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Abstract
Chinese Spelling Correction (CSC) commonly001
lacks large-scale high-quality corpora, due to002
the labor-intensive labeling of spelling errors003
in real-life human writing or typing scenarios.004
Two data augmentation methods are widely005
adopted: (1) Random Replacement with the006
guidance of confusion sets and (2) OCR/ASR-007
based Generation that simulates character mis-008
using. However, both methods inevitably in-009
troduce noisy data (e.g., false spelling errors),010
potentially leading to over-correction. By care-011
fully analyzing the two types of corpora, we012
find that though the latter achieves more robust013
generalization performance, the former yields014
better-calibrated CSC models. We then provide015
a theoretical analysis of this empirical obser-016
vation, based on which a corpus refining strat-017
egy is proposed. Specifically, OCR/ASR-based018
data samples are fed into a well-calibrated CSC019
model trained on random replacement-based020
corpora and then filtered based on prediction021
confidence. By learning a simple BERT-based022
model on the refined OCR/ASR-based corpus,023
we set up impressive state-of-the-art perfor-024
mance on three widely-used benchmarks, while025
significantly alleviating over-correction (e.g.,026
lowering false positive predictions).027

1 Introduction028

Chinese Spelling Correction (CSC) aims to detect029

and correct misspellings in the text while main-030

taining the sentence length (Yu and Li, 2014). It031

can not only directly facilitate human writing and032

typing but also serve as a critical pre-processing033

step for many downstream Chinese NLP tasks such034

as search engine (Martins and Silva, 2004) and035

optical character recognition (Afli et al., 2016).036

One common challenge of applying CSC is the037

lack of large-scale high-quality corpora in practice038

since labeling spelling errors in real-life writing039

or typing scenarios is labor-extensive (Wang et al.,040

2018). Therefore, two data augmentation methods041

are widely adopted for this task. The first one is042

Figure 1: Calibration curves and performance of BERT-
based CSC models trained on random replacement and
OCR/ASR-based data. ECE means the metric of Ex-
pected Calibration Error (Guo et al., 2017), and FPR
means the sentence-level false positive rate that mea-
sures over-corrections. Combing subplots (a), (b), and
(c), OCR/ASR-based data produce better performances
on standard metrics (e.g., P, R, and F1), while random
replacement yields better calibration and FPR. These
observations inspire us to denoise OCR/ASR-based data
with well-calibrated CSC models trained on random re-
placement data, to improve performance and mitigate
over-corrections.

random replacement with the guidance of confu- 043

sion sets (Liu et al., 2013) containing typical hu- 044

man misused cases based on statistics. The second 045

one is leveraging cross-modal models (Wang et al., 046

2018), such as optical character recognition (OCR) 047

and automatic speech recognition (ASR), to simu- 048

late spelling errors in the shape-close or tone-close 049

patterns. 050

Compared to random replacement, OCR/ASR- 051

based generation better mimics human misspelling 052

scenarios, becoming the mainstream strategy used 053
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by many recent CSC efforts (Cheng et al., 2020;054

Wang et al., 2021). Unfortunately, both data aug-055

mentation methods inevitably introduce noises. For056

example, we randomly sample 300 sentences in the057

OCR/ASR-based corpus (Wang et al., 2018) and058

check the annotated misused characters manually,059

finding that 11.3% of them are false spelling er-060

rors. Training on these noisy samples can produce061

unintended over-correction (e.g., a high false pos-062

itive rate). Previous works mainly alleviate the063

problem through sophisticated model designs, e.g.,064

integrating phonological and morphological infor-065

mation using multi-modal approaches (Xu et al.,066

2021; Huang et al., 2021). Unlike these efforts, in067

this paper, we propose to improve CSC by directly068

purifying noisy samples in CSC corpora.069

Considering model confidence is commonly ex-070

ploited to denoise data (Northcutt et al., 2021),071

we first analyze the two types of CSC corpora by072

checking the calibration characteristics and perfor-073

mance of models trained on them (see Section 2 for074

experiment details). The experimental results on075

the SIGHAN 13 (Wu et al., 2013) benchmark are076

shown in Figure 1 1. Comparing subplots (a) and077

(b), we find that although the CSC model trained on078

OCR/ASR-based data performs better (e.g., with a079

better F1 score), it is worse calibrated than its coun-080

terpart of random replacement. Its calibration curve081

continuously lies below the dotted line (represent-082

ing perfectly calibrated), indicating that the model083

tends to make over-confident predictions. This ob-084

servation is consistent with its higher false positive085

rate (despite overall better performance) in subplot086

(c). To explain the empirical observation, we then087

perform a theoretical analysis of model confidence088

based on bayesian inference (Section 3). We reveal089

why the calibration curve differs between the two090

categories of training data and identify which data091

samples negatively affect model confidence.092

Guided by the empirical observations and theo-093

retical findings, we propose to refine the OCR/ASR-094

based corpus with a CSC model trained on random095

replacement data. Thanks to this CSC model’s096

more trustful confidence, we can use it to filter097

noisy OCR/ASR-based samples according to their098

prediction scores. We achieve competitive perfor-099

mance on three open CSC benchmarks by training100

a simple BERT-based model on the refined cor-101

pus. Notably, the model also produces a much102

lower false positive rate and demonstrates better103

1Appendix B shows the results on SIGHAN 14/15

calibration, which is essential in real-world CSC 104

applications. 105

In summary, our contributions are as follows: 106

• We empirically reveal that OSC/ASR-based 107

CSC datasets deliver more robust generaliza- 108

tion performance, while random replacement 109

datasets lead to better-calibrated models. 110

• We theoretically analyze models’ calibration 111

characteristics from a bayesian inference view, 112

explaining how and which data samples bring 113

the unintended over-confidence of predictions. 114

• We design a corpus refining strategy that in- 115

tegrates the generalization performance from 116

OSC/ASR-based data and the trustful model 117

confidence from random replacement data. 118

2 A Pilot Study of Data Characteristics 119

Figure 1 illustrates the properties of OCR/ASR- 120

based and random replacement data through the 121

calibration curves and performance of their respec- 122

tive models. The Expected Calibration Error (ECE) 123

metric is explained in detail in Appendix A. In this 124

section, we provide a comprehensive description 125

of the experimental methodology and procedures. 126

2.1 The Base CSC Model 127

Given data pair (X,Y ), where X is the original 128

sentence and Y is the generated sample containing 129

spelling errors, Chinese spelling correction aims 130

to restore Y to X . Since X and Y share the same 131

sentence length, this task is usually implemented 132

by a non-autoregressive model. In this work, Y is 133

input into a BERT model, and the output hidden 134

state of each character is fed into a classifier to get 135

the predicted correct character. The training target 136

can be written as the following cross-entropy loss: 137

LCE = −
L∑
i=1

log[Pθ(xi|Y )] (1) 138

where L is the shared length and θ represents 139

model parameters. 140

2.2 Analysis of Two Datasets 141

Dataset Preparation. We use the OCR/ASR- 142

based dataset containing 271k sentences provided 143

by Wang et al. (2018). We can build a confusion 144

set based on its annotated spell errors. To obtain 145

a random-replacement dataset of similar volume, 146

we collect the same number of sentences and then 147
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uniformly substitute correct characters with a prob-148

ability of 10% with characters in the constructed149

confusion set. In this way, we can compare two150

types of datasets fairly.151

Metrics Settings. Regarding model performance,152

in addition to standard metrics (e.g., precision (P),153

recall (R), and F1), we also examine sentence-level154

false positive rate (FPR) (Li et al., 2022c). A sen-155

tence is regarded as a false positive if any initially156

correct character is wrongly modified to another157

one. Regarding model confidence, since most of158

the characters in the dataset are correct, numer-159

ous easy positive samples will blur the noteworthy160

trends in calibration curves. Therefore, we elimi-161

nate those characters—in whose prediction distri-162

bution the possibility of being corrected to other163

characters is below 0.1—to draw the calibration164

curve and calculate ECE.165

Main findings. The main results of SIGHAN 13166

have been shown in Figure 1, and more experi-167

mental results of SIGHAN 14 and 15 are placed168

in Appendix B due to space limitation. In all three169

datasets, we can observe in the calibration line chart170

that the CSC model trained on OCR/ASR-based171

data is flawed regarding the alignment between pre-172

diction confidence and accuracy, despite the better173

overall performance. ECE scores achieved by ran-174

dom replacement and OCR/ASR-based generation175

are 0.104 and 0.163, respectively, suggesting that176

the former is closer to the ideal calibration and also177

explaining why it achieves a lower FPR (e.g., with178

fewer over-corrections).179

3 Theoretical Analysis of Model180

Confidence181

3.1 Problem Statement182

In this section, we present a theoretical analy-183

sis of the above empirical findings. To begin,184

we define a set X that each element, denoted as185

X = (x1, x2, ..., xL), represents a sentence in the186

real-world corpus comprised of individual charac-187

ters. The prior probability of the sentence can be188

determined using the probability function PX . By189

some methods of data augmentation, a mapping190

function F : X → Y is applied to imitate human’s191

writing error set Y , which consists of sentences192

containing a small number of incorrect characters.193

The probability of sentences in Y is obtained from194

PY .195

For any sentence X ∈ X , we assume the196

mapping function F replaces only one charac-197

ter at a time. Y = F(X), yi = F(X)i ̸= 198

xi. We denote the context of xi as X\i = 199

(x1, ..., xi−1, xi+1, ..., xL). Based on these as- 200

sumptions, we can draw the following simple infer- 201

ences: 202

• X\i = Y\i: This equality implies that the 203

context surrounding the replaced character re- 204

mains unchanged when transforming X to Y . 205

• PX (X\i) = PY(Y\i). Since the data augmen- 206

tation methods do not alter the size of the 207

dataset, we can assert that |X | = |Y|. There 208

is a one-to-one correspondence between the 209

contexts in X and Y . Consequently, we can 210

establish an equation relating the probabilities 211

of X\i and Y\i. 212

3.2 Bayesian Inference of Model Confidence 213

Combining the inferences, we can derive the theo- 214

retical correction model confidence P (X|Y ) from 215

a Bayesian inference perspective, as the probability 216

P (Y |X) in the augmentation process is known. 217

P (X|Y ) =
P (yi|X) · PX (xi|X\i)∑

v∈V P (yi|X\i, v)PX (v|X\i)
(2) 218

In the formulation, the vocabulary V encom- 219

passes all possible characters. The detailed calcula- 220

tion procedure is presented in Appendix D.To fur- 221

ther decompose Eq. 2, we define a subset V̂ ⊂ V , 222

which consists of the characters v that make both 223

P (yi|X\i, v) and PX (v|X\i) non-zero. 224

V̂ satisfying the condition is usually categorized 225

into the following three orthogonal cases. The next 226

section will provide more intuitive explanations of 227

the three cases. 228

Case 1: |V̂| = 1, in other word, V̂ = {xi}. 229

P T (X|Y ) =
P (yi|X) · PX (xi|X\i)

P (yi|X\i, xi)PX (xi|X\i)
= 1 (3) 230

Case 2: yi ∈ V̂ , for simplicity, let V̂ = {xi, yi}. 231

PN (X|Y ) =
1

1 +
PX (yi|X\i)

PX (xi|X\i)
· P (yi|X\i,yi)

P (yi|X\i,xi)

(4) 232

Case 3: yi ̸∈ V̂ and |V̂| > 1. To simplify the 233

notation, let V̂ = {xi, a}, a ̸= yi. 234

PM (X|Y ) =
1

1 +
PX (a|X\i)

PX (xi|X\i)
· P (yi|X\i,a)

P (yi|X\i,xi)

(5) 235
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3.3 Data Sample Categorization236

Case original replaced truth set of A?C
1 ABC ADC {B}
2 ABC ADC {B,D}
3 ABC ADC {B,E}

Table 1: Symbolic illustration of different cases. The
characters identified by underscores in the second and
third columns correspond to xi and yi respectively.

The three cases discussed in the previous sub-237

section are naturally related to the three sample238

types in the CSC dataset. Symbolic examples are239

presented in Table 1. We analyze the impact of dif-240

ferent data augmentation methods on these sample241

types.242

True Sample corresponds to Case 1, where the243

context X\i can determine the unique character xi,244

or there are multiple suitable characters, but yi only245

appears in the confusion set of xi.246

Noisy Sample corresponds to Case 2. In this case,247

a correct sentence can unexpectedly be transformed248

into another correct one during data augmentation,249

generating false spelling errors.250

When considering the four terms in the denom-251

inator of Equation 4, regardless of the data aug-252

mentation method, PX (yi|X\i) and PX (xi|X\i)253

remain the same. Additionally, P (yi|X\i, yi) will254

be close to 1, as misspellings generally constitute255

only a small percentage of all characters. There-256

fore, P (yi|X\i, xi) is the primary factor influenc-257

ing PN (X|Y ).258

Specifically, random replacement data provide259

a uniform distribution for P (yi|X\i, xi), which260

can stabilize PN (X|Y ). On the other hand,261

OCR/ASR-based data may result in large values262

of P (yi|X\i, xi) due to its inherent long-tail distri-263

bution 2, which could result in overconfident pre-264

dictions. In other words, Equation 4 provides an265

upper bound for PN (X|Y ) in the case of random266

replacement data, facilitating the filtering of noisy267

samples by setting a confidence threshold.268

Multi-answer Sample corresponds to Case 3,269

where a spelling error can have multiple correct270

character alternatives. In this case, it is considered271

a true spelling error (PX (yi|X\i) = 0), but there272

exist multiple corrections other than xi that are273

2The most frequent spelling errors in each character’s con-
fusion set in the OCR/ASR-based data constitute 58.7% of
the whole misspellings. The percentage is 13.8% for random
replacement data

equally valid. 274

Similar to the analysis of noisy samples, the dif- 275

ference between the two data augmentation meth- 276

ods also relies on P (yi|X\i, xi). Further detailed 277

analysis on this matter can be found in Appendix F. 278

3.4 Lessons from The Theoretical Analysis 279

The theoretical analyses presented above provide 280

a clear explanation for the empirical findings ob- 281

served in our pilot study. Moreover, they serve as 282

inspiration to utilize the upper-bounded confidence 283

for denoising purposes.

Figure 2: Conceptual illustration of sample confidence
and the filtering process for noisy samples. The upper
part demonstrates the variability of model confidence
across different samples. The bottom part illustrates the
utilization of confidence to identify and filter out noisy
samples. The dotted line represents a scalar, while the
plane serves as a visual aid for better comprehension.

284
Considering cases 2 and 3, it is important to 285

note that less than 10% of the characters are 286

replaced in the context of data augmentation, 287

P (yi|X\i, yi) ≥ 0.9 >> 0.1 ≥ P (yi|X\i, a). As 288

long as PX (yi|X\i) and PX (a|X\i) are of the same 289

order of magnitude, it can be derived that 290

0 < PN (X|Y ) < PM (X|Y ) < P T (X|Y ) = 1
(6) 291

Since the model trained on random replacement 292

data tends to exhibit lower confidence for noisy 293

and multi-answer samples, we can leverage this 294

characteristic to filter out such samples. 295

The high-level filtering process, guided by the 296

theoretical framework, is illustrated in Figure 2. 297

By using the model’s confidence as a threshold, we 298

can effectively identify and remove noisy samples 299

from the dataset, improving the overall quality of 300

the data used for training and evaluation. 301

It is worth noting that multi-answer samples can 302

be real spelling errors (and thus can not be simply 303
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treated as noise), but they are rare in the datasets304

(see Section 6.2). Therefore, removing them from305

large-scale datasets has a minor impact on the over-306

all performance. Although our primary focus is on307

eliminating noisy samples, these analyses provide308

valuable insights into the comprehensive effects of309

data filtering and its implications for the CSC task310

itself.311

4 Approach312

4.1 The Filtering Strategy313

Riding on the analysis above, this paper proposes a314

filtering model to reduce false spelling errors. We315

fine-tune BERT on a large-scale news corpus to316

approach P (·|x\i). As for the mapping F , we ran-317

domly select 10% of the characters for replacement,318

and the modified characters are drawn evenly from319

the confusion set, indicating PF (ŷi|x) = PF (ŷ
′
i|x)320

for ŷi, ŷ′i in the confusion set of xi.321

The random replacement dataset is used to train322

our filtering model, which is the Bert-based one323

introduced in Section 2. Once we obtain a filtering324

model, we can feed it with data samples of the325

OCR/ASR-based corpus to be refined. We filter326

out spelling errors whose recovering confidence of327

the filtering model is below a certain threshold.328

y′i =

{
yi P (X|Y ) ≥ p

xi P (X|Y ) < p
(7)329

As threshold p increases, more samples will be330

removed from the training set. In Section 6.5, we331

will demonstrate the impact of threshold.332

4.2 The Method Pipeline333

After being processed by the filtering model, the334

dataset is used to train another Bert-based model335

with the same architecture as the filtering model,336

obtaining our final correction model. Algorithm 1337

demonstrates the entire process of our approach.338

Algorithm 1
1: Train a filtering model F on a large-scale ran-

dom replacement dataset Dr

2: Apply the filtering model F to the OCR/ASR-
based dataset Do and calculate the confidence
of spelling errors.

3: Refine Do according to Equation 7 and get the
denoised dataset D′

4: Fine-tune a model M for the CSC task with
the processed data D′

5 Experiment Setup 339

5.1 Dataset 340

Auxiliary Training Set. 9 million sentence pairs 341

are generated with the Chinese News Corpus (Xu, 342

2019) by random replacing strategy. The Auxil- 343

iary training set is employed to train the filtering 344

model and explore the impact of data volume on 345

the model. 346

Training Set. We use the same training data as 347

previous CSC works (Li et al., 2022c; Zhang et al., 348

2020; Liu et al., 2021; Xu et al., 2021), including 349

the training set from SIGHAN13/14/15 (Wu et al., 350

2013; Yu et al., 2014; Tseng et al., 2015) and the 351

automatic generated data (271k pairs) based on 352

OCR and ASR methods (Wang et al., 2018). 353

Validation Set. 1500 pairs from the training set 354

are randomly picked for supervising the training 355

process. 356

Test Set. The test sets from SIGHAN 13/14/15 357

are employed, and we use the same procedure as 358

previous works(Wang et al., 2019; Zhang et al., 359

2020; Cheng et al., 2020) to transform the text 360

from traditional Chinese to simplified Chinese. 361

5.2 Baselines 362

The following baselines are selected: (1) BERT 363

Fine-tuning, BERT model trained on the stan- 364

dard OCR/ASR-based training set; (2) SpellGCN 365

(Cheng et al., 2020) employs BERT to extract char- 366

acter representations and constructs two similarity 367

graphs for phonetics and character shapes; (3) PH- 368

MOSpell (Huang et al., 2021) extracts phonetic fea- 369

tures, character shape features, and context-related 370

semantic features for each character. These fea- 371

tures are integrated using an adaptive gate learned 372

through training; (4) DCN (Wang et al., 2021) 373

employs an attention-like method to incorporate 374

additional dependency scores for adjacent charac- 375

ters; (5) ECOPO (Li et al., 2022c) incorporates 376

an additional contrastive loss to avoid predicting 377

common characters; (6) SCOPE (Li et al., 2022a) 378

introduces an auxiliary task of Chinese pronuncia- 379

tion prediction (CPP) to improve CSC; (7) LEAD 380

(Li et al., 2022b) also utilizes contrastive learning 381

methods, with negative samples derived from dic- 382

tionary knowledge and designed based on phonet- 383

ics, vision, and meaning; (8) DORM (Liang et al., 384

2023) disentangles the phonetic representations 385

with character representations to allow for direct in- 386

teraction between textual and phonetic information; 387

(9) Zero-shot ChatGPT (GPT-3.5); (10) Zero-shot 388
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SIGHAN13 SIGHAN14 SIGHAN15
P R F1 P R F1 P R F1

SpellGCN 78.3 72.7 75.4 63.1 67.2 65.3 72.1 77.7 75.9
PHMOSpell 99.5 74.7 85.4 81.8 63.6 71.6 88.2 68.4 77.1

DCN 84.7 77.7 81.0 65.8 68.7 67.2 74.5 78.2 76.3
ECOPO 88.5 82.0 85.1 67.5 71.0 69.2 76.1 81.2 78.5
SCOPE 86.3 82.4 84.3 68.6 71.5 70.1 79.2 82.3 80.7
LEAD 87.2 82.4 84.7 69.3 69.6 69.5 77.6 81.2 79.3
DORM 86.8 82.7 85.8 68.4 71.9 70.1 76.6 82.8 79.6

ChatGPT 60.7 70.8 65.4 48.0 75.1 58.4 70.0 87.5 77.8
ChatGLM 13.3 16.7 14.8 7.14 33.3 11.8 16.3 68.2 26.3

ChatGLM-Finetune 60.0 64.2 62.0 45.2 63.8 52.9 60.0 70.6 64.9
Ours 99.7 81.2 89.5 81.7 67.7 74.0 90.1 72.5 80.4

Table 2: The sentence level correction performance on SIGHAN 13/14/15. We use the optimal threshold that
achieves the best performance on each dataset. The detailed analysis of confidence thresholding will be presented in
Section 6.5. In SIGHAN13, the annotations on “的”, “地”, “得” are relatively poor, so following the practice of (Li
et al., 2022c; Xu et al., 2021) we ignore all “的”, “地”, “得” cases in the evaluation.

ChatGLM(Du et al., 2022), an optimized language389

model for Chinese; (11) Finetuned-ChatGLM.390

5.3 Implementation Details391

Most hyperparameters are shared across all exper-392

iments to avoid dataset-specific tuning. Based on393

the repository of Transformers, We train our model394

using AdamW optimizer for 10 epochs with a learn-395

ing rate decay of 5e-5, and batch size is set to 50 for396

each experiment. All experiments were performed397

using 4 Nvidia A100 GPUs.398

6 Experiment Results399

6.1 Main Results400

The results of our method and baselines are shown401

in Table 2. Our results are obtained by taking the402

average of five different random seeds. Our ap-403

proach achieves the highest F1 scores on SIGHAN404

13 and SIGHAN 14, significantly surpassing the405

suboptimal model by margins of 4.1 and 2.4, re-406

spectively. We also rank second on SIGHAN 15,407

0.3 lower than the best model. We believe achiev-408

ing the performance by an extremely simple BERT-409

based CSC model is impressive, highlighting the410

effectiveness of the data filtering mechanism.411

Since the CSC task does not involve adding and412

deleting characters, most previous methods adopt413

non-autoregressive methods. However, we are in-414

terested in how large language models (LLMs) per-415

form in the CSC task due to their powerful learning416

and generalization abilities. So we further conduct417

experiments on a proprietary LLM (GPT-3.5) and418

an open-source LLM (ChatGLM). The reason for419

unsatisfactory CSC performance for LLMs can be 420

two-fold. On the one hand, they will likely give 421

outputs of different lengths. On the other hand, 422

they may replace some correct words according to 423

their understanding, leading to higher recall and 424

lower precision. 425

Our data filtering strategy is incorporated into 426

a BERT-based model, so we check its effects by 427

comparing the base model. Table 3 illustrates that 428

our filtering method achieves an all-around im- 429

provement on BERT, including higher F1, lower 430

FPR, and lower ECE. We can conclude that train- 431

ing on the refined corpus delivers a performant 432

and well-calibrated CSC model, successfully miti- 433

gating over-correction. Therefore, we empirically 434

verify the overall effectiveness of our data filtering 435

strategy. 436

Dataset Model F1 FPR ECE

SIGHAN13
BERT 80.0 37.9 0.163

+Filtering 89.5 6.9 0.149

SIGHAN14
BERT 72.9 17.0 0.169

+Filtering 74.0 14.6 0.134

SIGHAN15
BERT 78.6 15.1 0.130

+Filtering 80.4 7.7 0.091

Table 3: Performance improvement of our proposed
filtering method upon BERT.

6.2 Identifying Specific Data Samples 437

Based on the theoretical analysis in Section 3.3, we 438

know that random replacement data can stabilize 439

the model confidence of noisy and multi-answer 440
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samples. Here we are keen to see the impacts of441

our filtering strategy on these samples, but finding442

that it is non-trivial to accurately identify these sam-443

ples. Therefore, in this section, we use a heuristic444

method to roughly find these samples to 1) ver-445

ify theoretical sample categorization, 2) provide446

a concrete case study, and 3) support the follow-447

ing experiments about the impacts on noisy and448

multi-answer samples.449

Noisy Sample Identification. We replace the mod-450

ified characters with [MASK] and apply BERT to451

get the output logits of the mask token. If the ratio452

of logits corresponding to the characters before and453

after replacement does not exceed a certain percent-454

age λN , we presume that they are both reasonable455

in the context, thus we get the dataset DN456

Multi-answer Sample Identification. Still, we457

replace the modified characters with [MASK], and458

we extract the BERT hidden states of the mask to-459

ken as the representation of the context. If two dif-460

ferent characters produce the same misspelling and461

the cosine similarity of their context representation462

is over a certain threshold λM , we consider these463

samples to be multi-answer samples DM . When a464

context has more than two suitable characters, there465

is an intersection between DN and DM . Therefore,466

we need to remove samples in the intersection to467

produce the final DM .468

We randomly select 3000 samples from the train-469

ing sets. Then, we set λN = 0.9 and λM = 0.8470

to approximate the sample identification process471

roughly. We finally determined 160 noisy samples472

and 34 multi-answer samples out of 3000, and the473

ratio is comparable to what we evaluated manu-474

ally as described in Section 1. Figure 3 presents475

two concrete cases, illustrating that the heuristic476

method can indeed extract noisy and multi-answer477

samples from the training set. These samples ver-478

ify our theoretical data categorization and will be479

further applied to measure the effect of the filtering480

model in the following experiments.481

6.3 Other Methods of Corpus Utilization482

In this section, we briefly analyze alternative ap-483

proaches for data utilization. The first approach in-484

volves directly combining the two types of datasets485

(Mixing). The second approach employs the heuris-486

tic methods described in noisy sample identifica-487

tion (+H-Filtering). The third approach utilizes the488

OCR/ASR-based corpus to train a filtering CSC489

model (S-Filtering). The fourth approach utilizes490

Figure 3: Case study of noisy and multi-answer samples.
Regarding the noisy sample, we cannot tell from the
given context whether "he" or "she" would be written
here, generally we do not consider it a spelling error.
As for the multi-answer sample, the original sentence
and the alternative one are both contextually reasonable,
meanwhile "要" and "收" are both in the confusion set of
the character "咬" based on phonology or morphology.

adaptive training to reduce the weight of negative 491

samples (Huang et al., 2020). Note that the heuris- 492

tic filtering in this experiment primarily focuses on 493

noisy samples for computational efficiency reasons. 494

Dataset Model P R F1 FPR

SIGHAN13

BERT 98.3 67.4 80.0 37.9
Mixing 99.0 74.3 84.9 22.3

+H-Filtering 99.2 79.5 88.3 20.7
+S-Filtering 98.4 63.9 77.5 34.5

+Self-adaptive 98.7 67.8 80.4 32.1

SIGHAN14

BERT 79.2 67.5 72.9 17.0
Mixing 80.5 67.6 73.5 15.5

+H-Filtering 84.1 60.9 70.7 11.1
+S-Filtering 75.7 62.9 68.7 19.4

+Self-adaptive 79.6 67.4 73.0 16.3

SIGHAN15

BERT 82.8 74.7 78.6 15.1
Mixing 86.4 73.6 79.5 11.1

+H-Filtering 87.9 73.8 80.2 9.9
+S-Filtering 82.5 72.3 77.1 14.9

+Self-adaptive 84.6 73.8 78.8 12.1

Table 4: Performance of BERT and heuristic/self-
filtering method (λN = 0.9) on different datasets.

The results in Table 4 show that the heuristic 495

filtering approach (+H-Filtering) improves F1 and 496

leads to better FPR. This verifies our research moti- 497

vation to denoise corpora. Meantime, +H-Filtering 498

lags behind our learnable filtering model in all met- 499

rics (refer to Table 3), demonstrating that we purify 500

data more systematically and effectively 501

The second self-filtering approach is slightly in- 502
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ferior to the baseline model, verifying previous503

empirical findings and theoretical analysis on the504

over-confidence of OCR/ASR-based CSC models.505

6.4 Filtering Effects on Different Data506

Samples507

The heuristic method produces a dataset including508

both noisy and multi-answer samples, which allows509

us to measure the effects on these two categories510

of samples. To corroborate the theoretical analysis,511

we examine the filtering ratio of these samples by512

comparing our filter method and self-filtering.513

As shown in Figure 4, in line with our expecta-514

tion, our approach is able to effectively eliminate515

noisy samples and multi-answer samples. Com-516

pared with our method, self-filtering is underper-517

forming in terms of the filtering effect, which ex-518

plains why the model based on self-filtering gains519

minor or even negative effects on all the metrics in520

Table 4.521

6.5 Effects of Confidence Threshold522

Notably, spelling errors in SIGHAN 13/14/15 come523

in different styles: texts in SIGHAN 13 are mostly524

in a formal writing style, but texts in SIGHAN525

14/15 are in an informal writing style. The effects526

of our filtering method on these datasets can be527

different. To observe the influences of the filtering528

threshold, we experiment with hyper-parameters p529

of {1e-1,1e-2,1e-3,1e-4,1e-5} respectively.530

According to Figure 5 in the appendix, F1 re-531

duces with decreasing threshold on SIGHAN13532

and vice versa on the other two datasets. The rea-533

son might be the differences between formal and534

informal writing styles. Ignoring the outlier, FPR535

rises as the threshold decreases, which is easy to536

understand because without filtering the model has537

a high FPR. The result of ECE is demonstrated in538

Appendix B. It is optimal at p = 1e−2 on all three539

datasets. Specifically, if we uniformly use 1e− 2540

as the threshold, our model still outperforms the541

baselines.542

6.6 Effects of Data Volume543

So far, our auxiliary experiments have been cen-544

tered around PF (ŷi|x\i, xi) in Equation 4. We take545

P (v|x\i) as a default constant. However, a small546

corpus size is likely to lead to estimation bias on547

P (v|x\i) when calculating the confidence, we ex-548

plore how large a pre-training sample size would549

be more appropriate.550

We set the filtering thresholds p = 1e − 2 and 551

experiment on diverse sizes of the dataset for the 552

pre-trained filtering model. Table 6 in the appendix 553

shows that the F1-score of the model gradually 554

increases as the corpus grows, and the FPR remains 555

in a stable interval. In order to achieve better model 556

performance and maintain the stability of P (v|x\i), 557

a million-data volume is necessary. 558

7 Related Work 559

Chinese spelling correction (CSC) has made re- 560

markable progress with the help of pre-trained lan- 561

guage models (PLMs) such as BERT (Devlin et al., 562

2018). Fine-tuning over PLMs became mainstream 563

solutions (Zhang et al., 2020; Nguyen et al., 2021; 564

Bao et al., 2020). Furthermore, more improvements 565

to CSC are achieved by incorporating phonological 566

and visual information into PLMs (Jin et al., 2014; 567

Cheng et al., 2020; Xu et al., 2021; Zhang et al., 568

2021b; Huang et al., 2021; Li et al., 2022b,a; Liang 569

et al., 2023; Wei et al., 2023). 570

Data denoising is a general concern as noisy la- 571

bels severely degrade the generalization of a deep 572

learning model (Zhang et al., 2021a). In addition to 573

regularization and loss design, some works directly 574

conduct sample selection. Assigning weights to 575

potentially incorrect samples is a kind of approach 576

(Jiang et al., 2018; Ren et al., 2018). Usually, the 577

weights are extremely low compared to those of 578

normal samples. Another way is to filter out poten- 579

tially wrong samples directly (Tam Nguyen et al., 580

2019), which means their weights are either zero or 581

one. In this paper, we also drop the false spelling 582

errors, considering that we have an almost infinite 583

training set. 584

8 Conclusion 585

We propose a simple, efficient, and interpretable 586

data filtering method to purify Chinese Spelling 587

Correction (CSC) corpora. We empirically re- 588

veal and theoretically prove the promising calibra- 589

tion characteristic of CSC models trained on ran- 590

dom replacement datasets. Using a well-calibrated 591

CSC model to filter the OCR/ASR-based corpora, 592

we learn a final CSC model that integrates the 593

strong generalization performance from OSC/ASR- 594

based data and the trustful model confidence from 595

random replacement data. Our method impres- 596

sively achieves state-of-the-art performance on 597

SIGHAN 13/14/15 and significantly alleviates over- 598

corrections. 599

8



9 Limitations600

The main limitation of our approach is that we601

need to search for the best threshold for differ-602

ent datasets, even though a rough threshold (e.g.,603

1e− 2) can also bring significant performance im-604

provement across all datasets. On the one hand,605

this phenomenon is natural since different datasets606

commonly have their unique distribution. On the607

other hand, it will not affect the application of our608

method in practice too much, since the effort of609

threshold searching is tolerable, and we typically610

face similar data distribution (e.g., in a specific611

domain) in real-world scenarios.612
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A Preliminaries: Calibrated Confidence 785

Estimation 786

Calibration plays a crucial role in enhancing the 787

interpretability of models, primarily because hu- 788

mans have a tendency to associate confidence with 789

probability. To establish a formal understanding, it 790

is essential to define the concept of perfect calibra- 791

tion. We expect the perfect calibration to adhere to 792

the following criterion: 793

P (Ŷ = Y |P̂ = p) = p,∀p ∈ [0, 1] (8) 794

Here, Ŷ and P̂ represent the predicted labels 795

and corresponding probabilities, while Y denotes 796

the ground truth. This formulation ensures that 797

the predicted probabilities closely match the actual 798

probabilities assigned to the outcomes. 799

To quantitatively evaluate the calibration perfor- 800

mance, we can employ a scalar summary statistic 801

known as the Expected Calibration Error (ECE) 802

(Guo et al., 2017). The ECE can be defined as 803

follows: 804

ECE = EP̂ [|P (Ŷ = Y |P̂ = p)− p|] (9) 805

In practical calculations, the accuracy of sam- 806

ples falling within a specific prediction probability 807

interval is often used to approximate the value of p. 808

This approach allows for a practical assessment of 809

calibration performance. 810
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B Supplementary Experimental Results811

The figure presented in Section 1 is derived from812

the SIGHAN13 dataset, providing a visual repre-813

sentation of the observed results. However, it is814

important to note that conducting experiments on815

other widely recognized datasets can further val-816

idate and strengthen the findings. In Table 5, we817

showcase the outcomes of experiments performed818

on these additional datasets, demonstrating the dif-819

ferences between the two types of augmentation820

methods.821

The results of the Expected Calibration Error822

(ECE) with varying filtering thresholds are visually823

represented in Figure 6, which serves as a valuable824

supplement to the discussions in Section 6.5.825

Figure 4: The filtering ratio of noisy samples and
multi-answer samples with our method and self-filtering
method.

Figure 5: F1 and FPR of the method on three datasets
with different filtering thresholds p.

C Effects of Data Volume826

Our auxiliary experiments have been centered827

around PF (ŷi|x\i, xi) in Equation 4. We take828

P (v|x\i) as a default constant. However, a small829

corpus size is likely to lead to estimation bias on830

P (v|x\i) when calculating the confidence, we ex-831

plore how large a pre-training sample size would832

be more appropriate.833

We set the filtering thresholds p = 1e − 2 and834

experiment on diverse sizes of the dataset for the835

Figure 6: ECE of the method on three datasets with
different filtering thresholds p.

pre-trained filtering model. Table 6 shows that the 836

F1-score of the model gradually increases as the 837

corpus grows, and the FPR remains in a stable inter- 838

val. In order to achieve better model performance 839

and maintain the stability of P (v|x\i), a million- 840

data volume is necessary. 841

D Bayesian Inference of Model 842

Confidence 843

This section presents the derivation of Equation 844

2, which builds upon the assumptions outlined in 845

Section 3. By applying the Bayesian formula, we 846

can express the equation as follows: 847

P (X|Y ) = P (Y |X) · PX (X)

PY(Y )

= P (yi|X) ·
PX (xi|X\i)PX (X\i)

PY(yi|Y\i)PY(Y\i)

= P (yi|X) ·
PX (xi|X\i)

PY(yi|X\i)

(10) 848

In the formulation, P (·|X\i) represents the con- 849

ditional probability of a character given the context 850

X\i. Since PY is influenced by the augmentation 851

method F , we expand PY(yi|X\i) as follows: 852

PY(yi|X\i) =
∑
v∈V

P (yi|X\i, v)PX (v|X\i) (11) 853

And the Eq. 10 can be expressed as Eq. 2. 854

E Noisy Sample Confidence Supplement 855

In Section 3, we focus on providing confidence 856

estimates specifically in the case of two correct 857
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SIGHAN13 SIGHAN14 SIGHAN15
Augmentation P R F1↑ FPR↓ P R F1↑ FPR↓ P R F1↑ FPR↓

Random 99.1 54.7 70.5 17.2 77.2 39.0 51.9 11.1 87.3 50.7 64.2 7.2
OCR/ASR 98.4 71.3 82.7 37.9 79.7 72.7 76.1 17.7 83.5 77.3 80.3 14.9

Table 5: Performance of BERT models trained on differently augmented data. The metrics are Precision(P),
Recall(R), F1-score(F), and sentence-level False Positive Rate(FPR). The model trained with OCR/ASR-based data
has a higher F1-score at the cost of more erroneous judgement.

SIGHAN13 SIGHAN14 SIGHAN15
Corpus Size F1 FPR F1 FPR F1 FPR

5k 84.5 6.9 59.6 8.9 70.7 6.1
10k 82.9 6.9 59.6 8.5 70.2 5.9
100k 83.7 10.3 60.0 9.2 69.6 7.5
200k 83.5 10.3 60.6 10.1 71.2 7.9
400k 84.1 10.3 62.8 9.6 71.5 7.5
2m 86.7 13.8 65.7 10.0 75.1 8.1
9m 89.2 10.3 70.2 9.0 80.4 7.7

Table 6: Experimental results on the effects of pre-
training corpus size.

characters for the same context. The complete for-858

mula for this scenario is as follows:859

PN (X|Y ) =
1

1 +
PX (yi|X\i)

PX (xi|X\i)

P (yi|X\i,yi)

P (yi|X\i,xi)
+ σ(X,Y )

σ(X,Y ) =
∑

v∈V\{xi,yi}

PX (v|X\i)

PX (xi|X\i)
·
P (v|X\i, v)

P (v|X\i, xi)

(12)

860

Here, σ(X,Y ) represents a non-negative value861

that depends on the vocabulary V . It is worth noting862

that if xi and yi are the only two suitable characters863

given the context X\i, then σ(X,Y ) = 0. Con-864

sequently, Equation 4 already provides an upper865

bound in this case.866

F Quantitative Analysis of Model867

Confidence868

Previous studies have commonly utilized a ran-869

dom selection of 10% of the characters to simulate870

the distribution of human misspellings Y . In line871

with this established approach, we follow the same872

methodology in this paper. Accordingly, we assign873

the following probabilities: P (xi|X\i, xi) = 0.9874

and P (yi|X\i, xi) ≤ 0.1, where yi ̸= xi.875

Additionally, we make the assumption that for876

any two characters u and v suitable for a given877

context, the ratio
PX (u|X\i)

PX (v|X\i)
≥ a. With these as-878

sumptions in place, we can establish a numerical879

upper bound for Equation 12:880

PN (X|Y ) =
1

1 +
PX (yi|X\i)

PX (xi|X\i)

P (yi|X\i,yi)

P (yi|X\i,xi)
+ σ(X,Y )

≤ 1

1 +
PX (yi|X\i)

PX (xi|X\i)
· P (yi|X\i,yi)

P (yi|X\i,xi)

≤ 1

1 + 9a
(13)

881

This implies a low model confidence when tak- 882

ing a reasonable a = 0.1 and PN (X|Y ) ≤ 0.53, 883

indicating that noisy samples can be easily filtered 884

out by a pre-trained model regardless of the choice 885

of F . As mentioned in Section 3, due to the ex- 886

istence of a long-tailed distribution for the OCR 887

method, there exists a yi that gives PN a larger 888

upper bound compared to random replacement. 889

Handling multi-answer samples presents a more 890

complex challenge. When F represents a map- 891

ping of uniformly sampling misspellings from 892

a confusion set, we can derive that ∀u, v ∈ 893

Vx, P (yi|x\i,u)
P (yi|X\i,v)

= |Cu|
|Cv | , where Cv denotes the con- 894

fusion set of character v. In this case, we assume 895

that |Cu|
|Cv | ≥ b. Consequently, we can establish a 896

numerical upper bound for Equation 5: 897

PM (X|Y ) =
1

1 +
∑

v∈V
PX (v|X\i)

PX (xi|X\i)

P (yi|X\i,v)

P (yi|X\i,xi)

≤ 1

1 +
∑

v∈V ab

≤ 1

1 + ab
(14)

898

Here, a and b represent lower bounds for the 899

ratio, and in practice, they are typically small val- 900

ues. Let’s assume a = 0.1 and b = 0.5, we find 901

that PN (X|Y ) ≤ 0.96. Consequently, selecting 902

multi-answer samples is considerably more chal- 903

lenging than dealing with noisy samples, especially 904
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when the pre-trained model fails to achieve the905

theoretical upper bound of confidence. Further-906

more, the long-tailed distribution observed in the907

OCR method results in a larger potential value for908

b, thereby further intensifying the challenge of dif-909

ferentiation.910
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