# VARICOT: A UNIFIED VARIATIONAL FRAMEWORK FOR IMPLICIT CHAIN-OF-THOUGHT REASONING

**Anonymous authors**Paper under double-blind review

### **ABSTRACT**

Chain-of-Thought (CoT) reasoning dramatically improves language model performance but incurs significant computational overhead through sequential token generation. While implicit CoT methods promise efficiency by operating in latent space, they largely rely on heuristic architectures, complex multi-stage training (e.g., distillation), and lack a principled objective for end-to-end optimization. We introduce variCoT, a principled variational framework that overcomes these limitations through a unified evidence lower bound (ELBO) objective. Implemented in a single Transformer with strategic control tokens, variCoT learns a continuous latent reasoning trace Z and deploys it via *guided latent reasoning*: Z acts as a cross-attention query to guide generation across all layers, decoupling abstract reasoning from linguistic realization. This enables flexible inference—direct answer generation ( $2.5 \times$  faster) or optional full CoT reproduction—without architectural fragmentation. On GSM8K and CommonsenseQA, variCoT matches or exceeds explicit CoT accuracy while significantly reducing latency, establishing a theoretically grounded and scalable approach to efficient reasoning.

### 1 Introduction

Large language models (LLMs) have demonstrated remarkable reasoning capabilities, particularly when guided by explicit chain-of-thought (CoT) prompting that verbalizes intermediate steps in natural language (Wei et al., 2022; Kojima et al., 2022). While effective, this paradigm imposes a fundamental bottleneck: reasoning is constrained to the discrete, low-bandwidth channel of token sequences, despite the model's internal capacity to manipulate high-dimensional continuous representations (Zhu et al., 2025). This mismatch introduces redundant linguistic scaffolding and decouples reasoning from answer generation, hindering end-to-end optimization. The limitations of explicit CoT have motivated a shift toward *latent reasoning*—performing multi-step inference entirely within the model's continuous hidden space without generating intermediate tokens (Geiping et al., 2025; Ruan et al., 2025; Hao et al., 2024; Shen et al., 2025).

Recent work has explored diverse latent reasoning paradigms, broadly categorized as *vertical* (discrete tokens processed autoregressively) and *horizontal* (continuous hidden state propagation) approaches (Zhu et al., 2025). Vertical methods (Dehghani et al., 2018) suffer from limited information capacity, constraining complex reasoning to the low-bandwidth discrete token space. Horizontal methods (Sun et al., 2024; Behrouz et al., 2024) preserve high representational bandwidth but conflate reasoning dynamics with linguistic features, making the process opaque and difficult to control. More fundamentally, existing approaches rely on heuristic architectures and multi-stage training pipelines—such as distillation from explicit CoT teachers (Shen et al., 2025) or external memory modules (Bulatov et al., 2022)—that prevent end-to-end optimization. Even theoretically expressive methods like diffusion-based infinite-depth reasoning (Nie et al., 2025; Ye et al., 2024) suffer from slow sampling and incompatibility with standard autoregressive decoding. What remains missing is a unified framework that combines the efficiency of latent reasoning with a principled learning objective for end-to-end optimization.

We address these challenges with variCoT, a unified variational framework that formalizes implicit reasoning through structured probabilistic inference. Our approach treats the unobserved reasoning process as a continuous latent variable Z and optimizes a joint evidence lower bound (ELBO) that learns to capture the full reasoning trace while generating both rationales and answers. This

formulation provides the missing probabilistic foundation for latent reasoning, enabling end-to-end optimization within a single Transformer without multi-stage pipelines or external modules. Crucially, variCoT naturally subsumes prior latent reasoning methods as special cases while offering theoretical guarantees missing from heuristic approaches.

We implement variCoT with two synergistic components. First, strategic control tokens (e.g., <cot>, <answer>) orchestrate distinct probabilistic operations within a single forward pass. Building on training-induced recurrence Goyal et al. (2024); Wang et al. (2024), these tokens induce specialized computational roles without architectural modification, enabling full parameter sharing and end-to-end gradient flow. Second, we develop guided latent reasoning, a novel architectural paradigm where the sampled latent trace Z serves as a cross-attention query over the model's self-attended representations. This allows Z to dynamically attend to relevant linguistic features across all layers, guiding reasoning without being fused into the residual stream. Unlike prior recurrent or diffusion-based approaches (Dehghani et al., 2018; Sun et al., 2024; Ye et al., 2024), our framework ensures full differentiability, training stability, and compatibility with standard autoregressive decoding. The design enforces a clean architectural interface between language modeling and reasoning, synthesizing the bandwidth advantages of horizontal recurrence with the hierarchical expressivity of vertical depth.

We evaluate variCoT across arithmetic, symbolic, and commonsense reasoning benchmarks. Our framework consistently outperforms strong explicit CoT and latent baselines, while exhibiting superior sample efficiency and robustness to prompt perturbations. Ablation studies confirm that the variational objective is essential: it not only improves performance but also encourages disentangled, interpretable latent representations that align with ground-truth reasoning steps.

In summary, our contributions are:

- variCoT: A unified variational framework for implicit Chain-of-Thought reasoning that formalizes latent reasoning traces as structured stochastic variables, optimized via a joint evidence lower bound (ELBO). This provides the first probabilistically grounded foundation for end-to-end trainable latent reasoning in a single Transformer.
- Strategic control tokens: A lightweight, sequence-level interface that embeds the full
  variational framework into a standard autoregressive training without external modules or
  multi-stage curriculum.
- Guided Latent Reasoning: A hybrid architectural paradigm that fuses the high bandwidth
  of continuous latent spaces via query-based cross-attention. This synthesizes vertical depth
  with horizontal recurrence while maintaining full autoregressive compatibility.

### 2 Methodology

We introduce variCoT, a unified variational framework for implicit Chain-of-Thought reasoning that addresses fundamental limitations in existing latent reasoning approaches. While methods like explicit CoT are constrained by discrete token sequences and latent approaches often rely on heuristic architectures or multi-stage training, variCoT provides a principled probabilistic foundation for learning continuous reasoning traces within a single Transformer. This section formalizes our approach through a structured generative model, derives its training objective via variational inference, and demonstrates how each component overcomes key challenges in latent reasoning.

### 2.1 BACKGROUND AND NOTATION

We begin by establishing the formal setting for reasoning in large language models. Let  $X^q = (x_1^q,...,x_n^q)$  denote the input question token sequence,  $Y^r = (y_1^r,...,y_m^r)$  the explicit reasoning chain, and  $Y^a = (y_1^a,...,y_k^a)$  the final answer. Standard autoregressive language models generate these components sequentially using the factorization  $p(Y^r,Y^a\mid X^q)=p(Y^r\mid X^q)\cdot p(Y^a\mid X^q,Y^r)$ .

The fundamental limitation of this approach lies in the information bottleneck of discrete tokens. Each token carries approximately 15 bits of information, while a single hidden state in modern LLMs (e.g., 4096-dimensional) can encode 40,960 bits—a 2,700× increase in expressive capacity Zhu et al. (2025). This observation has motivated latent reasoning methods that operate in continuous hidden spaces. However, existing approaches such as Coconut Hao et al. (2024) and CODI Shen et al. (2025)

rely on deterministic recurrence or distillation pipelines, lacking proper uncertainty quantification and end-to-end optimization.

variCoT addresses these limitations by introducing a sequence of continuous latent variables  $Z=(z_1,...,z_L)$  that serves as a compressed, stochastic representation of the reasoning process. Unlike prior work, our framework formalizes Z within a generative model, enabling principled variational inference and uncertainty-aware reasoning while maintaining full compatibility with standard Transformer architectures.

### 2.2 THE VARICOT FRAMEWORK

variCoT is grounded in two key insights from the latent reasoning literature: (1) the expressive advantage of continuous hidden states over discrete tokens, and (2) the functional specialization of Transformer layers—shallow layers for representation, intermediate for transformation, and deep for integration Skean et al. (2024); Gromov et al. (2024); Shi et al. (2024); Zhang et al. (2024). We mirror this structure by letting Z encapsulate the full reasoning trajectory before branching into separate decoders for reasoning and answer generation. We begin by establishing a general theoretical foundation for variational reasoning without imposing any assumption:

**Theorem 2.1** (Evidence Lower Bound for Latent Reasoning). For any joint distribution  $p(Y^r, Y^a, Z \mid X^q)$  and variational approximation  $q_{\phi}(Z \mid X^q, Y^r, Y^a)$ , the log marginal likelihood admits the decomposition:

$$\log p(Y^r, Y^a \mid X^q) = \mathcal{L}_{ELBO} + D_{KL} \left( q_{\phi}(Z \mid X^q, Y^r, Y^a) \parallel p(Z \mid X^q, Y^r, Y^a) \right),$$

where

$$\mathcal{L}_{\textit{ELBO}} = \mathbb{E}_{q_{\phi}} \left[ \log \frac{p(Y^r, Y^a, Z \mid X^q)}{q_{\phi}(Z \mid X^q, Y^r, Y^a)} \right].$$

*Proof.* The derivation follows from a variational decomposition of the log marginal likelihood, leveraging the non-negativity of the Kullback-Leibler divergence. A complete derivation is provided in Appendix A.1.  $\Box$ 

While Theorem 2.1 provides a general variational foundation, it presents two practical challenges for reasoning applications. First, the KL divergence term requires access to the true posterior  $p(Z \mid X^q, Y^r, Y^a)$ , which is intractable. Second, even with a variational approximation  $q_{\phi}$ , the posterior remains conditioned on both  $Y^r$  and  $Y^a$ , making it unusable during inference when reasoning chains are unavailable.

To address these limitations, we introduce a structured generative model that enables tractable optimization and practical deployment. Our approach is motivated by the observation that effective reasoning requires a clean separation between abstract computation and linguistic realization.

**Assumption 2.2** (Latent Reasoning Mediation). There exists a sequence of latent reasoning states  $Z = (z_1, \ldots, z_L)$  such that, conditioned on the question  $X^q$  and Z, the explicit reasoning  $Y^r$  and the answer  $Y^a$  are conditionally independent:

$$Y^r \perp \!\!\!\perp Y^a \mid X^q, Z.$$

This assumption reflects the cognitive intuition that once the core reasoning process is complete, its verbalization  $(Y^r)$  and final answer  $(Y^a)$  can be generated independently. It aligns with empirical findings on layer-wise specialization in Transformers, where shallow layers handle surface features while deeper layers integrate semantic and inferential content.

Under Assumption 2.2, we obtain a tractable factorization of the joint distribution:

**Proposition 2.3** (variCoT Generative Factorization). *Under Assumption 2.2, the joint distribution over*  $Y^r$ ,  $Y^a$ , and Z given  $X^q$  factorizes as:

$$p_{\theta,\psi,\rho}(Y^r, Y^a, Z \mid X^q) = p_{\psi}(Y^r \mid X^q, Z) \cdot p_{\rho}(Y^a \mid X^q, Z) \cdot p_{\theta}(Z \mid X^q),$$

where  $p_{\theta}(Z \mid X^q)$  is the prior over latent reasoning, and  $p_{\psi}$ ,  $p_{\rho}$  model the generation of explicit reasoning and answer, respectively.

This factorization enables a computationally efficient training objective that bridges the theoretical ELBO with practical optimization:

**Theorem 2.4** (VariCOT Objective Decomposition). *Under the factorization in Proposition 2.3, the ELBO decomposes into three interpretable components:* 

$$\mathcal{L}_{\textit{ELBO}} = \underbrace{\mathbb{E}_{q_{\phi}} \left[ \log p_{\psi}(Y^r \mid X^q, Z) \right]}_{\mathcal{L}_{\textit{reasoning}}} + \underbrace{\mathbb{E}_{q_{\phi}} \left[ \log p_{\rho}(Y^a \mid X^q, Z) \right]}_{\mathcal{L}_{\textit{answer}}} - \underbrace{\beta \cdot D_{\text{KL}} \left( q_{\phi}(Z \mid X^q, Y^r, Y^a) \parallel p_{\theta}(Z \mid X^q) \right)}_{\mathcal{L}_{\textit{KL}}},$$

where  $\beta > 0$  is a tunable regularization coefficient.

*Proof.* The decomposition follows from substituting the structured joint distribution into the ELBO and applying linearity of expectation. See Appendix A.2.  $\Box$ 

The decomposition in Theorem 2.4 provides a principled training objective where each term serves a distinct function. During training, the variational posterior  $q_{\phi}(Z \mid X^q, Y^r, Y^a)$  absorbs all available information from both reasoning chains and answers. The KL regularization term  $\mathcal{L}_{\text{KL}}$  ensures that the prior  $p_{\theta}(Z \mid X^q)$  learns to approximate this informed distribution, enabling effective inference when ground-truth reasoning chains are unavailable. This design allows the model to sample  $Z \sim p_{\theta}(Z \mid X^q)$  at test time and generate  $Y^a$  directly, enabling efficient latent-only reasoning that bypasses explicit CoT generation while retaining the ability to reconstruct rationales when interpretability is required. The remaining terms provide complementary learning signals:  $\mathcal{L}_{\text{reasoning}}$  ensures the latent variable Z retains sufficient information to reconstruct explicit reasoning chains, serving as an interpretability anchor, while  $\mathcal{L}_{\text{answer}}$  drives task performance by ensuring Z encodes all necessary information for accurate final answers.

This formulation establishes variCoT as a probabilistically grounded framework for end-to-end trainable latent reasoning. Compared to heuristic or distillation-based approaches, our method provides theoretical guarantees through its ELBO foundation while addressing key limitations of prior work: it enables uncertainty-aware reasoning through distributional latent states, supports generalization via prior regularization, and maintains architectural flexibility through modular decoders.

### 3 IMPLEMENTING VARICOT: THE GUIDED LATENT TRANSFORMER

The variCoT framework proposes a unified variational objective for latent reasoning. To realize its full potential, we must address two practical challenges: (1) how to train all components—prior, posterior, reasoning decoder, and answer decoder—efficiently within a single model, and (2) how to represent and inject the latent variable Z to achieve high-bandwidth reasoning while maintaining architectural compatibility. We solve the first challenge through strategic control tokens that enable end-to-end training, and the second through guided latent reasoning, a novel architectural paradigm that synthesizes the strengths of existing approaches. The complete training and inference procedures are summarized in Algorithms 1 and 2 in the appendix.

### 3.1 STRATEGIC CONTROL TOKENS: END-TO-END SINGLE-MODEL TRAINING

A major limitation of existing latent reasoning frameworks is their reliance on multi-stage pipelines (Hao et al., 2024)—such as knowledge distillation (Shen et al., 2025), external encoders for discretization (Su et al., 2025), or persistent memory modules (Gao et al., 2024)—which fragment the computational graph, increase memory overhead, and hinder scalability within standard autoregressive architectures. We address this by introducing *strategic control tokens* that enable end-to-end variational inference within a single Transformer.

Our approach builds on training-induced recurrence (Goyal et al., 2024; Wang et al., 2024), where structured token sequences induce specialized computational roles without architectural modification. We extend this idea to variational learning by embedding the full generative and inference machinery into a unified sequence via functionally specialized tokens.

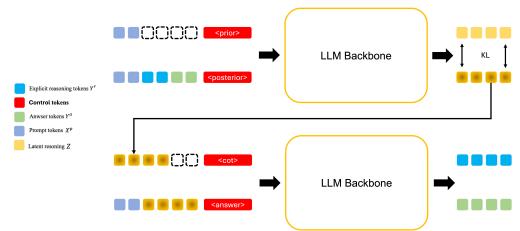


Figure 1: Training data flow in variCoT. Control tokens condition distinct probabilistic operations within a single forward pass. The latent variable Z is sampled from the posterior and used to guide decoding. All components share parameters, enabling end-to-end training.

During training (Figure 1), a single forward pass processes the input question  $X_q$ , ground-truth reasoning trace  $Y_r$ , answer  $Y_a$ , and control tokens <pri>>prior> and <posterior>. The hidden state at <posterior> parameterizes the approximate posterior  $q_\phi(Z \mid X_q, Y_r, Y_a)$ , from which Z is sampled and routed to the reasoning and answer decoders. Crucially, all components share the same Transformer parameters, enabling uninterrupted gradient flow. At inference, the model samples Z from the prior  $p_\theta(Z \mid X_q)$  and generates outputs autoregressively. For complete implementation details including token specifications and training protocols, see Appendix A.3.

By unifying probabilistic operations through token-level control, our method achieves full compatibility with pretrained LLMs while supporting expressive, uncertainty-aware reasoning—resolving key scalability and modularity challenges identified in recent latent reasoning literature (Sui et al., 2025).

## 3.2 LATENT REPRESENTATION PARADIGMS: VERTICAL, HORIZONTAL, AND HYBRID APPROACHES

Following the taxonomy of latent reasoning frameworks Zhu et al. (2025), we formalize three paradigms for representing the latent variable Z in variational reasoning. Each defines a distinct architectural pathway for coupling latent reasoning states with autoregressive language modeling.

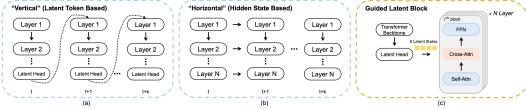


Figure 2: Architectural comparison of latent representation paradigms. (a) *Vertical*: Discrete tokens processed autoregressively. (b) *Horizontal*: Continuous hidden states injected into residual stream. (c) *Hybrid (Ours)*: Continuous latent states as per-layer guidance via cross-attention.

**Vertical Paradigm: Discrete Latent Tokens** In the vertical paradigm, the latent variable is instantiated as a sequence of discrete tokens  $Z=(z_1,\ldots,z_S)$ , where each  $z_s$  is drawn from a learned categorical distribution over a fixed latent vocabulary  $\mathcal V$ . These tokens are embedded and concatenated with the input token embeddings to form a joint sequence processed autoregressively. The architecture is defined by:

$$z_s \sim \text{Categorical}(\pi_{\theta}(x_{\leq t}, z_{\leq s})) \quad \forall s \in \{1, \dots, S\},$$
 (1)

$$\mathbf{H}_{\text{input}} = \text{Concat}(e(x_1), \dots, e(x_T), e(z_1), \dots, e(z_S)), \tag{2}$$

where  $e(\cdot)$  denotes the token embedding function and  $\pi_{\theta}$  is a parameterized policy conditioned on prior inputs and latent tokens. This formulation enables direct interpretability and intervention at

the token level. However, the information capacity of Z is limited by the discrete tokens, typically  $\sim$ 15 bits per token (Zhu et al., 2025), restricting the complexity of representable reasoning states and undermining the expressive potential of continuous latent spaces.

**Horizontal Paradigm: Continuous Hidden States** The horizontal paradigm identifies Z with a subset of the model's internal continuous hidden states. Specifically, Z is extracted from the transformer layer and re-injected into subsequent layers. The architecture is formalized as:

$$Z = h_t^{(l)} \in \mathbb{R}^d, \tag{3}$$

$$\mathbf{H}_{\text{input}}^{(l+1)} = \text{Concat}(\mathbf{H}^{(l)}, Z), \tag{4}$$

where  $h_t^{(l)}$  is the hidden state at layer l and position t, and  $\mathbf{H}^{(l)} \in \mathbb{R}^{T \times d}$  denotes the full sequence of activations at that layer. This approach preserves high information bandwidth—each d-dimensional vector encodes O(d) bits—but entangles reasoning states with linguistic representations. As a result, the model struggles to disentangle task-agnostic reasoning dynamics from surface-level language features, complicating regularization, interpretation, and cross-task generalization.

**Hybrid Paradigm: Guided Latent Reasoning** We propose **guided latent reasoning** (Figure 2 (c)), a novel architectural paradigm that addresses the limitations of both vertical and horizontal approaches by decoupling the latent reasoning state from the autoregressive token stream while enabling fine-grained, layer-specific influence. This design preserves the structural clarity of discrete tokens while leveraging the representational capacity of continuous hidden states.

The key innovation treats the latent variable  $Z = \{Z_1, \dots, Z_K\}$  as an external guidance bank  $\mathbf{Z} \in \mathbb{R}^{K \times d}$  that provides global contextual guidance. Inspired by conditioning mechanisms in Diffusion Transformers Peebles & Xie (2023),  $\mathbf{Z}$  is sampled once during training or inference and shared across all transformer layers:

$$\mathbf{Z} = \mathrm{MLP}_{\mathrm{latent}}ig([\mathbf{H}^{\mathrm{backbone}}]ig) \in \mathbb{R}^{K imes d},$$

where  $\mathbf{H}^{\text{backbone}}$  is obtained from the backbone transformer processing the input context.

Rather than interleaving Z with tokens or overwriting activations, we augment each transformer block with cross-attention where  ${\bf Z}$  serves as query and the self-attended representations provide keys and values:

$$\mathbf{H}_{\text{self}}^{(l)} = \text{SelfAttn}\left(\text{LayerNorm}(\mathbf{H}^{(l-1)})\right) + \mathbf{H}^{(l-1)},\tag{5}$$

$$\mathbf{H}_{\text{cross}}^{(l)} = \text{CrossAttn}\left(\text{LayerNorm}(\mathbf{Z}), \, \text{LayerNorm}(\mathbf{H}_{\text{self}}^{(l)}), \, \text{LayerNorm}(\mathbf{H}_{\text{self}}^{(l)})\right), \tag{6}$$

$$\mathbf{H}_{\text{merged}}^{(l)} = \mathbf{H}_{\text{self}}^{(l)} + g_l \cdot \mathbf{H}_{\text{cross}}^{(l)},\tag{7}$$

where  $q_l$  is a learnable gate that modulates guidance strength per layer.

This establishes a clean separation between the *reasoning trace* (evolving token representations) and *reasoning state* (external  $\mathbf{Z}$ ). The adaptive gating  $g_l$  naturally aligns with transformer layer specialization—minimizing interference in shallow layers while amplifying reasoning influence in deeper layers Geva et al. (2020). Critically, since  $\mathbf{Z}$  resides outside the token sequence, it preserves full autoregressive compatibility without consuming sequence length or disrupting causal masking. This hybrid approach achieves an optimal balance: maintaining the expressive power of continuous latent spaces while providing precise architectural control over reasoning dynamics.

### 4 EXPERIMENTS

We conducted experiments on both GPT2 Radford et al. (2019) and LLaMA3.2-1b Grattafiori et al. (2024) to validate the generalizability of our method across different foundation models. For training, we employed the AdamW (Loshchilov & Hutter, 2017) optimizer with a learning rate of  $5\times 10^{-5}$ , incorporating 10% warm-up steps followed by linear decay. The GPT2 model (Radford et al., 2019) was trained for 30 epochs, while LLaMA3.2-1b (Grattafiori et al., 2024) was trained for 15 epochs, both with an effective batch size of 256. Regarding hyperparameter configuration, we selected 6

Table 1: Main results on mathematical and commonsense reasoning benchmarks. We compare our **variCoT** variants against strong baselines across two model families. The best score for each dataset is in **bold**. The best score among our proposed variants is <u>underlined</u>.

| Model              | GSM8k       | GSM8k-NL     | CommonsenseQA | SVAMP       | GSM-Hard    | MultiA      |  |  |  |
|--------------------|-------------|--------------|---------------|-------------|-------------|-------------|--|--|--|
| GPT-2              |             |              |               |             |             |             |  |  |  |
| CoT-SFT            | 44.1        | 34.8         | 36.9          | 41.8        | 9.8         | 90.7        |  |  |  |
| No-CoT-SFT         | 19.1        | 19.1         | 20.5          | 16.4        | 4.3         | 41.1        |  |  |  |
| Pause-CoT-SFT      | 16.4        | 16.4         | -             | 14.8        | 4.1         | 39.2        |  |  |  |
| iCoT               | 30.1        | 3.2          | 26.2          | 29.4        | 5.7         | 55.5        |  |  |  |
| Coconut            | 34.1        | 24.9         | 38.6          | 36.4        | 7.9         | 82.2        |  |  |  |
| CODI               | 43.7        | 35.3         | 44.0          | 42.9        | 9.9         | 92.8        |  |  |  |
| variCoT-Vertical   | 38.5        | 31.5         | 38.0          | 37.0        | 9.2         | 84.8        |  |  |  |
| variCoT-Horizontal | 39.6        | 32.0         | 37.3          | 37.8        | <u>9.4</u>  | 83.6        |  |  |  |
| variCoT-Guided     | <u>43.9</u> | <u>35.4</u>  | 37.9          | <u>42.6</u> | <u>9.4</u>  | <u>91.5</u> |  |  |  |
|                    |             | Ll           | LaMA3.2-1b    |             |             |             |  |  |  |
| CoT-SFT            | 61.6        | 54.1         | 68.2          | 66.7        | 15.8        | 99.3        |  |  |  |
| No-CoT-SFT         | 30.9        | 30.9         | 74.9          | 44.1        | 7.1         | 70.9        |  |  |  |
| Pause-CoT-SFT      | 28.1        | 28.1         | -             | 41.2        | 6.7         | 65.3        |  |  |  |
| iCoT               | 19.0        | 15.2         | 72.6          | 40.9        | 4.4         | 39.0        |  |  |  |
| Coconut            | 45.3        | 27.2         | 60.6          | 48.8        | 9.9         | 90.1        |  |  |  |
| CODI               | 55.6        | 49.7         | 74.0          | 61.1        | 12.8        | 96.1        |  |  |  |
| variCoT-Vertical   | 51.3        | 42.8         | 77.2          | 61.3        | 13.3        | 94.1        |  |  |  |
| variCoT-Horizontal | 51.5        | 43.0         | 76.4          | 60.8        | 13.1        | 94.3        |  |  |  |
| variCoT-Guided     | <u>57.5</u> | <u>53.75</u> | <u>78.1</u>   | <u>65.2</u> | <u>15.6</u> | <u>98.5</u> |  |  |  |

latent reasoning embeddings with  $\beta=0.01$  to align with other methods in the baseline; further hyperparameter analysis can be found in our ablation studies. To ensure reproducibility, we set a fixed random seed (seed=42) for all experiments, and each reported result represents a single run under this controlled setting. All experiments were performed on an ml.p5en.48xlarge instance of Amazon Elastic Compute Cloud, which includes 8 NVIDIA H200 (141GB) GPUs, using PyTorch 2.6 (Paszke et al., 2019) as the deep learning framework.

**Dataset** Following Shen et al. (2025), we evaluate **variCoT** on six public datasets, categorized into in-domain and out-of-domain (OOD) settings for evaluation. We use three datasets for indomain evaluation. **GSM8k-Aug** (Deng et al., 2023) is a math reasoning dataset of 385K samples, augmented from GSM8K (Cobbe et al., 2021) using GPT-4, with structured mathematical expressions as rationales. **GSM8k-Aug-NL** Shen et al. (2025) is a variant of GSM8k-Aug where the reasoning process is presented in natural language. **CommonsenseQA-CoT** (Shen et al., 2025), which extends the original CommonsenseQA (Talmor et al., 2018) with Chain-of-Thought (CoT) annotations that were generated using GPT-40-mini and filtered for correctness. To evaluate robustness, we train on GSM8k-Aug and test on three OOD datasets. **SVAMP** (Patel et al., 2021) is an elementary school math word problem dataset. **GSM-HARD** (Gao et al., 2023) is a more challenging version of the GSM8K test set with an expanded value range. **MultiArith** (Roy & Roth, 2015) is a multi-step arithmetic word problem dataset from MAWPS (Koncel-Kedziorski et al., 2016).

**Baselines** We compare our method, **variCoT**, against several strong baselines that explore explicit and implicit reasoning: **CoT-SFT**, standard supervised fine-tuning (SFT) on explicit chain-of-thought demonstrations, where the model generates the reasoning process before the final answer at inference; **No-CoT-SFT**, standard SFT on question-answer pairs only, without explicit reasoning steps; **Pause-CoT-SFT** (Goyal et al., 2024), SFT with special pause> tokens inserted before the answer to encourage implicit reasoning (we use 6 for a fair comparison); **iCoT** (Deng et al., 2024), a strategy that internalizes reasoning by gradually removing the explicit CoT during training to ultimately output only the final answer; and **COCONUT** (Hao et al., 2024), a method that also internalizes the CoT, but replaces it with learned implicit reasoning tokens instead of deleting it. **CODI** (Shen et al., 2025),

a method that also internalizes the CoT, but uses a distillation framework to compress the knowledge from an explicit CoT (teacher) process into a series of continuous thought tokens (student).

### 4.1 Main Results

Table 1 presents comprehensive evaluations across mathematical and commonsense reasoning benchmarks. Our variCoT framework demonstrates strong performance across both GPT-2 and LLaMA3.2-1B model families, consistently matching or exceeding the accuracy of explicit CoT-SFT while offering significant efficiency gains.

On GPT-2, variCoT achieves 43.9% accuracy on GSM8K and 91.5% on MultiArith, performing competitively with explicit CoT-SFT (44.1% and 90.7% respectively) while significantly outperforming other implicit reasoning methods. The framework shows particular strength on out-of-domain generalization, achieving 42.6% on SVAMP and 9.4% on GSM-HARD, demonstrating robust reasoning capabilities without explicit intermediate token generation.

The performance advantage scales effectively to the larger LLaMA3.2-1B model, where variCoT achieves 57.5% on GSM8K and 98.5% on MultiArith—closely approaching CoT-SFT performance (61.6% and 99.3%) while offering the efficiency benefits of latent reasoning. Notably, our method shows superior commonsense reasoning capabilities, achieving 78.1% on CommonsenseQA-CoT, outperforming all baselines including explicit CoT-SFT (68.2%).

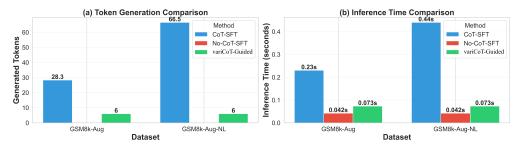


Figure 3: Inference efficiency of different methods in different datasets. The left side shows the average number of CoTs generated during the inference process, and the right side shows the average duration of complete inference, with GPT-2 Small as the base model.

In terms of inference efficiency, variCoT demonstrates significant advantages. As shown in Figure 3, our method reduces token generation by approximately 80-90% compared to CoT-SFT, requiring only 6 latent tokens instead of lengthy reasoning chains. This translates to a 70-80% reduction in inference time (0.073s vs. 0.32s for CoT-SFT on GSM8K), while maintaining competitive accuracy. Although slightly slower than No-CoT-SFT, this small efficiency sacrifice is exchanged for substantial performance gains, providing an excellent balance between efficiency and reasoning capability.

Table 2: CoT Reconstruction Quality Evaluation

|                   | GSM8I        | K-Aug        | GSM8K-NL-Aug |              |  |
|-------------------|--------------|--------------|--------------|--------------|--|
| Model             | ROUGE-1      | BLEU-1       | ROUGE-1      | BLEU-1       |  |
| GPT-2<br>LLaMA-1B | 0.69<br>0.78 | 0.66<br>0.72 | 0.63<br>0.72 | 0.62<br>0.69 |  |

A key advantage of variCoT is its reversible reasoning capability. As shown in Table 2, our model achieves high reconstruction fidelity with ROUGE-1 scores of 0.69 (GPT-2) and 0.78 (LLaMA-1B) on GSM8K, indicating that the latent embeddings effectively capture essential reasoning information. This provides significant interpretability advantages over other implicit CoT methods, as demonstrated by the reconstruction examples in Figure 7.

### 4.2 ABLATION STUDIES

We conduct systematic ablations to understand the impact of key architectural choices and hyperparameters. First, we compare the three latent representation paradigms introduced in Section 3.2. The guided latent reasoning approach consistently outperforms both vertical (discrete token) and horizontal (continuous hidden state) variants across all benchmarks. On GPT-2, the guided paradigm achieves 43.9% on GSM8K compared to 38.5% for vertical and 39.6% for horizontal approaches. This advantage is even more pronounced on LLaMA3.2-1B, where the guided approach reaches 57.5% versus 51.3% and 51.5% for the alternatives. The results validate our architectural design that decouples reasoning guidance from linguistic processing through cross-attention mechanisms.

Figure 6 shows the sensitivity analysis of the number of latent reasoning embeddings. We find optimal performance scales with number of latent reasoning embeddings, consistent with findings in prior work Zhu et al. (2025). This configuration balances representational capacity with training stability, providing sufficient bandwidth for complex reasoning while avoiding overfitting. Performance degrades with fewer embeddings due to limited expressivity, while excessive embeddings introduce noise and optimization challenges.

### 5 RELATED WORK

Chain-of-Thought (CoT) prompting has established a powerful paradigm for multi-step reasoning in large language models by verbalizing intermediate steps (Wei et al., 2022). However, constraining reasoning to a discrete token space introduces significant latency and limits expressive power, motivating a shift towards *implicit* or *latent* CoT, where reasoning occurs in the model's continuous hidden states (Zhu et al., 2025). Current latent reasoning methods primarily fall into two categories: *vertical* approaches that increase effective model depth by iteratively refining activations within a fixed set of layers (Geiping et al., 2025; Mohtashami et al., 2023), and *horizontal* approaches that expand temporal context by propagating compressed hidden states over time (Dao & Gu, 2024; Behrouz et al., 2024). While these methods enhance reasoning, they often require specialized architectures or entangle reasoning states with linguistic representations.

A parallel line of work induces latent reasoning capabilities through specialized training objectives on standard Transformer architectures. These strategies include using special pause tokens to encourage implicit computation (Goyal et al., 2024), progressively internalizing explicit CoT steps during fine-tuning (Deng et al., 2024), or compressing natural language rationales into continuous thought vectors via knowledge distillation (Hao et al., 2024; Shen et al., 2025). Although effective, these training-induced methods often depend on multi-stage pipelines or heuristic objectives, lacking a unified, end-to-end optimization framework.

Variational inference, while a cornerstone of generative modeling, remains nascent in the context of continuous latent reasoning. Prior works have either relied on discrete latent tokens (Su et al., 2025) or learned compressed reasoning traces without a principled probabilistic foundation (Zhang et al., 2025), failing to provide a robust framework for structured stochastic inference.

Our work variCoT, addresses these gaps by proposing a unified variational framework that formalizes latent reasoning as principled stochastic inference. Unlike prior methods, variCoT is optimized end-to-end via a single, theoretically grounded evidence lower bound (ELBO) objective within a standard Transformer. It introduces a *guided latent reasoning* mechanism that synthesizes the benefits of vertical depth and horizontal recurrence, using cross-attention to decouple abstract reasoning from its linguistic realization. This unique design enables efficient, latent-only inference for fast decoding while preserving the ability to generate explicit CoT for interpretability—a critical capability not offered by previous implicit reasoning methods.

### 6 Conclusion

Chain-of-Thought reasoning improves LLM performance but incurs significant computational overhead through sequential token generation. Existing implicit CoT methods rely on heuristic architectures and multi-stage training, lacking principled optimization. We introduce variCoT, a unified variational framework that overcomes these limitations through an evidence lower bound objective, formalizing latent reasoning traces as continuous stochastic variables.

Our framework combines strategic control tokens for end-to-end training with guided latent reasoning that decouples abstract computation from linguistic realization. Experiments show variCoT matches or exceeds explicit CoT accuracy while providing  $2.5\times$  faster inference and reversible reasoning capability. This establishes a theoretically grounded, scalable approach to efficient reasoning that bridges continuous latent spaces with autoregressive generation.

### REFERENCES

- Ali Behrouz, Peilin Zhong, and Vahab Mirrokni. Titans: Learning to memorize at test time. *arXiv preprint arXiv:2501.00663*, 2024.
- Aydar Bulatov, Yury Kuratov, and Mikhail Burtsev. Recurrent memory transformer. In *Advances in Neural Information Processing Systems*, volume 35, pp. 11079–11091, 2022.
  - Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168, 2021.
  - Tri Dao and Albert Gu. Transformers are SSMs: Generalized models and efficient algorithms through structured state space duality. *arXiv preprint arXiv:2405.21060*, 2024.
  - Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Łukasz Kaiser. Universal transformers. arXiv preprint arXiv:1807.03819, 2018.
  - Yuntian Deng, Kiran Prasad, Roland Fernandez, Paul Smolensky, Vishrav Chaudhary, and Stuart Shieber. Implicit chain of thought reasoning via knowledge distillation. *arXiv preprint arXiv:2311.01460*, 2023.
  - Yuntian Deng, Yejin Choi, and Stuart Shieber. From explicit CoT to implicit CoT: Learning to internalize CoT step by step. *arXiv preprint arXiv:2405.14838*, 2024.
  - Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and Graham Neubig. Pal: Program-aided language models. In *International Conference on Machine Learning*, pp. 10764–10799. PMLR, 2023.
  - Yihang Gao, Chuanyang Zheng, Enze Xie, Han Shi, Tianyang Hu, Yu Li, Michael K. Ng, Zhenguo Li, and Zhaoqiang Liu. Algoformer: An efficient transformer framework with algorithmic structures. *arXiv preprint arXiv:2402.13572*, 2024.
  - Jonas Geiping, Sean McLeish, Neel Jain, John Kirchenbauer, Siddharth Singh, Brian R. Bartoldson, Bhavya Kailkhura, Abhinav Bhatele, and Tom Goldstein. Scaling up test-time compute with latent reasoning: A recurrent depth approach. *arXiv preprint arXiv:2502.05171*, 2025.
  - Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers are key-value memories. *arXiv preprint arXiv:2012.14913*, 2020.
  - Sachin Goyal, Ziwei Ji, Ankit Singh Rawat, Aditya Krishna Menon, Sanjiv Kumar, and Vaishnavh Nagarajan. Think before you speak: Training language models with pause tokens. In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=ph04CRkPdC.
  - Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of models. arXiv preprint arXiv:2407.21783, 2024.
  - Andrey Gromov, Kushal Tirumala, Hassan Shapourian, Paolo Glorioso, and Daniel A. Roberts. The unreasonable ineffectiveness of the deeper layers. *arXiv preprint arXiv:2403.17887*, 2024. URL https://arxiv.org/abs/2403.17887.
  - Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong Tian. Training large language models to reason in a continuous latent space. *arXiv preprint arXiv:2412.06769*, 2024.
  - Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large language models are zero-shot reasoners. *Advances in neural information processing systems*, 35:22199–22213, 2022.
  - Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate Kushman, and Hannaneh Hajishirzi. MAWPS: A math word problem repository. In Kevin Knight, Ani Nenkova, and Owen Rambow (eds.), *Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies*, pp. 1152–1157, San Diego, California, June 2016. Association for Computational Linguistics. doi: 10.18653/v1/N16-1136. URL https://aclanthology.org/N16-1136/.
  - Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint arXiv:1711.05101*, 2017.
  - Amirkeivan Mohtashami, Matteo Pagliardini, and Martin Jaggi. CoTformer: A chain-of-thought driven architecture with budget-adaptive computation cost at inference. *arXiv preprint arXiv:2310.10845*, 2023.

- Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, JUN ZHOU, Yankai Lin, Ji-Rong Wen, and Chongxuan Li. Large language diffusion models. In *ICLR 2025 Workshop on Deep Generative Model in Machine Learning: Theory, Principle and Efficacy*, 2025.
  - Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep learning library. *Advances in neural information processing systems*, 32, 2019.
  - Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are NLP models really able to solve simple math word problems? In Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek Hakkani-Tur, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty, and Yichao Zhou (eds.), *Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies*, pp. 2080–2094, Online, June 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.168. URL https://aclanthology.org/2021.naacl-main.168/.
  - William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 4195–4205, 2023.
  - Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language models are unsupervised multitask learners. *OpenAI blog*, 1(8):9, 2019.
  - Subhro Roy and Dan Roth. Solving general arithmetic word problems. In Lluís Màrquez, Chris Callison-Burch, and Jian Su (eds.), *Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing*, pp. 1743–1752, Lisbon, Portugal, September 2015. Association for Computational Linguistics. doi: 10.18653/v1/D15-1202. URL https://aclanthology.org/D15-1202/.
  - Yangjun Ruan, Neil Band, Chris J Maddison, and Tatsunori Hashimoto. Reasoning to learn from latent thoughts. arXiv preprint arXiv:2503.18866, 2025.
  - Zhenyi Shen, Hanqi Yan, Linhai Zhang, Zhanghao Hu, Yali Du, and Yulan He. Codi: Compressing chain-of-thought into continuous space via self-distillation. *arXiv preprint arXiv:2502.21074*, 2025.
  - Guangyuan Shi, Zexin Lu, Xiaoyu Dong, Wenlong Zhang, Xuanyu Zhang, Yujie Feng, and Xiao-Ming Wu. Understanding layer significance in LLM alignment. *arXiv preprint arXiv:2410.17875*, 2024.
  - Oscar Skean, Md Rifat Arefin, Yann LeCun, and Ravid Shwartz-Ziv. Does representation matter? exploring intermediate layers in large language models. *arXiv preprint arXiv:2412.09563*, 2024.
  - DiJia Su, Hanlin Zhu, Yingchen Xu, Jiantao Jiao, Yuandong Tian, and Qinqing Zheng. Token assorted: Mixing latent and text tokens for improved language model reasoning. *arXiv* preprint arXiv:2502.03275, 2025.
  - Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi Liu, Andrew Wen, Hanjie Chen, Xia Hu, et al. Stop overthinking: A survey on efficient reasoning for large language models. arXiv preprint arXiv:2503.16419, 2025.
  - Yu Sun, Xinhao Li, Karan Dalal, Jiarui Xu, Arjun Vikram, Genghan Zhang, Yann Dubois, Xinlei Chen, Xiaolong Wang, Sanmi Koyejo, et al. Learning to (learn at test time): RNNs with expressive hidden states. arXiv preprint arXiv:2407.04620, 2024.
  - Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question answering challenge targeting commonsense knowledge. *arXiv preprint arXiv:1811.00937*, 2018.
  - Xinyi Wang, Lucas Caccia, Oleksiy Ostapenko, Xingdi Yuan, William Yang Wang, and Alessandro Sordoni. Guiding language model reasoning with planning tokens. In *First Conference on Language Modeling*, 2024. URL https://openreview.net/forum?id=wi9IffRhVM.
  - Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V. Le, Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. In Advances in neural information processing systems, volume 35, pp. 24824–24837, 2022.
  - Jiacheng Ye, Shansan Gong, Liheng Chen, Lin Zheng, Jiahui Gao, Han Shi, Chuan Wu, Xin Jiang, Zhenguo Li, Wei Bi, and Lingpeng Kong. Diffusion of thoughts: Chain-of-thought reasoning in diffusion language models, 2024. URL https://arxiv.org/abs/2402.07754.
  - Jintian Zhang, Yuqi Zhu, Mengshu Sun, Yujie Luo, Shuofei Qiao, Lun Du, Da Zheng, Huajun Chen, and Ningyu Zhang. Lightthinker: Thinking step-by-step compression. *arXiv preprint arXiv:2502.15589*, 2025.

Yang Zhang, Yanfei Dong, and Kenji Kawaguchi. Investigating layer importance in large language models. arXiv preprint arXiv:2409.14381, 2024.

Rui-Jie Zhu, Tianhao Peng, Tianhao Cheng, Xingwei Qu, Jinfa Huang, Dawei Zhu, Hao Wang, Kaiwen Xue, Xuanliang Zhang, Yong Shan, et al. A survey on latent reasoning. *arXiv preprint arXiv:2507.06203*, 2025.

### A APPENDIX

### A.1 PROOF OF THEOREM 1: EVIDENCE LOWER BOUND FOR VARICOT

*Proof.* We begin by deriving the ELBO for the marginal log-likelihood  $\log p(Y^r, Y^a \mid X^q)$ . Introducing the variational posterior  $q_{\phi}(Z \mid X^q, Y^r, Y^a)$ , we have:

$$\begin{split} \log p(Y^r,Y^a\mid X^q) &= \log \int p(Y^r,Y^a,Z\mid X^q) dZ \\ &= \log \int q_\phi(Z\mid X^q,Y^r,Y^a) \frac{p(Y^r,Y^a,Z\mid X^q)}{q_\phi(Z\mid X^q,Y^r,Y^a)} dZ \\ &\geq \mathbb{E}_{q_\phi} \left[ \log \frac{p(Y^r,Y^a,Z\mid X^q)}{q_\phi(Z\mid X^q,Y^r,Y^a)} \right] \quad \text{(Jensen's inequality)} \\ &= \mathbb{E}_{q_\phi} \left[ \log p(Y^r,Y^a,Z\mid X^q) - \log q_\phi(Z\mid X^q,Y^r,Y^a) \right]. \end{split}$$

Let  $\mathcal{L}_{\text{ELBO}} = \mathbb{E}_{q_{\phi}} \left[ \log \frac{p(Y^r, Y^a, Z|X^q)}{q_{\phi}(Z|X^q, Y^r, Y^a)} \right]$ . We can rewrite the marginal likelihood as:

$$\begin{split} \log p(\boldsymbol{Y}^r, \boldsymbol{Y}^a \mid \boldsymbol{X}^q) &= \mathbb{E}_{q_{\phi}} \left[ \log p(\boldsymbol{Y}^r, \boldsymbol{Y}^a \mid \boldsymbol{X}^q) \right] \\ &= \mathbb{E}_{q_{\phi}} \left[ \log \frac{p(\boldsymbol{Y}^r, \boldsymbol{Y}^a, \boldsymbol{Z} \mid \boldsymbol{X}^q)}{p(\boldsymbol{Z} \mid \boldsymbol{X}^q, \boldsymbol{Y}^r, \boldsymbol{Y}^a)} \right] \\ &= \mathbb{E}_{q_{\phi}} \left[ \log \frac{p(\boldsymbol{Y}^r, \boldsymbol{Y}^a, \boldsymbol{Z} \mid \boldsymbol{X}^q)}{q_{\phi}(\boldsymbol{Z} \mid \boldsymbol{X}^q, \boldsymbol{Y}^r, \boldsymbol{Y}^a)} \cdot \frac{q_{\phi}(\boldsymbol{Z} \mid \boldsymbol{X}^q, \boldsymbol{Y}^r, \boldsymbol{Y}^a)}{p(\boldsymbol{Z} \mid \boldsymbol{X}^q, \boldsymbol{Y}^r, \boldsymbol{Y}^a)} \right] \\ &= \mathcal{L}_{\text{ELBO}} + D_{\text{KL}} \left( q_{\phi}(\boldsymbol{Z} \mid \boldsymbol{X}^q, \boldsymbol{Y}^r, \boldsymbol{Y}^a) \parallel p(\boldsymbol{Z} \mid \boldsymbol{X}^q, \boldsymbol{Y}^r, \boldsymbol{Y}^a) \right) . \end{split}$$

Since the KL divergence is non-negative, we have  $\log p(Y^r, Y^a \mid X^q) \ge \mathcal{L}_{\text{ELBO}}$ , with equality if and only if  $q_{\phi}(Z \mid X^q, Y^r, Y^a) = p(Z \mid X^q, Y^r, Y^a)$ .

### A.2 PROOF OF THEOREM 2: VARICOT OBJECTIVE DECOMPOSITION

*Proof.* Starting from the ELBO expression in Theorem 1:

$$\mathcal{L}_{\text{ELBO}} = \mathbb{E}_{q_{\phi}} \left[ \log \frac{p(Y^r, Y^a, Z \mid X^q)}{q_{\phi}(Z \mid X^q, Y^r, Y^a)} \right],$$

we substitute the joint distribution from Propositon 2.3:

$$\mathcal{L}_{\text{ELBO}} = \mathbb{E}_{q_{\phi}} \left[ \log \frac{p_{\psi}(Y^r \mid X^q, Z) \cdot p_{\rho}(Y^a \mid X^q, Z) \cdot p_{\theta}(Z \mid X^q)}{q_{\phi}(Z \mid X^q, Y^r, Y^a)} \right]$$

$$= \mathbb{E}_{q_{\phi}} \left[ \log p_{\psi}(Y^r \mid X^q, Z) + \log p_{\rho}(Y^a \mid X^q, Z) + \log p_{\theta}(Z \mid X^q) - \log q_{\phi}(Z \mid X^q, Y^r, Y^a) \right].$$

By linearity of expectation:

$$\begin{split} \mathcal{L}_{\text{ELBO}} = & \mathbb{E}_{q_{\phi}} \left[ \log p_{\psi}(\boldsymbol{Y}^r \mid \boldsymbol{X}^q, \boldsymbol{Z}) \right] + \mathbb{E}_{q_{\phi}} \left[ \log p_{\rho}(\boldsymbol{Y}^a \mid \boldsymbol{X}^q, \boldsymbol{Z}) \right] \\ & + \mathbb{E}_{q_{\phi}} \left[ \log \frac{p_{\theta}(\boldsymbol{Z} \mid \boldsymbol{X}^q)}{q_{\phi}(\boldsymbol{Z} \mid \boldsymbol{X}^q, \boldsymbol{Y}^r, \boldsymbol{Y}^a)} \right]. \end{split}$$

The third term can be rewritten as a KL divergence:

$$\mathbb{E}_{q_{\phi}}\left[\log\frac{p_{\theta}(Z\mid X^{q})}{q_{\phi}(Z\mid X^{q}, Y^{r}, Y^{a})}\right] = -D_{\mathrm{KL}}\left(q_{\phi}(Z\mid X^{q}, Y^{r}, Y^{a}) \parallel p_{\theta}(Z\mid X^{q})\right).$$

Thus, we obtain the final decomposition:

$$\mathcal{L}_{\text{ELBO}} = \mathbb{E}_{q_{\phi}} \left[ \log p_{\psi}(Y^r \mid X^q, Z) \right] + \mathbb{E}_{q_{\phi}} \left[ \log p_{\rho}(Y^a \mid X^q, Z) \right]$$
$$- D_{\text{KL}} \left( q_{\phi}(Z \mid X^q, Y^r, Y^a) \parallel p_{\theta}(Z \mid X^q) \right).$$

 The introduction of the  $\beta$  coefficient follows the  $\beta$ -VAE framework to control the strength of the KL regularization term, giving us the final objective:

$$\begin{split} \mathcal{L}_{\text{ELBO}} = & \underbrace{\mathbb{E}_{q_{\phi}} \left[ \log p_{\psi}(Y^r \mid X^q, Z) \right]}_{\mathcal{L}_{\text{reasoning}}} + \underbrace{\mathbb{E}_{q_{\phi}} \left[ \log p_{\rho}(Y^a \mid X^q, Z) \right]}_{\mathcal{L}_{\text{answer}}} \\ & - \underbrace{\beta \cdot D_{\text{KL}} \left( q_{\phi}(Z \mid X^q, Y^r, Y^a) \parallel p_{\theta}(Z \mid X^q) \right)}_{\mathcal{L}_{\text{KL}}}. \end{split}$$

### A.3 STRATEGIC CONTROL TOKENS AND END-TO-END TRAINING PROTOCOL

To ensure full reproducibility and clarity, we detail the complete token-level specification of variCoT's control mechanism, including exact input formats for all components and the inference procedure.

**Control Token Specification** We define four functionally specialized control tokens that orchestrate variational inference within a single Transformer pass. All components share the same set of parameters, and gradients flow end-to-end through the entire sequence.

The approximate posterior is inferred from the hidden state at <posterior>, conditioned on both the ground-truth reasoning chain  $Y^r$  and final answer  $Y^a$ . During training, Z is sampled from this posterior.

The <latent> token sequence serves as a placeholder that triggers the latent injection mechanism; its embeddings are unused—the actual latent vectors **Z** are provided externally via cross-attention (Section 3.2).

**Training Protocol** During training, we construct a single concatenated sequence:

```
 X^q  <cot> Y^r <eos> <answer> Y^a <eos> <posterior> <latent> Z_1, \ldots, Z_K </latent>
```

The model first processes the context up to <posterior> to infer  $q_{\phi}(Z \mid X^q, Y^r, Y^a)$ , samples Z, and then uses this Z to condition the subsequent generation of  $Y^r$  and  $Y^a$ . The entire sequence is trained with standard autoregressive language modeling loss, enabling end-to-end optimization.

Both generations are fully autoregressive and leverage the same latent state Z, enabling coherent, uncertainty-aware predictions.

This unified design eliminates the need for external encoders, distillation teachers, or non-autoregressive memory modules, while preserving full compatibility with standard transformer-based language models.

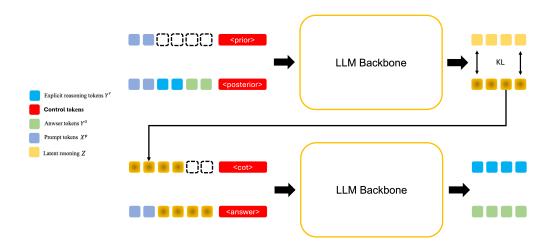


Figure 4: Training data flow in variCoT. Control tokens (<prior>, <posterior>, <cot>, <answer>) condition distinct probabilistic operations within a single forward pass. The latent variable Z is sampled from the posterior and routed to decoders via the <latent> token sequence. Parameter sharing enables end-to-end gradient flow.

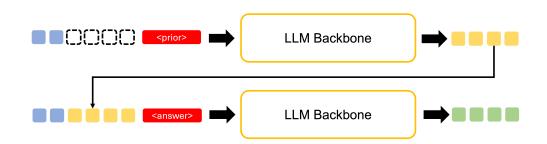


Figure 5: Inference in variCoT. The prior network samples Z from  $p_{\theta}(Z \mid X^q)$ . The same latent state is then used to generate  $Y^r$  and  $Y^a$  sequentially. No ground-truth reasoning traces are required.

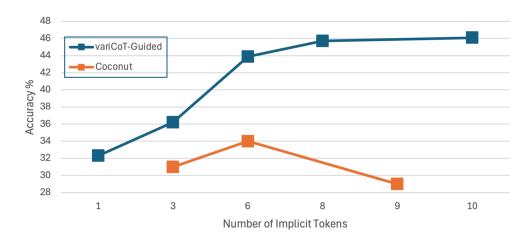


Figure 6: The impact of different numbers of implicit reasoning embeddings and different lambda settings on performance under the GSM8K-Aug dataset, with GPT-2 Small as the base model.

### A.4 More Experiment Results

### A.5 EXPLICIT REASONING RECONSTRUCTION VISUALIZATION

# Example 1 Question: Josh decides to try flipping a house. He buys a house for \$80,000 and then puts in \$50,000 in repairs. This increased the value of the house by 150%. How much profit did he make? Original Reasoning: <<80000+50000=130000>> <<80000\*1.5=120000>> <<120000+80000=200000>> <<200000-130000=70000>> Reversible Latent Decoder Output: <<80000+50000=130000>> <<150%\*80000=120000>> <<80000+120000=200000>> <<200000-130000=70000>> Example 2 Question: Janet's ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes muffins for her friends

Janet's ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes muffins for her friends every day with four. She sells the remainder at the farmers' market daily for \$2 per fresh duck egg. How much in dollars does she make every day at the farmers' market?

### **Original Reasoning:**

Janet sells 16 - 3 - 4 = 9 duck eggs a day. She makes 9 \* 2 = \$18 every day at the farmer\u2019s market.

### **Reversible Latent Decoder Output:**

Janet has 16 eggs daily, leaving 16 - 7 = 9 eggs to sell. At \$2 per egg, she earns  $9 \times $2 = $18$ .

Figure 7: Reconstructed performance of implicit reasoning.

How to interpret implicit reasoning has been a key challenge in this direction, especially for scenarios that require explicit reasoning generation, such as mathematical proofs, logical attributions, etc. Although pure implicit reasoning can achieve efficiency improvements, it cannot effectively obtain explicit reasoning processes. Thanks to the *Reversible Latent Decoder*, our proposed variCoT can directly reconstruct explicit reasoning based on implicit reasoning, which offers better interpretability compared to other implicit reasoning methods. As shown in Fig. 7, implicit reasoning embeddings can be directly reconstructed into explicit reasoning by the *Reversible Latent Decoder*, and can also support the generation of final answers in terms of thought paths, which more intuitively demonstrates the superiority of our proposed method.

### A.6 TRAINING AND INFERENCE ALGORITHMS

```
812
813
814
815
816
817
           Algorithm 1 variCoT Training Procedure
818
            Require: Dataset \mathcal{D} = \{(X^q, Y^r, Y^a)\}, model parameters \theta, \phi, \psi, \rho
819
             1: while not converged do
820
                      Sample batch (X^q, Y^r, Y^a) \sim \mathcal{D}
             2:
821
                      Construct input sequence: S = [X^q, < cot>, Y^r, < eos>, < answer>, Y^a, < eos>, < posterior>]
             3:
822
             4:
                      Compute hidden states: \mathbf{H} = \text{Transformer}(S)
823
             5:
                      Extract posterior parameters from \mathbf{h}_{\langle posterior \rangle}: \mu_{\phi}, \sigma_{\phi}
824
             6:
                      Sample latent: Z \sim \mathcal{N}(\mu_{\phi}, \sigma_{\phi}^2)
825
                      Construct decoding sequence: S_{\text{dec}} = [X^q, < \text{latent}>, Z, < \text{cot}>]
             7:
826
             8:
                      Compute reasoning loss: \mathcal{L}_{\text{reasoning}} = -\log p_{\psi}(Y^r \mid X^q, Z)
                      Construct answer sequence: S_{ans} = [X^q, < latent>, Z, < answer>]
827
             9:
                      Compute answer loss: \mathcal{L}_{answer} = -\log p_{\rho}(Y^a \mid X^q, Z)
828
            10:
                      Compute KL divergence: \mathcal{L}_{\text{KL}} = D_{\text{KL}}(q_{\phi}(Z \mid X^q, Y^r, Y^a) || p_{\theta}(Z \mid X^q))
            11:
829
            12:
                      Total loss: \mathcal{L} = \mathcal{L}_{\text{reasoning}} + \mathcal{L}_{\text{answer}} + \beta \mathcal{L}_{\text{KL}}
830
                      Update parameters via gradient descent: \nabla_{\theta} \mathcal{L}
            13:
831
            14: end while
832
```

### Algorithm 2 variCoT Inference Procedure

**Require:** Input question  $X^q$ , trained model parameters  $\theta, \rho$ 

1: Construct prior sequence:  $S_{prior} = [X^q, <prior>]$ 

```
2: Compute hidden states: \mathbf{H} = \operatorname{Transformer}(S_{\operatorname{prior}})
3: Extract prior parameters from \mathbf{h}_{\operatorname{<prior}}: \mu_{\theta}, \sigma_{\theta}
4: Sample latent: Z \sim \mathcal{N}(\mu_{\theta}, \sigma_{\theta}^2)
5: Construct answer sequence: S_{\operatorname{ans}} = [X^q, \operatorname{<latent>}, Z, \operatorname{<answer>}]
6: Generate answer autoregressively: Y^a \sim p_{\rho}(\cdot \mid X^q, Z)
7: Optional: Generate reasoning chain: Y^r \sim p_{\psi}(\cdot \mid X^q, Z)
Ensure: Final answer Y^a (and optional reasoning chain Y^r)
```