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Abstract

When deep learning models are sequentially trained on
new data, they tend to abruptly lose performance on previ-
ously learned tasks, a critical failure known as catastrophic
forgetting. This challenge severely limits the deployment
of AI in medical imaging, where models must continually
adapt to data from new hospitals without compromising es-
tablished diagnostic knowledge. To address this, we in-
troduce a latent drift-guided replay method that identifies
and replays samples with high representational instability.
Specifically, our method quantifies this instability via ”la-
tent drift”, the change in a sample’s internal feature repre-
sentation after naive domain adaptation. To ensure diver-
sity and clinical relevance, we aggregate drift at the patient
level; our memory buffer stores the per patient slices ex-
hibiting the greatest multi-layer representation shift. Eval-
uated on a cross-hospital COVID-19 CT classification task
using state-of-the-art CNN and Vision Transformer back-
bones, our method substantially reduces forgetting com-
pared to naive fine-tuning and random replay. This work
highlights latent drift as a practical and interpretable re-
play signal for advancing robust continual learning in real-
world medical settings.
Keywords: continual learning, catastrophic forgetting,
medical imaging, replay, latent drift

1. Introduction

Deep learning has demonstrated remarkable performance in
medical image analysis, providing automated solutions for
critical tasks such as disease detection, diagnosis support,
and patient stratification [10, 23]. However, the deployment
of deep neural networks in real-world clinical workflows
remains challenging due to the dynamic and heterogeneous
nature of medical data. Hospitals and imaging centers of-
ten differ in acquisition protocols, scanner hardware, patient
demographics, and disease prevalence, resulting in signifi-

cant domain shifts that undermine the generalization ability
of conventional models trained on static datasets [5, 38].

To address this, continual learning (CL) has emerged
as a promising paradigm that enables models to incremen-
tally adapt to new data distributions while preserving pre-
viously learned knowledge [7, 37]. Among CL strategies,
replay-based methods, which store and revisit a small sub-
set of past data, are highly effective. However, the efficacy
of replay is critically dependent on the composition of the
memory buffer, and many existing approaches rely on naive
random sampling, which is often suboptimal and fails to
store the most critical information needed to prevent forget-
ting. A major obstacle thus remains: catastrophic forget-
ting, where fine-tuning on new data leads to a severe degra-
dation of performance on earlier domains [16, 28]. This is
particularly problematic in medical imaging, where retain-
ing established diagnostic knowledge is essential for patient
safety and model trustworthiness [6].

In this paper, we propose a novel, latent-drift–guided re-
play framework to mitigate catastrophic forgetting. Our ap-
proach is founded on the principle that samples most sus-
ceptible to forgetting are those whose internal feature repre-
sentations become most unstable during domain adaptation.
We quantify this instability by calculating the latent drift,
the change in a sample’s representation between a model
trained on the source domain and one naively fine-tuned on
the target. By identifying samples with the highest latent
drift, we construct an intelligent replay buffer designed to
preserve the most fragile knowledge. Crucially, our method
aggregates drift scores at the patient level and across multi-
ple model layers, ensuring that the buffer is not only infor-
mative but also diverse and clinically relevant.

We conduct extensive experiments on a real-world,
cross-hospital COVID-19 CT dataset, evaluating our ap-
proach with both a state-of-the-art CNN (ResNet50, [14])
and a Vision Transformer (Swin Transformer, [24]) back-
bone. Our results demonstrate that our latent drift-guided
strategies significantly outperform naive fine-tuning and
random replay baselines, establishing a new state-of-the-art



for this task. In summary, our main contributions are:
• We introduce latent representation drift as a practical and

interpretable signal for identifying samples at high risk
of being forgotten during continual learning in medical
imaging.

• We propose a novel patient-aware, multi-layer buffer se-
lection strategy that leverages drift signal to construct a
compact and highly effective replay memory.

• Our framework sets a new benchmark for cross-domain
continual learning on a challenging COVID-19 dataset,
offering a robust solution that balances knowledge reten-
tion and adaptation.

2. Related work

2.1. Continual Learning beyond Domain Adapta-
tion

In many real-world scenarios, models must adapt to shifts in
data distribution, a challenge addressed by domain adapta-
tion (DA), which focuses on transferring knowledge from
a source domain to a different but related target domain
[35, 36]. DA typically assumes access to both domains dur-
ing training, continual learning (CL), or lifelong learning,
extends this idea by requiring models to sequentially learn
from new domains or tasks over time without forgetting pre-
viously acquired knowledge [29, 37]. A central challenge in
CL is catastrophic forgetting, where fine-tuning on new data
overwrites or degrades earlier representations [28].

To address this, researchers have explored strategies
such as regularization-based methods [16], parameter isola-
tion [26], and replay-based approaches [30]. Replay-based
methods store selected samples from prior tasks and mix
them with new data during training. This simple yet effec-
tive strategy has shown success in domains such as com-
puter vision [25], natural language processing [33], and
medical imaging [4]. However, deciding which samples to
store and how to manage the replay buffer remains an open
problem: Random sampling is common but may overlook
the most informative or diverse examples.

2.2. Replay Buffer Management
Recent studies have explored more intelligent buffer con-
struction strategies to maximize diversity and informa-
tiveness. Gradient-based methods (e.g., GSS [1]) priori-
tize samples with high influence on model updates, while
uncertainty-based approaches use model confidence [11].
Other works such as MIR [2] retrieve samples with maxi-
mal gradient interference, ESMER [32] favors low-loss “an-
chors” to counter abrupt drift, and LDC [12] learns to com-
pensate drift via an auxiliary module. Latent-drift measures
have also been used to track representation change [19], but
not for replay selection with patient-aware constraints.

Our method differs by computing multi-layer latent drift

between two domain-specific model states, aggregating at
the patient level, and enforcing class-balanced replay, yield-
ing targeted retention under cross-hospital domain shift
without enlarging the buffer.

2.3. Continual Learning in Medical Imaging

Medical imaging poses unique challenges for CL due to do-
main shifts caused by varying scanner hardware, acquisition
protocols, and patient populations [6]. Moreover, the high
stakes in clinical decision-making necessitate robust reten-
tion of prior knowledge. Several works have explored CL
in medical image analysis, focusing on segmentation [8],
classification [34], and detection [21].

Replay-based techniques have been applied to medical
imaging to address domain adaptation and data privacy
constraints [15]. However, most existing approaches rely
on random or heuristics-based sample selection for the re-
play buffer. Our method differs by employing latent drift-
informed buffer management tailored to multi-hospital CT
scan classification, which directly addresses domain shift
and catastrophic forgetting.

2.4. Vision Transformers and CNNs in Medical
Imaging

Vision transformers, such as the Swin Transformer [24],
have recently gained traction in medical imaging due to
their superior performance on various tasks and ability to
model long-range dependencies. ResNet architectures [14],
on the other hand, remain popular and reliable baselines.
Comparing CL techniques across these architectures pro-
vides insight into their adaptability and robustness under
domain shift, which is crucial for clinical deployment [13].

3. Methodology

Our proposed framework mitigates catastrophic forgetting
by developing and applying a novel, patient-aware replay
strategy. The core principle is to construct a memory buffer
that is not only populated with samples at high risk of be-
ing forgotten but that also reflects the hierarchical struc-
ture of clinical data, ensuring diversity and relevance. Our
methodology is a three-stage process designed for clarity
and causal correctness, involving (1) a forgetting analysis
stage to quantify representational instability; (2) a patient-
aware buffer construction stage using the derived instability
signal; and (3) a final drift-guided continual learning stage.

3.1. Forgetting Analysis and Multi-Layer Drift
Quantification

To derive an effective signal for our selection strategy, we
first conduct an analytical stage to identify which source-
domain samples are most representationally unstable.



3.1.1. Baseline Model Generation
The process begins with the generation of two essential
models:

Source Model (MA): A base model is trained until con-
vergence on the source domain dataset, DA (Hospital 1). Its
feature extractor is denoted by ϕA. This model represents
the ”ground truth” knowledge we wish to preserve

Naively Fine-tuned Model (MB) : A copy of the source
model MA is then directly fine-tuned on the target domain,
DB (Hospital 2). The resulting model, (MB) with feature
extractor ϕB , serves as a ”forgetful” model that demon-
strates the effects of catastrophic forgetting.

3.1.2. Multi-Layer Latent Drift Calculation
We define Latent Drift as the change in a model’s internal
feature representation for a given sample when the model
is adapted to a new domain. A large drift signifies that the
model’s understanding of the sample has been corrupted,
marking it as ”forgotten.” To create a robust measure, we
propose Multi-Layer Latent Drift (MLD), which has two
key properties.

First, instead of relying on features from a single layer,
which can be noisy or overly specific, MLD aggregates in-
formation from the final two layers of the network backbone
(L and L − 1). This captures changes at multiple levels of
semantic abstraction, providing a more stable and holistic
measure of representational change.

Second, we use Cosine Distance as our distance metric.
This is a deliberate choice over alternatives like Euclidean
distance because it is invariant to the magnitude of the fea-
ture vectors. Cosine distance measures the change in the
orientation of the vectors, which is a better proxy for a shift
in semantic meaning, whereas magnitude can be influenced
by unrelated factors like model confidence or calibration.

The MLD for a source-domain sample xi is formally de-
fined as the average cosine distance across the selected lay-
ers [27, 31]:

MLD(xi) =
1

2

L∑
l=L−1

(
1− ϕl

A(xi) · ϕl
B(xi)

∥ϕl
A(xi)∥2 · ∥ϕl

B(xi)∥2

)
(1)

where ϕl(xi) is the feature vector from layer l and L is
the final layer index. This averaging makes the drift score
more stable and less sensitive to noise in a single layer. A
high MLD score identifies a sample as having high repre-
sentational instability and thus a high risk of being forgot-
ten.

3.2. Proposed Buffer Strategy: Patient-Aware Se-
lection

This stage is the core of our proposed method. Instead of
selecting top-scoring slices globally, which could lead to

oversampling from a few patients, our strategy enforces di-
versity by operating at the patient level. The full procedure
is detailed in Algorithm-1

• Per-Patient Slice Ranking: For each patient in the source
training set, we rank all of their associated slices based on
the Multi-Layer Latent Drift (MLD) scores calculated in
forgetting analysis stage.

• Buffer Population: The memory buffer is constructed by
selecting a fixed number of the highest-ranked slices (the
top 30 slices) from each patient. These sets of slices are
then added to the buffer B, starting with patients who ex-
hibit the highest overall average drift, until the desired
total buffer size is reached.

This patient-aware approach ensures that the replay
buffer contains high-fidelity raw images from a wide array
of the most ”forgotten” clinical cases, providing a diverse
and highly informative dataset for replay.

Algorithm-1: Patient-Aware Buffer Construction
Input: Source training set Dtrain

A , MLD scores for all
slices, patient IDs, buffer size K, slices per patient Sp = 30.
Output: Memory Buffer B.

1: Initialize B ← ∅
2: Group all slices in Dtrain

A by patient ID
3: for each patient Pj do
4: Compute average MLD score: MLD(Pj)
5: end for
6: Create a ranked list Pranked of patients sorted by de-

scending MLD
7: for each patient Pj in Pranked do
8: if |B| ≥ K then
9: break

10: end if
11: Get all slices {xi} belonging to Pj

12: Rank these slices by individual MLD scores (de-
scending)

13: Select top Sp slices {x∗
j}

14: Add the raw images and labels of {x∗
j} to B

15: end for
16: return B

3.3. Drift-Guided Continual Learning
With the patient-aware intelligent buffer B constructed, we
perform the final continual learning training run.

• Initialization: We begin again with a fresh instance of the
converged source model, MA.

• Replay-based Training: The model is trained on the tar-
get domain dataset, DB ,with each mini-batch comprising
both new samples from DB and replayed samples from
our buffer B.

• Loss Optimization: The model is optimized using a com-
bined loss function that balances learning on the new task
and retaining knowledge from the replayed data.



H1 Dataset Patients Slices
Total NonCovid Covid Total NonCovid Covid

Training set 1,230 484 746 331069 132,868 198,201
Validation set 258 101 157 69,769 27,757 42,012

Testing set 281 113 168 77,826 30,990 46,836
Total 1,769 698 1,071 478,664 191,615 287,049

Table 1. Dataset of Hospital-1 (H1).

This methodology, centered on patient-aware selection
using a multi-layer drift signal, directly targets the mecha-
nisms of forgetting in a way that is tailored to the structure
of real-world medical data. The effectiveness of this pro-
posed strategy is compared against simpler baselines and
ablations in Section 5.

4. Dataset

To evaluate the robustness and fairness of continual learn-
ing models in medical imaging, we utilize a curated dataset
of chest CT scans collected from two distinct hospitals and
medical centers [3, 17, 18]. Each scan is annotated as either
Covid-19 positive or Normal, which consist the diagnostic
labels.

The dataset is partitioned into training, validation, and
test subsets. All partitions include scans from these two
sources, allowing us to simulate domain shift and assess
cross-institution generalization, a key requirement in real-
world deployment of continual learning models.

This benchmark is designed to test whether models
trained in a continual learning setting can retain diagnostic
performance when exposed to data from new or revisited
sources. To this end, model performance is evaluated using
data from Hospitals 1 and 2, where we have a large num-
ber of samples. The data from Hospital-1 (H1) is used to
train the selected pre-trained backbones creating our source
model which consists the baseline one. This model is then
fine-tuned on data from Hospital-2 (H2). This approach
aims to mitigate the tendency of the model to forget pre-
viously learned knowledge.

Our data consist of CT scans that contain multiple slices
corresponding to the area of examination. These datasets,
H1 and H2, are more appropriate for our task because they
provide an adequate number of samples in terms of both pa-
tients and slices, thus supplying the necessary information
for our models. An indicative sample of these data is found
in Figure-1. The number of the samples related to dataset
H1 and H2 are presented on Tables-1 and 2 respectively.

Additionally, we observe that both datasets suffer from
class imbalance. Hospital-2 (H2) has very few COVID sam-
ples compared to non-COVID ones, leading to an imbalance
of over 10%–90%, while Hospital-1 (H1) overrepresents the
COVID class, though with a less severe imbalance of ap-
proximately 60%–40%.

Figure 1. Samples of CT slices from our datasets.

H2 Dataset Patients Slices
Total NonCovid Covid Total slices NonCovid Covid

Training set 1,998 1,795 203 359,954 324,309 35,645
Validation set 420 379 41 73,814 67,033 6,781

Testing set 448 395 53 79,201 69,815 9,386
Total 2,866 2,569 297 512,969 461,157 51,812

Table 2. Dataset of Hospital-2 (H2).

5. Experiments

To rigorously evaluate our proposed continual learning
framework, we designed a series of experiments to dis-
sect the impact of different replay strategies on mitigating
catastrophic forgetting under domain shift. Our evaluation
is structured to answer three primary research questions 1.
How does our proposed latent drift-guided replay compare
against standard CL baselines? 2. What are the specific con-
tributions of patient-aware selection and multi-layer drift
aggregation to performance? 3. How do modern Trans-
former and traditional CNN architectures respond to these
strategies?

5.1. Experimental Setup
5.1.1. Datasets and Continual Learning Task
We use a curated dataset of chest CT scans for COVID-19
classification, aggregated from multiple real-world hospi-
tals and medical centers [3, 17, 18]. Our continual learn-
ing scenario simulates a practical domain shift, where a
model is first trained on the source domain, Hospital-1
(H1), and then must adapt to the target domain, Hospital-2
(H2). These two domains were chosen for their significant
size and pronounced differences in class distribution (H1:
∼60% COVID; H2: ∼10% COVID) and imaging charac-
teristics, providing a challenging and realistic testbed. All
datasets were split into training, validation, and testing sets
at the patient level to prevent data leakage.

5.1.2. Models and Implementation Details
Architectures: We use two powerful, widely-adopted
backbones pre-trained on ImageNet: ResNet50 [14], rep-
resenting convolutional neural networks (CNNs), and
Swin Transformer [24], representing state-of-the-art Vision
Transformers.



Training Protocol: All models were trained using the
AdamW optimizer, with a learning rate of 5e − 5 for Swin
Transformer and 1e − 5 for ResNet50. The batch size was
set to 32. The initial training on the H1 source domain was
conducted for 15 epochs. The subsequent continual learn-
ing phase on the H2 target domain was run for 10 epochs.

Handling Data Imbalance: To address the severe class
imbalance, we employed a combination of a Weighted Ran-
dom Sampler [9] at the data loader level and a Focal Loss
[22] function during training.

Data Augmentation: Standard data augmentation tech-
niques, including random horizontal flips and rotations,
were applied during training to improve model generaliza-
tion.

Replay Buffer Configuration: For all replay-based ex-
periments, the memory buffer B was configured with a
fixed capacity of 30,000 samples, corresponding to approx-
imately 10% of the H1 training set. To prevent bias from
the imbalanced source data, the buffer was explicitly class-
balanced with 15,000 samples from the COVID class and
15,000 from the non-COVID class. During replay, mini-
batches were constructed with a 50% probability of drawing
from the H2 training set or the H1 buffer.

5.2. Continual Learning Strategies
We systematically evaluate a comprehensive set of strate-
gies, organized to allow for direct comparison and ablation.
Each strategy defines a method for constructing the replay
buffer, resulting in a distinct final model.

5.2.1. Group A: Baseline Strategies – These models serve
as fundamental points of comparison

Source-Only: The backbone is finetuned only on H1. This
model establishes the upper bound for source domain per-
formance and quantifies the initial domain gap when tested
on H2.

Naive Fine-tuning: The source model is further fine-
tuned on H2 without any replay mechanism. This serves as
the lower bound for retention, demonstrating catastrophic
forgetting.

Random Replay: The buffer is populated by randomly
sampling 30,000 class-balanced samples from the H1 train-
ing set. This is the standard and most common replay base-
line.

5.2.2. Group B: Latent Drift-Guided Strategies
These models leverage the Latent Drift (LD) signal, as de-
fined in Section 3, to inform buffer selection. We explore
variations to test key hypotheses.

–Our Proposed Method–
Patient-Aware Multi-Layer Drift: This is our main

proposed strategy. The buffer is populated by selecting the
30 slices with the highest Multi-Layer Latent Drift (MLD)

from each of the top-ranked patients, as detailed in Section-
3.

–Ablation Studies–
Patient-Aware vs. Alternative Selection Criteria:
Global Slice and Center Slice – To isolate the benefit

of the patient-aware approach, we compare our proposed
model against global and center-slice MLD selection. In the
Global Slice variant, the buffer stores the 30,000 slices with
the highest MLD scores, selected from the entire H1 train-
ing set irrespective of patient origin. In the Center Slice
variant, to test whether focusing on anatomically central
slices is beneficial, we evaluate versions of our core strat-
egy that restrict selection to central slices only.

Multi-Layer vs. Single-Layer Drift: To validate the
use of a multi-layer signal, we compare our proposed Model
against Patient-Aware Single-Layer Drift: A variant of our
proposed method that uses LD calculated from only the final
backbone layer.

Choice of Distance Metric: To analyze the sensitivity to
the drift metric, we replace the Cosine Distance in our MLD
calculation with L2 Euclidean Distance and Mahalanobis
Distance.

Hybrid Drift and Uncertainty: To investigate the syn-
ergy between drift and model uncertainty, we test Drift &
Entropy: The buffer is populated based on a combined
score.

The entropy is referred to the softmax output of the cur-
rent model used for fine-tuning for each slice.

Given the softmax probability vector p =
(p1, p2, . . . , pC) over C classes, the entropy H(p) is
defined as:

H(p) = −
C∑
i=1

pi log pi

where pi is the predicted probability for class i. The en-
tropy measures the uncertainty of the model’s prediction,
with higher values indicating greater uncertainty.

To select slices based on both uncertainty and latent drift
score D, a combined score S can be computed as:

S = α ·D + β ·H(p)

where α, β ≥ 0 are weighting factors balancing the con-
tribution of uncertainty and drift. Slices with higher values
of S are prioritized for further analysis or labeling. In our
case, we set α = 0.7 and β = 0.3 as determined empirically
through a validation set.

5.3. Evaluation Metrics
The performance of each strategy is evaluated from multiple
perspectives:

Task Performance (Accuracy): This is our primary
measure of model effectiveness. We report classification



accuracy on the held-out test sets of H1 (to measure knowl-
edge retention) and H2 (to measure adaptation). Perfor-
mance is reported both per-slice and per-patient (via ma-
jority vote) to reflect both granular and clinical-level diag-
nostic accuracy.

Forgetting and Transfer: We use standard CL met-
rics [20], including Backward Transfer (BWT) and Forward
Transfer (FWT).

BWT measures the performance change on the source
task after learning the target task. A BWT score closer to
zero indicates less forgetting.

BWTi = Rj,i −Ri,i, where j > i

Ri,j : Accuracy on task j after training up to task i, R0
j :

Initial accuracy on task j before any CL training, Ri,i: Ac-
curacy on task i immediately after training task i and Rj,i:
Accuracy on task i after training up to task j.

FWT measures how learning previous tasks improves
performance on a new task before it has been trained. Pos-
itive FWT indicates that knowledge learned earlier helps
with future tasks.

FWTj = Ri,j −R0
j , where i < j

Representational Stability: We use the Latent Repre-
sentation Shift (LRS), defined as the average MLD on the
H1 test set between the source model and the final contin-
ual learning model. A lower LRS score signifies superior
preservation of the original feature representations.

All experiments were run on a server with 8 × NVIDIA
Tesla V100 GPUs.

6. Results
We present a comprehensive analysis of our experimental
results. The findings are organized to first establish the
baseline performance, then to dissect the specific contribu-
tions of our proposed methodology through targeted abla-
tions, and finally to discuss broader architectural implica-
tions. All results are presented at both the per-slice level, to
assess granular feature learning, and the per-patient level,
which reflects a more realistic clinical diagnostic workflow.

6.1. Main Finding: Drift-Guided Replay Prevents
Catastrophic Forgetting

The results presented in Table-3 shows that our proposed
method achieves the strongest stability–plasticity trade-off
across backbones. On Swin Transformer, our proposed
method attains 92.45% (H1) / 93.75% (H2)—improving
over Random Replay by +0.24 percentage points (pp) on
H1 and +3.05 pp on H2, while remaining within 1.8 pp
of Source-Only on H1 but substantially higher on H2. On
ResNet-50, our proposed method reaches 88.13% / 89.29%,

Figure 2. Stability–plasticity trade-off (H1 vs H2), dashed line
denotes equal stability/plasticity.

yielding the highest H2 overall and surpassing Random Re-
play by +0.84 pp (H1) and +10.28 pp (H2). As a sim-
ple balance metric, our proposed method also maximizes
min(H1,H2) among continual-learning (CL) strategies for
both backbones (Swin: 92.45; ResNet-50: 88.13), indicat-
ing robust retention without sacrificing adaptation. Per-slice
results mirror per-patient trends and are included for com-
pleteness. On Swin, our proposed method improves over
Random Replay by +1.72 pp (H1) / +6.84 pp (H2); on
ResNet-50, a small -0.53 pp on H1 is offset by +2.66 pp
on H2, maintaining the same overall ranking.

Figure-2, the per-patient stability–plasticity scatter con-
firms this trade-off: the dashed diagonal denotes equal sta-
bility and plasticity. Naive fine-tuning lies above the line
(plastic but forgetful), Source-Only below (stable but under-
adaptive), Random Replay moves toward the line, and our
proposed method sits closest to the top-right region for both
backbones, visually reflecting the best joint performance.

6.2. Dissecting the Methodology: Analysis of Design
Choices

Our ablation studies validate the key architectural decisions
behind our proposed method.

6.2.1. The Superiority of Patient-Aware Selection
As shown in Table-4, the choice between a global or center
slice-level selection and our patient-aware approach has a
profound impact on knowledge retention. While the Cen-
ter and Global Slice Selection methods improve over ran-
dom replay, our Proposed Method is substantially better
at preserving H1 performance. For the Swin Transformer,



Accuracy Per-Patient (%) Accuracy Per-Slice (%)
Model SwinT-H2 SwinT-H1 ResNet-H2 ResNet-H1 SwinT-H2 SwinT-H1 ResNet-H2 ResNet-H1
Source-Only (No CL) 88.17 94.24 88.66 93.17 81.60 93.27 82.55 91.94
Naive Fine-tuning 95.31 51.80 69.87 71.58 93.62 58.79 90.41 66.7
Random Replay 90.70 92.21 79.01 87.29 83.35 87.82 78.86 87.53
Proposed Method 93.75 92.45 89.29 88.13 90.19 89.54 81.52 87.00

Table 3. Comparison of our proposed method against key baselines. The results are presented for both per-patient and per-slice accuracy
on the target (H2) and source (H1) hospitals.

Patient Aware
vs Alternative Selection Accuracy Per-Patient (%) Accuracy Per-Slice (%)

Model SwinT-H2 SwinT-H1 ResNet-H2 ResNet-H1 SwinT-H2 SwinT-H1 ResNet-H2 ResNet-H1
Global Slice Selection 91.74 82.01 84.82 87.05 87.53 80.2 80.75 86.21
Center Slice Selection 93.97 92.09 81.03 87.41 82.34 72.49 85.99 81.95
Proposed Method 93.75 92.45 89.29 88.13 90.19 89.54 81.52 87.00

Table 4. Impact of Patient-Aware vs. Alternative Selection, Global and Center. The results are presented for both per-patient and per-slice
accuracy on the target (H2) and source (H1) hospitals.

Multi-Layer
vs Single-Layer Drift Accuracy Per-Patient (%) Accuracy Per-Slice (%)

Model SwinT-H2 SwinT-H1 ResNet-H2 ResNet-H1 SwinT-H2 SwinT-H1 ResNet-H2 ResNet-H1
Single-Layer Drift 93.51 91.37 81.03 90.29 84.14 87.67 76.98 86.19
Proposed Method 93.75 92.45 89.29 88.13 90.19 89.54 81.52 87.00

Table 5. Impact of proposed Multi-Layer vs. Single-Layer Drift. The results are presented for both per-patient and per-slice accuracy on
the target (H2) and source (H1) hospitals.

Alternative Strategies Accuracy Per-Patient (%) Accuracy Per-Slice (%)
Model SwinT-H2 SwinT-H1 ResNet-H2 ResNet-H1 SwinT-H2 SwinT-H1 ResNet-H2 ResNet-H1
Euclidean Distance 94.42 90.29 85.71 89.93 88.40 88.06 71.91 85.81
Mahalanobis Distance 91.74 91.01 77.23 86.69 80.32 87.78 75.93 84.92
Latent drift & Entropy 92.86 91.07 91.01 84.17 79.97 83.48 79.79 82.99
Proposed Method 93.75 92.45 89.29 88.13 90.19 89.54 81.52 87.00

Table 6. Performance of alternative strategies. The results are presented for both per-patient and per-slice accuracy on the target (H2) and
source (H1) hospitals.

patient-aware selection boosts per-patient H1 accuracy from
82.01% of global and 92.09% for center to a remarkable
92.45%. This confirms our hypothesis that a global strat-
egy risks creating a redundant buffer by over-sampling from
a few ”difficult” patients. Center-slice selection seems to
give better results, given that these slices may be more in-
formative in a CT-scan, but finally doesn’t achieve over-
all the highest performance. In contrast, our patient-aware
approach ensures a more diverse and efficient memory by
sampling from a wider range of high-drift clinical cases.

6.2.2. The Benefit of a Multi-Layer Drift Signal

The comparison in Table-5 demonstrates the value of using
a more robust drift signal. The Multi-Layer Drift approach
consistently outperforms the Single-Layer Drift strategy in
preserving H1 knowledge across both architectures. For
example, with the Swin model, using a multi-layer signal

improves per-patient H1 retention from 91.37% to 92.45%.
This suggests that forgetting is a complex process affect-
ing features at multiple levels of semantic abstraction, and
a more holistic drift signal is better at identifying samples
whose core representations have become unstable.

6.2.3. Performance of Alternative Strategies

Our investigation into other advanced strategies, presented
in Table-6, provides further context. Using Euclidean Dis-
tance proves to be a very strong alternative to Cosine
Similarity, achieving the highest H2 accuracy for Swin
(94.42%). This indicates that the core concept of drift-based
selection is robust and not overly sensitive to the specific
distance metric. The Latent Drift & Entropy model also
performs well, particularly for the ResNet backbone, sug-
gesting that adding an explicit uncertainty signal can bene-
fit less robust architectures. However, for the powerful Swin



FWT BWT (closer to 0)
Model SwinT ResNet-50 SwinT ResNet-50
Naive Fine-tuning 0.029 0.768 -0.424 -0.216
Random Replay 0.029 0.768 -0.020 -0.059
Proposed Method 0.029 0.768 -0.018 -0.050

Table 7. Per-patient Forward Transfer (FWT) and Backward
Transfer (BWT).

Transformer, our proposed Cosine-based, pure-drift method
delivered the best overall balance, especially in retaining
critical knowledge from the source domain.

6.3. Analysis of Forgetting and Knowledge Transfer
To further quantify the learning dynamics, we analyzed
the standard continual learning metrics of Forward Trans-
fer (FWT) and Backward Transfer (BWT), with the per-
patient results presented in Table-7. As expected given the
shared H1 initialization, FWT is identical across methods
(SwinT: 0.029; ResNet-50: 0.768), confirming that pre-
training on H1 provides the same starting benefit for H2.
The differentiator is BWT, where higher values (closer to
0) are better: Naive fine-tuning shows severe forgetting
(-0.424 on SwinT; -0.216 on ResNet-50). Random Re-
play substantially reduces forgetting (-0.020 on SwinT; -
0.059 on ResNet-50). Our proposed method is best on both
backbones, with BWT of -0.018 on SwinT and -0.050 on
ResNet-50; this corresponds to improvements over Naive
FT of +0.406 and +0.166, and small gains over Random
Replay of +0.002 and +0.009, respectively. These transfer
metrics align with Table-3 and the stability-plasticity plot in
Figure-2 preserving H1 performance while adapting to H2,
achieving the most favorable balance. Overall, the BWT
analysis confirms that our latent drift-guided approach is
highly effective at mitigating catastrophic forgetting.

Beyond the aggregate metrics, it is notable that the ab-
solute magnitude of forgetting achieved by our drift-guided
replay is substantially lower than that reported in prior con-
tinual learning studies for medical imaging. This demon-
strates that a targeted buffer composition can deliver high
retention efficiency: with only 10% of the original source
data stored, the proposed method preserves nearly the same
H1 performance as models trained with full access to histor-
ical data. Such efficiency is particularly relevant in clinical
scenarios, where storage, transfer, and privacy constraints
limit the feasibility of large replay buffers. Moreover, the
latent drift signal itself could serve as a diagnostic indicator,
highlighting cases most prone to representational degrada-
tion and enabling proactive mitigation before domain adap-
tation.

6.4. Architectural Insights
Swin Transformer vs. ResNet50: A consistent trend
across all tables is the superior performance of the Swin

Transformer over ResNet50 in this continual learning sce-
nario. The Swin model not only achieves higher absolute
accuracies but also demonstrates greater resilience to for-
getting. For example, under naive fine-tuning Table-3, the
ResNet model’s H1 performance drops less dramatically
than Swin’s, but its overall performance with our proposed
method is significantly lower. We attribute Swin’s strength
to its hierarchical self-attention mechanism, which is better
suited to modeling the long-range, contextual features that
define an imaging domain. This makes it more adaptable
and, when paired with our intelligent replay strategy, more
capable of preserving complex, learned knowledge.

7. Conclusion and Future work

In this paper, we addressed the critical challenge of catas-
trophic forgetting in domain-shifted medical imaging tasks.
We demonstrated that naive fine-tuning leads to a severe
degradation of prior knowledge, while standard random re-
play offers only a limited solution. To overcome this, we
introduced a novel continual learning framework driven by
a patient-aware, latent drift-guided replay strategy.

Our methodology successfully identifies and replays
the samples most at risk of being forgotten by quantify-
ing representational instability across multiple feature lay-
ers. Through extensive experiments on a real-world, cross-
hospital COVID-19 CT dataset, we have shown that our
proposed approach significantly outperforms standard base-
lines. The results validate our core hypotheses: a patient-
aware selection strategy is superior to global and center
slice-level sampling, a multi-layer drift signal is more ro-
bust than a single-layer one, and transformer-based archi-
tectures like the Swin Transformer are inherently more re-
silient to domain shifts than their CNN counterparts.

Overall, this work establishes latent drift as a practical
and interpretable signal for constructing highly effective re-
play memories. Our framework offers a robust and scal-
able solution that balances stability and plasticity, paving
the way for the deployment of truly adaptive AI systems
in dynamic clinical environments where trust and reliability
are paramount.

Future Work: Our findings open several promising av-
enues for future research. We plan to extend this methodol-
ogy to more complex, multi-domain scenarios involving se-
quences of several different hospitals. Furthermore, we will
explore the application of our drift-based selection strategy
to 3D volumetric CT data, which may reveal different data
structures and forgetting dynamics. Finally, integrating our
drift signal with formal uncertainty quantification and ex-
ploring its utility in a federated learning setting are exciting
directions for developing privacy-preserving, continuously
adapting medical AI.
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