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Abstract

We propose VE-KD, a novel method juggling001
knowledge distillation and vocabulary expan-002
sion to train efficient domain-specific language003
models. In comparison with traditional pre-004
training approaches, VE-KD provides competi-005
tive performance in downstream tasks while006
reducing model size and required computa-007
tional resources. Our experiments with differ-008
ent biomedical domain tasks demonstrate that009
VE-KD performs well compared with models010
such as BioBERT (+1% at HoC) and PubMed-011
BERT (+1% at PubMedQA), with about 96%012
reduced training time. Furthermore, it outper-013
forms DistilBERT, and offers a significant im-014
provement in document-level tasks. Investiga-015
tion of vocabulary size and tolerance, which016
are hyperparameters of our method, provides017
insights for further model optimization. The018
fact that VE-KD consistently maintains its ad-019
vantages even when the corpus size is small sug-020
gests that it is a practical approach for domain-021
specific language tasks, and is transferrable to022
different domains for broader applications.023

1 Introduction024

Language models such as BERT (Devlin et al.,025

2019) and RoBERTa (Liu et al., 2019) have pro-026

vided significant performance improvements in027

solving natural language processing (NLP) tasks,028

enabling many practical applications that increase029

productivity, understanding, and accessibility in030

diverse industries.031

These traditional models still hold value in terms032

of cost-effectiveness and ease of deployment, even033

though large language models (LLMs) demonstrate034

remarkable few-shot capabilities in NLP tasks. One035

reason is that training or fine-tuning LLMs such036

as GPT-3 requires an immense amount of data and037

computational resources. Another reason is a grow-038

ing demand for AI applications that run on local039

machines because some applications require inde- 040

pendence from network connectivity or have con- 041

cerns over information security and confidentiality 042

when using LLM API services such as GPT-4. 043

Various industrial and academic fields include 044

specialized terms and concepts which general lan- 045

guage models might not fully understand. These 046

potential gaps in understanding of general language 047

models may result in less effective or even erro- 048

neous solutions, it is therefore vital to adapt lan- 049

guage models to specific domains. 050

However, LLMs such as GPT-3 and GPT-4 are 051

difficult to use because it is expensive and chal- 052

lenging to obtain high-quality labeled data for addi- 053

tional pre-training, or because domain knowledge 054

must be added through the API. In contrast, gen- 055

eral BERT models have the advantage of easy of 056

fine-tuning and specialization in different domains. 057

In industrial applications, operational efficiency 058

is often the primary concern. For example, high 059

latency can be detrimental for applications that 060

require real-time response or that process large 061

amounts of input data, such as monitoring systems 062

or predictive analytics. Larger models need more 063

powerful and thus more expensive hardware setups, 064

but typically have capacity constraints imposed 065

to manage costs. This also limits the model size 066

that can feasibly be executed. Therefore, reduc- 067

ing resource consumption by compressing a model 068

improves its deployment adaptability. 069

Although the need for domain adaptation and 070

model compression is particularly prominent in 071

industrial applications within a specific domain, 072

when considering the complexities inherent in these 073

processes are considered, a simplistic sequential 074

approach may not yield the best results. First, 075

both tasks face the challenge of obtaining high- 076

quality data. Second, using general methods such 077

as domain-adaptation followed by distillation or 078

distilling the domain-adapted model requires two- 079

step training and hyperparameter tuning (Yao et al., 080
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Figure 1: The architecture of VE-KD. New tokens and original tokens are processed separately during tokenization,
masking and loss calculation. The student model soaks up two types of knowledge; one is common knowledge via
original tokens and the other is domain-specific knowledge via new tokens.

2021), which makes the learning process difficult081

to optimize.082

During the domain-adaptation phase in partic-083

ular, such as secondary-stage unsupervised pre-084

training, there is a significant risk of losing general085

knowledge due to overlearning when a small corpus086

is used. Moreover, two-step training requires more087

computational resources and time, possibly requir-088

ing further iterations to achieve the most effective089

outcomes. Hence, a method that can proficiently090

perform domain adaptation and model compression091

simultaneously is distinctly necessary to overcome092

these issues.093

In this paper, we propose VE-KD, a novel sim-094

ple mechanism that can simultaneously perform095

domain adaptation and model compression from a096

teacher model such as BERT. We also show that097

our method significantly outperforms the teacher098

model on related tasks with corpus, with easy opti-099

mization and robustness, and lower computational100

resources and time.101

2 Related Work102

Large pre-trained models,like BERT (Devlin et al.,103

2019), RoBERTa (Liu et al., 2019), have become104

ubiquitous in NLP (Ramponi and Plank, 2020). In105

terms of a domain shifts, secondary-stage unsu-106

pervised pre-training on new domain has proven107

to be advantageous. Contextualized tokenizations108

are adapted to text from the target domain through109

masked language modeling, as introduced by Han110

and Eisenstein (2019), Gururangan et al. (2020).111

Lee et al. (2020) which executed continual pre- 112

training to adapt the BERT model to the biomedical 113

domain, by utilizing both the PubMed abstracts and 114

PMC full-text resources. The use of contrastive 115

learning also increases the representation ability 116

for specific domains. Xu et al. (2023) investi- 117

gated the use of contrastive learning to develop 118

discriminative entity representations in the field of 119

cross-domain named entity recognition. 120

However, many specialized domains contain 121

unique words that are not included in the vocab- 122

ulary of pre-trained language models. Gu et al. 123

(2021) proposed a biomedical pre-trained model 124

called PubMedBERT in which the vocabulary was 125

constructed from scratch and the model was pre- 126

trained from scratch. Furthermore, in many special- 127

ized domains, sufficiently large corpora may not 128

be available to support pre-training from scratch. 129

General domain vocabulary can be extended with 130

in-domain vocabulary (Yao et al., 2021), to solve 131

this out-of-vocabulary issue. 132

Knowledge distillation (KD) (Hinton et al., 133

2015) aims to transfer the knowledge from a large 134

teacher model to a small student model. Existing 135

knowledge distillation methods can be divided into 136

three categories: response-based, feature-based, 137

and relation-based (Gou et al., 2021). In this paper, 138

we focus on task-agnostic knowledge distillation 139

approaches, where a distilled smaller pre-trained 140

model can be directly fine-tuned on downstream 141

tasks. 142

DistilBERT (Sanh et al., 2019) uses soft labels 143

and embedding outputs to supervise the student 144
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model. TinyBERT (Jiao et al., 2020) and Mobile-145

BERT (Sun et al., 2020) introduce self-attention146

distributions and hidden states for training the stu-147

dent model. MiniLM (Wang et al., 2020) avoids re-148

strictions on the number of student layers and super-149

vises the student model by using the self-attention150

distributions and value relation of the teacher’s last151

transformer layer. AD-KD approach (Wu et al.,152

2023) explores the token-level rationale behind the153

teacher model based on Integrated Gradients (IG)154

and transfers attribution knowledge to the student155

model.156

3 Methods157

In this study, we propose VE-KD, a method for158

model distillation with extendable vocabulary,as159

shown in Figure 1. Unlike Adapt-and-Distill (Yao160

et al., 2021) which requires two-step training, our161

approach simultaneously lightens the model and162

resolves the adaptability issues of special domains,163

which have been a problem in general-purpose164

models pre-trained on large corpora, particularly165

when using smaller corpora.166

In the knowledge distillation aspect of VE-167

KD, a larger BERT model serves as the teacher168

model, instructing a smaller student model layer-169

by-layer. Through the distillation process, the stu-170

dent model becomes able to mimic the behavior of171

the larger teacher model in general terms. Simulta-172

neously, the vocabulary expansion aspect broadens173

the model’s vocabulary to capture domain-specific174

terms, thereby enhancing the method’s ability to175

adapt to domain-specific tasks.176

3.1 Vocabulary Expansion177

We add domain-specific terms (we call new tokens)178

through vocabulary expansion, which distinguishes179

between general and domain knowledge by sep-180

arating the new tokens from the original tokens.181

By processing them separately such as through dif-182

ferent masking and loss functions, we allow for183

simultaneous learning of domain knowledge from184

the corpus and general knowledge from the teacher185

model through two separate pathways.186

The vocabulary of the student model Vs is ex-187

panded based on the teacher model’s vocabulary188

Vt. We use tensor2tensor’s WordPiece generation189

script1 to perform the vocabulary expansion. Fol-190

lowed on from the research of Yao et al. (2021),191

we chose a vocabulary size of 60k.192

1https://github.com/tensorflow/tensor2tensor

3.2 Tokenization and Separate Token 193

Masking 194

The process of separating the two terms is accom- 195

plished through tokenization and token masking. 196

Typically, model distillation necessitates that both 197

the teacher and student models possess identical 198

dictionaries. However, due to vocabulary expan- 199

sion, new tokens emerge that cannot be incorpo- 200

rated into the teacher model. 201

As shown in Figure 1, we employ text tokeniza- 202

tion with an expanded vocabulary Vs. There are 203

new tokens that cannot be accommodated in the 204

teacher model. To circumvent this, we designed a 205

unique mask method as below. 206

We denote the input sequence as x = 207

[x1, x2, x3, ..., xn], where n is the sequence length 208

and each xi represents a token tokenized by ex- 209

panded vocabulary Vs, Let us suppose that x1 and 210

x3 are new tokens and thus not included in Vt, then 211

we replace them with a [MASK] token as new input 212

xinput = [[MASK], x2, [MASK]..., xn]. 213

We simultaneously acquire the position information 214

of new tokens Pnewtoken(i) = 1 if xi /∈ Vt else 0, 215

and use to calculate the loss function. 216

In areas other than new tokens, similar to 217

BERT’s MLM (Masked Language Model) task, 218

tokens are masked and swapped at random by the 219

same rule. The tokens used for replacement are 220

picked from the vocabulary of the teacher model. 221

3.3 Loss Functions 222

This section explains the mechanism of calculating 223

the loss function by separating new tokens from 224

general terms. In the right half of Figure 1, we 225

input the two entries into the teacher model (t) 226

and the student model (s), and obtain the hidden 227

state vectors Ht,s from the final layer and the token 228

prediction logits Lt,s. 229

At the new token position, the output logits and 230

the hidden vectors state of the teacher model confict 231

with the student model because the student model 232

has a bigger vocabulary and new knowledge. In 233

order to learn the knowledge of the teacher model 234

successfully, similarity calculations are only made 235

within the scope of general terms (without the new 236

token position). The new H ′
t,s and L′

t,s are formu- 237

lated as follows: 238

H ′
t,s = {Ht,s(i)|Pnewtoken(i) = 0}, 239

240
L′
t,s = {Lt,s(i)|Pnewtoken(i) = 0}. 241
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Following DistilBERT (Sanh et al., 2019), the242

loss function is calculated using the following243

three measures such as cosine similarity, Kullback-244

Leibler divergence (KL), and mean squared er-245

ror (MSE), which are defined as follows:246

LCosine(H
′
t, H

′
s) =

H ′
t ·H ′

s

∥H ′
s∥∥H ′

t∥
,247

248

LKL(L
′
t, L

′
s) =

∑
i

L′
t(i) log

L′
t(i)

L′
s(i)

,249

250

LMSE(L
′
t, L

′
s) =

1

n

n∑
i=1

(
L′
t(i)− L′

s(i)
)2

.251

By doing so, we facilitate the learning of the252

teacher model’s knowledge.253

Next, similar to BERT, we calculate the masked254

language model loss function LMLM to estimate the255

masked words using the student model’s Logits Ls256

and labels Llabel.257

The KD loss and MLM loss may be in conflict258

because of the new token even if the calculation259

range is split. Knowledge about general terms be-260

tween the teacher model and student model maybe261

differ because the meaning or grammar of general262

terms around the new token maybe different. Since263

taking 100% of the knowledge from the teacher264

model may have adverse effects on creating new265

domain knowledge for the student model. We there-266

fore use the tolerance to control the KD loss as267

L′
KD(i) = max(WKD × LKD(i)− ε, 0).268

In this context, LKD refers to each KD loss, WKD269

represents the weight for each KD loss, and ε de-270

notes the tolerance for the KD loss. This implies271

that after being multiplied by the weight, if the272

value is smaller than ε, the model will consider the273

KD loss to be zero and refrain from further opti-274

mization for lower loss. If a conflict arises, the275

student model will first optimize the MLM loss.276

This ensures that the student model learns the new277

domain knowledge in the vicinity of the teacher278

model, without straying too far from it.279

The final loss Lfinal is obtained by calculating280

the sum of the above individual losses, namely281

Lfinal = L′
Cosine + L′

KL + L′
MSE + αLMLM,282

where α is the positive weight parameter for the283

loss in the MLM task and is used to control the284

intensity of learning new tokens.285

4 Experiment Details and Results 286

In this section, we conduct our experiments in the 287

biomedical domain. 288

4.1 Datasets 289

We collected a PubMed abstract corpus for distilla- 290

tion, and using BLURB2 for performance evalua- 291

tion. 292

For the biomedical domain, we gathered a small- 293

scale corpus of 1.3GB from PubMed abstracts and 294

compare it with PubMedBERT, which used a 21GB 295

corpus for pre-training. We omitted any abstracts 296

containing fewer than 128 words to reduce noise. 297

We evaluate downstream tasks by using 12 tasks 298

of the BLURB benchmark (excluding BIOSSES, 299

a sentence similarity task that employs the [CLS] 300

token, which is not well trained with this method). 301

This benchmark consists of five named entity recog- 302

nition tasks (BC5-Chemical, BC5-Disease, NCBI- 303

disease, BC2GM and JNLPBA), a PICO (popula- 304

tion, intervention, comparison, and outcome) ex- 305

traction task (EBM PICO), three relation extraction 306

tasks (ChemProt, DDI and GAD), a document clas- 307

sification task (HoC), and two question answering 308

tasks (PubMedQA and BioASQ). We adhere to the 309

same fine-tuning method and evaluation metrics as 310

those used by PubMedBERT following Yasunaga 311

et al. (2022). We list the statistics of those tasks in 312

Table 1. 313

Dataset Train Dev Test

BC5-chem (2016) 5,203 5,347 5,385
BC5-disease (2016) 4,182 4,244 4,424
NCBI-disease (2014) 5,134 787 960
BC2GM (2008) 15,197 3,061 6,325
JNLPBA (2004) 46,750 4,551 8,662
EBM PICO (2018) 339,167 85,321 16,364
ChemProt (2010) 18,035 11,268 5,745
DDI (2013) 25,296 2,496 5,716
GAD (2004) 4,261 535 534
HoC (2016) 1,295 186 371
PubMedQA (2019) 450 50 500
BioASQ (2015) 670 75 140

Table 1: The numbers of instances included in BLURB
biomedical NLP benchmark datasets we used.

2https://microsoft.github.io/BLURB/leaderboard.html

4



BERT-base DistilBERTPubMed VE-KDo VE-KDw

NER
BC5CDR-chem 89.25 88.81 89.64 89.83
BC5CDR-disease 81.44 78.94 81.77 81.65
NCBI-disease 85.67 84.07 86.46 86.50
BC2GM 80.90 79.94 79.68 80.03
JNLPBA 77.69 76.64 76.50 76.34

PICO extraction
EBM PICO 72.34 71.22 72.15 72.08

Relation extraction
ChemProt 71.86 70.77 69.13 69.28
DDI 80.04 74.20 74.80 76.69
GAD 80.41 78.29 76.57 77.82

Document classification
HoC 80.20 80.76 82.38 83.21

Question answering
PubMedqa 51.62 53.40 54.80 55.80
BioASQ 70.36 67.86 72.86 75.71

Average of all tasks 76.82 75.41 76.39 77.08

Table 2: Comparison with distillation models trained by the PubMed corpus, DistilBERTPubMed: using the same
method of DistilBERT, VE-KDo and VE-KDw are models trained by our method, where o indicates without
tolerance and w with. Bold indicates the top-ranked performance, Bold and underline indicate the first best and the
second best, respectively.

4.2 Implementation314

We use the uncased version of BERTBASE
3 (12315

layers,768 hidden size) as the teacher model. We316

perform distillation of BERT to a small (6 layer317

768 hidden state) student model4 with vocabulary318

expansion. More specifically, we use a peak learn319

rate of 5e-4, batch size of 240, and train for steps.320

We warm up the learning rate in the first 10% of321

steps and then linearly decay it. Additionally, We322

perform distillation of BERT by the normal method323

using the same corpus and hyperparameters to a324

6-layer distilBERTPubMed.325

For comparison, we choose the teacher model326

BERT as baseline. Additionally, we choose some327

6-layer small BERT or distilled BERT for general328

purpose, such as BERTL6H768
3(6 layers,768 hid-329

den size), TinyBERT, MiniLM or DistilBERTwiki.330

For comparison with domain adaptation ability, we331

fine tune these models using the PubMed corpus.332

Specifically, we use a peak learn rate of 5e-4, batch333

size of 80, and train for 100,000 steps. We warm334

3https://github.com/google-research/bert.
4Our model and evaluate dataset is available at:

https://github.com/pZvfkv3t8PA9vAc/VE-KD_a-method-
for-training-smaller-language-models-adapted-to-specific-
domains.

up the learning rate in the first 10% of steps and 335

then linearly decay it. 336

4.3 Comparison With BERT and DistilBERT 337

Trained by the PubMed Corpus 338

The results for the performance comparison of 339

the distillation model using the same PubMed cor- 340

pus are shown in Table 2, which shows that VE- 341

KDw outperforms teacher model BERT on 6 tasks, 342

and has an improved performer of 0.3% on av- 343

erage. VE-KDw outperforms DistilBERTPubMed 344

on 10 tasks, achieving an increased performance 345

of 2% absolute on average. Moreover, we see 346

a trend of significantly larger improvements on 347

document-level tasks compared with BERT-base 348

document classification (+3% on HoC) and ques- 349

tion answering (+4% on PubMedQA, +5% on 350

BioASQ). Compared with DistilBERT, document 351

classification (+2% on HoC) and question answer- 352

ing (+2% on PubMedQA, +8% on BioASQ). A rea- 353

sonable explanation for why the HoC, PubMedQA, 354

and BioASQ tasks show a substantial increase 355

in performance is that they were developed from 356

PubMed abstracts, which may have a high degree 357

of similarity to the corpus we employed for training 358

VE-KD. 359

5



BERT-small TinyBERT MiniLM
DistilBERT

wiki
DistilBERT

PubMed VE-KDw

domain adaptation o w o w o w o w o w

NER
BC5CDR-chem 88.64 90.51 87.98 90.34 88.93 90.13 88.81 90.34 88.97 89.83 89.83
BC5CDR-disease 80.27 81.90 79.20 80.60 80.04 80.24 78.94 80.60 80.84 80.74 81.65
NCBI-disease 85.53 85.54 84.16 84.77 83.81 84.37 84.07 84.77 86.05 84.52 86.50
BC2GM 79.64 80.22 79.56 80.17 80.09 80.18 79.94 80.17 79.96 79.83 80.03
JNLPBA 76.53 77.27 76.83 76.75 75.92 76.65 76.64 76.75 76.86 76.60 76.34

PICO extraction
EBM PICO 71.09 72.21 70.41 72.31 71.29 72.53 71.22 72.31 71.56 72.16 72.08

Relation extraction
ChemProt 69.74 69.97 69.87 70.09 69.50 70.64 70.77 70.09 69.68 71.11 69.28
DDI 75.91 77.57 75.01 75.95 74.91 76.92 74.20 75.95 75.96 75.48 76.69
GAD 78.79 79.60 76.87 78.98 79.05 79.74 78.29 78.98 76.66 79.53 77.82

Doc classification
HoC 81.73 82.66 73.98 81.21 77.72 81.41 80.76 81.21 81.41 82.20 83.21

Question answering
PubMedQA 50.40 51.80 54.00 51.80 52.60 54.60 53.40 51.80 50.00 53.80 55.80
BioASQ 75.71 80.00 80.00 67.86 67.14 76.43 67.86 67.86 62.86 72.14 75.71

Average of all tasks 76.16 77.44 75.66 75.90 75.08 76.99 75.41 75.90 75.07 75.98 77.08

Table 3: Comparison among small models, where o indicates without domain adaptation and w with. Bold and
underline indicate the first best and the second best, respectively.

VE-KD did not perform as well in the relation360

extraction task as DistilBERT experiencing an av-361

erage performance decrease of 3% compared with362

BERT-base. This might be attributable to the con-363

siderable divergence between the datasets used in364

tasks such as DDI and GAD (which were not built365

from the PubMed corpus), and the PubMed corpus366

we used to train VE-KD. Therefore, we postulate367

that the performance of VE-KD is significantly in-368

fluenced by the gap between the training corpus369

and the downstream task.370

4.4 Effect of Tolerance Setting371

As Table 2 shows, VE-KDw with tolerance setting372

achieves a performance increase of 0.7% on aver-373

age compared with the model without tolerance374

setting. We see a trend where the tolerance setting375

gives a huge improvement on document-level tasks376

such as document classification (+1% on HoC) and377

question answering (+1% on PubMedQA, +3% on378

BioASQ).379

In the DDI task, VE-KD without tolerance shows380

a huge performance decline similar to that of Dis-381

tilBERT when using the same corpus. However,382

when a tolerance setting is added to VE-KD, it383

achieves a performance increase of 2%. This result384

suggests that our method can partially offset perfor-385

mance loss caused by differences in data distribu-386

tion between the training corpus and downstream387

task.388

4.5 Compare with Same Layer Size Model 389

Table 3 shows the results of performance compar- 390

ison versus the small model with the same layers 391

and hidden state size as VE-KD. Compared with 392

small models without domain adaptation, VE-KDw 393

achieves the highest performance on average. Even 394

after domain adaption, VE-KDw is still the second 395

highest model just behind the BERT-small model. 396

Compared with the DistilBERTPubMed which uses 397

the same corpus, VE-KD also attains a 0.5% per- 398

formance increase on average, and in particular 399

obtains a 2% increase for PubMedQA tasks. Our 400

results suggest that a vocabulary expansion distilla- 401

tion method using one-time training can achieve or 402

exceed the performance of adaptation followed by 403

distillation. 404

5 Analysis 405

In this section, we analyzed the impact of training 406

time and various settings on performance. 407

5.1 Impact of Training Time 408

Pre-training and fine-tuning typically require sub- 409

stantial computational resources. We benchmark 410

our model against BioBERT and PubMedBERT 411

using the HoC, PubMedQA task. To facilitate a 412

fair comparison, we equate the training time of 413

BioBERT and PubMedBERT to the duration it 414

would potentially take with the same computational 415

resources as used in this study (8 A100 GPUs). 416
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As shown in Table 4 for the HoC and Pub-417

MedQA task, VE-KD outperforms BERT in the418

HoC task after 3 hrs of training. Moreover, it sur-419

passes BioBERT and PubMedBERT following 6420

and 9 hrs of training, respectively. For the Pub-421

MedQA task, VE-KD outperforms BERT after422

6 hrs of training, and PubMedBERT after 9 hrs423

of training. These observations highlight the effi-424

ciency of our method as it can match or surpass the425

performance of models pre-trained from scratch,426

all while leveraging less than 10% of the computa-427

tional resources and corpus.428

The training time for VE-KD is mostly analo-429

gous to the distillation phase time of the ‘distil-430

then-adapt’ method. Compared with VE-KD with431

fine-tuned DistilBERT, VE-KD achieves a higher432

score while requiring only about half of the training433

time.434

Model Training
Time

Corpus
Words HoC PubMed

QA

VE-KD
3 hrs 0.2B 81.64 54.00
6 hrs 0.2B 81.74 55.30
9 hrs 0.2B 82.64 56.60

DistilBERT 9 hrs 0.2B 80.76 53.40
DistilBERT ft. 19 hrs 0.2B 82.38 53.80
BERT 0 hrs 3.3B 80.20 54.00
BioBERT 240 hrs 4.5B 81.54 60.24
PubMedBERT 240 hrs 3.1B 82.32 55.84

Table 4: Results with different model training, where ft
indicates that the model is fine-tuned.

5.2 Impact of Vocabulary Size435

To understand the impact of vocabulary size, we436

carry out several experiments using varying vocab-437

ulary sizes in the biomedical domain. We use the438

same experimental conditions with two types of439

models: with or without tolerance setting. Figure 2440

shows the performance of the model for different441

vocabulary sizes.442

We observe that both types models deliver the443

best results with a vocabulary size of 60k in our444

study. Interestingly, models with larger vocabu-445

laries of 70k and 80k do not exhibit better per-446

formance but instead exhibit a significant perfor-447

mance loss. A reasonable explanation for these448

results may be that a larger vocabulary set can in-449

clude more complex but less frequent tokens, which450

cannot be sufficiently learned through continuous451

pre-training, especially in a small-scale corpus.452

Figure 2: The average performance of VE-KD with
different vocabulary size.

5.3 Impact of Tolerance 453

To understand the impact of tolerance, we con- 454

ducted several experiments in which adjusting the 455

tolerance is adjusted within a 60k vocabulary by uti- 456

lizing HoC, PubMedQA, BioASQ, and averaging 457

across all 12 tasks. 458

As shown in Figure 3, there is a noticeable 459

change in performance between the model with- 460

out tolerance setting, and each task as well as the 461

average over the 12 tasks exhibits a peak perfor- 462

mance when the tolerance is set to 0.5. We observe 463

that as the tolerance increases up to 1.0 and 2.0, the 464

performance continually decreases, compared with 465

the model without tolerance setting. This implies 466

that when the tolerance is excessively high, the in- 467

structional knowledge from the teacher model may 468

not be effectively assimilated by the student model. 469

Given that the current tolerance setting might be 470

too restrictive for this method, we are considering 471

modifying it to a softer approach in the future. 472

Figure 3: HoC, PubMedQA, BioASQ and the average
performance of VE-KD with different tolerance.

5.4 Smaller Corpus 473

To understand the potential of our method on 474

smaller corpora, we carried out several experiments 475
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on VE-KD (with 40k and 60k vocabularies) and476

DistilBERT trained on varying percentage of the477

PubMed corpus.478

Figure 4 shows the performance evaluation re-479

sults for average score and the PubMedQA task.480

We observe that VE-KD_40k and VE-KD_60k481

trained on more than 20% of the corpus, and the482

40k vocabulary model had larger fluctuations on483

average score than 60k at the same time. Interest-484

ingly, for the PubMedQA task, the model with 60k485

performs worse than the model with 40k Up until486

100% of the dataset. One potential explanation for487

this is that the model with a 60k vocabulary has488

more parameters, implying that it requires addi-489

tional training to achieve comparable performance.490

However, a model that implements a smaller vocab-491

ulary expansion may offer greater potential when492

applied to a small corpus.493

(a) Average score of 12 tasks

(b) PubMedQA score

Figure 4: Performance on varying percentages of the
PubMed corpus. VE-KD_40k and VE-KD_60k denote
VE-KD with 40k and 60k vocabulary size.

5.5 Inference Speed and Model Size494

We compare the parameter size and inference speed495

of VE-KD with BERT model and DistilBERT, and496

the results are shown in Table 5, Compared to497

BERT-base, the half layers DistilBERT and VE-KD498

are about 0.5 times faster. We find that vocabulary499

expansion delivers only marginal improvements on 500

the model’s inference speed, the same as the results 501

of Yao et al. (2021). 502

For the model size of VE-KD, 40k and 60k vo- 503

cabulary expansion gives about 8M and 22M pa- 504

rameters in the tokenization weights, respectively. 505

The model lightening effect is thus smaller. For 506

further model lightening, it might be necessary to 507

have smaller size hidden dimension or less layers 508

or number of attention heads. 509

Models #Params Speedup

BERT 110M x1.00
DistilBERT 67M x1.48
VE-KD_40k 75M x1.50
VE-KD_60k 90M x1.56

Table 5: Comparison of parameter’s size and inference
speed. The inference speed is test by EBM PICO task,
and evaluated on single RTX 6000 GPU. VE-KD_40k
and VE-KD_60k denote VE-KD with 40k and 60k vo-
cabulary size.

6 Conclusion 510

In this paper, we proposed VE-KD, a novel method 511

that merges vocabulary expansion and knowledge 512

distillation. We also showed that our method 513

achieves competitive performance on various down- 514

stream tasks, despite small model sizes and re- 515

duced computational resource requirements com- 516

pared with standard domain-specific pre-training 517

approaches. Our experimental results demonstrate 518

that VE-KD is effective; that is to say, its perfor- 519

mance is competitive with well-known models such 520

as BioBERT and PubMedBERT, and its efficiency 521

of pre-training is noteworthy. For document-level 522

tasks in particular, it outperforms DistilBERT. 523

We then investigated the effects of vocabulary 524

size and tolerance in detail and obtained insights 525

that can help us configure more efficient models. 526

Furthermore, VE-KD provides the benefits of con- 527

sistency even when smaller corpus sizes were uti- 528

lized. Due to its efficiency across various domain- 529

specific language processing tasks, VE-KD sets the 530

stage for further research in task-specific model op- 531

timization and application across diverse domains. 532

One limitation of our study is that we did not 533

evaluate the model’s generalization abilities on out- 534

of-domain tasks, which could be crucial for certain 535

applications. Further evaluation of them is part of 536

our future work. 537
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