequences (st, at, rt+1)

N
t=0. The dataset D is assumed

to have been generated by following an unknown behaviour policy µ, a distribution over actions
conditioned on the state: µ(a|s).
The goal of offline RL is to find a policy ⇡ that maximizes the expected discounted return

v⇡(s0)
def
= E
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st ⇠ P (·|st�1, at�1), at ⇠ ⇡(·|st)

#
, (1)

where s0 ⇠ d and �t is a discount factor at time step t. We refer to the policy ⇡ as the target policy.
We use V µ and V ⇡ to denote the estimated value function for the behaviour and target policies µ and
⇡, respectively.

3 StarCraft II Unplugged: An Offline RL Benchmark

This work builds on top of the StarCraft II Learning Environment and associated replay dataset [52],
and the agents described in [51], by providing a few key components necessary for an offline RL
benchmark:

• Evaluation metric. Built-in rule-based agents provide a measure of performance, but this
metric can quickly saturate. In this work we present alternative metrics.

• Baseline agents. We provide a number of well tuned baseline agents.
2Strictly speaking, we have a partially observable MDP, but we simplify this for ease of presentation.

2



• Open source code. Building an agent that performs well on StarCraft II is a large engineering
endeavor. We provide a well tuned behavior cloning agent which forms the backbone for all
agents presented in this paper3.

3.1 Challenging Properties for Offline RL

When learning from offline data, the performance of algorithms depends greatly on the availability of
different state-action pairs in the data. We call this coverage — the more state-action pairs are absent,
i.e. the lower the coverage, the more challenging the problem is. Here we highlight a few properties
of StarCraft II that make it particularly challenging from a coverage perspective.

Action space. StarCraft II has a highly structured action space. As discussed in [51], the agent must
select an action type, select a subset of its units to apply the action to, select a target for the action
(either a map location or a visible unit), and decide when to observe and act next. Expanding, there
are approximately 1026 possible actions per step. For comparison, Atari has only 18 possible actions
per step. This makes it much more challenging to attain high state-action coverage for StarCraft II.

Stochastic environment. Stochastic environments may need many more trajectories to obtain high
state-action coverage. The main source of stochasticity is an unknown opponent policy, which itself
may be stochastic. To a small extent, the dynamics of the game engine are stochastic, for example
some units have random movement, or random spawn points, and some commands can have a random
delay. For comparison, in the Atari environment stochasticity arises only from sticky actions [33].

Partial Observability. StarCraft II is an imperfect information game. Players only have information
about opponent units that are within the field of view of the player’s own units. As a result, players
need to scout, i.e. send their units around the map to gather information about the current state of the
game, and may need it at a later point in the game. In comparison, a memory of the 3 most recent
frames is usually considered sufficient for Atari.

Data source. For StarCraft II, we have access to a dataset of millions of human replays. These
replays display a wide and diverse range of exploration and exploitation strategies. In contrast, the
existing benchmarks [17, 1] have a bias toward datasets generated by RL agents. Replays are also
labelled with the MMR of the player, a valuable data about their skill.

These properties create challenges for existing algorithms, and are likely to emphasize any differences
between behaviour cloning, online RL algorithms, and offline RL algorithms.

3.2 Dataset

Figure 1: Histogram of player MMR
from replays used for training.

About 20 million StarCraft II games are publicly available
through the replay packs4. For technical reasons, we restrict
the data to StarCraft II versions 4.8.2 to 4.9.2 which leaves
nearly 5 million games. They come from the StarCraft II
ladder, the official matchmaking mechanism. Each player is
rated by their MMR, a ranking mechanism similar to Elo [12].
The MMR ranges from 0 to around 7000. Figure 1 shows
the distribution of MMR among the episodes. In order to get
quality training data, we only use games played by players
with MMR greater than 3500, which corresponds to the top
22% of players. This leaves us with approximately 1.4 million
games. Since we consider two-player games, from a machine
learning point of view each game forms two episodes, one for
each side, so there are 2.8 million episodes in the dataset. This represents a total of more than 30
years of game played.

Episodes can span many steps. StarCraft II is a real-time strategy game with a fast internal game
clock. In order to make trajectories shorter, we only observe the steps when the player took an action.
Consequently, each time step t of the dataset contain a pair (st, at), but also the delay, the number of
internal game steps since the last action at�1. The delay is encoded as part of st. Each episode also

3Open source code will be released along with an ArXiv paper release.
4https://github.com/Blizzard/s2client-proto/tree/master/samples/replay-api
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contains metadata, the most important ones being the outcome R which can be 1 for a victory, �1
for a defeat and 0 for a draw (draws are extremely rare in StarCraft II), as well as the MMR of each
player. Since the games were played online using Blizzard’s matchmaking system, both players have
similar MMR in the vast majority of games.

4 Methodology

4.1 Training

StarCraft II Unplugged is a large-scale benchmark for data-driven approaches. Algorithms may only
use data from the dataset described in Appendix A.2 to learn to play. Algorithms may not collect
more data by interacting with the environment. However, we allow for online policy evaluation, i.e.
policies can be run in the environment to measure how well they perform. This evaluation may be
useful for hyperparameter tuning.

Figure 2: Training procedure.

Unlike the original AlphaStar agents [51], the agents here are
trained to play all three races of StarCraft 2. This is more chal-
lenging, as agents are typically better when they are trained on a
single race. They are also trained to play on all 10 maps available
in the dataset.

We typically train the agent on rollouts, i.e. sequences of K con-
secutive timesteps (s0, a0, r1, . . . sK�1, aK�1, rK), assembled
in a minibatch of M independent rollouts. Unless specified oth-
erwise, the minibatches are independent from each other, such
that two consecutive minibatches are not correlated. The rollout
length K differs between methods, as explained in Section 5.

4.2 Reference Agents

In this paper, we present six agents trained on this dataset as
reference agents. We propose to use them for evaluation of future works, by measuring the win-rate
of the new agent against them. They fall into three categories: behaviour cloning, actor-critic and
Monte-Carlo tree search (MCTS). Details about these agents, their implementations, and ablations
are given in Section 5. Their performances can be found in Table 1.

Behaviour Cloning (BC). Our behaviour cloning baseline [37, 45] is an imitation learning method
that trains an agent to predict what would be the next action in the dataset given the observation.
As such it uses a supervised loss which is the cross-entropy for StarCraft II. A BC agent learns an
estimate of the behavior policy µ̂ using only states and actions from the dataset.

Fine-Tuned Behaviour Cloning (FT-BC). The FT-BC agent restarts training from a pretrained
BC agent, and fine-tunes the pretrained parameters on the winning games with the highest MMR
only, similar to the fine-tuning used in [51].

Offline Actor-Critic (OAC). The OAC agent adapts the V-trace algorithm from Impala [13] to
offline RL in the i.i.d. setting. To compute importance sampling ratios, it uses the behaviour policy
µ̂ estimated by the BC agent. The actor-critic method starts from µ̂ and learns an improved policy
⇡. Unlike the online version of actor-critic, this agent uses V µ, the value function of the behaviour
policy, as the critic (instead of V ⇡).

Emphatic Offline Actor-Critic (E-OAC). The emphatic method is a theoretical tool to improve
stability in off-policy learning [47, 25]. This agent applies N-steps Emphatic Traces (NETD) [26] to
the Offline Actor-Critic agent, however using consecutive data sequences.

MuZero Supervised MCTS (MZS-MCTS). We apply MuZero Unplugged [40] for StarCraft II
but with a key difference. While MuZero Unplugged uses Monte Carlo tree search (MCTS; [9]) at
training time, MuZero Supervised is trained with supervised learning and thus does estimation of
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Table 1: Evaluation of the 6 reference agents with the proposed metrics. In the bottom part of the
table, we report the performance of the original AlphaStar agents[51]. Note that all the AlphaStar
agents use models specific to each home race; see Section 4.1. All agents use models which train on
and play all races, evaluated with softmax temperature 0.8.

Agent Robustness Elo vs very_hard

MZS-MCTS 50% 1578 95%
E-OAC 43% 1563 97%
OAC 41% 1548 97%
FT-BC 37% 1485 95%
MZS-P 30% 1425 92%
BC 25% 1380 88%
very_hard 3% 1000 50%

AlphaStar Final 100% 2968 100%
AlphaStar Supervised 44% 1545 94%
AlphaStar Supervised no FT 17% 1280 82%
AlphaStar Supervised no FT All Races 8% 1171 75%

the behvaioural policy µ̂ and behavioural value V µ. At inference time, the policy, value, and latent
model is used to perform MCTS for policy improvement and action selection.

MuZero Supervised Policy (MZS-P). For completeness, we also evaluate the performance of the
same MuZero Supervised agent, but without MCTS at inference time, and instead directly using the
policy network. This is similar to a behaviour cloning agent, but can often perform better because of
the additional regularisation effects from training a value function and the latent model which are not
used during inference (as also noted in [18, 40, 22]).

4.3 Evaluation and Metrics

Numerous metrics can be used to evaluate the agents. On one hand, the easiest to compute (and least
informative) is simply to look at the value of the loss functions. On the other hand, perhaps the most
informative (and most difficult to compute) metric would be to evaluate the agent against a wide panel
of human players, including professional players. In this paper, we propose a compromise between
these two extremes. We evaluate our agents by playing repeated games against a fixed selection of 7
opponents: the very_hard built-in bot5, as well as the 6 reference agents presented above.

During training, we only evaluate the agents against the very_hard bot, since it is significantly
less expensive, and we mostly use that as a validation metric, to tune hyper-parameters and discard
non-promising runs.

Fully trained agents are evaluated against the full set of opponents presented above. We combine
these win-rates into two aggregated metrics while uniformly sampling the races of any pair of these
agents: robustness, computed as one minus the minimum win-rate over the set of reference agents,
and Elo rating [12]. See details of the metrics computation in Appendix A.5. These metrics are
presented in Table 1.

5 Deep Dive into Reference Agents

The performance of our six reference agents is shown in Table 1. In the rest of this section, we
provide details of these agents, as well as ablation studies.

Results in Table 1 are evaluated on agents with a softmax temperature of 0.8. This means that at
evaluation time, the softmax logits are multiplied by 0.8 before being converted to probabilities. This
makes the agents more deterministic, but also stronger.

5The very_hard bot is not the strongest built-in bot in StarCraft II, but it is the strongest whose strength
does not come from unfair advantages which break the game rules.
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Figure 3: Illustration of the architecture that we used for our reference agents. Different types of data
are denoted by different types of data (vectors, units or feature planes).

5.1 Architecture

We used the same architecture for all the agents presented in this paper. It is derived from the model
used in [51], with some improvements. Inputs and outputs of the StarCraft II API are structured
around three types of data: vectors, units and feature planes (more details can be found in Sections A.1
and A.3). We structure the architecture around them, as shown on Figure 3. Unlike the model in [51],
we do not use an LSTM module or any form of memory, which is discussed in Section 5.2. More
details on the architecture can be found in Appendix A.4.

5.2 Behaviour Cloning

The BC and FT-BC agents are trained using a supervised loss, where given a trajectory
(s0, a0, ..., st�1, at�1, st), the model predicts at. This is similar to training a language model. The
procedure is detailed in Algorithm 1 in the Appendix. It is the same procedure that was used by the
AlphaStar Supervised agent to create the subsequent Grandmaster level AlphaStar Final agent [51],
with the difference that we train a single agent on all three races of StarCraft, instead of three separate
agents. This makes the problem more challenging. The input of the agent is the observation st, the
past action at�1, the MMR of the player and the previous LSTM state (for the model using a LSTM,
see below). During inference, we can then control the quality of the game played by the agent by
changing the MMR input. In practice, we set the MMR to the highest value to ensure the agent plays
its best. We used the Adam optimizer [32] with a cosine learning rate schedule [30]. Implementation
details can be found in Appendix B.1.1.

Memory. The AlphaStar agent of [51] uses a LSTM module. Surprisingly, our experiments show
that removing the LSTM entirely result in a better performing model, although the final values of the
losses are higher. The LSTM-based agent reaches a win-rate of 70% against the very_hard bot (vs.
84% for the memory-less agent). Therefore all agents presented in this paper are memory-less.

Data filtering. Since behaviour cloning just mimics the training data, a higher quality data can lead
to better performance. We ran experiments to filter the data to include only top-tier MMR and/or only
winning games. Unfortunately, since filtering the data also decreases the number of episodes, the
overall performance of the agent is deteriorated. The number of episodes after filtering and the final
performance are shown in Table 3.

Minibatch size and rollout length. The minibatch size M and rollout size K influence the final
behaviour cloning performance, as shown in Table 2. We found that larger total amount of data per
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learner step (M ⇥K) leads to better final performance. We use K = 1 and M = 32, 768 for the BC
and FT-BC agents.

Fine-tuning. The BC agent achieves better results when a secondary training phase is added. We
call the resulting method FT-BC. We first train the agent on all the data (with MMR>3500), then,
after reducing the learning rate, we further train the agent on the very best data (MMR>6200) and
only winning games. This scheme leads to the best behaviour cloning results, as shown in Table 3.
Implementation details of the FT-BC agent can be found in Appendix B.1.1.

5.3 Offline Actor-Critic

Actor-critic [55, 5] algorithms learn a policy ⇡ and a value function V ⇡ . In off-policy settings, where
⇡ differs from the behaviour policy µ, it computes Importance Sampling (IS) ratios ⇢t(at|st)

def
=

⇡(at|st)/µ(at|st) where (st, at) are sampled from the behaviour policy, i.e. come from the data. We
use V-trace [13] to reduce variance.

Our setup differs from the classical off-policy actor-critic. Indeed, we do not have access to the
behaviour policy µ used by the players, we can only observe their actions. Instead, we use the BC
agent to provide an estimate of the behaviour policy µ̂ and use the estimated ⇢̂

def
= ⇡/µ̂ in place of

the ground truth IS ratios. The BC agent is also used as the starting point for OAC (i.e. it is used to
initialize the weights).

Learning V µ. We train our network to produce the estimated behaviour value V µ using a secondary
output, via a MLP conditioned on the features. It is learned using a Mean-Squared Error (MSE) loss:
||V µ(st)�R||22 where st comes from a trajectory which leads to the game outcome R (-1 for a loss,
1 for a win). We have tried both training it at the same time as behaviour cloning, or afterwards on the
pre-trained model, and have observed no significant difference in performance. The value function
trained for the OAC and E-OAC models is trained afterwards. It reaches 72% accuracy, which is
computed as the fraction of steps where the sign of V µ is the same as R.

Divergence of V ⇡ . The standard actor-critic method learns ⇡, an improvement of µ, as well as
V ⇡ , the corresponding value function. This is usually done with temporal differences (TD) learning.
We observe that when doing so, using the value function V ⇡ leads to divergence during training, as
shown on Figure 5 in the Appendix. We explored several ways to mitigate this problem:

• Early stopping. The policy ⇡ improves at first, before deteriorating. Therefore we could
stop training early to obtain an improved policy ⇡ (shown in Figure 5). We do not use this
method since it requires using the environment to detect when to stop.

• Alternatively, we can use V µ as a critic, and keep it fixed, instead of estimating V ⇡ iteratively.
This is similar to the behavior value estimation of [16]. It is implemented for the OAC agent.

• The Emphatic Offline Actor-Critic (E-OAC) agent uses emphatic traces to weight each value
and policy update in OAC. N-step Emphatic Traces (NETD) [26] avoids deadly triads in
off-policy learning with linear value function approximation. Using estimated importance
sampling ratios ⇢̂, the NETD trace F can be computed as in [26].

Training parameters. Since actor-critic uses temporal differences, the rollout length K has to
be larger than 1, we use K = 64. Because of the way emphatic traces are computed, the E-OAC

Table 2: Comparison of the performance of behaviour cloning with different minibatch sizes and
rollout lengths. The total number of observations seen by the agent is the same (1010) for all agents.

Minibatch size M Rollout length K M ⇥K Win-rate vs. very_hard

8,192 1 8,192 70%
16,384 1 16,384 79%

256 64 16,384 79%
32,768 1 32,768 84%

7



Table 3: Performance agents trained with different MMR filtering schemes against the very_hard
bot, along with the number of episodes available. Training on higher quality data leads to worse
performance, since the number of episodes is decreased. Training on the full dataset, followed by a
fine-tuning phase on higher quality, is best.

Main training Fine-tuning

MMR filter #episodes MMR filter #episodes final performance

>3500 win+loss 2,776,466 84%
>6000 win+loss 64,894 65%
>6000 win 32,447 51%
>3500 win+loss 2,776,466 >6200 win 21,836 89%

agent requires learning from consecutive minibatches6. Details can be found in Appendices B.1.2
and B.1.3. As explained in Appendix A.3, we only apply policy improvement to the function and
delay arguments of the action for simplicity.

5.4 MuZero

MuZero Unplugged [40] is a recently introduced offline RL approach which achieves state-of-the-art
performance on a variety of offline RL benchmarks [17, 11]. Inspired by recent extensions to handle
stochastic environments [35], we evaluate MuZero as an offline RL approach for StarCraft II.

We use the approach introduced in Sampled MuZero [24] to handle the large action space of StarCraft
II. Sampled MuZero samples multiple actions from the policy and then restricts the search to only the
sampled actions. This allows us to scale to the large action space of StarCraft II. We provide further
implementation details in Appendix B.1.4.

MuZero Supervised. Our first key result is that MCTS is a strong policy improvement for StarCraft
II when training the model with supervised learning. Throughout the training, and thus even for
relatively weak policies and value functions, we found that MCTS almost always performs better
than the neural network policy when training the policy and value function via supervised learning.

MuZero Unplugged. Our preliminary experiments on using the full MuZero Unplugged algorithm,
i.e. training with MCTS targets, were not successful. We found that the policy would collapse
quickly to a few actions with high (over-)estimated value. While MCTS at inference time improves
performance, using MCTS at training time leads to a collapsed policy. To investigate this further, we
evaluate the performance of repeated applications of MCTS policy improvement on the behavioural
policy µ̂ and value V µ. We do this by training a new MuZero model using MCTS actions of a
behavioural policy, i.e. ⌫̂ = MCTS(µ̂, V µ). We found that the MCTS performance of this policy
MCTS(⌫̂, V µ) is worse than the performance of ⌫̂ or MCTS(µ̂, V µ). Thus, repeated applications
of MCTS do not continue to improve the policy. We believe this is likely due to MCTS policy
distribution generating out of distribution action samples with over-estimated value estimates.

6 Discussion

The behaviour cloning agent is the base of all agents in this work. It is conditioned on the MMR
during training, which helps filter out lower quality trajectories. Nevertheless, the behavior cloning
agent is still fundamentally limited to estimating the behavior policy, ignorant about rewards. As a
result, the policy it learns is a smoothed version of all the policies that generated the dataset. We
experimented with training the BC agent conditioning on rewards, and evaluated it conditioning
on the winning game outcomes, without observing any gain in performance. In contrast, offline
RL methods use rewards to improve learned policies in different ways. MZS-P uses rewards in
auxiliary losses, FT-BC uses rewards when selecting episodes for finetuning, and OAC, E-OAC, and

6Such that the first element of each rollout of a minibatch are adjacent to the last element of each rollouts of
the previous minibatch
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MZS-MCTS use rewards to perform reinforcement learning. Final results show that agents that use
rewards via reinforcement learning perform the best.

We have observed that algorithms originally designed for online learning — even with off-policy
corrections — do not work well when applied directly to the full offline RL setting. We attribute this
in part to the problem of Deadly Triads [49, 46, 50]. However, many recent works have found these
algorithms can be made more effective simply by making modifications that ensure the learned policy
stays close to the behavior policy µ, that the learned value stays close to V µ, or both. Our results
with Actor-Critic and MuZero are in accordance with these findings.

The reference agents are the methods we attempted that resulted improving the policy. However,
we have tried several other methods without success, including Advantage-Weighted Regression
(AWR) [36], PPO [42], and state-action value based methods like SARSA [38], CRR [54] and
R-BVE [16]. To this day, we do not know if there is a fundamental reason for this, or if we simply
failed to find the necessary changes these methods would require to perform well on this dataset.

7 Related Work

Online RL has been very impactful for building agents to play computer games. RL agents can
outperform professional human players in many games such as StarCraft II [51], DOTA [7] or
Atari [34, 4]. Similar levels of progression have been observed on board games, including chess and
Go [43, 44]. Although offline RL approaches have shown promising results on Atari recently [41], it
has not been previously explored how they would perform on complex partially observable games
using data derived from human experts.

RL Unplugged [17] introduces a suite of benchmarks for Offline RL with a diverse set of task domains
with a unified API and evaluation protocol. D4RL [14] is an offline RL benchmark suite focusing only
on mixed data sources. However, both RL Unplugged and D4RL lack high-dimensional, partially
observable tasks. This paper fills that gap by introducing a benchmark for StarCraft II.

Offline RL has become an active research area, as it enables us to leverage fixed datasets to learn
policies to deploy in the real-world. Offline RL methods include 1) policy-constraint approaches that
regularize the learned policy to stay close to the behaviour policy [54, 15], 2) value-based approaches
that encourage more conservative value estimates, either through a pessimistic regularization or
uncertainty [29, 16], 3) model-based approaches [56, 27, 41], and 4) adaptations of standard off-
policy RL methods such as DQN [1] or D4PG [54]. Recently methods using only one-step of policy
improvement has been proven to be very effective on offline reinforcement learning [16, 8].

8 Conclusions

Offline RL has enabled the deployment of RL ideas to the real-world. Academic interest in this
area has grown and several benchmarks have been proposed, including RL-Unplugged [17], D4RL
[14], and RWRL [11]. However, because of the relatively small-scale and synthetic nature of these
benchmarks, they don’t capture the challenges of real-world offline RL.

In this paper, we introduced StarCraft II Unplugged, a benchmark to evaluate agents which play
StarCraft II by learning only from offline data. This data is comprised of over a million games games
mostly played by amateur human StarCraft II players on Blizzard’s Battle.Net.7 Thus, the benchmark
more accurately captures the challenges of offline RL where an agent must learn from logged data,
generated by a diverse group of weak experts, and where the data doesn’t exhaust the full state and
action space of the environment.

We showed that offline RL algorithms can exceed 90% win-rate against the previously published
AlphaStar Supervised agent (trained using behaviour cloning). However, the gap between online and
offline methods still exists and we hope the benchmark will serve as a testbed to advance the state of
art in offline RL algorithms.

7https://en.wikipedia.org/wiki/Battle.net
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Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large
scale deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

[8] David Brandfonbrener, William F Whitney, Rajesh Ranganath, and Joan Bruna. Offline rl
without off-policy evaluation. arXiv preprint arXiv:2106.08909, 2021.

[9] Rémi Coulom. Efficient selectivity and backup operators in monte-carlo tree search. In
International conference on computers and games, pages 72–83. Springer, 2006.

[10] Trevor Davis, Neil Burch, and Michael Bowling. Using response functions to measure strategy
strength. In Twenty-Eighth AAAI Conference on Artificial Intelligence, 2014.

[11] Gabriel Dulac-Arnold, Daniel Mankowitz, and Todd Hester. Challenges of real-world reinforce-
ment learning. arXiv preprint arXiv:1904.12901, 2019.

[12] Arpad E Elo. The rating of chessplayers, past and present. Arco Pub., 1978.

[13] Lasse Espeholt, Hubert Soyer, Rémi Munos, Karen Simonyan, Volodymyr Mnih, Tom Ward,
Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dunning, Shane Legg, and Koray Kavukcuoglu.
IMPALA: scalable distributed deep-rl with importance weighted actor-learner architectures.
CoRR, abs/1802.01561, 2018.

10



[14] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for
deep data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

[15] Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning
without exploration. In International Conference on Machine Learning, pages 2052–2062.
PMLR, 2019.

[16] Caglar Gulcehre, Sergio Gómez Colmenarejo, Ziyu Wang, Jakub Sygnowski, Thomas Paine,
Konrad Zolna, Yutian Chen, Matthew Hoffman, Razvan Pascanu, and Nando de Freitas. Regu-
larized behavior value estimation. arXiv preprint arXiv:2103.09575, 2021.

[17] Caglar Gulcehre, Ziyu Wang, Alexander Novikov, Tom Le Paine, Sergio Gomez Colmenarejo,
Konrad Zolna, Rishabh Agarwal, Josh Merel, Daniel Mankowitz, Cosmin Paduraru, et al. Rl
unplugged: Benchmarks for offline reinforcement learning. arXiv e-prints, pages arXiv–2006,
2020.

[18] Jessica B Hamrick, Abram L Friesen, Feryal Behbahani, Arthur Guez, Fabio Viola, Sims
Witherspoon, Thomas Anthony, Lars Buesing, Petar Veličković, and Théophane Weber. On the
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