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ABSTRACT

Zero-shot learning becomes challenging in classifying scenes of unseen classes
due to the typical characteristics of remote-sensing images. The intricate varia-
tions and non-uniform spatial resolutions among the scenes of remote sensing im-
ages further complicate achieving discriminative semantic knowledge. To tackle
these issues, we propose a SuperCAT framework comprising a super-resolution
module, a cross-semantic attribute-guided Transformer (CAT), feature-generating
models, and a feature refinement (FR) module for the zero-shot scene classifica-
tion in remote sensing images. First, we leverage the semantic attributes for all
the classes of three benchmark remote sensing scene classification datasets to ex-
plore semantic knowledge using super-resolution effectively. Then, the semantic
attribute → visual Transformer (SAVT) and visual → semantic attribute Trans-
former (VSAT) modules in CAT learn to obtain attribute-based visual features and
visual-based attribute features, respectively. The SAVT and VSAT modules col-
laboratively learn and teach each other using the feature-level and prediction-level
semantic collaborative losses. The feature-generating models map semantic vec-
tors to the visual features of remote-sensing images. The FR module incorporates
triplet center margin loss and semantic loop consistency loss functions to capture
class-related and semantically-related discriminative features for achieving intra-
class closeness and inter-class distinctiveness. Our extensive experiments on three
benchmark remote sensing image scene classification datasets demonstrate the ef-
ficacy of SuperCAT over state-of-the-art approaches. The code can be accessed at
https://github.com/ZSL-RSI-SC/SuperCAT

1 INTRODUCTION

The field of remote sensing technology has witnessed remarkable advancements in collecting vast
volumes of high-resolution earth observation data (Chi et al., 2016). Remote sensing images, in
general, exhibit diverse objects with varying spatial configurations and non-uniform backgrounds.
Scene classification helps understand large-scale remote-sensing images by partitioning them into
multiple small patches or scenes. Each scene is labelled from predefined classes by analysing its
content. The works on scene classification (Cheng et al., 2017b; 2020a) have shown progress by
leveraging convolutional neural networks (CNNs). As remote sensing samples of new classes grad-
ually emerge, these methods will not be able to recognize them unless the samples of new classes
are considered during training. Also, collecting annotated scenes of remote sensing images for all
the new classes is tedious and time-consuming. This motivates us to explore zero-shot learning for
scene classification in remote-sensing images.

Zero-shot learning (ZSL) (Larochelle et al., 2008) is inspired by human recognition capabilities,
aiming to recognize new classes by utilizing the shared semantic information from seen to unseen
categories. In ZSL, samples from only seen classes are available during the learning phase, with no
access to unseen classes. More precisely, the training and testing samples are distinct. The most
common settings of zero-shot learning are conventional (CZSL) and generalized (GZSL) zero-shot
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learning. The CZSL learns to classify only unseen categories, whereas GZSL classifies unseen and
seen categories (Xian et al., 2017a).

In general, the scenes of remote sensing images exhibit unique characteristics in comparison to
natural images. Further, the subtle differences among the scenes of unseen classes in ZSL add
complexity to achieving discriminative semantic knowledge. Existing approaches are ineffective in
addressing the cross-dataset bias because they rely on pre-trained models from ImageNet. Generally,
the images in the ImageNet dataset depict the objects captured by a photographer from the side/front
view. In contrast, remote sensing images represent the top view of objects on the ground, usually
acquired through remote sensing platforms flown at high altitudes. Thus, the analysis of remote-
sensing images needs different strategies compared to natural images due to many issues Cheng
et al. (2020b), such as i) immense intraclass diversity, ii) high interclass similarity, iii) significant
variance of scene/object scales, and iv) coexistence of multiple ground objects.

We leverage semantic attributes Rambabu et al. (2024) across three remote sensing benchmark
datasets to capture the distinct characteristics of diverse scenes in zero-shot scene classification.
By leveraging these semantic attributes, we propose a SuperCAT framework to effectively classify
unseen and seen classes for zero-shot remote-sensing scene classification (ZSRSSC) tasks. Our pro-
posed SuperCAT framework innovatively combines a super-resolution technology with the ZSRSSC
task. The core of SuperCAT is a cross-semantic attribute-guided Transformer (CAT) module, which
extracts visual features guided by semantic attributes, and simultaneously extracts semantic features
guided by visual features. The SuperCAT facilitates learning by mapping semantic-to-visual cor-
respondences and synthesizing features to build an efficient classifier. We leverage f-VAEGAN to
map semantic vectors to visual representations. Further, SuperCAT employs a feature refinement
(FR) module to enhance the visual features of both seen and unseen class samples in remote sensing
images, optimizing classification performance in zero-shot learning scenarios.

In summary, our essential contributions are:

• We propose a SuperCAT framework that innovatively combines super-resolution with the
zero-shot scene classification task to improve the classification performance of remote sens-
ing images.

• We leverage the semantic attributes for three remote-sensing scene classification bench-
marking datasets to explore the semantic knowledge in zero-shot scene classification.

• A cross-semantic attribute-guided Transformer (CAT) module is proposed to obtain
attribute-based visual features and visual-based attribute features.

• We explore the feature generating (f-VAEGAN) and feature refinement (FR) modules to
refine the visual features for zero-shot scene classification in remote sensing images.

• Extensive experiments and comparisons with state-of-the-art methods demonstrate the ef-
ficacy of the proposed SuperCAT framework in zero-shot remote scene classification tasks.

The rest of this paper is organized as follows. Section 2 introduces our SuperCAT framework.
Section 3 presents the experimental results and an analysis of SuperCAT. Section 4 concludes this
paper.

2 PROPOSED SUPERCAT FRAMEWORK

The block diagram of the proposed SuperCAT framework for zero-shot scene classification in re-
mote sensing images is shown in Figure 1(a). The SuperCAT comprises a super-resolution module,
a cross-semantic attribute-guided Transformer (CAT) Chen et al. (2021a) module, feature generat-
ing models (f-VAEGAN) (Xian et al., 2019), a feature refinement (FR) module (Chen et al., 2021b),
and a classifier (CLS). Initially, we use ResShift (Yue et al., 2023), an efficient diffusion model,
to obtain super-resolution images of remote sensing samples. Then, we extract visual features for
each input super-resolution image through a ResNet101 CNN Backbone pre-trained on ImageNet.
A word vector is generated for the corresponding semantic attributes using the word2vec (Mikolov
et al., 2013) method. The CAT in the proposed SuperCAT comprises semantic attribute → visual
Transformer (SAVT) and visual→ semantic attribute Transformer (VSAT) to extract visual features
guided by semantic attributes and semantic attribute features guided by visual features, respectively.

2
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Figure 1: (a) The proposed SuperCAT framework block diagram for zero-shot scene classification
in remote sensing images. (b) The architecture of the feature refinement (FR) module.

We also employ a semantical collaborative learning technique to help SAVT and VSAT learn col-
laboratively and teach others. During the training phase, the f-VAEGAN learns to generate visual
features from the class semantic vector r (e.g., r = 33× 21 matrix for the UCM21Yang & Newsam
(2010) dataset). Further, we employ the feature refinement(FR) module combined with f-VAEGAN
to obtain discriminative visual features. Specifically, the FR module is optimized using triplet center
margin (TCM) loss and semantic loop consistency (SLC) loss (Chen et al., 2021b). Figure 1(b)
describes the architecture of the FR module to enhance visual features for unseen and seen class
examples. Finally, a classifier is learned to classify enhanced unseen and seen class features.

Notation: Let Nu and Ns be the sets of unseen and seen class samples, respectively. Seen class
samples are denoted as Sc =

{
ms

i , n
s
i

}
, where ms

i represents a visual feature, and nsi is the respec-
tive class label ∈ Ns. Similarly, the unseen class samples are defined as Uc =

{
mu

i , n
u
i

}
, wheremu

i
represents a visual feature, and nui is the respective class label belonging to Nu. For each n ∈ N ,
we have a set of semantic vectors comprising A attributes denoted as zn = [zn1 , ..., z

n
A]

T . These
semantic vectors help in transferring semantic information from seen to unseen classes. We obtain
attribute vectors for each attributeRA = {ra}Aa=1 using the word2vec model Mikolov et al. (2013),
applied to the words of attribute names (e.g., {ra}Aa=1 = 33 × 300 for the UCM21 dataset). In the
context of ZSL, the task is to determine the class label nu ∈ Nu in the case of CZSL. In the GZSL
setting, the goal is to identify class label n ∈ Ns ∪Nu = N , with the constraint that Ns ∩Nu = ϕ.

2.1 SUPER-RESOLUTION

We use ResShift (Yue et al., 2023), an efficient diffusion model for super-resolution, to minimize
the number of sampling steps. The ResShift model leverages a Markov chain to transition between
high-resolution images and their corresponding low-resolution versions by constructing a transition
kernel that gradually shifts the residual between them. This approach incorporates a flexible noise
schedule designed to control both the shifting speed of the residual and the noise intensity at each
step.

3
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2.2 CROSS SEMANTIC ATTRIBUTE-GUIDED TRANSFORMER (CAT) MODULE

This module (Chen et al., 2021a) comprises semantic attribute → visual Transformer (SAVT) and
visual→ semantic attribute Transformer (VSAT) submodules.

2.2.1 SEMANTIC ATTRIBUTE→ VISUAL TRANSFORMER (SAVT):

The SAVT comprises a feature expansion encoder and a semantic attribute→ visual decoder.

Feature Expansion Encoder (FEE): The FEE enhances the image features by mitigating cross-
dataset bias between ImagNet & ZSRSSC benchmark datasets Chen et al. (2021b). Generally,
feature vectors (I ′(m) ∈ RH×W×C) obtained from CNNs inherently entangle the feature repre-
sentations among different image parts, obstructing the transferability of semantic knowledge from
seen to novel classes Xu et al. (2020). Hence, feature-augmented and scaled dot-product-based
attention is proposed to improve the encoder by minimizing corresponding geometry associations
from visual features. To obtain related geometry features Herdade et al. (2019); Zhang et al. (2021),
we initially determine the related center positions (pceni , qceni ) depending on the pair of 2D corre-
sponding coordinates of the ith grid {(pmin

i , qmin
i ), (pmax

i , qmax
i )}:

(pceni , qceni ) =

(
pmin
i + pmax

i

2
,
qmin
i + qmax

i

2

)
, (1)

wi = (pmax
i − pmin

i ) + 1, (2)

hi = (qmax
i − qmin

i ) + 1, (3)

where (pmin
i , qmin

i ) and (pmax
i , qmax

i ) are the corresponding coordinates of the top left corner &
bottom right corner of the grid i, respectively. Later, a region geometry features Xij between grid i
& grid j are created using:

Xij = ReLU(wT
r yij), (4)

where yij = FC(gij), gij =

log
(

|pcen
i −pcen

j |
wi

)
log
(

|qceni −qcenj |
hi

)
 , (5)

where gij is the related geometry relation between grid i & grid j, FC represents a fully connected
layer, ReLU is used after the FC layer, and wT

r represents learnable weights.

Eventually, we neglect the region geometry features from the visual features of the feature-expanded
scaled dot-product attention to give a better precise attention map, formulated as:

Qe = I(m)W e
q ,K

e = I(m)W e
k , V

e = I(m)W e
v , (6)

Zaug = softmax
(QeKeT

√
de
−X

)
, (7)

Iaug(m)← I(m) + Zaug, (8)

where V , K, and Q indicate value, key, and query matrices, respectively, W e
v , W e

k , W e
q denote

learnable weight matrices, de specifies the factor of the scaling, and Zaug indicates the augmented
features. I(m) ∈ RH×W×C are the arranged image features obtained from the feature vectors
embedded by an FC layer that succeeded by a ReLU and Dropout layer. Iaug(m) represents the
augmented visual features obtained from FEE. They will facilitate the following sequential learning.
We rephrase the Iaug(m) as Ia→v

aug (m) and Iv→a
aug (m) in SAVT and VSAT, respectively.

Semantic Attribute→ Visual Decoder (SAVD): We employ a SAVD to obtain visual features based
on semantic attributes by using the cross-attention operator Chen et al. (2021a), which focuses on
visual features from attribute features. The decoding procedure continually includes visual features
under the guidance of semantic attribute informationRA. Hence, the SAVD can effectively position
the image region with the utmost applicability for every attribute in a specified image. The encoder

4
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layer outputs Ia→v
aug (m) are used as inputs to multi-head cross attention, as keys (Ka→v

t ), values
(V a→v

t ), and queries (Qa→v
t ) to be obtained as semantic embeddingsRA, formulated as:

Qa→v
t = RAW

a→v
qt , (9)

Ka→v
t = Ia→v

aug (m)W a→v
kt , (10)

V a→v
t = Ia→v

aug (m)W a→v
vt , (11)

Ht = softmax
(Qd

tK
a→v
t

T

√
dd

)
V a→v
t , (12)

F̃ = ||Tt=1(Ht)W
a→v
o , (13)

where W a→v
qt , W a→v

kt , W a→v
vt , and W a→v

o specify weight matrices,
√
dd indicates a factor of scal-

ing, F̃ represents the attribute-based visual features, and || denotes a function of concatenation.
Then, a ReLU after every two linear transformations of the feed-forward network (FFN) is applied
over F̃ , as:

F ′ = ReLU(F̃W a→v
1 + ba→v

1 )W a→v
2 + ba→v

2 , (14)

where ba→v
1 , ba→v

2 ,W a→v
1 ,W a→v

2 specify biases and weights of the layers in FFN correspondingly.
F ′ = {F ′

1, . . . , F
′
A} represents final visual features are based on attributes. Then, a softmax activa-

tion function is applied to F ′, and the resultant feature dimension of F ′ does not match the original
visual feature dimension M (e.g., 2048-dim feature vector extracted from ResNet101). Thus, F ′ is
transformed to attribute-based visual features m̃(with the same dimension of input feature) through
the original visual features M (to give input to the next stage) as:

F = Softmax(F ′), (15)
m̃ = F ×M. (16)

Visual-Semantic Projection Network (VSPN): The VSPN determines visual-semantic interactions by
mapping the obtained attribute-based visual features to the semantic embedding space depending on
the mapping functionM1, which is given by:

φ(m′
i) =M1(F ) = RT

AW
a→v
3 F, (17)

where W a→v
3 represents a projection matrix which projects F to the semantic embedding space.

The φ(m′
i)[r] represents the attribute score that specifies the confidence of attribute r in the image

mi.

2.3 VISUAL→ SEMANTIC ATTRIBUTE TRANSFORMER (VSAT)

Like SAVT, we employ a visual→ semantic attribute Transformer to obtain visual-based attribute
features that focus on the semantic attributes corresponding to every image region. Attribute-based
visual features & visual-based attribute features are complimentary and calibrate each other to learn
more intrinsic semantic information between them. Initially, like SAVT, VSAT uses the feature
expansion encoder to enhance visual features as Iv→a

aug (f). Subsequently, these features are used in
the visual→ semantic attribute decoder of VSAT.

Visual → Semantic Attribute Decoder (VSAD): After visual feature enhancement, we employ a
VSAD to learn visual-based attribute features. The operator of our cross-attention focuses on at-
tributes from visual features Chen et al. (2021a), formulated as:

Qv→a
t = Iv→a

aug (m)W v→a
qt , (18)

Kv→a
t = RAW

v→a
kt , (19)

V v→a
t = RAW

v→a
vt , (20)

Ht = softmax
(Qd

tK
v→a
t

T

√
dd

)
V v→a
t , (21)

Ũ = ||Tt=1(Ht)W
v→a
o , (22)
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where W v→a
qt , W v→a

kt , W v→a
vt , and W v→a

o specify weight matrices, and Ũ = {Ũ1, . . . , ŨK} repre-
sents the set of visual-based attribute features. Inherently, the visual semantic representations Ũ are
obtained corresponding to visual regions (K = H ×W ) of an image. Then, a ReLU after every two
linear transformations of FFN is performed over Ũ , as given below:

U ′ = ReLU(ŨW v→a
1 + bv→a

1 )W v→a
2 + bv→a

2 , (23)

where bv→a
1 , bv→a

2 ,W v→a
1 ,W v→a

2 specify biases and weights of the linear layers correspondingly,
and U ′ denotes the final visual-based attribute features. Then, a softmax function is applied to U ′.
The resultant feature dimension of U does not match the original visual feature dimension (M ).
Thus, U is transformed to visual-based attribute features m̄ through the original visual features M
as:

U = Softmax(U ′), (24)
m̄ = U ×M. (25)

Visual-Semantic Projection Network (VSPN): We map the visual-based attribute features to the se-
mantic embedding space using the mapping functionM2. We consider the augmented visual fea-
tures Iv→a

aug (m) obtained from the FEE to encourage effective mapping. InitiallyM2 maps U into
K region scores Ū , formulated as:

Ū =M2(U) = Iv→a
aug (m)

T
W v→a

3 U, (26)

whereW v→a
3 represents a learnable projection matrix. Here, the dimension of Ū is K-D, which does

not equal the dimension of class semantic vector A-D. Hence, we further map Ū into the semantic
attribute space with the dimension of A based on an attention score Attn = RT

AWattnI(m) ∈
RA×K using the mapping function M2, where Wattn represents a learnable embedding matrix
given by:

ψ(mi) = Attn× Ū . (27)

Like φ(mi), the ψr(mi) represents the attribute score that specifies the confidence of a-th attribute
confining to the image mi. The optimization of the CAT module (LCAT ) is discussed in the supple-
mentary material.

2.4 CAT OPTIMIZATION

The SAVT and VSAT components employ the following three loss functions based on remote sens-
ing attributes to optimise the CAT module.

Attribute Regression Loss: In the zero-shot remote sensing scene classification task, we consider
visual-semantic interaction as a regression problem and reduce the mean square error between the
original attribute score zn and predicted attribute score x(mi) for a batch of nb training samplesms

i :

LAR =
1

nb

nb∑
i=1

∥∥x(ms
i )− zn

∥∥2
2
, (28)

where x(ms
i ) = φ(ms

i ) for SAVT and x(ms
i ) = ψ(ms

i ) for VSAT.

Attribute-based Cross-entropy Loss: When a remote sensing attribute is visually available in an
image, the corresponding visual feature is perfectly projected near the semantic class vector zn.
LACE is defined given below from the given nb training samples {ms

i}ni=1 with their respective
semantic class vectors zn:

LACE = − 1

nb

nb∑
i=1

log
exp(x(ms

i )× zn)∑
n̂∈N exp(x(ms

i )× zn̂)
(29)

Self-calibration loss: The CAT module is certainly biased to seen classes since LAR and LACE are
optimized only on seen classes Zhu et al. (2019); Xu et al. (2020). We employ a self-calibration loss

6
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(LSC) to overcome this issue to move certain predicted probabilities from the seen classes to the
unseen. LSC is defined as:

LSC = − 1

nb

nb∑
i=1

Nu∑
n′=1

log
exp(x(ms

i )× zn
′

+ In′∈Nu)∑
n̂∈N exp(x(ms

i )× zn̂ + In̂∈Nu)
(30)

where In∈Nu indicates an indicator function (i.e. I = 1 when n ∈ Nu, else 0 ).

Semantical Collaborative Learning: Further, we employ feature-level (LSCL f ) and prediction-level
(LSCL p) semantical collaborative loss functions to assist SAVT & VSAT to collaboratively learn
from each other throughout the learning stage for CAT optimization. We have used an l2 distance
to implement these two losses. Especially, we have utilised an l2 distance between the semantically
enriched visual features of SAVT and VSAT for a given test scene image mi, formally defined as:

LSCL f =
1

nb

nb∑
i=1

∥∥φ(ms
i )− ψ(ms

i )
∥∥2
2
. (31)

Similarly, we also used an l2 distance between the predictions of the SAVT and VSAT (i.e., p1 and
p2), defined as:

LSCL p =
1

nb

nb∑
i=1

∥∥p1(ms
i )− p2(ms

i )
∥∥2
2
. (32)

The components SAVT and VSAT are trained with three loss functions, i.e., LSC ,LACE , and LAR,
formally defined as:

LSAV T = λARLSAV T
AR + LSAV T

ACE + λSCLSAV T
SC , (33)

LV SAT = λARLV SAT
AR + LV SAT

ACE + λSCLV SAT
SC , (34)

where the hyperparameters λAR and λSC help control their loss functions in the SAVT and VSAT.
Lastly, we define the total loss function for the CAT module:

LCAT = λSAV TLSAV T + λV SATLV SAT

+λSCL fLSCL f + λSCL pLSCL p,
(35)

where λSCL f , λSCL p and λV SAT represent the parameters to control their respective loss func-
tions. We set the λSAV T to one to stabilise the CAT during the training stage.

The attribute-based visual features m̃ and visual-based attribute features m̄ obtained from the CAT
module are separable under softmax loss supervision. However, they lack the discriminative power
capability for accurately predicting the labels of unseen classes in remote sensing scene classifica-
tion, showing immense intraclass diversity and high interclass similarity. Consequently, utilizing
these features directly to recognise unseen classes may not be ideal. Hence, we combine these fea-
ture vectors m′ = m̃ ⊙ m̄ and refine them to enhance the feature separability and efficient label
prediction of unseen classes.

2.5 FEATURE GENERATING MODELS

Most generative-based zero-shot learning methods use f-VAEGAN to generate synthetic CNN fea-
tures while adhering to the semantic vector r constraints in transforming semantic attribute vectors
into visual features. We also employ the f-VAEGAN (Xian et al., 2019), comprising a feature-
generating VAE (f-VAE) and a feature-generating network (f-WGAN). The f-VAE has two key
components: an encoder E(m′, r) and a conditional generator G(t, r) from f-WGAN, which acts as
a decoder G. The encoder E transforms an input m′ into hidden features t, and the decoder G(t, r)
reconstructs the input feature m̂ from t. The optimization of f-VAE can be expressed as follows:

LV AE = LKL + LR m′

LV AE = KL(E(m′, r)∥p(t|r))− EE(m′,r)[logG(t, r)],
(36)

where p(t|r) is considered to be N(0, 1), LKL is the Kullback-Leibler divergence, and LR m′ is the
loss computed during the reconstruction of visual features denoted by − logG(t, r). Conversely,
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f-WGAN consists of a discriminator D(m′, r), referred to as D, and generator G(t, r). From a
random input noise t, the generator G(t, r) generates a visual feature m̂ constrained by the semantic
embedding r. In contrast, the discriminator takes a synthesized visual feature m̂ or a real visual
feature m′, which is also constrained by semantic embedding r and results in a real value between 0
and 1. Optimization of f-WGAN loss is as follows:

LWGAN = E[D(m′, r)]− E[D(m̂, r)]− µE[(∥∇D(m̃, r)∥2 − 1)2], (37)
where m̃ = ρm′ + (1− ρm′) with ρ ∼ U(0, 1), and µ is the penalty coefficient.

2.6 FEATURE REFINEMENT (FR) MODULE

The feature refinement module (Chen et al., 2021b) in SuperCAT aims to enhance the visual features
of ZSRSSC benchmarks. The triplet center margin and semantic loop consistency losses condition
the FR module.

Triplet Center Margin loss (TCM-loss): This loss is designed to achieve discriminative features by
pushing features with the same class label close together and features with different class labels far
apart. It aims to achieve within-class similarity and between-class separability. This is typically
accomplished using class label information, center loss Wen et al. (2016), and triplet loss Schroff
et al. (2015). The LTCM can be formally outlined as follows:

LTCM (r̂, e, e′) = max

(
0,Γ + ψ∥γ − ce∥22 − (1− ψ)∥γ − ce′∥22

)
(38)

where ce is the eth class centre of semantic embedding, ce′ is the e′
th

class centre, Γ refers the
margin to handle the distance between the pairs of inter and intra class, γ specifies the intermediate
features in FR, and ψ ∈ [0, 1] is utilized to balance the within-class similarity and between-class
separability.

Semantic Loop Consistency loss (SLC-loss): We aim to reconstruct the semantic features r̂ from
the visual feature m′ or synthesized visual feature m̂ with the help of the reparameterization
trick(Kingma & Welling, 2013). The LR r is applied to the reconstructed semantic features in
the FR to ensure that synthesized semantic features r̂ are transformed into the exact embeddings
that generated them. By utilizing the l1 reconstruction loss, the SLC loss is attained, formulated as
follows:

LR r = E[∥r̂real − r∥1] + E[∥r̂syn − r∥1], (39)
where r̂syn denotes the semantically related features synthesized from m̂ and r̂real signifies the
semantically related features synthesized from m′ using the FR. Notably, r̂ = r̂real ∪ r̂syn and r
denotes the semantic embeddings for the given visual features m̂ or m′.

Extracting Fully Enhanced Features: After training the FR module, we extract fully enhanced fea-
tures m̃u and m̃s from the FR. We concatenate the visual features m′, corresponding latent repre-
sentation ls ∈ L and semantic embedding r̃s ∈ R as m̃s using the residual connection. Similarly,
we concatenate the visual features m̂, corresponding latent representation lu and the semantic em-
bedding r̃u to obtain m̃u. The final enhanced features m̃s and m̃u are expressed as

m̃s = m′ ⊙ ls ⊙ r̂s, (40)
m̃u = m̂u ⊙ lu ⊙ r̂u, (41)

where ⊙ denotes concatentation operation, m̃s and m̃u ∈ M̃ .

The refined visual features m̃s and m̃u are designed to be discriminative, helping to reduce ambigu-
ities across samples from different classes. The overall objective function of SuperCAT is defined
as:

Ltotal = LCAT + LV AE + LWGAN + λTCMLTCM + λR rLR r, (42)
where λTCM and λR r are hyperparameters that control their corresponding loss functions.

Zero-Shot Scene Classification: In the refined feature space, we train a supervised classifier as the
final classifier. For conventional zero-shot learning, the objective is to learn the classifier fczsl :

M̃ → Nu. During testing, the unseen test features are refined into new features by the FR module
and used for classification.
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3 EXPERIMENTAL RESULTS

In this section, we provide the quantitative and qualitative analysis of our SuperCAT framework on
three benchmark datasets for scene classification in remote sensing images.

3.1 DATASETS

We utilize the semantic attributes Rambabu et al. (2024) for three benchmark scene classification
datasets in remote sensing, namely, UCMercedLandUse (UCM21) (Yang & Newsam, 2010), Aerial
Image Dataset (AID30) (Xia et al., 2016), and NWPU-RESISC45 (NWPU45) (Cheng et al., 2017a).
Table 1 provides the details of each dataset. We have evaluated our SuperCAT framework for the
CZSL setting using top-1 classification accuracy (Xian et al., 2017c).

Table 1: Details of scene classification datasets.

Parameters UCM21 RS19 AID30 NWPU-RESISC45
Number of scene classes 21 19 30 45
Samples per each class 100 50 220-420 700

Number of samples 2,100 950 10,000 31,500
Number of semantic attributes 33 26 44 57

3.2 IMPLEMENTATION DETAILS

For zero-shot remote sensing scene classification, we utilize features of size 2048 extracted from
the ResNet-101 model, pre-trained on ImageNet without fine-tuning. In the SuperCAT framework,
we set the learning rate, weight decay, and momentum to 0.0001, 0.0001 & 0.9, respectively, in the
SGD optimizer with a batch size of 64. We use Adam optimizer (Kingma & Ba, 2014) by setting
β1 = 0.5 and β2 = 0.999 values. We set λAR, λSC , λV SAT , λSCLf

, λSCLp
to {0.01, 1.0, 0.01,

0.0001, 0.001} for all datasets based on empirical analysis. The value of the penalty multiplier (η)
is 10. In the FR module, our experiments consider 0.5 and 0.999 values to TCM loss multiplier and
SLC loss multiplier. The balancing factor psi (ψ) is set to 0.4 for all the datasets.

3.3 ANALYSIS OF CLASSIFICATION PERFORMANCE USING SUPERCAT

Tables 2, 3, 4 show that our SuperCAT consistently outperforms state-of-the-art approaches across
standard seen/unseen class splits (Li et al., 2022) on the UCM21, AID30, and NWPU45 datasets,
respectively.

Table 2: Top-1 classification accuracy and standard deviation (%) on UCM21 dataset.

Methods 16/5 13/8 10/11 7/14
VSC (Wan et al., 2019) 55.91 ± 11.77 36.26 ± 07.31 25.97 ± 05.79 19.53 ± 03.05

f-CLSWGAN (Xian et al., 2017b) 56.97 ± 11.06 36.47 ± 06.28 27.89 ± 04.99 19.34 ± 03.96
DSAE (Wang et al., 2021) 58.63 ± 11.23 37.50 ± 07.79 25.59 ± 05.24 20.18 ± 03.07

CSPWGAN (Li et al., 2022) 62.66 ± 10.79 46.19 ± 05.52 35.17 ± 04.93 26.17 ± 03.87
RSZero-CSAT (Rambabu et al., 2024) 71.40 ± 10.90 49.10 ± 06.20 38.30 ± 04.97 26.70 ± 03.60

SuperCAT (ours) 73.35 ± 10.45 52.40 ± 05.25 39.51 ± 04.47 29.13 ± 03.07

Table 3: Top-1 classification accuracy and standard deviation (%) on AID30 dataset.

Methods 25/5 20/10 15/15 10/20
VSC (Wan et al., 2019) 52.61 ± 08.37 35.85 ± 05.52 26.11 ± 03.76 17.50 ± 02.19

f-CLSWGAN (Xian et al., 2017b) 50.68 ± 11.25 33.89 ± 05.72 24.95 ± 02.96 17.26 ± 03.06
DSAE (Wang et al., 2021) 53.49 ± 08.58 35.32 ± 05.17 25.92 ± 03.92 17.65 ± 02.52

CSPWGAN (Li et al., 2022) 55.86 ± 10.60 37.93 ± 05.26 26.97 ± 02.53 19.43 ± 03.02
RSZero-CSAT (Rambabu et al., 2024) 66.90 ± 10.24 41.81 ± 05.36 31.30 ± 03.10 23.60 ± 02.89

SuperCAT (ours) 69.80 ± 09.72 45.22 ± 05.33 32.30 ± 02.39 24.09 ± 02.64

9
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Table 4: Top-1 classification accuracy and standard deviation (%) on NWPU45 dataset.

Methods 35/10 30/15 25/20 20/25
VSC (Wan et al., 2019) 50.68 ± 06.60 40.92 ± 04.59 30.62 ± 03.10 25.51 ± 02.04

f-CLSWGAN (Xian et al., 2017b) 56.97 ± 11.06 36.47 ± 06.28 27.89 ± 04.99 19.34 ± 03.96
DSAE (Wang et al., 2021) 51.22 ± 06.91 41.94 ± 04.61 31.85 ± 03.32 25.20 ± 02.17

CSPWGAN (Li et al., 2022) 50.66 ± 05.86 41.61 ± 04.48 32.09 ± 02.96 26.65 ± 02.33
RSZero-CSAT (Rambabu et al., 2024) 56.80 ± 06.23 44.90 ± 04.67 36.60 ± 03.00 26.20 ± 02.43

SuperCAT (ours) 57.57 ± 05.75 46.18 ± 04.46 38.69 ± 02.24 28.45 ± 02.27
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Figure 2: The t-SNE visualizations of visual features for the unseen classes from the UCM21 dataset.

3.4 QUALITATIVE ANALYSIS OF SUPERCAT

Figure 2 illustrates the qualitative analysis of CAT and FR modules of SuperCAT on the UCM21
dataset. We employ t-distributed stochastic neighbour embedding (t-SNE) van der Maaten & Hinton
(2008) to depict the visual features of the CNN backbone, visual features after the CAT module and
the refined visual features obtained after the FR module in the SuperCAT framework over a randomly
selected five unseen class samples. Figure 2b shows the visual features obtained from the CAT
module. From Figure 2b, we can observe that the visual features obtained from the CAT module are
separable under the supervision of softmax loss. However, these are not discriminative enough for
label prediction of unseen classes in remote sensing scene classification, as they exhibit significant
intra-class variations. Therefore, directly using these features for recognition may not be suitable.
Figure 2c shows the clear separability of our proposed method and efficient label prediction of visual
features with the FR module. The results indicate a cumulative contribution of super-resolution,
CAT, f-VAEGAN, and FR modules in our SuperCAT in achieving a discriminative semantic space
by capturing the meaningful semantics pertinent to unseen classes.

4 CONCLUSION

This paper proposes a SuperCAT framework for classifying the scenes in remote-sensing images by
combining a super-resolution module with the zero-shot scene classification example. The Super-
CAT leverages the semantic attributes to explore the semantic knowledge of unseen & seen classes.
It comprises a cross-semantic attribute-guided Transformer (CAT) module, a feature-generating
model (f-VAEGAN), a feature refinement (FR) module, and a classifier. The CAT module is pro-
posed to extract visual features guided by semantic attributes and semantic attribute features guided
by visual features. We use an f-VAEGAN in SuperCAT to generate synthetic features for unseen
classes constrained by semantic vectors. Further, we employ an FR module to effectively refine the
visual features and improve the precise classification of unseen & seen class remote sensing samples.
Our extensive experiments on three benchmark remote sensing image scene classification datasets
show the efficacy of SuperCAT over state-of-the-art approaches.
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