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Abstract

We propose VE-KD, a novel method juggling
knowledge distillation and vocabulary expan-
sion to train efficient domain-specific language
models. In comparison with traditional pre-
training approaches, VE-KD provides competi-
tive performance in downstream tasks while
reducing model size and required computa-
tional resources. Our experiments with differ-
ent biomedical domain tasks demonstrate that
VE-KD performs well compared with models
such as BioBERT (+1% at HoC) and PubMed-
BERT (+1% at PubMedQA), with about 96%
reduced training time. Furthermore, it outper-
forms DistilBERT, and offers a significant im-
provement in document-level tasks. Investiga-
tion of vocabulary size and tolerance, which
are hyperparameters of our method, provides
insights for further model optimization. The
fact that VE-KD consistently maintains its ad-
vantages even when the corpus size is small sug-
gests that it is a practical approach for domain-
specific language tasks, and is transferrable to
different domains for broader applications.

1 Introduction

Language models such as BERT (Devlin et al.,
2019) and RoBERTa (Liu et al., 2019) have pro-
vided significant performance improvements in
solving natural language processing (NLP) tasks,
enabling many practical applications that increase
productivity, understanding, and accessibility in
diverse industries.

These traditional models still hold value in terms
of cost-effectiveness and ease of deployment, even
though large language models (LLMs) demonstrate
remarkable few-shot capabilities in NLP tasks. One
reason is that training or fine-tuning LLMs such
as GPT-3 requires an immense amount of data and
computational resources. Another reason is a grow-
ing demand for Al applications that run on local

machines because some applications require inde-
pendence from network connectivity or have con-
cerns over information security and confidentiality
when using LLM API services such as GPT-4.

Various industrial and academic fields include
specialized terms and concepts which general lan-
guage models might not fully understand. These
potential gaps in understanding of general language
models may result in less effective or even erro-
neous solutions, it is therefore vital to adapt lan-
guage models to specific domains.

However, LLMs such as GPT-3 and GPT-4 are
difficult to use because it is expensive and chal-
lenging to obtain high-quality labeled data for addi-
tional pre-training, or because domain knowledge
must be added through the API. In contrast, gen-
eral BERT models have the advantage of easy of
fine-tuning and specialization in different domains.

In industrial applications, operational efficiency
is often the primary concern. For example, high
latency can be detrimental for applications that
require real-time response or that process large
amounts of input data, such as monitoring systems
or predictive analytics. Larger models need more
powerful and thus more expensive hardware setups,
but typically have capacity constraints imposed
to manage costs. This also limits the model size
that can feasibly be executed. Therefore, reduc-
ing resource consumption by compressing a model
improves its deployment adaptability.

Although the need for domain adaptation and
model compression is particularly prominent in
industrial applications within a specific domain,
when considering the complexities inherent in these
processes are considered, a simplistic sequential
approach may not yield the best results. First,
both tasks face the challenge of obtaining high-
quality data. Second, using general methods such
as domain-adaptation followed by distillation or
distilling the domain-adapted model requires two-
step training and hyperparameter tuning (Yao et al.,
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Figure 1: The architecture of VE-KD. New tokens and original tokens are processed separately during tokenization,
masking and loss calculation. The student model soaks up two types of knowledge; one is common knowledge via
original tokens and the other is domain-specific knowledge via new tokens.

2021), which makes the learning process difficult
to optimize.

During the domain-adaptation phase in partic-
ular, such as secondary-stage unsupervised pre-
training, there is a significant risk of losing general
knowledge due to overlearning when a small corpus
is used. Moreover, two-step training requires more
computational resources and time, possibly requir-
ing further iterations to achieve the most effective
outcomes. Hence, a method that can proficiently
perform domain adaptation and model compression
simultaneously is distinctly necessary to overcome
these issues.

In this paper, we propose VE-KD, a novel sim-
ple mechanism that can simultaneously perform
domain adaptation and model compression from a
teacher model such as BERT. We also show that
our method significantly outperforms the teacher
model on related tasks with corpus, with easy opti-
mization and robustness, and lower computational
resources and time.

2 Related Work

Large pre-trained models,like BERT (Devlin et al.,
2019), RoBERTa (Liu et al., 2019), have become
ubiquitous in NLP (Ramponi and Plank, 2020). In
terms of a domain shifts, secondary-stage unsu-
pervised pre-training on new domain has proven
to be advantageous. Contextualized tokenizations
are adapted to text from the target domain through
masked language modeling, as introduced by Han
and Eisenstein (2019), Gururangan et al. (2020).

Lee et al. (2020) which executed continual pre-
training to adapt the BERT model to the biomedical
domain, by utilizing both the PubMed abstracts and
PMC full-text resources. The use of contrastive
learning also increases the representation ability
for specific domains. Xu et al. (2023) investi-
gated the use of contrastive learning to develop
discriminative entity representations in the field of
cross-domain named entity recognition.

However, many specialized domains contain
unique words that are not included in the vocab-
ulary of pre-trained language models. Gu et al.
(2021) proposed a biomedical pre-trained model
called PubMedBERT in which the vocabulary was
constructed from scratch and the model was pre-
trained from scratch. Furthermore, in many special-
ized domains, sufficiently large corpora may not
be available to support pre-training from scratch.
General domain vocabulary can be extended with
in-domain vocabulary (Yao et al., 2021), to solve
this out-of-vocabulary issue.

Knowledge distillation (KD) (Hinton et al.,
2015) aims to transfer the knowledge from a large
teacher model to a small student model. Existing
knowledge distillation methods can be divided into
three categories: response-based, feature-based,
and relation-based (Gou et al., 2021). In this paper,
we focus on task-agnostic knowledge distillation
approaches, where a distilled smaller pre-trained
model can be directly fine-tuned on downstream
tasks.

DistilBERT (Sanh et al., 2019) uses soft labels
and embedding outputs to supervise the student



model. TinyBERT (Jiao et al., 2020) and Mobile-
BERT (Sun et al., 2020) introduce self-attention
distributions and hidden states for training the stu-
dent model. MiniLM (Wang et al., 2020) avoids re-
strictions on the number of student layers and super-
vises the student model by using the self-attention
distributions and value relation of the teacher’s last
transformer layer. AD-KD approach (Wu et al.,
2023) explores the token-level rationale behind the
teacher model based on Integrated Gradients (IG)
and transfers attribution knowledge to the student
model.

3 Methods

In this study, we propose VE-KD, a method for
model distillation with extendable vocabulary,as
shown in Figure 1. Unlike Adapt-and-Distill (Yao
et al., 2021) which requires two-step training, our
approach simultaneously lightens the model and
resolves the adaptability issues of special domains,
which have been a problem in general-purpose
models pre-trained on large corpora, particularly
when using smaller corpora.

In the knowledge distillation aspect of VE-
KD, a larger BERT model serves as the teacher
model, instructing a smaller student model layer-
by-layer. Through the distillation process, the stu-
dent model becomes able to mimic the behavior of
the larger teacher model in general terms. Simulta-
neously, the vocabulary expansion aspect broadens
the model’s vocabulary to capture domain-specific
terms, thereby enhancing the method’s ability to
adapt to domain-specific tasks.

3.1 Vocabulary Expansion

We add domain-specific terms (we call new tokens)
through vocabulary expansion, which distinguishes
between general and domain knowledge by sep-
arating the new tokens from the original tokens.
By processing them separately such as through dif-
ferent masking and loss functions, we allow for
simultaneous learning of domain knowledge from
the corpus and general knowledge from the teacher
model through two separate pathways.

The vocabulary of the student model V; is ex-
panded based on the teacher model’s vocabulary
V. We use tensor2tensor’s WordPiece generation
script' to perform the vocabulary expansion. Fol-
lowed on from the research of Yao et al. (2021),
we chose a vocabulary size of 60k.

"https://github.com/tensorflow/tensor2tensor

3.2 Tokenization and Separate Token
Masking

The process of separating the two terms is accom-
plished through tokenization and token masking.
Typically, model distillation necessitates that both
the teacher and student models possess identical
dictionaries. However, due to vocabulary expan-
sion, new tokens emerge that cannot be incorpo-
rated into the teacher model.

As shown in Figure 1, we employ text tokeniza-
tion with an expanded vocabulary V;. There are
new tokens that cannot be accommodated in the
teacher model. To circumvent this, we designed a
unique mask method as below.

We denote the input sequence as z =
[z1, z2, X3, ..., Tpn], where n is the sequence length
and each z; represents a token tokenized by ex-
panded vocabulary V;, Let us suppose that x; and
x3 are new tokens and thus not included in V;, then
we replace them with a [MASK] token as new input

Zinput = [[MASK],.’EQ, [MASK]..., :L‘n].

We simultaneously acquire the position information
of new tokens Pewtoken(?) = 1 if ; ¢ V; else 0,
and use to calculate the loss function.

In areas other than new tokens, similar to
BERT’s MLLM (Masked Language Model) task,
tokens are masked and swapped at random by the
same rule. The tokens used for replacement are
picked from the vocabulary of the teacher model.

3.3 Loss Functions

This section explains the mechanism of calculating
the loss function by separating new tokens from
general terms. In the right half of Figure 1, we
input the two entries into the teacher model (%)
and the student model (s), and obtain the hidden
state vectors H;  from the final layer and the token
prediction logits Ly .

At the new token position, the output logits and
the hidden vectors state of the teacher model confict
with the student model because the student model
has a bigger vocabulary and new knowledge. In
order to learn the knowledge of the teacher model
successfully, similarity calculations are only made
within the scope of general terms (without the new
token position). The new H; ; and L} ; are formu-
lated as follows:

Ht/,s = {Ht,S(i)’Pnewtoken(i) =0},

L;S,s = {Lt,S(i)|Pnewtoken(i) = 0}-



Following DistilBERT (Sanh et al., 2019), the
loss function is calculated using the following
three measures such as cosine similarity, Kullback-
Leibler divergence (KL), and mean squared er-
ror (MSE), which are defined as follows:

H| - H!
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By doing so, we facilitate the learning of the
teacher model’s knowledge.

Next, similar to BERT, we calculate the masked
language model loss function Ly to estimate the
masked words using the student model’s Logits L
and labels Liapel.

The KD loss and MLM loss may be in conflict
because of the new token even if the calculation
range is split. Knowledge about general terms be-
tween the teacher model and student model maybe
differ because the meaning or grammar of general
terms around the new token maybe different. Since
taking 100% of the knowledge from the teacher
model may have adverse effects on creating new
domain knowledge for the student model. We there-
fore use the tolerance to control the KD loss as

E’KD@) = max(WKD X £KD(2> — g, O).

In this context, Lxp refers to each KD loss, Wkp
represents the weight for each KD loss, and ¢ de-
notes the tolerance for the KD loss. This implies
that after being multiplied by the weight, if the
value is smaller than ¢, the model will consider the
KD loss to be zero and refrain from further opti-
mization for lower loss. If a conflict arises, the
student model will first optimize the MLM loss.
This ensures that the student model learns the new
domain knowledge in the vicinity of the teacher
model, without straying too far from it.

The final loss L, is obtained by calculating
the sum of the above individual losses, namely

Liinal = £/ Cosine + L'kL + L'Mse + aLyvim,
where « is the positive weight parameter for the

loss in the MLM task and is used to control the
intensity of learning new tokens.

4 Experiment Details and Results

In this section, we conduct our experiments in the
biomedical domain.

4.1 Datasets

We collected a PubMed abstract corpus for distilla-
tion, and using BLURB? for performance evalua-
tion.

For the biomedical domain, we gathered a small-
scale corpus of 1.3GB from PubMed abstracts and
compare it with PubMedBERT, which used a 21GB
corpus for pre-training. We omitted any abstracts
containing fewer than 128 words to reduce noise.

We evaluate downstream tasks by using 12 tasks
of the BLURB benchmark (excluding BIOSSES,
a sentence similarity task that employs the [CLS]
token, which is not well trained with this method).
This benchmark consists of five named entity recog-
nition tasks (BC5-Chemical, BC5-Disease, NCBI-
disease, BC2GM and JNLPBA), a PICO (popula-
tion, intervention, comparison, and outcome) ex-
traction task (EBM PICO), three relation extraction
tasks (ChemProt, DDI and GAD), a document clas-
sification task (HoC), and two question answering
tasks (PubMedQA and BioASQ). We adhere to the
same fine-tuning method and evaluation metrics as
those used by PubMedBERT following Yasunaga
et al. (2022). We list the statistics of those tasks in
Table 1.

Dataset Train Dev  Test
BC5-chem (2016) 5,203 5,347 5,385
BC5-disease (2016) 4,182 4244 4424
NCBI-disease (2014) 5,134 787 960
BC2GM (2008) 15,197 3,061 6,325
JNLPBA (2004) 46,750 4,551 8,662
EBM PICO (2018) 339,167 85,321 16,364
ChemProt (2010) 18,035 11,268 5,745
DDI (2013) 25,296 2,496 5,716
GAD (2004) 4,261 535 534
HoC (2016) 1,295 186 371
PubMedQA (2019) 450 50 500
BioASQ (2015) 670 75 140

Table 1: The numbers of instances included in BLURB
biomedical NLP benchmark datasets we used.

Zhttps://microsoft.github.io/BLURB/Ieaderboard.html



BERT-base DistilBERTpyppmeda  VE-KD, VE-KD,,

NER

BC5CDR-chem 89.25 88.81 89.64 89.83

BC5CDR-disease 81.44 78.94 81.77 81.65

NCBI-disease 85.67 84.07 86.46 86.50

BC2GM 80.90 79.94 79.68 80.03

JNLPBA 77.69 76.64 76.50 76.34
PICO extraction

EBM PICO 72.34 71.22 72.15 72.08
Relation extraction

ChemProt 71.86 70.77 69.13 69.28

DDI 80.04 74.20 74.80 76.69

GAD 80.41 78.29 76.57 77.82
Document classification

HoC 80.20 80.76 82.38 83.21
Question answering

PubMedqa 51.62 53.40 54.80 55.80

BioASQ 70.36 67.86 72.86 75.71
Average of all tasks 76.82 75.41 76.39 77.08

Table 2: Comparison with distillation models trained by the PubMed corpus, DistilBERTpyppeq: using the same
method of DistilBERT, VE-KD, and VE-KD,, are models trained by our method, where o indicates without
tolerance and w with. Bold indicates the top-ranked performance, Bold and underline indicate the first best and the

second best, respectively.

4.2 Implementation

We use the uncased version of BERTgasg” (12
layers,768 hidden size) as the teacher model. We
perform distillation of BERT to a small (6 layer
768 hidden state) student model* with vocabulary
expansion. More specifically, we use a peak learn
rate of Se-4, batch size of 240, and train for steps.
We warm up the learning rate in the first 10% of
steps and then linearly decay it. Additionally, We
perform distillation of BERT by the normal method
using the same corpus and hyperparameters to a
6—1ayer distilBERT pypMed-

For comparison, we choose the teacher model
BERT as baseline. Additionally, we choose some
6-layer small BERT or distilled BERT for general
purpose, such as BERT 611763° (6 layers,768 hid-
den size), TinyBERT, MiniLM or DistilBERT ;.
For comparison with domain adaptation ability, we
fine tune these models using the PubMed corpus.
Specifically, we use a peak learn rate of Se-4, batch
size of 80, and train for 100,000 steps. We warm

3https://github.com/google-research/bert.

*Our model and evaluate dataset is available at:
https://github.com/pZvtkv3t8PA9vAc/VE-KD_a-method-
for-training-smaller-language-models-adapted-to-specific-
domains.

up the learning rate in the first 10% of steps and
then linearly decay it.

4.3 Comparison With BERT and DistilBERT
Trained by the PubMed Corpus

The results for the performance comparison of
the distillation model using the same PubMed cor-
pus are shown in Table 2, which shows that VE-
KD,, outperforms teacher model BERT on 6 tasks,
and has an improved performer of 0.3% on av-
erage. VE-KD,, outperforms DistilBERTpypMed
on 10 tasks, achieving an increased performance
of 2% absolute on average. Moreover, we see
a trend of significantly larger improvements on
document-level tasks compared with BERT-base
document classification (+3% on HoC) and ques-
tion answering (+4% on PubMedQA, +5% on
BioASQ). Compared with DistilBERT, document
classification (+2% on HoC) and question answer-
ing (+2% on PubMedQA, +8% on BioASQ). A rea-
sonable explanation for why the HoC, PubMedQA,
and BioASQ tasks show a substantial increase
in performance is that they were developed from
PubMed abstracts, which may have a high degree
of similarity to the corpus we employed for training
VE-KD.



DistilBERT DistilBERT
BERT-small TinyBERT MiniLM wiki PubMed VE-KD,,

domain adaptation o w o w 0 w o w o w
NER

BC5CDR-chem 88.64 90.51 8798 90.34 88.93 90.13 8881 90.34 8897 89.83 89.83

BC5CDR-disease 80.27 8190 79.20 80.60 80.04 80.24 7894 80.60 80.84 80.74 81.65

NCBI-disease 85.53 8554 84.16 84.77 83.81 8437 84.07 8477 86.05 84.52 86.50

BC2GM 79.64 80.22 79.56 80.17 80.09 80.18 7994 80.17 79.96 79.83 80.03

JNLPBA 76.53 7727 76.83 76.75 7592 76.65 76.64 76.75 76.86 76.60 76.34
PICO extraction

EBM PICO 71.09 7221 7041 7231 7129 7253 7122 7231 71.56 72.16 72.08
Relation extraction

ChemProt 69.74 6997 69.87 70.09 69.50 70.64 70.77 70.09 69.68 71.11 69.28

DDI 7591 7757 7501 7595 7491 7692 7420 7595 7596 75.48 76.69

GAD 7879 79.60 76.87 7898 79.05 79.74 7829 7898 76.66 79.53 77.82
Doc classification

HoC 81.73 82.66 7398 81.21 77.72 8141 80.76 8121 81.41 82.20 83.21
Question answering

PubMedQA 5040 51.80 54.00 51.80 52.60 54.60 5340 51.80 50.00 53.80 55.80

BioASQ 7571  80.00 80.00 67.86 67.14 7643 67.86 67.86 62.86 72.14 75.71
Average of all tasks  76.16 7744 75,66 7590 75.08 7699 7541 7590 75.07 7598 77.08

Table 3: Comparison among small models, where o indicates without domain adaptation and w with. Bold and
underline indicate the first best and the second best, respectively.

VE-KD did not perform as well in the relation
extraction task as DistilBERT experiencing an av-
erage performance decrease of 3% compared with
BERT-base. This might be attributable to the con-
siderable divergence between the datasets used in
tasks such as DDI and GAD (which were not built
from the PubMed corpus), and the PubMed corpus
we used to train VE-KD. Therefore, we postulate
that the performance of VE-KD is significantly in-
fluenced by the gap between the training corpus
and the downstream task.

4.4 Effect of Tolerance Setting

As Table 2 shows, VE-KD,,, with tolerance setting
achieves a performance increase of 0.7% on aver-
age compared with the model without tolerance
setting. We see a trend where the tolerance setting
gives a huge improvement on document-level tasks
such as document classification (+1% on HoC) and
question answering (+1% on PubMedQA, +3% on
BioASQ).

In the DDI task, VE-KD without tolerance shows
a huge performance decline similar to that of Dis-
tilBERT when using the same corpus. However,
when a tolerance setting is added to VE-KD, it
achieves a performance increase of 2%. This result
suggests that our method can partially offset perfor-
mance loss caused by differences in data distribu-
tion between the training corpus and downstream
task.

4.5 Compare with Same Layer Size Model

Table 3 shows the results of performance compar-
ison versus the small model with the same layers
and hidden state size as VE-KD. Compared with
small models without domain adaptation, VE-KD,,
achieves the highest performance on average. Even
after domain adaption, VE-KD,, is still the second
highest model just behind the BERT-small model.
Compared with the DistilBERTpyppeq Which uses
the same corpus, VE-KD also attains a 0.5% per-
formance increase on average, and in particular
obtains a 2% increase for PubMedQA tasks. Our
results suggest that a vocabulary expansion distilla-
tion method using one-time training can achieve or
exceed the performance of adaptation followed by
distillation.

5 Analysis

In this section, we analyzed the impact of training
time and various settings on performance.

5.1 Impact of Training Time

Pre-training and fine-tuning typically require sub-
stantial computational resources. We benchmark
our model against BioBERT and PubMedBERT
using the HoC, PubMedQA task. To facilitate a
fair comparison, we equate the training time of
BioBERT and PubMedBERT to the duration it
would potentially take with the same computational
resources as used in this study (8 A100 GPUs).



As shown in Table 4 for the HoC and Pub-
MedQA task, VE-KD outperforms BERT in the
HoC task after 3 hrs of training. Moreover, it sur-
passes BioBERT and PubMedBERT following 6
and 9 hrs of training, respectively. For the Pub-
MedQA task, VE-KD outperforms BERT after
6 hrs of training, and PubMedBERT after 9 hrs
of training. These observations highlight the effi-
ciency of our method as it can match or surpass the
performance of models pre-trained from scratch,
all while leveraging less than 10% of the computa-
tional resources and corpus.

The training time for VE-KD is mostly analo-
gous to the distillation phase time of the ‘distil-
then-adapt’ method. Compared with VE-KD with
fine-tuned DistilBERT, VE-KD achieves a higher
score while requiring only about half of the training
time.

Training Corpus PubMed

Model Time Words HoC QA

3 hrs 0.2B 81.64  54.00
VE-KD 6 hrs 0.2B 81.74  55.30

9 hrs 0.2B 82.64  56.60
DistilBERT 9 hrs 0.2B 80.76  53.40
DistilBERT ft. 19 hrs 0.2B 82.38  53.80
BERT 0 hrs 3.3B 80.20  54.00
BioBERT 240 hrs 4.5B 81.54  60.24
PubMedBERT 240 hrs 3.1B 8232  55.84

Table 4: Results with different model training, where ft
indicates that the model is fine-tuned.

5.2 Impact of Vocabulary Size

To understand the impact of vocabulary size, we
carry out several experiments using varying vocab-
ulary sizes in the biomedical domain. We use the
same experimental conditions with two types of
models: with or without tolerance setting. Figure 2
shows the performance of the model for different
vocabulary sizes.

We observe that both types models deliver the
best results with a vocabulary size of 60k in our
study. Interestingly, models with larger vocabu-
laries of 70k and 80k do not exhibit better per-
formance but instead exhibit a significant perfor-
mance loss. A reasonable explanation for these
results may be that a larger vocabulary set can in-
clude more complex but less frequent tokens, which
cannot be sufficiently learned through continuous
pre-training, especially in a small-scale corpus.
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Figure 2: The average performance of VE-KD with
different vocabulary size.

5.3 Impact of Tolerance

To understand the impact of tolerance, we con-
ducted several experiments in which adjusting the
tolerance is adjusted within a 60k vocabulary by uti-
lizing HoC, PubMedQA, BioASQ, and averaging
across all 12 tasks.

As shown in Figure 3, there is a noticeable
change in performance between the model with-
out tolerance setting, and each task as well as the
average over the 12 tasks exhibits a peak perfor-
mance when the tolerance is set to 0.5. We observe
that as the tolerance increases up to 1.0 and 2.0, the
performance continually decreases, compared with
the model without tolerance setting. This implies
that when the tolerance is excessively high, the in-
structional knowledge from the teacher model may
not be effectively assimilated by the student model.
Given that the current tolerance setting might be
too restrictive for this method, we are considering
modifying it to a softer approach in the future.
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Figure 3: HoC, PubMedQA, BioASQ and the average
performance of VE-KD with different tolerance.

5.4 Smaller Corpus

To understand the potential of our method on
smaller corpora, we carried out several experiments



on VE-KD (with 40k and 60k vocabularies) and
DistilBERT trained on varying percentage of the
PubMed corpus.

Figure 4 shows the performance evaluation re-
sults for average score and the PubMedQA task.
We observe that VE-KD_40k and VE-KD_60k
trained on more than 20% of the corpus, and the
40k vocabulary model had larger fluctuations on
average score than 60k at the same time. Interest-
ingly, for the PubMedQA task, the model with 60k
performs worse than the model with 40k Up until
100% of the dataset. One potential explanation for
this is that the model with a 60k vocabulary has
more parameters, implying that it requires addi-
tional training to achieve comparable performance.
However, a model that implements a smaller vocab-
ulary expansion may offer greater potential when
applied to a small corpus.
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Figure 4: Performance on varying percentages of the
PubMed corpus. VE-KD_40k and VE-KD_60k denote
VE-KD with 40k and 60k vocabulary size.

5.5 Inference Speed and Model Size

We compare the parameter size and inference speed
of VE-KD with BERT model and DistilBERT, and
the results are shown in Table 5, Compared to
BERT-base, the half layers DistilBERT and VE-KD
are about 0.5 times faster. We find that vocabulary

expansion delivers only marginal improvements on
the model’s inference speed, the same as the results
of Yao et al. (2021).

For the model size of VE-KD, 40k and 60k vo-
cabulary expansion gives about 8M and 22M pa-
rameters in the tokenization weights, respectively.
The model lightening effect is thus smaller. For
further model lightening, it might be necessary to
have smaller size hidden dimension or less layers
or number of attention heads.

Models #Params Speedup
BERT 110M x1.00
DistilBERT 67M x1.48
VE-KD_40k 75M x1.50
VE-KD_60k 90M x1.56

Table 5: Comparison of parameter’s size and inference
speed. The inference speed is test by EBM PICO task,
and evaluated on single RTX 6000 GPU. VE-KD_40k
and VE-KD_60k denote VE-KD with 40k and 60k vo-
cabulary size.

6 Conclusion

In this paper, we proposed VE-KD, a novel method
that merges vocabulary expansion and knowledge
distillation. We also showed that our method
achieves competitive performance on various down-
stream tasks, despite small model sizes and re-
duced computational resource requirements com-
pared with standard domain-specific pre-training
approaches. Our experimental results demonstrate
that VE-KD is effective; that is to say, its perfor-
mance is competitive with well-known models such
as BioBERT and PubMedBERT, and its efficiency
of pre-training is noteworthy. For document-level
tasks in particular, it outperforms DistilBERT.

We then investigated the effects of vocabulary
size and tolerance in detail and obtained insights
that can help us configure more efficient models.
Furthermore, VE-KD provides the benefits of con-
sistency even when smaller corpus sizes were uti-
lized. Due to its efficiency across various domain-
specific language processing tasks, VE-KD sets the
stage for further research in task-specific model op-
timization and application across diverse domains.

One limitation of our study is that we did not
evaluate the model’s generalization abilities on out-
of-domain tasks, which could be crucial for certain
applications. Further evaluation of them is part of
our future work.



References

Simon Baker, Ilona Silins, Yufan Guo, Imran Ali, Johan
Hogberg, Ulla Stenius, and Anna Korhonen. 2016.
Automatic semantic classification of scientific litera-
ture according to the hallmarks of cancer. Bioinfor-
matics, 32(3):432-440.

Kevin G Becker, Kathleen C Barnes, Tiffani J Bright,
and S Alex Wang. 2004. The genetic association
database. Nature genetics, 36(5):431-432.

Nigel Collier, Tomoko Ohta, Yoshimasa Tsuruoka, Yuka
Tateisi, and Jin-Dong Kim. 2004. Introduction to the
bio-entity recognition task at INLPBA. In Proceed-
ings of the International Joint Workshop on Natu-
ral Language Processing in Biomedicine and its Ap-
plications (NLPBA/BioNLP), pages 73-78, Geneva,
Switzerland. COLING.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
41714186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Rezarta Islamaj Dogan, Robert Leaman, and Zhiyong
Lu. 2014. Ncbi disease corpus: a resource for dis-
ease name recognition and concept normalization.
Journal of biomedical informatics, 47:1-10.

Jianping Gou, Baosheng Yu, Stephen J Maybank, and
Dacheng Tao. 2021. Knowledge distillation: A
survey. International Journal of Computer Vision,
129:1789-1819.

Yu Gu, Robert Tinn, Hao Cheng, Michael Lucas, Naoto
Usuyama, Xiaodong Liu, Tristan Naumann, Jianfeng
Gao, and Hoifung Poon. 2021. Domain-specific lan-
guage model pretraining for biomedical natural lan-
guage processing. ACM Transactions on Computing
for Healthcare (HEALTH), 3(1):1-23.

Suchin Gururangan, Ana Marasovi¢, Swabha
Swayamdipta, Kyle Lo, 1z Beltagy, Doug Downey,
and Noah A. Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
8342-8360, Online. Association for Computational
Linguistics.

Xiaochuang Han and Jacob Eisenstein. 2019. Unsu-
pervised domain adaptation of contextualized em-
beddings for sequence labeling. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-1IJCNLP), pages 4238-4248, Hong Kong,
China. Association for Computational Linguistics.

Maria Herrero-Zazo, Isabel Segura-Bedmar, Paloma
Martinez, and Thierry Declerck. 2013. The ddi
corpus: An annotated corpus with pharmacological
substances and drug—drug interactions. Journal of
biomedical informatics, 46(5):914-920.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao
Chen, Linlin Li, Fang Wang, and Qun Liu. 2020.
TinyBERT: Distilling BERT for natural language un-
derstanding. In Findings of the Association for Com-
putational Linguistics: EMNLP 2020, pages 4163—
4174, Online. Association for Computational Lin-
guistics.

Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William W
Cohen, and Xinghua Lu. 2019. Pubmedqa: A dataset
for biomedical research question answering. arXiv
preprint arXiv:1909.06146.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon
Kim, Sunkyu Kim, Chan Ho So, and Jaewoo Kang.
2020. Biobert: a pre-trained biomedical language
representation model for biomedical text mining.
Bioinformatics, 36(4):1234—1240.

Jiao Li, Yueping Sun, Robin J Johnson, Daniela Sci-
aky, Chih-Hsuan Wei, Robert Leaman, Allan Peter
Davis, Carolyn J Mattingly, Thomas C Wiegers, and
Zhiyong Lu. 2016. Biocreative v cdr task corpus:
a resource for chemical disease relation extraction.
Database, 2016.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqgi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Benjamin Nye, Junyi Jessy Li, Roma Patel, Yinfei Yang,
Tain J Marshall, Ani Nenkova, and Byron C Wal-
lace. 2018. A corpus with multi-level annotations
of patients, interventions and outcomes to support
language processing for medical literature. In Pro-
ceedings of the conference. Association for Computa-
tional Linguistics. Meeting, volume 2018, page 197.
NIH Public Access.

Alan Ramponi and Barbara Plank. 2020. Neural unsu-
pervised domain adaptation in NLP—A survey. In
Proceedings of the 28th International Conference
on Computational Linguistics, pages 6838—6855,
Barcelona, Spain (Online). International Committee
on Computational Linguistics.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.


https://aclanthology.org/W04-1213
https://aclanthology.org/W04-1213
https://aclanthology.org/W04-1213
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2020.acl-main.740
https://doi.org/10.18653/v1/2020.acl-main.740
https://doi.org/10.18653/v1/2020.acl-main.740
https://doi.org/10.18653/v1/D19-1433
https://doi.org/10.18653/v1/D19-1433
https://doi.org/10.18653/v1/D19-1433
https://doi.org/10.18653/v1/D19-1433
https://doi.org/10.18653/v1/D19-1433
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.18653/v1/2020.coling-main.603
https://doi.org/10.18653/v1/2020.coling-main.603
https://doi.org/10.18653/v1/2020.coling-main.603

Larry Smith, Lorraine K Tanabe, Rie Johnson nee Ando,
Cheng-Ju Kuo, I-Fang Chung, Chun-Nan Hsu, Yu-
Shi Lin, Roman Klinger, Christoph M Friedrich, Kuz-
man Ganchey, et al. 2008. Overview of biocreative ii
gene mention recognition. Genome biology, 9:1-19.

Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu,
Yiming Yang, and Denny Zhou. 2020. MobileBERT:
a compact task-agnostic BERT for resource-limited
devices. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 2158-2170, Online. Association for Computa-
tional Linguistics.

Olivier Taboureau, Sonny Kim Nielsen, Karine Au-
douze, Nils Weinhold, Daniel Edsgird, Francisco S
Roque, Irene Kouskoumvekaki, Alina Bora, Ramona
Curpan, Thomas Skgt Jensen, et al. 2010. Chemprot:
a disease chemical biology database. Nucleic acids
research, 39(suppl_1):D367-D372.

George Tsatsaronis, Georgios Balikas, Prodromos
Malakasiotis, Ioannis Partalas, Matthias Zschunke,
Michael R Alvers, Dirk Weissenborn, Anastasia
Krithara, Sergios Petridis, Dimitris Polychronopou-
los, etal. 2015. An overview of the bioasq large-scale
biomedical semantic indexing and question answer-
ing competition. BMC bioinformatics, 16(1):1-28.

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan
Yang, and Ming Zhou. 2020. Minilm: Deep self-
attention distillation for task-agnostic compression
of pre-trained transformers. Advances in Neural In-
formation Processing Systems, 33:5776-5788.

Siyue Wu, Hongzhan Chen, Xiaojun Quan, Qifan Wang,
and Rui Wang. 2023. AD-KD: Attribution-driven
knowledge distillation for language model compres-
sion. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 8449—8465, Toronto,
Canada. Association for Computational Linguistics.

Jingyun Xu, Changmeng Zheng, Yi Cai, and Tat-Seng
Chua. 2023. Improving named entity recognition
via bridge-based domain adaptation. In Findings of
the Association for Computational Linguistics: ACL
2023, pages 3869-3882, Toronto, Canada. Associa-
tion for Computational Linguistics.

Yunzhi Yao, Shaohan Huang, Wenhui Wang, Li Dong,
and Furu Wei. 2021. Adapt-and-distill: Developing
small, fast and effective pretrained language models
for domains. In Findings of the Association for Com-
putational Linguistics: ACL-IJCNLP 2021, pages
460-470, Online. Association for Computational Lin-
guistics.

Michihiro Yasunaga, Jure Leskovec, and Percy Liang.
2022. LinkBERT: Pretraining language models with
document links. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 8003-8016,
Dublin, Ireland. Association for Computational Lin-
guistics.

10

A BLURSB fine-tuning details

We apply the following fine-tuning hyperparame-
ters to all models, including the baseline with same
defaults training seed.

We set max_seq_length to 512 and choose learn-
ing rates from {1le-5, 2e-5, 3e-5, Se-5, 6e-5}, batch
sizes from {16, 32, 64} and fine-tuning epochs
from 1-120.
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