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ABSTRACT

Chain-of-Thought (CoT) reasoning dramatically improves language model per-
formance but incurs significant computational overhead through sequential token
generation. While implicit CoT methods promise efficiency by operating in latent
space, they largely rely on heuristic architectures, complex multi-stage training
(e.g., distillation), and lack a principled objective for end-to-end optimization. We
introduce variCoT, a principled variational framework that overcomes these limi-
tations through a unified evidence lower bound (ELBO) objective. Implemented
in a single Transformer with strategic control tokens, variCoT learns a continuous
latent reasoning trace Z and deploys it via guided latent reasoning: Z acts as a
cross-attention query to guide generation across all layers, decoupling abstract rea-
soning from linguistic realization. This enables flexible inference—direct answer
generation (2.5× faster) or optional full CoT reproduction—without architectural
fragmentation. On GSM8K and CommonsenseQA, variCoT matches or exceeds ex-
plicit CoT accuracy while significantly reducing latency, establishing a theoretically
grounded and scalable approach to efficient reasoning.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable reasoning capabilities, particularly
when guided by explicit chain-of-thought (CoT) prompting that verbalizes intermediate steps in
natural language (Wei et al., 2022; Kojima et al., 2022). While effective, this paradigm imposes a
fundamental bottleneck: reasoning is constrained to the discrete, low-bandwidth channel of token
sequences, despite the model’s internal capacity to manipulate high-dimensional continuous represen-
tations (Zhu et al., 2025). This mismatch introduces redundant linguistic scaffolding and decouples
reasoning from answer generation, hindering end-to-end optimization. The limitations of explicit
CoT have motivated a shift toward latent reasoning—performing multi-step inference entirely within
the model’s continuous hidden space without generating intermediate tokens (Geiping et al., 2025;
Ruan et al., 2025; Hao et al., 2024; Shen et al., 2025).

Recent work has explored diverse latent reasoning paradigms, broadly categorized as vertical (dis-
crete tokens processed autoregressively) and horizontal (continuous hidden state propagation) ap-
proaches (Zhu et al., 2025). Vertical methods (Dehghani et al., 2018) suffer from limited information
capacity, constraining complex reasoning to the low-bandwidth discrete token space. Horizontal
methods (Sun et al., 2024; Behrouz et al., 2024) preserve high representational bandwidth but conflate
reasoning dynamics with linguistic features, making the process opaque and difficult to control.
More fundamentally, existing approaches rely on heuristic architectures and multi-stage training
pipelines—such as distillation from explicit CoT teachers (Shen et al., 2025) or external memory
modules (Bulatov et al., 2022)—that prevent end-to-end optimization. Even theoretically expressive
methods like diffusion-based infinite-depth reasoning (Nie et al., 2025; Ye et al., 2024) suffer from
slow sampling and incompatibility with standard autoregressive decoding. What remains missing
is a unified framework that combines the efficiency of latent reasoning with a principled learning
objective for end-to-end optimization.

We address these challenges with variCoT, a unified variational framework that formalizes implicit
reasoning through structured probabilistic inference. Our approach treats the unobserved reasoning
process as a continuous latent variable Z and optimizes a joint evidence lower bound (ELBO)
that learns to capture the full reasoning trace while generating both rationales and answers. This
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formulation provides the missing probabilistic foundation for latent reasoning, enabling end-to-end
optimization within a single Transformer without multi-stage pipelines or external modules. Crucially,
variCoT naturally subsumes prior latent reasoning methods as special cases while offering theoretical
guarantees missing from heuristic approaches.

We implement variCoT with two synergistic components. First, strategic control tokens (e.g., <cot>,
<answer>) orchestrate distinct probabilistic operations within a single forward pass. Building on
training-induced recurrence Goyal et al. (2024); Wang et al. (2024), these tokens induce specialized
computational roles without architectural modification, enabling full parameter sharing and end-
to-end gradient flow. Second, we develop guided latent reasoning, a novel architectural paradigm
where the sampled latent trace Z serves as a cross-attention query over the model’s self-attended
representations. This allows Z to dynamically attend to relevant linguistic features across all layers,
guiding reasoning without being fused into the residual stream. Unlike prior recurrent or diffusion-
based approaches (Dehghani et al., 2018; Sun et al., 2024; Ye et al., 2024), our framework ensures
full differentiability, training stability, and compatibility with standard autoregressive decoding. The
design enforces a clean architectural interface between language modeling and reasoning, synthesizing
the bandwidth advantages of horizontal recurrence with the hierarchical expressivity of vertical depth.

We evaluate variCoT across arithmetic, symbolic, and commonsense reasoning benchmarks. Our
framework consistently outperforms strong explicit CoT and latent baselines, while exhibiting
superior sample efficiency and robustness to prompt perturbations. Ablation studies confirm that the
variational objective is essential: it not only improves performance but also encourages disentangled,
interpretable latent representations that align with ground-truth reasoning steps.

In summary, our contributions are:

• variCoT: A unified variational framework for implicit Chain-of-Thought reasoning that
formalizes latent reasoning traces as structured stochastic variables, optimized via a joint
evidence lower bound (ELBO). This provides the first probabilistically grounded foundation
for end-to-end trainable latent reasoning in a single Transformer.

• Strategic control tokens: A lightweight, sequence-level interface that embeds the full
variational framework into a standard autoregressive training without external modules or
multi-stage curriculum.

• Guided Latent Reasoning: A hybrid architectural paradigm that fuses the high bandwidth
of continuous latent spaces via query-based cross-attention. This synthesizes vertical depth
with horizontal recurrence while maintaining full autoregressive compatibility.

2 METHODOLOGY

We introduce variCoT, a unified variational framework for implicit Chain-of-Thought reasoning
that addresses fundamental limitations in existing latent reasoning approaches. While methods
like explicit CoT are constrained by discrete token sequences and latent approaches often rely on
heuristic architectures or multi-stage training, variCoT provides a principled probabilistic foundation
for learning continuous reasoning traces within a single Transformer. This section formalizes our
approach through a structured generative model, derives its training objective via variational inference,
and demonstrates how each component overcomes key challenges in latent reasoning.

2.1 BACKGROUND AND NOTATION

We begin by establishing the formal setting for reasoning in large language models. Let Xq =
(xq1, ..., x

q
n) denote the input question token sequence, Y r = (yr1, ..., y

r
m) the explicit reasoning chain,

and Y a = (ya1 , ..., y
a
k) the final answer. Standard autoregressive language models generate these

components sequentially using the factorization p(Y r, Y a | Xq) = p(Y r | Xq) · p(Y a | Xq, Y r).

The fundamental limitation of this approach lies in the information bottleneck of discrete tokens.
Each token carries approximately 15 bits of information, while a single hidden state in modern LLMs
(e.g., 4096-dimensional) can encode 40,960 bits—a 2,700× increase in expressive capacity Zhu et al.
(2025). This observation has motivated latent reasoning methods that operate in continuous hidden
spaces. However, existing approaches such as Coconut Hao et al. (2024) and CODI Shen et al. (2025)
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rely on deterministic recurrence or distillation pipelines, lacking proper uncertainty quantification
and end-to-end optimization.

variCoT addresses these limitations by introducing a sequence of continuous latent variables
Z = (z1, ..., zL) that serves as a compressed, stochastic representation of the reasoning process.
Unlike prior work, our framework formalizes Z within a generative model, enabling principled
variational inference and uncertainty-aware reasoning while maintaining full compatibility with
standard Transformer architectures.

2.2 THE VARICOT FRAMEWORK

variCoT is grounded in two key insights from the latent reasoning literature: (1) the expressive
advantage of continuous hidden states over discrete tokens, and (2) the functional specialization of
Transformer layers—shallow layers for representation, intermediate for transformation, and deep
for integration Skean et al. (2024); Gromov et al. (2024); Shi et al. (2024); Zhang et al. (2024). We
mirror this structure by letting Z encapsulate the full reasoning trajectory before branching into
separate decoders for reasoning and answer generation. We begin by establishing a general theoretical
foundation for variational reasoning without imposing any assumption:

Theorem 2.1 (Evidence Lower Bound for Latent Reasoning). For any joint distribution p(Y r, Y a, Z |
Xq) and variational approximation qϕ(Z | Xq, Y r, Y a), the log marginal likelihood admits the
decomposition:

log p(Y r, Y a | Xq) = LELBO +DKL (qϕ(Z | Xq, Y r, Y a) ∥ p(Z | Xq, Y r, Y a)) ,

where

LELBO = Eqϕ
[
log

p(Y r, Y a, Z | Xq)

qϕ(Z | Xq, Y r, Y a)

]
.

Proof. The derivation follows from a variational decomposition of the log marginal likelihood,
leveraging the non-negativity of the Kullback-Leibler divergence. A complete derivation is provided
in Appendix A.1.

While Theorem 2.1 provides a general variational foundation, it presents two practical challenges
for reasoning applications. First, the KL divergence term requires access to the true posterior
p(Z | Xq, Y r, Y a), which is intractable. Second, even with a variational approximation qϕ, the
posterior remains conditioned on both Y r and Y a, making it unusable during inference when
reasoning chains are unavailable.

To address these limitations, we introduce a structured generative model that enables tractable
optimization and practical deployment. Our approach is motivated by the observation that effective
reasoning requires a clean separation between abstract computation and linguistic realization.

Assumption 2.2 (Latent Reasoning Mediation). There exists a sequence of latent reasoning states
Z = (z1, . . . , zL) such that, conditioned on the question Xq and Z, the explicit reasoning Y r and
the answer Y a are conditionally independent:

Y r ⊥⊥ Y a | Xq, Z.

This assumption reflects the cognitive intuition that once the core reasoning process is complete, its
verbalization (Y r) and final answer (Y a) can be generated independently. It aligns with empirical
findings on layer-wise specialization in Transformers, where shallow layers handle surface features
while deeper layers integrate semantic and inferential content.

Under Assumption 2.2, we obtain a tractable factorization of the joint distribution:

Proposition 2.3 (variCoT Generative Factorization). Under Assumption 2.2, the joint distribution
over Y r, Y a, and Z given Xq factorizes as:

pθ,ψ,ρ(Y
r, Y a, Z | Xq) = pψ(Y

r | Xq, Z) · pρ(Y a | Xq, Z) · pθ(Z | Xq),

where pθ(Z | Xq) is the prior over latent reasoning, and pψ, pρ model the generation of explicit
reasoning and answer, respectively.
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This factorization enables a computationally efficient training objective that bridges the theoretical
ELBO with practical optimization:

Theorem 2.4 (VariCOT Objective Decomposition). Under the factorization in Proposition 2.3, the
ELBO decomposes into three interpretable components:

LELBO =Eqϕ [log pψ(Y
r | Xq, Z)]︸ ︷︷ ︸

Lreasoning

+Eqϕ [log pρ(Y a | Xq, Z)]︸ ︷︷ ︸
Lanswer

− β ·DKL (qϕ(Z | Xq, Y r, Y a) ∥ pθ(Z | Xq))︸ ︷︷ ︸
LKL

,

where β > 0 is a tunable regularization coefficient.

Proof. The decomposition follows from substituting the structured joint distribution into the ELBO
and applying linearity of expectation. See Appendix A.2.

The decomposition in Theorem 2.4 provides a principled training objective where each term serves a
distinct function. During training, the variational posterior qϕ(Z | Xq, Y r, Y a) absorbs all available
information from both reasoning chains and answers. The KL regularization term LKL ensures that
the prior pθ(Z | Xq) learns to approximate this informed distribution, enabling effective inference
when ground-truth reasoning chains are unavailable. This design allows the model to sample
Z ∼ pθ(Z | Xq) at test time and generate Y a directly, enabling efficient latent-only reasoning
that bypasses explicit CoT generation while retaining the ability to reconstruct rationales when
interpretability is required. The remaining terms provide complementary learning signals: Lreasoning
ensures the latent variable Z retains sufficient information to reconstruct explicit reasoning chains,
serving as an interpretability anchor, while Lanswer drives task performance by ensuring Z encodes all
necessary information for accurate final answers.

This formulation establishes variCoT as a probabilistically grounded framework for end-to-end train-
able latent reasoning. Compared to heuristic or distillation-based approaches, our method provides
theoretical guarantees through its ELBO foundation while addressing key limitations of prior work:
it enables uncertainty-aware reasoning through distributional latent states, supports generalization via
prior regularization, and maintains architectural flexibility through modular decoders.

3 IMPLEMENTING VARICOT: THE GUIDED LATENT TRANSFORMER

The variCoT framework proposes a unified variational objective for latent reasoning. To realize its
full potential, we must address two practical challenges: (1) how to train all components—prior,
posterior, reasoning decoder, and answer decoder—efficiently within a single model, and (2) how
to represent and inject the latent variable Z to achieve high-bandwidth reasoning while maintaining
architectural compatibility. We solve the first challenge through strategic control tokens that enable
end-to-end training, and the second through guided latent reasoning, a novel architectural paradigm
that synthesizes the strengths of existing approaches. The complete training and inference procedures
are summarized in Algorithms 1 and 2 in the appendix.

3.1 STRATEGIC CONTROL TOKENS: END-TO-END SINGLE-MODEL TRAINING

A major limitation of existing latent reasoning frameworks is their reliance on multi-stage
pipelines (Hao et al., 2024)—such as knowledge distillation (Shen et al., 2025), external encoders for
discretization (Su et al., 2025), or persistent memory modules (Gao et al., 2024)—which fragment
the computational graph, increase memory overhead, and hinder scalability within standard autore-
gressive architectures. We address this by introducing strategic control tokens that enable end-to-end
variational inference within a single Transformer.

Our approach builds on training-induced recurrence (Goyal et al., 2024; Wang et al., 2024), where
structured token sequences induce specialized computational roles without architectural modification.
We extend this idea to variational learning by embedding the full generative and inference machinery
into a unified sequence via functionally specialized tokens.
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Figure 1: Training data flow in variCoT. Control tokens condition distinct probabilistic operations
within a single forward pass. The latent variable Z is sampled from the posterior and used to guide
decoding. All components share parameters, enabling end-to-end training.

During training (Figure 1), a single forward pass processes the input question Xq, ground-truth rea-
soning trace Yr, answer Ya, and control tokens <prior> and <posterior>. The hidden state at
<posterior> parameterizes the approximate posterior qϕ(Z | Xq, Yr, Ya), from which Z is sam-
pled and routed to the reasoning and answer decoders. Crucially, all components share the same Trans-
former parameters, enabling uninterrupted gradient flow. At inference, the model samples Z from
the prior pθ(Z | Xq) and generates outputs autoregressively. For complete implementation details
including token specifications and training protocols, see Appendix A.3.

By unifying probabilistic operations through token-level control, our method achieves full compatibil-
ity with pretrained LLMs while supporting expressive, uncertainty-aware reasoning—resolving key
scalability and modularity challenges identified in recent latent reasoning literature (Sui et al., 2025).

3.2 LATENT REPRESENTATION PARADIGMS: VERTICAL, HORIZONTAL, AND HYBRID
APPROACHES

Following the taxonomy of latent reasoning frameworks Zhu et al. (2025), we formalize three
paradigms for representing the latent variable Z in variational reasoning. Each defines a distinct
architectural pathway for coupling latent reasoning states with autoregressive language modeling.

Figure 2: Architectural comparison of latent representation paradigms. (a) Vertical: Discrete tokens
processed autoregressively. (b) Horizontal: Continuous hidden states injected into residual stream.
(c) Hybrid (Ours): Continuous latent states as per-layer guidance via cross-attention.

Vertical Paradigm: Discrete Latent Tokens In the vertical paradigm, the latent variable is
instantiated as a sequence of discrete tokens Z = (z1, . . . , zS), where each zs is drawn from a
learned categorical distribution over a fixed latent vocabulary V . These tokens are embedded and
concatenated with the input token embeddings to form a joint sequence processed autoregressively.
The architecture is defined by:

zs ∼ Categorical(πθ(x≤t, z<s)) ∀s ∈ {1, . . . , S}, (1)

Hinput = Concat
(
e(x1), . . . , e(xT ), e(z1), . . . , e(zS)

)
, (2)

where e(·) denotes the token embedding function and πθ is a parameterized policy conditioned on
prior inputs and latent tokens. This formulation enables direct interpretability and intervention at
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the token level. However, the information capacity of Z is limited by the discrete tokens, typically
∼15 bits per token (Zhu et al., 2025), restricting the complexity of representable reasoning states and
undermining the expressive potential of continuous latent spaces.

Horizontal Paradigm: Continuous Hidden States The horizontal paradigm identifies Z with
a subset of the model’s internal continuous hidden states. Specifically, Z is extracted from the
transformer layer and re-injected into subsequent layers. The architecture is formalized as:

Z = h
(l)
t ∈ Rd, (3)

H
(l+1)
input = Concat

(
H(l), Z

)
, (4)

where h(l)t is the hidden state at layer l and position t, and H(l) ∈ RT×d denotes the full sequence of
activations at that layer. This approach preserves high information bandwidth—each d-dimensional
vector encodes O(d) bits—but entangles reasoning states with linguistic representations. As a result,
the model struggles to disentangle task-agnostic reasoning dynamics from surface-level language
features, complicating regularization, interpretation, and cross-task generalization.

Hybrid Paradigm: Guided Latent Reasoning We propose guided latent reasoning (Figure 2
(c)), a novel architectural paradigm that addresses the limitations of both vertical and horizontal
approaches by decoupling the latent reasoning state from the autoregressive token stream while
enabling fine-grained, layer-specific influence. This design preserves the structural clarity of discrete
tokens while leveraging the representational capacity of continuous hidden states.

The key innovation treats the latent variable Z = {Z1, . . . , ZK} as an external guidance bank
Z ∈ RK×d that provides global contextual guidance. Inspired by conditioning mechanisms in
Diffusion Transformers Peebles & Xie (2023), Z is sampled once during training or inference and
shared across all transformer layers:

Z = MLPlatent
(
[Hbackbone]

)
∈ RK×d,

where Hbackbone is obtained from the backbone transformer processing the input context.

Rather than interleaving Z with tokens or overwriting activations, we augment each transformer
block with cross-attention where Z serves as query and the self-attended representations provide keys
and values:

H
(l)
self = SelfAttn

(
LayerNorm(H(l−1))

)
+H(l−1), (5)

H(l)
cross = CrossAttn

(
LayerNorm(Z), LayerNorm(H

(l)
self), LayerNorm(H

(l)
self)

)
, (6)

H
(l)
merged = H

(l)
self + gl ·H(l)

cross, (7)

where gl is a learnable gate that modulates guidance strength per layer.

This establishes a clean separation between the reasoning trace (evolving token representations)
and reasoning state (external Z). The adaptive gating gl naturally aligns with transformer layer
specialization—minimizing interference in shallow layers while amplifying reasoning influence in
deeper layers Geva et al. (2020). Critically, since Z resides outside the token sequence, it preserves
full autoregressive compatibility without consuming sequence length or disrupting causal masking.
This hybrid approach achieves an optimal balance: maintaining the expressive power of continuous
latent spaces while providing precise architectural control over reasoning dynamics.

4 EXPERIMENTS

We conducted experiments on both GPT2 Radford et al. (2019) and LLaMA3.2-1b Grattafiori et al.
(2024) to validate the generalizability of our method across different foundation models. For training,
we employed the AdamW (Loshchilov & Hutter, 2017) optimizer with a learning rate of 5× 10−5,
incorporating 10% warm-up steps followed by linear decay. The GPT2 model (Radford et al., 2019)
was trained for 30 epochs, while LLaMA3.2-1b (Grattafiori et al., 2024) was trained for 15 epochs,
both with an effective batch size of 256. Regarding hyperparameter configuration, we selected 6
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Table 1: Main results on mathematical and commonsense reasoning benchmarks. We compare our
variCoT variants against strong baselines across two model families. The best score for each dataset
is in bold. The best score among our proposed variants is underlined.
Model GSM8k GSM8k-NL CommonsenseQA SVAMP GSM-Hard MultiA

GPT-2
CoT-SFT 44.1 34.8 36.9 41.8 9.8 90.7

No-CoT-SFT 19.1 19.1 20.5 16.4 4.3 41.1
Pause-CoT-SFT 16.4 16.4 - 14.8 4.1 39.2
iCoT 30.1 3.2 26.2 29.4 5.7 55.5
Coconut 34.1 24.9 38.6 36.4 7.9 82.2
CODI 43.7 35.3 44.0 42.9 9.9 92.8

variCoT-Vertical 38.5 31.5 38.0 37.0 9.2 84.8
variCoT-Horizontal 39.6 32.0 37.3 37.8 9.4 83.6
variCoT-Guided 43.9 35.4 37.9 42.6 9.4 91.5

LLaMA3.2-1b
CoT-SFT 61.6 54.1 68.2 66.7 15.8 99.3

No-CoT-SFT 30.9 30.9 74.9 44.1 7.1 70.9
Pause-CoT-SFT 28.1 28.1 - 41.2 6.7 65.3
iCoT 19.0 15.2 72.6 40.9 4.4 39.0
Coconut 45.3 27.2 60.6 48.8 9.9 90.1
CODI 55.6 49.7 74.0 61.1 12.8 96.1

variCoT-Vertical 51.3 42.8 77.2 61.3 13.3 94.1
variCoT-Horizontal 51.5 43.0 76.4 60.8 13.1 94.3
variCoT-Guided 57.5 53.75 78.1 65.2 15.6 98.5

latent reasoning embeddings with β = 0.01 to align with other methods in the baseline; further
hyperparameter analysis can be found in our ablation studies. To ensure reproducibility, we set a fixed
random seed (seed=42) for all experiments, and each reported result represents a single run under
this controlled setting. All experiments were performed on an ml.p5en.48xlarge instance of
Amazon Elastic Compute Cloud, which includes 8 NVIDIA H200 (141GB) GPUs, using PyTorch
2.6 (Paszke et al., 2019) as the deep learning framework.

Dataset Following Shen et al. (2025), we evaluate variCoT on six public datasets, categorized
into in-domain and out-of-domain (OOD) settings for evaluation. We use three datasets for in-
domain evaluation. GSM8k-Aug (Deng et al., 2023) is a math reasoning dataset of 385K samples,
augmented from GSM8K (Cobbe et al., 2021) using GPT-4, with structured mathematical expressions
as rationales. GSM8k-Aug-NL Shen et al. (2025) is a variant of GSM8k-Aug where the reasoning
process is presented in natural language. CommonsenseQA-CoT (Shen et al., 2025), which extends
the original CommonsenseQA (Talmor et al., 2018) with Chain-of-Thought (CoT) annotations that
were generated using GPT-4o-mini and filtered for correctness. To evaluate robustness, we train on
GSM8k-Aug and test on three OOD datasets. SVAMP (Patel et al., 2021) is an elementary school
math word problem dataset. GSM-HARD (Gao et al., 2023) is a more challenging version of the
GSM8K test set with an expanded value range. MultiArith (Roy & Roth, 2015) is a multi-step
arithmetic word problem dataset from MAWPS (Koncel-Kedziorski et al., 2016).

Baselines We compare our method, variCoT, against several strong baselines that explore explicit
and implicit reasoning: CoT-SFT, standard supervised fine-tuning (SFT) on explicit chain-of-thought
demonstrations, where the model generates the reasoning process before the final answer at inference;
No-CoT-SFT, standard SFT on question-answer pairs only, without explicit reasoning steps; Pause-
CoT-SFT (Goyal et al., 2024), SFT with special <pause> tokens inserted before the answer to
encourage implicit reasoning (we use 6 for a fair comparison); iCoT (Deng et al., 2024), a strategy
that internalizes reasoning by gradually removing the explicit CoT during training to ultimately output
only the final answer; and COCONUT (Hao et al., 2024), a method that also internalizes the CoT,
but replaces it with learned implicit reasoning tokens instead of deleting it. CODI (Shen et al., 2025),
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a method that also internalizes the CoT, but uses a distillation framework to compress the knowledge
from an explicit CoT (teacher) process into a series of continuous thought tokens (student).

4.1 MAIN RESULTS

Table 1 presents comprehensive evaluations across mathematical and commonsense reasoning bench-
marks. Our variCoT framework demonstrates strong performance across both GPT-2 and LLaMA3.2-
1B model families, consistently matching or exceeding the accuracy of explicit CoT-SFT while
offering significant efficiency gains.

On GPT-2, variCoT achieves 43.9% accuracy on GSM8K and 91.5% on MultiArith, performing com-
petitively with explicit CoT-SFT (44.1% and 90.7% respectively) while significantly outperforming
other implicit reasoning methods. The framework shows particular strength on out-of-domain gener-
alization, achieving 42.6% on SVAMP and 9.4% on GSM-HARD, demonstrating robust reasoning
capabilities without explicit intermediate token generation.

The performance advantage scales effectively to the larger LLaMA3.2-1B model, where variCoT
achieves 57.5% on GSM8K and 98.5% on MultiArith—closely approaching CoT-SFT performance
(61.6% and 99.3%) while offering the efficiency benefits of latent reasoning. Notably, our method
shows superior commonsense reasoning capabilities, achieving 78.1% on CommonsenseQA-CoT,
outperforming all baselines including explicit CoT-SFT (68.2%).

Figure 3: Inference efficiency of different methods in different datasets. The left side shows the
average number of CoTs generated during the inference process, and the right side shows the average
duration of complete inference, with GPT-2 Small as the base model.

In terms of inference efficiency, variCoT demonstrates significant advantages. As shown in Figure 3,
our method reduces token generation by approximately 80-90% compared to CoT-SFT, requiring
only 6 latent tokens instead of lengthy reasoning chains. This translates to a 70-80% reduction in
inference time (0.073s vs. 0.32s for CoT-SFT on GSM8K), while maintaining competitive accuracy.
Although slightly slower than No-CoT-SFT, this small efficiency sacrifice is exchanged for substantial
performance gains, providing an excellent balance between efficiency and reasoning capability.

Table 2: CoT Reconstruction Quality Evaluation
GSM8K-Aug GSM8K-NL-Aug

Model ROUGE-1 BLEU-1 ROUGE-1 BLEU-1
GPT-2 0.69 0.66 0.63 0.62
LLaMA-1B 0.78 0.72 0.72 0.69

A key advantage of variCoT is its reversible reasoning capability. As shown in Table 2, our model
achieves high reconstruction fidelity with ROUGE-1 scores of 0.69 (GPT-2) and 0.78 (LLaMA-1B)
on GSM8K, indicating that the latent embeddings effectively capture essential reasoning information.
This provides significant interpretability advantages over other implicit CoT methods, as demonstrated
by the reconstruction examples in Figure 7.

4.2 ABLATION STUDIES

We conduct systematic ablations to understand the impact of key architectural choices and hyper-
parameters. First, we compare the three latent representation paradigms introduced in Section 3.2.
The guided latent reasoning approach consistently outperforms both vertical (discrete token) and
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horizontal (continuous hidden state) variants across all benchmarks. On GPT-2, the guided paradigm
achieves 43.9% on GSM8K compared to 38.5% for vertical and 39.6% for horizontal approaches.
This advantage is even more pronounced on LLaMA3.2-1B, where the guided approach reaches
57.5% versus 51.3% and 51.5% for the alternatives. The results validate our architectural design that
decouples reasoning guidance from linguistic processing through cross-attention mechanisms.

Figure 6 shows the sensitivity analysis of the number of latent reasoning embeddings. We find optimal
performance scales with number of latent reasoning embeddings, consistent with findings in prior
work Zhu et al. (2025). This configuration balances representational capacity with training stability,
providing sufficient bandwidth for complex reasoning while avoiding overfitting. Performance
degrades with fewer embeddings due to limited expressivity, while excessive embeddings introduce
noise and optimization challenges.

5 RELATED WORK

Chain-of-Thought (CoT) prompting has established a powerful paradigm for multi-step reasoning in
large language models by verbalizing intermediate steps (Wei et al., 2022). However, constraining
reasoning to a discrete token space introduces significant latency and limits expressive power,
motivating a shift towards implicit or latent CoT, where reasoning occurs in the model’s continuous
hidden states (Zhu et al., 2025). Current latent reasoning methods primarily fall into two categories:
vertical approaches that increase effective model depth by iteratively refining activations within a fixed
set of layers (Geiping et al., 2025; Mohtashami et al., 2023), and horizontal approaches that expand
temporal context by propagating compressed hidden states over time (Dao & Gu, 2024; Behrouz
et al., 2024). While these methods enhance reasoning, they often require specialized architectures or
entangle reasoning states with linguistic representations.

A parallel line of work induces latent reasoning capabilities through specialized training objectives on
standard Transformer architectures. These strategies include using special pause tokens to encourage
implicit computation (Goyal et al., 2024), progressively internalizing explicit CoT steps during
fine-tuning (Deng et al., 2024), or compressing natural language rationales into continuous thought
vectors via knowledge distillation (Hao et al., 2024; Shen et al., 2025). Although effective, these
training-induced methods often depend on multi-stage pipelines or heuristic objectives, lacking a
unified, end-to-end optimization framework.

Variational inference, while a cornerstone of generative modeling, remains nascent in the context of
continuous latent reasoning. Prior works have either relied on discrete latent tokens (Su et al., 2025)
or learned compressed reasoning traces without a principled probabilistic foundation (Zhang et al.,
2025), failing to provide a robust framework for structured stochastic inference.

Our work variCoT, addresses these gaps by proposing a unified variational framework that formalizes
latent reasoning as principled stochastic inference. Unlike prior methods, variCoT is optimized
end-to-end via a single, theoretically grounded evidence lower bound (ELBO) objective within a
standard Transformer. It introduces a guided latent reasoning mechanism that synthesizes the benefits
of vertical depth and horizontal recurrence, using cross-attention to decouple abstract reasoning from
its linguistic realization. This unique design enables efficient, latent-only inference for fast decoding
while preserving the ability to generate explicit CoT for interpretability—a critical capability not
offered by previous implicit reasoning methods.

6 CONCLUSION

Chain-of-Thought reasoning improves LLM performance but incurs significant computational over-
head through sequential token generation. Existing implicit CoT methods rely on heuristic archi-
tectures and multi-stage training, lacking principled optimization. We introduce variCoT, a unified
variational framework that overcomes these limitations through an evidence lower bound objective,
formalizing latent reasoning traces as continuous stochastic variables.

Our framework combines strategic control tokens for end-to-end training with guided latent reasoning
that decouples abstract computation from linguistic realization. Experiments show variCoT matches
or exceeds explicit CoT accuracy while providing 2.5× faster inference and reversible reasoning
capability. This establishes a theoretically grounded, scalable approach to efficient reasoning that
bridges continuous latent spaces with autoregressive generation.
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A APPENDIX

A.1 PROOF OF THEOREM 1: EVIDENCE LOWER BOUND FOR VARICOT

Proof. We begin by deriving the ELBO for the marginal log-likelihood log p(Y r, Y a | Xq). Introducing the
variational posterior qϕ(Z | Xq, Y r, Y a), we have:

log p(Y r, Y a | Xq) = log

∫
p(Y r, Y a, Z | Xq)dZ

= log

∫
qϕ(Z | Xq, Y r, Y a)

p(Y r, Y a, Z | Xq)

qϕ(Z | Xq, Y r, Y a)
dZ

≥ Eqϕ

[
log

p(Y r, Y a, Z | Xq)

qϕ(Z | Xq, Y r, Y a)

]
(Jensen’s inequality)

= Eqϕ [log p(Y r, Y a, Z | Xq)− log qϕ(Z | Xq, Y r, Y a)] .

Let LELBO = Eqϕ
[
log p(Y r,Y a,Z|Xq)

qϕ(Z|Xq,Y r,Y a)

]
. We can rewrite the marginal likelihood as:

log p(Y r, Y a | Xq) = Eqϕ [log p(Y r, Y a | Xq)]

= Eqϕ

[
log

p(Y r, Y a, Z | Xq)

p(Z | Xq, Y r, Y a)

]
= Eqϕ

[
log

p(Y r, Y a, Z | Xq)

qϕ(Z | Xq, Y r, Y a)
· qϕ(Z | Xq, Y r, Y a)

p(Z | Xq, Y r, Y a)

]
= LELBO +DKL (qϕ(Z | Xq, Y r, Y a) ∥ p(Z | Xq, Y r, Y a)) .

Since the KL divergence is non-negative, we have log p(Y r, Y a | Xq) ≥ LELBO, with equality if and only if
qϕ(Z | Xq, Y r, Y a) = p(Z | Xq, Y r, Y a).

A.2 PROOF OF THEOREM 2: VARICOT OBJECTIVE DECOMPOSITION

Proof. Starting from the ELBO expression in Theorem 1:

LELBO = Eqϕ

[
log

p(Y r, Y a, Z | Xq)

qϕ(Z | Xq, Y r, Y a)

]
,

we substitute the joint distribution from Propositon 2.3:

LELBO = Eqϕ

[
log

pψ(Y
r | Xq, Z) · pρ(Y a | Xq, Z) · pθ(Z | Xq)

qϕ(Z | Xq, Y r, Y a)

]
= Eqϕ [log pψ(Y

r | Xq, Z) + log pρ(Y
a | Xq, Z) + log pθ(Z | Xq)− log qϕ(Z | Xq, Y r, Y a)] .

By linearity of expectation:

LELBO =Eqϕ [log pψ(Y
r | Xq, Z)] + Eqϕ [log pρ(Y

a | Xq, Z)]

+ Eqϕ
[
log

pθ(Z | Xq)

qϕ(Z | Xq, Y r, Y a)

]
.

The third term can be rewritten as a KL divergence:

Eqϕ
[
log

pθ(Z | Xq)

qϕ(Z | Xq, Y r, Y a)

]
= −DKL (qϕ(Z | Xq, Y r, Y a) ∥ pθ(Z | Xq)) .

Thus, we obtain the final decomposition:

LELBO =Eqϕ [log pψ(Y
r | Xq, Z)] + Eqϕ [log pρ(Y

a | Xq, Z)]

−DKL (qϕ(Z | Xq, Y r, Y a) ∥ pθ(Z | Xq)) .
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The introduction of the β coefficient follows the β-VAE framework to control the strength of the KL regularization
term, giving us the final objective:

LELBO =Eqϕ [log pψ(Y
r | Xq, Z)]︸ ︷︷ ︸

Lreasoning

+Eqϕ [log pρ(Y
a | Xq, Z)]︸ ︷︷ ︸

Lanswer

− β ·DKL (qϕ(Z | Xq, Y r, Y a) ∥ pθ(Z | Xq))︸ ︷︷ ︸
LKL

.

A.3 STRATEGIC CONTROL TOKENS AND END-TO-END TRAINING PROTOCOL

To ensure full reproducibility and clarity, we detail the complete token-level specification of variCoT’s control
mechanism, including exact input formats for all components and the inference procedure.

Control Token Specification We define four functionally specialized control tokens that orchestrate
variational inference within a single Transformer pass. All components share the same set of parameters, and
gradients flow end-to-end through the entire sequence.

• Prior Network pθ(Z | Xq):
Input sequence: <prompt>Xq </prompt> <prior>
The latent variable Z ∈ RK×d is sampled from a distribution parameterized by the hidden state at the
<prior> token position. During inference, this is the sole source of Z.

• Posterior Network qϕ(Z | Xq, Y r, Y a):
Input sequence: <prompt> Xq </prompt> <cot> Y r <eos> <answer> Y a <eos>
<posterior>
The approximate posterior is inferred from the hidden state at <posterior>, conditioned on both
the ground-truth reasoning chain Y r and final answer Y a. During training, Z is sampled from this
posterior.

• Reasoning Decoder pψ(Y
r | Xq, Z):

Input sequence: <prompt>Xq </prompt> <latent> Z1, . . . , ZK </latent> <cot>
Target sequence: Y r followed by <eos>. The latent state Z is injected via the Guided Latent
Reasoning mechanism (Section 3.2). During training, Z is sampled from the posterior; during
inference, from the prior.

• Answer Decoder pρ(Y
a | Xq, Z):

Input sequence: <prompt>Xq </prompt> <latent> Z1, . . . , ZK </latent> <answer>
Target sequence: Y a followed by <eos>.

The <latent> token sequence serves as a placeholder that triggers the latent injection mechanism; its
embeddings are unused—the actual latent vectors Z are provided externally via cross-attention (Section 3.2).

Training Protocol During training, we construct a single concatenated sequence:

<prompt>Xq </prompt> <cot> Y r <eos> <answer> Y a <eos> <posterior> <latent>
Z1, . . . , ZK </latent>

The model first processes the context up to <posterior> to infer qϕ(Z | Xq, Y r, Y a), samples Z, and then
uses this Z to condition the subsequent generation of Y r and Y a. The entire sequence is trained with standard
autoregressive language modeling loss, enabling end-to-end optimization.

Inference Protocol At inference time, no ground-truth reasoning trace or answer is available. The model
proceeds in two stages: 1. Latent sampling: Process <prompt> Xq </prompt> <prior> to obtain
pθ(Z | Xq), then sample Z. 2. Autoregressive generation: Using the sampled Z, generate either: - A
reasoning chain: <prompt>Xq </prompt> <latent> Z </latent> <cot>⇝ Y r - A direct answer:
<prompt>Xq </prompt> <latent> Z </latent> <answer>⇝ Y a

Both generations are fully autoregressive and leverage the same latent state Z, enabling coherent, uncertainty-
aware predictions.

This unified design eliminates the need for external encoders, distillation teachers, or non-autoregressive memory
modules, while preserving full compatibility with standard transformer-based language models.
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Figure 4: Training data flow in variCoT. Control tokens (<prior>, <posterior>, <cot>,
<answer>) condition distinct probabilistic operations within a single forward pass. The latent
variable Z is sampled from the posterior and routed to decoders via the <latent> token sequence.
Parameter sharing enables end-to-end gradient flow.

Figure 5: Inference in variCoT. The prior network samples Z from pθ(Z | Xq). The same latent
state is then used to generate Y r and Y a sequentially. No ground-truth reasoning traces are required.
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Figure 6: The impact of different numbers of implicit reasoning embeddings and different lambda
settings on performance under the GSM8K-Aug dataset, with GPT-2 Small as the base model.

A.4 MORE EXPERIMENT RESULTS

A.5 EXPLICIT REASONING RECONSTRUCTION VISUALIZATION

Example 1

Question:
Josh decides to try flipping a house.  He buys a house for $80,000 and then puts in $50,000 in repairs.  This 
increased the value of the house by 150%.  How much profit did he make?
Original Reasoning:
<<80000+50000=130000>> <<80000*1.5=120000>> <<120000+80000=200000>> <<200000-
130000=70000>>
Reversible Latent Decoder Output:
<<80000+50000=130000>> <<150%*80000=120000>> <<80000+120000=200000>> <<200000-
130000=70000>>

Example 2

Question:
Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes muffins for her friends 
every day with four. She sells the remainder at the farmers’ market daily for $2 per fresh duck egg. How much 
in dollars does she make every day at the farmers’ market?
Original Reasoning:
Janet sells 16 - 3 - 4 = 9 duck eggs a day. She makes 9 * 2 = $18 every day at the farmer\u2019s market.
Reversible Latent Decoder Output:
Janet has 16 eggs daily, leaving 16 - 7 = 9 eggs to sell. At $2 per egg, she earns 9 × $2 = $18.

Figure 7: Reconstructed performance of implicit reasoning.

How to interpret implicit reasoning has been a key challenge in this direction, especially for scenarios that
require explicit reasoning generation, such as mathematical proofs, logical attributions, etc. Although pure
implicit reasoning can achieve efficiency improvements, it cannot effectively obtain explicit reasoning processes.
Thanks to the Reversible Latent Decoder, our proposed variCoT can directly reconstruct explicit reasoning based
on implicit reasoning, which offers better interpretability compared to other implicit reasoning methods. As
shown in Fig. 7, implicit reasoning embeddings can be directly reconstructed into explicit reasoning by the
Reversible Latent Decoder, and can also support the generation of final answers in terms of thought paths, which
more intuitively demonstrates the superiority of our proposed method.

A.6 TRAINING AND INFERENCE ALGORITHMS
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Algorithm 1 variCoT Training Procedure
Require: Dataset D = {(Xq, Y r, Y a)}, model parameters θ, ϕ, ψ, ρ

1: while not converged do
2: Sample batch (Xq, Y r, Y a) ∼ D
3: Construct input sequence: S = [Xq,<cot>, Y r,<eos>,<answer>, Y a,<eos>,<posterior>]
4: Compute hidden states: H = Transformer(S)
5: Extract posterior parameters from h<posterior>: µϕ, σϕ
6: Sample latent: Z ∼ N (µϕ, σ

2
ϕ)

7: Construct decoding sequence: Sdec = [Xq,<latent>, Z,<cot>]
8: Compute reasoning loss: Lreasoning = − log pψ(Y

r | Xq, Z)
9: Construct answer sequence: Sans = [Xq,<latent>, Z,<answer>]

10: Compute answer loss: Lanswer = − log pρ(Y
a | Xq, Z)

11: Compute KL divergence: LKL = DKL(qϕ(Z | Xq, Y r, Y a)∥pθ(Z | Xq))
12: Total loss: L = Lreasoning + Lanswer + βLKL
13: Update parameters via gradient descent: ∇θL
14: end while

Algorithm 2 variCoT Inference Procedure
Require: Input question Xq , trained model parameters θ, ρ

1: Construct prior sequence: Sprior = [Xq,<prior>]
2: Compute hidden states: H = Transformer(Sprior)
3: Extract prior parameters from h<prior>: µθ, σθ
4: Sample latent: Z ∼ N (µθ, σ

2
θ)

5: Construct answer sequence: Sans = [Xq,<latent>, Z,<answer>]
6: Generate answer autoregressively: Y a ∼ pρ(· | Xq, Z)
7: Optional: Generate reasoning chain: Y r ∼ pψ(· | Xq, Z)

Ensure: Final answer Y a (and optional reasoning chain Y r)
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