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ABSTRACT

Vision Language Models (VLMs) show impressive capabilities in integrating and
reasoning with both visual and language data. But these models make mistakes. A
common finding – similar to LLMs – is their tendency to hallucinate, i.e., generate
plausible sounding text which is not grounded in the visual input, or at worst, is
contradictory. A growing consensus attributes this behavior to an over-reliance on
language – especially as the generation progresses, the model suffers from a “fading
memory effect” with respect to the provided visual input. We study mechanisms
by which this behavior can be controlled. Specifically, using ideas from geometric
algebra and relational compositions, we propose the addition of a small, trainable
module (named ReCo) on top of any VLM – no other modification is needed. We
show that such a lightweight module is able to mitigate the fading memory effect
on three of the most widely used VLMs (InstructBLIP, LlaVA, MiniGPT4), where
we see performance improvements on multiple benchmarks. Additionally, we show
that our module can be combined with many of the other approaches for reducing
hallucination where we achieve improved results for each one.

1 INTRODUCTION

Figure 1: InstructBLIP before and after ReCo. We
propose a small module that, with minimal training,
it is able to effectively reduce the hallucination rate
of widely used VLMs.

Given the advances in the capabilities of Large Lan-
guage Models (LLMs), recent efforts have sought to
extend these models to the multi-modality setting, i.e.,
processing and “understanding” additional modalities
beyond text such as audio, images, and videos Dai
et al. (2023); Liu et al. (2023); Chu et al. (2023);
Fathullah et al. (2024); Zhang et al. (2023). To this
end, one milestone is the development of Vision Lan-
guage Models (VLMs) that can accept both images
and natural language as input, and generate contextu-
ally meaningful outputs for tasks, including visual
question answering and image captioning. Some
prominent models are InstructBLIP Dai et al. (2023),
MiniGPT4 Zhu et al. (2023); Chen et al. (2023) and
Llava Liu et al. (2023; 2024b), that show strong im-
age+text understanding skills. However, we know
that VLMs piggyback heavily on the core capabilities
of the parent LLM to which the visual representations
have been aligned. This endows sizable compute benefits – InstructBLIP Dai et al. (2023) costs about
500 GPU hours, while Llama Touvron et al. (2023) (the parent LLM), needed 180000 GPU hours.
But this VLM/LLM dependence means that VLMs also inherit known weaknesses of LLMs and
sometimes, these weaknesses can be magnified. One example is hallucination, i.e., generating text
that is plausible but does not accurately reflect the provided input. More than a handful of results in
the literature show that in many cases, a VLM appears to ignore the image and generates a description
that is not influenced much at all by this extra visual input Favero et al. (2024); Leng et al. (2024); Woo
et al. (2024), although this is an extreme case of hallucination. We show an example in Figure 1 where
InstructBLIP Dai et al. (2023) “sees” multiple cars and trucks, although we only see an ambulance.
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Figure 2: The “fading memory effect”. Top:
First-layer attention of the visual and textual in-
put as the generation progresses. Bottom: The
effect of the visual input on the logits distribu-
tion. We calculate the next token prediction with
and without the visual input, and we compute
the distributional difference. After the first to-
kens, the next token can be predicted just from
the previously generated text.

Available mitigation mechanisms? Mitigation mech-
anisms for the foregoing problem can be classified into
two categories: (i) training-based methods, where the
VLM is finetuned with different loss functions and/or
using more suitable datasets Rafailov et al. (2023); Zhao
et al. (2023); Yu et al. (2024); Jiang et al. (2024); and
(ii) rule-based methods, where the VLM remains frozen
but a new/improved generation process must be adopted.
Some proposals treat the model as a black box with-
out any access to its attention maps and its parameters
Favero et al. (2024); Leng et al. (2024), whereas others
use them to steer the model’s generation process Huang
et al. (2024); Woo et al. (2024); Liu et al. (2024c).
Why do VLMs hallucinate? The literature suggests
that VLMs over-rely on language priors, gradually “for-
getting” the visual input as text generation progresses
Favero et al. (2024); Woo et al. (2024); Huang et al. (2024); Jiang et al. (2024); Leng et al. (2024).
If next-token generation implicitly probes an internal conditional probability distribution, (⋅|◑),
conditioned on both text 𝑇𝑡 and image 𝐼 with the right balance ◑, the image’s role progressively
diminishes to (⋅|◔) and eventually to (⋅|⚪), an effect Favero et al. (2024) calls the “fading mem-
ory effect”. We further probe this behavior: in Figure 2 (top), the total attention on visual tokens
drops significantly during generation, showing that the model increasingly relies on the language
prior. In Figure 2 (bottom), following Favero et al. (2024), we compute the difference in the logits
distribution with and without the image. If 𝑇𝑡 is the text generated so far and 𝐼 is the visual input,
we calculate the difference between (𝑦𝑡+1|𝑇𝑡, 𝐼) and (𝑦𝑡+1|𝑇𝑡), where 𝑦𝑡+1 denotes the next-token
prediction. Using the Hellinger distance, this difference drops to almost 0 after the first 40 tokens,
indicating that the image has negligible influence on subsequent tokens. Even in newer, stronger
models (e.g., Qwen2.5-VL Wang et al. (2024); Qwen (2025)), the same behavior is apparent, despite
all the improvements in the visual encoder, the number of image tokens, as well as the degree of
fine-tuning (see Appendix A).

Figure 3: VLM: ideal versus practice. On the
left, we show what actually happens, where at each
timestep the image’s influence (𝐼) in orange is di-
minished compared to the text (𝑇𝑡) in blue. So, the
generated text is not an accurate representation of
the visual input. An ideal VLM (right side) would
form an object (𝐵𝑡) that perfectly encapsulates all
of the given input, leading to accurate generation.

The desired behavior. A potential mitigation strat-
egy involves a proper composition of both visual and
textual embeddings, without overhauling the entire
VLM architecture. If a VLM estimates the probability
distribution(𝑦𝑡+1|𝐵𝑡), where𝐵𝑡 (shown as◑ above)
encapsulates all necessary information for the next
token, then 𝐵𝑡 should combine (or compose) both 𝑇𝑡and 𝐼 , remaining sensitive to changes in either input
for all 𝑡. In practice, this does not always occur, so
we must intervene and carefully design 𝐵𝑡 to ensure
that neither input “gets lost” (Figure 3).
Compositionality and Geometric Algebra. Both
(i) compositional learning and (ii) geometric alge-
bra are mature research areas Nagarajan & Grau-
man (2018); Aragón-González et al. (2001); Chisolm
(2012) that inform our approach. Compositionality
refers to building complex expressions from the mean-
ing of their constituents and combination rules. It is
central to visual understanding tasks such as recog-
nizing attribute-object combinations (e.g., “spotted
giraffe” Naeem et al. (2021); Mancini et al. (2021)),
understanding object interactions (e.g., “person hold-
ing umbrella” Krishna et al. (2017)), identifying transformations (e.g., “broken glass” Misra et al.
(2017)), and parsing complex scenes Yi et al. (2018). While composition is rarely a standalone
solution, it is useful for interpretability and semantic validation Chytas et al. (2024); Ganesan et al.
(2021). Geometric algebra unifies concepts like complex numbers, quaternions, and vector algebra
to express geometric relationships and transformations. Originally applied in physics, its ability to
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manipulate geometric objects via operations like the geometric product (capturing inner and outer
products) is now used in graphics Gunn & De Keninck (2019) and, more recently, machine learning
Brehmer et al. (2023); Ruhe et al. (2023).
Contributions. This paper provides mitigation strategies for the fading memory effect by leveraging
the compositional concepts above. We propose ReCo, a lightweight module which is data-driven but
treats the VLM as a black box, combining the best of both worlds. ReCo can be easily deployed on
top of any VLM during/after training and, with minimal effort, improves their hallucination behavior.
We achieve promising improvements on three widely used VLMs across multiple benchmarks and
datasets. Despite the small size/compute footprint, we get a performance boost without any increase
in the inference time of the VLMs. Furthermore, ReCo can be combined with virtually any of the
rule-based methods without any modifications.

2 PRELIMINARIES: GEOMETRIC ALGEBRA

Geometric (or Clifford) Algebra (GA), an extension of linear algebra, deals with a ring , i.e., a set of
elements  accompanied by two operations: ⊕ and ⊗ Aragón-González et al. (2001); Chisolm (2012).
The elements of GA (i.e., the elements of ) are also vectors –  contains scalars (or 0-vectors),
“typical” vectors (or 1-vectors) as well as 2-vectors, 3-vectors, and so on. The subset of  that contains
all 𝑘-vectors is usually denoted as 𝑘.
Multi-vectors. A 𝑘-vector can be defined as the geometric product of 𝑘 orthogonal 1-vectors, i.e., if
{𝐯1,⋯ , 𝐯𝑘} ∈ 1 and 𝐯𝑖 ⟂ 𝐯𝑗 , ∀𝑖 ≠ 𝑗 ∈ [𝑘] × [𝑘], then

𝐯1 ⊗⋯⊗ 𝐯𝑘 = 𝐯(𝑘) ∈ 𝑘 (1)
Alternatively, each 𝑘-vector can be defined as the “wedge” (∧) product of 𝑘 1-vectors, where the
wedge product is:

𝐯1 ∧⋯ ∧ 𝐯𝑘 =
1
𝑘!

⨁

𝜎
sign(𝜎)⊗ 𝐯𝜎(1) ⊗⋯⊗ 𝐯𝜎(𝑘), (2)

where 𝜎 denotes a permutation from the symmetric group. The sign is +1 (or −1) for even (or odd)
permutations and the following equivalence holds:

𝐯1 ⊗⋯⊗ 𝐯𝑘 = 𝐯1 ∧⋯ ∧ 𝐯𝑘 ⇔ 𝐯1 ⟂ ⋯ ⟂ 𝐯𝑘 (3)

Geometric operations. A 2-vector represents a plane, a 3-vector a 3D object, and so on—unlike the
inner product, which reduces vectors to a scalar with no recovery of inputs. The geometric product
resembles and generalizes the outer product. These GA operations and multi-vectors motivate our
instantiation: a systematic method to fuse or compose vectors beyond the common weighted averaging
used in most architectures – this is the relevance to our “reminder composition”. Wattenberg & Viégas
(2024); Vaswani et al. (2017); Gholamalinezhad & Khosravi (2020).
Practical implementations and limitations. While GA gives us the necessary axioms/properties, it
does not provide a specific, practical instantiation. In general, a correct (but efficient) implementation
in low dimensions (≤ 6) requires intensive effort, see De Keninck (2024). In general, since we deal
with vectors, the typical choice would be the tensor product, which is infeasible for high dimensional
vectors or multi-products (exponential memory), see Gunn & De Keninck (2019), where quaternions
are used for a computer graphics use case. We shift our focus to ideas that can scale while preserving,
to the extent possible, the general framework of GA.
Vector Symbolic Architectures. Wattenberg & Viégas (2024) recently introduced ways to combine
vectors beyond linear combinations. Earlier works Plate (1995); Gosmann & Eliasmith (2019)
formalized this under Vector Symbolic Architectures (VSA), named for their use of high-dimensional
vectors and operations (⊗, ⊕) resembling bind and bundle in symbolic and connectionist AI Thomason
(2009); Fodor & Pylyshyn (1988); Smolensky (1990); Touretzky & Hinton (1985). For a detailed
overview, see Schlegel et al. (2022). Recent works Wolff et al. (2018) describe how these these ideas
are linked to physics. This allows us to adopt these operations directly for our application.
Relevance of these concepts. Our main hypothesis is that the fading memory effect can be mitigated
through a composition of the textual and visual information. The logical question then is how this
composition can be designed, say, first conceptually and then for practical use. Theoretically, GA
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provides us a structured framework for composition problems, enabling the integration of modalities
such as image and text, without the need of ad-hoc solutions. Practically, VSA offers efficient
implementations with favorable computational complexity, memory usage, and noise tolerance while
preserving GA’s properties.

3 REMINDER COMPOSITION (RECO)
Overview. We mitigate the fading memory effect by computing 𝐵𝑡 as an explicit composition of 𝑇𝑡and 𝐼 (Figure 3). If 𝐵𝑡 is designed as an (almost) lossless multi-vector of the generated text and input
image, performance improves. Our approach explicitly forms this multi-vector of text and image
information before decoding to the token space.

Figure 4: ReCo overview. The VLM is treated as
a black box, modifying the next-token embedding by
combining the multi-vector of visual tokens and the cur-
rent token prediction. First, we bundle the image tokens
[𝐼𝑗]𝑚𝑗=1 into a single vector 𝐼 , then bind it with 𝑇𝑡 to form
𝐵𝑡, ensuring the image’s influence. Finally, the frozen
prediction head 𝑓 outputs the next token 𝑤𝑡.

Let [𝑇𝑡]𝑁𝑡=1 be the VLM’s predicted embeddings
for each one of the 𝑁 generated tokens which
are then fed into the LLM head (𝑓 ) to form the
next token [𝑤𝑡]𝑁𝑡=1. 𝑇𝑡 corresponds to the hidden
state of the LLM at the step 𝑡 (usually denoted as
𝐡𝑡 but we use 𝑇 here to mnemonically suggest
“text”). Additionally, let [𝐼𝑗]𝑀𝑗=1 be the 𝑀 output
embeddings that correspond to the 𝑀 image
embeddings that are fed to the VLM. An ideal
VLM should closely capture the composition:

𝑇𝑡 = 𝑔

(

𝑇𝑡−1 ⊗
( 𝑀
⨁

𝑗=1
𝐼𝑗

)

⊗ 𝐩𝑡

)

(4)

which states that the next token depends on the
previous one composed with all of the provided
image information, with 𝑔 denoting a learnable
transformation of the multi-vector and 𝐩𝑖 denot-
ing some extra optional information about the
index of the current token. The next token corre-
sponds to 𝑤𝑡 = 𝑓 (𝑇𝑡) but now the image effect,
by design, cannot be neglected. Notice that (4)
simply re-formulates what we have already ob-
served about 𝑝(𝑦𝑡+1|𝑇𝑡, 𝐼) and 𝑝(𝑦𝑡+1|𝑇𝑡) in Figure 3, showing how 𝐵𝑡 should actually behave in
theory:

𝐵𝑡 = 𝑔
(

𝑇𝑡−1 ⊗
( 𝑀
⨁

𝑗=1
𝐼𝑗
)

⊗ 𝐩𝑡

)

→ 𝑤𝑡 = 𝑓 (𝐵𝑡) ∝ 
(

𝑦𝑡+1|𝐵𝑡
) (5)

Therefore, we propose to explicitly modify the VLM’s output so that it corresponds to the composition
as described in (4). Based on Wattenberg & Viégas (2024), we define the geometric product as the
Matrix Binder operation, allowing us to mitigate the fading memory problem by adding only a small
trainable layer on top of a frozen, black-box VLM as:

𝐵𝑡 = 𝑊𝑇𝑇𝑡 +𝑊𝐼

(

𝑀
⨁

𝑗=1
𝐼𝑗

)

(6)

The modifications in any VLM’s codebase consist of the addition of only two extra lines of code
without any other changes to the model’s “internals” (see Figure 5).
Many composition rules have been proposed in the literature but our choice above was driven by two
reasons:
(a) The matrices𝑊𝑇 ,𝑊𝑖 can be trained alongside the VLM, allowing our modification to be integrated
into any model without altering the training process while, at the same time, leveraging the explicit
composition rule during inference and generation.
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Figure 6: POPE Li et al. (2023) results on MiniGPT4 Zhu et al. (2023). The unmodified version is often unable
to comprehend the question and outputs an unrelated answer that does no contain either “Yes” or “No”. On the
contrary, ReCo provides the model the ability to answer such questions.
(b) Our modified VLM extends the original model. Setting 𝑊𝑇 = 𝐼 and 𝑊𝐼 = 0 restores the original
VLM, making the modified solution space a strict superset. Thus, using ReCo in training retains all
original capabilities while potentially improving hallucination mitigation.
We should note that our formulation depends on a specified composition strategy. We used one which
is mathematically sound but also efficient, but the operations can be upgraded.

Figure 5: ReCo in practice. No access to the
LLM is required and the only change is the
modification of the prediction head with the
addition of a “preprocessing” step.

VLM is a black-box. Notice that (6) and the correspond-
ing code (Figure 5) involves only the output layer of the
VLM. This means that, in practice, no access to the model
is needed. The output embeddings of the model can be
calculated offline, and then we train only the few extra pa-
rameters of ReCo in a matter of minutes on any commodity
GPU, without even needing to load the entire VLM in mem-
ory and performing multiple inference passes through it.
This allows us to benefit from additional training data and
more suitable training tactics (similar to fine-tuning ap-
proaches, e.g., Zhao et al. (2023)) while treating the VLM
as a frozen black box (akin to decoding strategies, e.g., Woo et al. (2024); Favero et al. (2024)). A
comparison with existing solutions is in the appendix.

4 EXPERIMENTS
Before diving into the technical details and comprehensive analysis,, we highlight some of our main
findings which we will analyze in detail shortly. These results offer a high-level overview of the most
significant outcomes of our work, which will be examined and discussed in depth below.
(a) ReCo leads to noticeable improvements across all of the VLMs we evaluated. In every case, it
effectively reduces the rate of hallucinations, demonstrating its robustness and general applicability.
(b) ReCo works seamlessly with other methods for reducing hallucinations, making it easy to inte-
grate into different systems. Further, when combined with other approaches, it leads to even better
performance, showing that the benefits of ReCo and other techniques can complement each other.
(c) ReCo enables the model to effectively “recover” from an initial hallucination, distinguishing
it from baseline VLMs which often persist in elaborating on hallucinated content. This ability to
self-correct contributes to more coherent and accurate model outputs.
(d) Our quantitative and qualitative analyses show that ReCo goes beyond just fixing object-related
hallucinations. It also helps correct mistakes related to the overall structure of the image and the
specific attributes or features of the objects themselves.

4.1 EXPERIMENTAL SETUP

Datasets and Training. We use the same training procedure across all experiments, training ReCo
with HA-DPO Zhao et al. (2023) while keeping the rest of the model frozen, unlike native HA-DPO,
which finetunes the entire VLM. The dataset consists of quadruples (𝐼 , 𝑃 , 𝐶 , 𝑅), where 𝐼 is the
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Table 1: CHAIR Rohrbach et al. (2018) results for both InstructBLIP Dai et al. (2023) and MiniGPT4 Zhu et al.
(2023). Original stands for the unmodified VLM, while VCD Leng et al. (2024), M3ID Favero et al. (2024), and
AvisC Woo et al. (2024) are the three baselines we consider. In all four models, the addition of ReCo improves
significantly the performance as the generation progresses, reducing CHAIRs as much as 44% and CHAIRi 30%,
with 32, 64, 128, 256, 512, and 1024 standing for the maximum allowed number of generated tokens.

Model CHAIRs(↓) CHAIRi(↓) Avg length
32 64 128 256 512 1024 32 64 128 256 512 1024

Ins
tru

ctB
LIP

Original 8.6 22.0 37.4 37.2 37.2 37.2 4.8 8.3 11.8 12.2 12.2 12.2 456
+ReCo +0.8 +0.2 -7.0 -8.8 -8.8 -8.8 +0.5 +0.3 -1.1 -1.6 -1.6 -1.6 350
VCD 9.6 19.2 37.6 36.0 36.0 36.0 5.0 6.7 11.2 11.4 11.4 11.4 427
+ReCo -1.0 -0.8 -8.6 -8.6 -8.6 -8.6 -0.5 +0.5 -1.5 -2.8 -2.8 -2.8 329
M3ID 8.6 22.2 31.2 32.8 32.8 32.8 3.9 7.1 9.7 9.6 9.6 9.6 410
+ReCo -2.0 -2.6 -5.8 -7.4 -7.4 -7.4 -0.8 -0.7 -1.3 -1.2 -1.2 -1.2 294
AvisC 8.2 17.6 32.2 33.0 33.0 33.0 4.2 6.4 9.3 9.1 9.1 9.1 408
+ReCo -2.2 +0.2 -9.2 -8.8 -8.8 -8.8 -1.5 -0.4 -2.2 -1.4 -1.4 -1.4 311

Mi
niG

PT
4

Original 9.6 19.4 31.4 36.2 37.6 37.6 4.9 7.5 9.9 11.7 12.8 13.4 374
+ReCo +2.6 +2.2 -2.8 -4.6 -5.4 -4.8 +1.1 +1.3 -0.4 -1.5 -2.6 -3.2 307
VCD 10.0 20.8 31.0 35.8 36.6 36.6 5.1 8.5 10.5 12.1 13.0 13.5 336
+ReCo +0.8 -2.2 -7.6 -9.6 -8.8 -8.4 +0.1 -0.4 -0.7 -1.2 -1.5 -1.9 249
M3ID 9.4 22.2 39.2 48.5 49.5 49.5 4.6 9.1 12.3 15.5 15.9 16.0 372
+ReCo +2.6 +3.2 -2.2 -9.1 -9.9 -9.9 +1.0 +0.6 +0.2 -1.4 -1.6 -1.7 380
AvisC 10.8 20.8 30.8 41.4 46.4 48.2 5.2 7.9 10.1 12.1 14.6 16.0 277
+ReCo -1.8 +4.4 -8.6 -17.2 -20.8 -22.2 -0.4 -1.1 -2.1 -3.1 -4.5 -5.1 220

image, 𝑃 is its associated prompt or question, and 𝐶 and 𝑅 are the Chosen and Rejected answers for
the Direct Preference Optimization Rafailov et al. (2023). The images are a small subset of Visual
Genome Krishna et al. (2017) (only 1853 in total), with 𝐶 and 𝑅 generated using GPT-4 through a
three-stage process Zhao et al. (2023).
Evaluation. To systematically evaluate ReCo, we use five benchmarks: CHAIR Rohrbach et al.
(2018), POPE Li et al. (2023), AMBER Wang et al. (2023), HallusionBench Guan et al. (2024), and
MME Fu et al. (2023).(a) POPE asks binary existence questions like “Is there a ⟨object⟩ in the image?”.
(b) CHAIR measures hallucination rates in image captioning. (c) AMBER assesses both discriminative
and generative capabilities with binary and open-ended questions such as “Is the umbrella open?”
and “Describe the image.”. (d) HallusionBench and MME test various discriminative questions,
evaluating accuracy and accuracy+ (see appendix). CHAIR Rohrbach et al. (2018) and AMBER
Wang et al. (2023) use MSCoco Lin et al. (2014), while POPE Li et al. (2023) is based on MSCoco,
A-OKVQA Schwenk et al. (2022), and GQA Hudson & Manning (2019).
Baselines. Beyond comparing with unmodified VLMs (InstructBLIP Dai et al. (2023), MiniGPT4
Zhu et al. (2023), and LlaVA Liu et al. (2023)), we evaluate three recent hallucination mitigation
methods: M3ID Favero et al. (2024), VCD Leng et al. (2024), and AvisC Woo et al. (2024). We
report their performance before and after integration with ReCo to assess complementarity. Due to
space constraints and the similar performance of InstructBLIP and LlaVA, detailed LlaVA results are
provided in the appendix.

4.2 RESULTS

Our extensive experiments show that ReCo can be deployed easily with any VLM and works well
across multiple benchmarks. Additionally, it can be combined efficiently with other methods to
strengthen the results further. Below, we analyze the results on each benchmark separately.
4.2.1 CHAIR: EXPERIMENTAL EVALUATIONS
We prompt the model with “Describe the image.”, without providing any additional information about
the length of the description (e.g., “Provide a short description of the image”). In table 1 (and Tab. 4
in the appendix), we present the improvement we achieve for both CHAIRs and CHAIRi metrics as
we increase the length of the generated response.
ReCo helps – reducing CHAIRs by up to 44% and CHAIRi by 30%. While baselines sometimes
perform better with fewer tokens, this is often due to extra characters before the actual text, affecting
the effective output length. The key trend is that as token count increases, ReCo consistently improves
both metrics significantly.
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Table 2: POPE Li et al. (2023) results for MSCoco Lin et al. (2014) and A-OKVQA Schwenk et al. (2022).
In all cases, ReCo provides a significant performance boost to all the methods (where Original stands for the
unmodified VLM).

MSCoco Lin et al. (2014) A-OKVQA Schwenk et al. (2022)
Model Random Popular Adversarial Random Popular Adversarial

Acc (↑) F1 (↑) Acc (↑) F1 (↑) Acc (↑) F1 (↑) Acc (↑) F1 (↑) Acc (↑) F1 (↑) Acc (↑) F1 (↑)

Ins
tru

ctB
LIP

Original 82.8% 82.8% 77.6% 79.3% 74.6% 76.8% 80.6% 82.0% 73.9% 77.4% 67.8% 73.3%
+ReCo +1.3% +0.3% +1.5% -0.6% +2.8% +0.5% +3.4% +0.5% +6.9% +2.2% +8.1% +2.1%
VCD 83.2% 83.2% 77.6% 78.9% 75.8% 77.5% 82.0% 83.2% 74.9% 77.9% 69.7% 74.6%
+ReCo +1.6% +0.2% +2.9% +0.8% +3.6% +1.3% +3.2% +0.3% +8.0% +3.7% +7.1% +1.7%
M3ID 84.1% 84.2% 77.9% 79.3% 75.0% 77.2% 82.7% 83.8% 75.9% 78.7% 67.9% 73.6%
+ReCo +1.1% -0.3% +3.0% +0.9% +4.9% +1.3% +3.1% +0.4% +6.8% +2.5% +9.2% +3.1%
AvisC 88.3% 87.8% 81.9% 82.3% 79.5% 80.3% 86.2% 86.7% 80.4% 82.1% 71.5% 75.8%
+ReCo -0.9% -1.2% +1.7% +0.7% +2.2% +1.2% +1.1% -0.6% +3.0% +0.5% +5.5% +1.6%

Mi
niG

PT
4

Original 55.9% 36.1% 53.3% 34.8% 53.4% 34.8% 55.3% 36.6% 55.7% 33.0% 55.3% 32.8%
+ReCo +2.0% +13.9% +3.1% +14.3% +2.2% +9.8% +6.8% +7.4% +6.1% +10.8% +3.7% +9.2%
VCD 58.3% 44.1% 55.6% 42.5% 55.3% 42.4% 60.9% 48.9% 57.2% 46.6% 56.6% 47.0%
+ReCo +0.9% +5.7% +2.0% +6.3% +1.7% +6.1% +0.1% -2.0% +2.6% -0.3% +1.3% -1.1%
M3ID 57.6% 41.7% 55.0% 40.3% 54.3% 39.9% 59.5% 38.9% 56.1% 37.0% 56.0% 36.9%
+ReCo +0.1% +7.5% +1.4% +8.2% +1.3% +8.1% +1.7% +2.4% +4.9% +4.2% +2.4% +2.7%
AvisC 64.6% 62.9 61.7% 61.0% 59.2% 59.5% 61.5% 50.3% 65.3% 56.3% 60.3% 52.3%
+ReCo -2.1% -7.1% +1.4% -5.9% +1.1% -3.8% +0.6% +0.7% -0.9% -2.8% +0.4% -2.0%

Analysis. Like other mitigation methods, ReCo cannot fully eliminate hallucinations. However,
its impact is evident in the significant improvement on CHAIRs. While hallucinations may still
occur, ReCo prevents the model from fixating and building upon them. For example, in Figure 1, a
model might mistakenly generate intersection, but unlike the unmodified VLM, it does not continue
elaborating on this error. This is due to ReCo’s image “reminder”, which helps steer generation back
toward accuracy, counteracting the over-reliance on language priors observed in VLMs (fig. 2).

4.2.2 POPE: EXPERIMENTAL EVALUATIONS

Since POPE Li et al. (2023) relies on binary (Yes/No) questions about objects in images, the fading
memory effect is expected to be less severe. However, it is important to assess ReCo’s performance
here and determine if it enhances the results. Table 2 presents Accuracy and F1 scores across three
question types (Random, Popular, and Adversarial) for MSCoco Lin et al. (2014) and A-OKVQA
Schwenk et al. (2022). Additional results for LlaVA Liu et al. (2023) and GQA Hudson & Manning
(2019) are available in the appendix.
Analysis. We can observe that ReCo consistently improves the performance across all models,
questions, and datasets and, more importantly, it does not overfit the CHAIR benchmark, which is
more related to the long-range dependency between the input image and the generated text. For
MiniGPT4 specifically, ReCo is one of the only few black-box approaches that allows the model to
comprehend and answer existence questions correctly, as shown in fig. 6 and further explained and
analyzed in section 4.2.5.

4.2.3 AMBER: EXPERIMENTAL EVALUATIONS

AMBER Wang et al. (2023) evaluates both the generative and the discriminative capabilities of
a VLM, by asking open-ended questions (e.g., “Describe the image”) as well as multiple yes/no
questions (e.g., “Is the sky sunny?”, or “Is there a direct contact between the car and the tree?”).
Analysis. ReCo provides a significant performance boost for all baselines, demonstrating that, despite
the minimal training and modifications we need, it is a valuable add-on for hallucination mitigation in
both task families.

4.2.4 HALLUSIONBENCH: EXPERIMENTAL EVALUATIONS

HallusionBench Guan et al. (2024) evaluates the discriminative capabilities of a VLM by providing it
with (modified) images of charts, tables, and maps and asking related questions (see appendix for
examples).
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Table 3: AMBER Wang et al. (2023) (left) and HallusionBench Guan et al. (2024) (right) results for InstructBLIP
Dai et al. (2023), MiniGPT4 Zhu et al. (2023), and Llava Liu et al. (2023). ReCo consistently improves the
performance of all models.

AMBER (↑) HallusionBench (↑)
Model(+ReCo) InstructBLIP MiniGPT4 LLaVA InstructBLIP MiniGPT4 LLaVA
Original 81.4 (+3.1) 51.5 (+32.8) 78.2 (+2.3) 50.5% (+3.6%) 46.0% (+3.8%) 51.9% (+6.9%)
VCD 82.6 (+3.8) 58.3 (+23.7) 77.9 (+2.1) 49.8% (+1.0%) 44.7% (+6.1%) 49.7% (+8.4%)
M3ID 83.0 (+3.5) 49.0 (+33.1) 77.9 (+2.9) 49.6% (+1.7%) 46.3% (+4.9%) 53.4% (+7.0%)
AvisC 85.0 (+2.2) 66.0 (-02.6) 79.3 (+2.1) 47.6% (+3.8%) 44.0% (+5.4%) 51.5% (+6.6%)

Analysis. Table 3 shows the average accuracy on the HallusionBench. ReCo always improves the
results, irrespective of which underlying VLM and baseline is used. More importantly, in many
cases the rest of the baselines fail to improve the unmodified VLM (e.g., all baselines perform worse
in InstructBLIP). This underscores the fact that ReCo is more robust across different and diverse
questions, like the ones in HallusionBench.

4.2.5 ON THE DISCRIMINATIVE CAPABILITIES OF MINIGPT4

Figure 7: MiniGPT4 out of the
box as well as other methods are
not able to answer properly (with a
Yes or No) discriminative questions
in most cases. In contrast, ReCo
offers the model the ability to com-
prehend/answer such questions.

As we see in Figure 6, MiniGPT4 is not able to answer existence
questions in most of the cases. During AMBER evaluations, we
observed that this deficiency extends to all types of discriminative
questions. In Figure 7 we show that MiniGPT4, as well as its mod-
ifications, do not possess the ability to answer many discriminative
(i.e., yes/no) questions, and a failure example is presented in Fig-
ure 8. As shown, MiniGPT4 is able to understand and answer with
either “Yes” or “No” (independent of the true response label) in
less than 30% of the cases, and, while the percentage increases,
existing works also face the same difficulty. This, however, means
that the results obtained by all baselines on POPE and AMBER do
not accurately reflect reality, as these models are not well suited
for such questions and small modifications to the evaluation scripts
can lead to very different values of accuracy and F1 score. On the

contrary, ReCo is able to answer such questions with a 100% rate in all cases, offering a useful new
capability to the underlying VLM.

4.2.6 STRUCTURAL HALLUCINATIONS

Figure 8: Failure of all MiniGPT4-based mod-
els but ReCo to answer the AMBER Wang et al.
(2023) questions coherently. All models describe
the image (with some of them getting the details
wrong) although the question is a binary (yes/no)
one (whose true label is “Yes”).

CHAIR Rohrbach et al. (2018) and POPE Li et al.
(2023) evaluate only object-related hallucinations.
AMBER Wang et al. (2023) evaluates the model only
in the context of yes/no questions although some of
its questions are about object relationships and their
attributes. However, in our experiments, we observed
that beyond a significant reduction in such hallucina-
tions, ReCo is also able to effectively reduce structure-
related hallucinations (e.g., relative positions of the
objects, object attributes, and so on) in the images’ de-
scription. In Figure 9, we show a few examples where
the effect of ReCo is apparent in reducing such hal-
lucinations also. From relative positions to textures
and text signs, the improvement of ReCo is apparent
in all these cases. Interestingly, we can observe that ReCo does not change the output of the VLM
completely, rather it “intervenes” only when actually needed, leaving the remainder of the output
almost intact. This is of course a by-product of the fact that we treat the VLM as a frozen black-box
and we only change the input to the prediction head.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 9: Structural hallucinations: MiniGPT4 Zhu et al. (2023) before (red) and after ReCo (green). The
unmodified VLM tends to get small details about the scene wrong, like the texture of the floor or the written
signs that are depicted in the image. Enabling ReCo fixes such mistakes.
5 RELATED WORK

Hallucinations mitigation. Despite their unique capabilities, it is well-known that VLMs hallucinate
during the generation process. Multiple works have proposed modified loss functions, optimization
schemes, and new datasets Rafailov et al. (2023); Zhao et al. (2023); Jiang et al. (2024); Yu et al.
(2024) that can improve the performance of the models, albeit extensive re-training of the whole
(or a large part) architecture is sometimes needed. A different line of work has proposed modified
generation processes: usually, a contrastive decoding approach that “boosts” the influence of the
visual input to the output Huang et al. (2024); Favero et al. (2024); Woo et al. (2024); Leng et al.
(2024). A detailed review can be found in Liu et al. (2024a). Like many of these works, our work also
treats the model as a frozen, black box and it intervenes only in the next token prediction. However,
similar to the first family of approaches, it is data-driven and it can benefit from the newly proposed
datasets and optimization techniques.
Vector Symbolic Architectures. Ideas describing Vector Symbolic Architectures (VSAs) date back
to the 1990s where one of the focus was on introducing operations for efficiently combining (binding)
multiple vectors together Plate (1995); Gosmann & Eliasmith (2019). The motivation stems from ideas
in Symbolic AI where one sought to combine symbols into more complicated sentences but VSAs take
also advantage of the representation power of high-dimensional vectors. Multiple works proposed
different instantiations of the bind and bundle operations, each one with different performance profiles.
A complete review can be found in Schlegel et al. (2022). Recently, some results have infused such
ideas into deep learning Wolff et al. (2018), achieving a more explicit compositional behavior, in
problems ranging from extreme multi-label classification Ganesan et al. (2021) to a reformulation of
the attention mechanism Alam et al. (2023).

6 CONCLUSIONS

While VLMs should operate in a way that the next token generation is conditioned on an entity that is
a composition of the visual and textual input, this is often not the case in practice. Our work describes
Reminder Composition (ReCo), a modification to the output of any VLM, which explicitly composes
the visual and textual information. This modification requires minimal training, and despite treating
the VLM as a black box is able to significantly improve VLM’s forgetting behavior. As a result, we
can significantly reduce the hallucination rate of these models. Additionally, ReCo is compatible with
other works in hallucination mitigation, and their combination further improves the results across all
models and benchmarks.
Impact & Limitations. ReCo can greatly improve VLMs and help in their smooth and non-harmful
usage by all types of users. However, like other mitigation methods, it is not a silver bullet and can
benefit from richer compositional rules, access to the model’s hidden states, and a deeper integration
with the VLM pretraining process.
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A THE FADING MEMORY EFFECT

Recent studies of hallucinations in VLMs have observed a “fading memory effect”, where the model’s
sensitivity to the visual input declines as text generation proceeds, and its outputs gradually rely
more heavily on learned language priors rather than on the image. As the attention to visual tokens
decays over time, the model tends to drift—introducing non-existent objects, attributes, or relations
not grounded in the image Xie et al. (2025); Favero et al. (2024). Although these phenomena were
originally characterized in earlier VLMs (e.g. the first generation of LLaVA Liu et al. (2023)), they
persist in more advanced models as well. In Figure 10, we show the same diagnostic computation
from fig. 2, but applied to Qwen2.5-VL Qwen (2025); Wang et al. (2024) — one of today’s most
powerful open-source VLMs — thereby demonstrating that the fading memory effect still manifests
in state-of-the-art systems.

Figure 10: The “fading memory effect” in Qwen2.5-VL Qwen (2025). We calculate the next token prediction
with and without the visual input, and we compute the distributional difference. After the first tokens, the next
token can be predicted just from the previously generated text.

B RECO VS OTHERS

ReCo is uniquely placed in the intersection of methods that treat the underlying VLM as a black box
(e.g., Leng et al. (2024); Woo et al. (2024)) and methods that are training-driven (e.g., Zhao et al.
(2023); Liu et al. (2024c)). In table 4, we show the qualitative advantage of ReCo over multiple other
proposed solutions for hallucination mitigation.

Table 4: ReCo compared to other models.

Model Training
based

Black-box
VLM

Can be deployed
during VLM training

Single
inference pass

OPERAHuang et al. (2024) ✗ ✗ ✗ ✗
VCDLeng et al. (2024) ✗ ✓ ✗ ✗
AvisCWoo et al. (2024) ✗ ✓ ✗ ✗
M3IDFavero et al. (2024) ✗ ✓ ✗ ✗
HALCJiang et al. (2024) ✗ ✓ ✗ ✗
VTILiu et al. (2024c) ✓ ✗ ✗ ✓
HA-DPOZhao et al. (2023) ✓ ✗ ✓ ✓
ReCo ✓ ✓ ✓ ✓

C TRAINING DATA

We train ReCo using HA-DPO Zhao et al. (2023). The dataset consists of quadruples (𝐼, 𝑃 , 𝐶,𝑅)
where 𝐼 corresponds to the image and 𝑃 corresponds to its accompanying prompt (or question).
Finally, 𝐶 and 𝑅 correspond to Chosen and Rejected respectively: these are the two answers used
for contrastive loss (or Direct Preference Optimization Rafailov et al. (2023)). An example can be
seen in fig. 11. The whole dataset consists of only 1853 images which were extracted from the Visual
Genome database Krishna et al. (2017).
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Figure 11: A sample of the HA-DPO dataset Zhao et al. (2023). While the 𝐶 and 𝑅 prompts may not
be entirely accurate since they were generated with the help of LLMs Zhao et al. (2023), the Direct
Preference Optimization Rafailov et al. (2023) successfully trains ReCo.

D HYPERPARAMETERS

We combine ReCo with two widely used VLMs: InstructBLIP Dai et al. (2023) and MiniGPT4 Zhu
et al. (2023) and we follow the same training procedure for both. The learning rate is set to 5𝑒-3 and
we train the model for 10 epochs. Additionally, the 𝛽 and 𝜆 parameters of HA-DPO are set to 0.8, 0.2
respectively. Finally, we chose a batch size of 128.

E BENCHMARKS

We consider three benchmarks designed to evaluate the hallucinating performance of VLMs across
different tasks.

1. POPE Li et al. (2023): The POPE benchmark is focused on binary existence questions. It
consists of 9000 questions in total, of the form “Is there a ⟨object⟩ in the image?”, each one
accompanied by an image. POPE is designed to measure the disriminative capabilities of the
underlying VLM, in the context of existence yes/no questions. The objects that inform the
questions are chosen from the whole universe of the depicted objects in three different ways:

• Random: randomly chosen from any of the existing objects in the dataset.
• Popular: the objects are chosen from the top-k most frequent objects.
• Adversarial: the objects are chosen based on the co-occuring frequencies with the

objects depicted on each image.
As expected, the “difficulty” of the benchmark increases as we transition from Random to
Adversarial, something reflected in our results as well as the existing works too.

2. CHAIR Rohrbach et al. (2018): While POPE is focused on the discriminative capabilities
of the VLMs, CHAIR assesses their generative power. This benchmark consists of images
accompanied by their ground truth labels, i.e., which objects exist in each one of them. The
VLM is prompted with a prompt such as “Describe the image.”, or “Provide a detailed
description to the image.”. In our experiments we used “Describe the image.” but any such
prompt can be used with no changes. After each generated description is obtained, CHAIR
estimates the hallucination rate of the VLMs, reporting two metrics:
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Figure 12: An image obtain from HallusionBench Guan et al. (2024). The corresponding question
is: “According to the image, in 2017, was Tencent the company with the highest revenue from video
games, with Sony as the second-highest earner?”

• CHAIRi: CHAIRi is define as the ratio of the objects in the description that do not really
exist in the image, i.e.,

CHAIR𝑖 =
|{hallucinated objects}|
|{all mentioned objects}| (7)

• CHAIRs: On the contrary, CHAIRs estimates how much the model “talks” about
hallucinated objects, and it is defined as:

CHAIR𝑠 =
|{sentences with hallucinated objects}|

|{all sentences}| (8)

3. AMBER Wang et al. (2023): AMBER combines and extends CHAIR and POPE, by evalu-
ating the underlying VLM on both a wide array of discriminative questions about objects
relationships (e.g., “Is there a direct contect between ⟨object1⟩ and ⟨object2⟩”), objects
attributes (e.g., “Is the cloud black in this image?”), and object existence (“Is there a ⟨object⟩
in the image?”), as well as generative questions (“Describe the image.”). The AMBER
metric is calculated as:

AMBER = 1
2

(

100 − CHAIR + F1
)

(9)

with CHAIR𝑖 employed for the generative questions and F1 for the discriminative questions.
4. MME Fu et al. (2023): MME is yet another, larger, discriminative benchmark. Similarly to

AMBER, MME also consists of multiple types of discriminative questions such as artwork
related, code related, and numerical related questions. For each image, MME proposes two
questions (one whose correct answer is ‘Yes’ and one ‘No’). The total score for each type of
questions is the summation of accuracy and accuracy+, with accuracy+ being the ratio of
images in which both corresponding questions were answered correctly. Finally, the total
perception score is the summation of all the corresponding scores for each question type.

5. HallusionBench Guan et al. (2024): Similar to MME, HallusionBench introduces a wide
array of different discrimination questions. Differently than the other benchmarks, most of
the questions in this benchmark are about charts, tables, and maps depicted on the given
images. An example of a image-question pair can be seen in fig. 12. In many cases, the
depicted diagrams do not accurately reflect reality and they were twisted in order to evaluate
whether a VLM is actually “looking” at the image or its answer is based solely on the
backbone LLM. Although the questions are discriminative, the long, detailed questions may
lead to a more severe fading memory effect, compared to other discriminative benchmarks
like POPE.
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Table 5: POPE Li et al. (2023) results on MSCoco Lin et al. (2014) and A-OKVQA Schwenk et al.
(2022), for Llava Liu et al. (2023). In both datasets, ReCo provides a significant performance boost to
all the methods (where Original stands for the unmodified Llava).

MSCoco Lin et al. (2014) A-OKVQA Schwenk et al. (2022)
Model Random Popular Adversarial Random Popular Adversarial

Acc (↑) F1 (↑) Acc (↑) F1 (↑) Acc (↑) F1 (↑) Acc (↑) F1 (↑) Acc (↑) F1 (↑) Acc (↑) F1 (↑)

Lla
va

Liu
eta

l.(
20

23
) Original 84.7% 85.0% 81.8% 82.6% 76.7% 78.7% 81.9% 83.5% 75.9% 79.2% 68.4% 74.5%

+ReCo +0.5% -0.3% +1.3% +0.2% +2.5% +1.1% +2.4% +1.3% +3.0% +1.5% +2.6% +0.9%
VCD 85.1% 85.4% 81.6% 82.6% 76.2% 78.6% 81.8% 83.6% 75.5% 79.1% 67.8% 74.3%
+ReCo +2.4% +1.5% +2.3% +1.2% +3.3% +1.6% +3.5% +2.3% +5.1% +3.2% +4.3% +2.0%
M3ID 86.4% 86.5% 82.8% 83.5% 77.3% 79.3% 83.0% 84.6% 76.7% 79.9% 68.6% 74.7%
+ReCo +0.7% -0.3% +2.4% +1.1% +3.5% +1.4% +4.5% +3.1% +6.0% +3.8% +6.0% +2.9%
AvisC 87.8% 87.8% 83.9% 84.5% 78.2% 80.1% 84.5% 85.8% 78.6% 81.4% 69.0% 75.2%
+ReCo +0.8% +0.2% +2.9% +2.0% +3.5% +2.0% +3.4% +2.4% +2.9% +1.6% +4.0% +1.9%

Table 6: POPE Li et al. (2023) results on GQA Hudson & Manning (2019), for all three VLMs
(InstructBLIP Dai et al. (2023), MiniGPT4 Zhu et al. (2023), and Llava Liu et al. (2023)).

GQA Hudson & Manning (2019)
Model Random Popular Adversarial

Acc (↑) F1 (↑) Acc (↑) F1 (↑) Acc (↑) F1 (↑)

Ins
tru

ctB
LIP

Da
iet

al.
(20

23
) Original 79.2% 80.7% 73.2% 76.6% 68.8% 73.5%

+ReCo +3.4% +0.1% +4.7% +0.1% +7.0% +1.5%
VCDLeng et al. (2024) 80.9% 81.8% 73.3% 76.3% 69.6% 74.1%
+ReCo +2.9% +0.1% +6.3% +2.1% +6.2% +1.0%
M3IDFavero et al. (2024) 81.0% 82.2% 74.4% 77.4% 69.3% 74.0%
+ReCo +3.4% +0.1% +5.1% +0.6% +7.1% +1.3%
AvisCWoo et al. (2024) 85.1% 85.3% 76.2% 78.5% 72.0% 76.0%
+ReCo +0.4% -0.3% +4.0% +0.8% +5.1% +0.9%

Mi
niG

PT
4Z

hu
eta

l.(
20

23
) Original 53.9% 32.9% 52.6% 32.3% 51.7% 31.5%

+ReCo +3.0% +30.0% +2.7% +18.7% +2.9% +19.8%
VCDLeng et al. (2024) 55.7% 38.8% 54.1% 38.0% 53.4% 37.7%
+ReCo +0.9% +11.8% +0.9% +11.8% +0.1% +11.7%
M3IDFavero et al. (2024) 55.3% 37.9% 54.0% 37.2% 52.5% 35.7%
+ReCo +1.5% +15.5% +1.4% +15.4% +1.6% +15.8%
AvisCWoo et al. (2024) 63.1% 63.5% 60.0% 61.6% 57.0% 60.0%
+ReCo -2.4% -13.5% +0.7% -12.0% +0.2% -14.1%

LL
aV

AL
iu

eta
l.(

20
23

) Original 82.3% 84.0% 73.9% 78.1% 68.6% 74.8%
+ReCo +2.5% +1.6% +2.3% +0.9% +4.2% +1.9%
VCDLeng et al. (2024) 81.9% 84.0% 72.5% 77.5% 68.1% 74.9%
+ReCo +4.7% +3.2% +3.7% +1.8% +4.5% +1.9%
M3IDFavero et al. (2024) 83.6% 85.3% 74.3% 78.7% 68.8% 75.1%
+ReCo +3.8% +2.3% +5.5% +2.8% +6.6% +3.3%
AvisCWoo et al. (2024) 84.6% 86.1% 74.6% 79.0% 69.4% 75.8%
+ReCo +3.4% +2.3% +5.1% +3.0% +6.0% +3.2%

F MORE QUANTITATIVE RESULTS

F.1 POPE

Besides table 2 in which we present the POPE results for InstructBLIP Dai et al. (2023) and MiniGPT4
Zhu et al. (2023) on MSCoco and A-OKVQA Lin et al. (2014); Schwenk et al. (2022), in table 5
you can observe the results on the same datasets for Llava Liu et al. (2023) too. The observations
from the main text hold here too, with ReCo being a valuable addition to all the considered baselines,
improving the performance by as much as 6% (absolute improvement). Finally, in table 6 you can
observe the results for all three VLMs in yet another dataset: GQA Hudson & Manning (2019).
Similarly to the previous observations, ReCo consistently improves the results across the board in this
dataset too.
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F.2 CHAIR
In table 7, we depict the improvement that ReCo offers over all baselines in the generative task of
image description, when the underlying VLM is LlaVA Liu et al. (2023). Similar to the observations
of the main text, ReCo reduces both CHAIR𝑠 and CHAIR𝑖, especially as the output length increases,
with the improvement being as high as 44% and 33%, respectively.
Table 7: CHAIR Rohrbach et al. (2018) results for Llava Liu et al. (2023). Original stands for
the unmodified VLM, while VCD Leng et al. (2024), M3ID Favero et al. (2024), and AvisC Woo
et al. (2024) are the three baselines we consider. In all four cases, the addition of ReCo improves
significantly the performance as the generation progresses, reducing CHAIRs as much as 44% and
CHAIRi 33%, with 32, 64, 128, 256, 512, and 1024 standing for the maximum allowed number of
generated tokens.

Model CHAIRs(↓) CHAIRi(↓) Average length
32 64 128 256 512 1024 32 64 128 256 512 1024

Lla
va

Liu
eta

l.(
20

23
) Original 7.8 23.8 50.0 50.6 50.6 50.6 4.5 8.2 15.3 15.3 15.3 15.3 500

+ReCo +4.6 +0.4 -1.4 -5.4 -16.8 -22.6 +2.8 +1.3 -0.3 -0.2 -3.9 -5.1 319
VCD 8.0 22.6 52.2 48.4 48.4 48.5 4.4 7.7 16.0 15.3 15.3 15.3 486
+ReCo -0.4 +2.4 -10.4 -8.0 -15.9 -13.6 -0.7 +1.1 -3.1 -2.9 -3.3 -4.0 306
M3ID 8.2 22.4 55.4 57.2 57.2 57.2 3.9 6.9 15.8 16.2 16.2 16.2 495
+ReCo +1.2 -0.2 -6.2 -16.8 -19.0 -24.8 +0.7 +0.7 -2.6 -4.2 -5.2 -5.7 335
AvisC 9.2 21.0 53.6 55.8 55.8 55.8 5.3 6.9 15.3 17.1 17.1 17.1 523
+ReCo -0.1 +2.0 -0.2 -8.8 -9.2 -9.8 -0.3 +1.1 +1.3 -2.7 -3.6 -3.5 428

F.3 MME
Besides POPE, which is restricted to existence-related questions, we evaluate ReCo in the context of
multiple types of discriminative questions, using the MME benchmark. Although, just like POPE,
such a benchmark does not directly assess the effect (fading memory effect) we are trying to eradicate
in this work, it is important to examine whether the addition of ReCo (or any other component) hurts
the model’s performance in such discriminative tasks. In table 8, we can observe that ReCo not only
preserves but rather improves the performance of InstructBLIP Dai et al. (2023) and MiniGPT4 Zhu
et al. (2023), with or without the addition of any of the other baselines. Regarding Llava Liu et al.
(2023), the addition of ReCo preserves the already amazing performance, while at the same time, as
we showed in table 7, it reduces dramatically its hallucinating performance on the free text generation.
Table 8: MME Wang et al. (2023) results for InstructBLIP Dai et al. (2023), MiniGPT4 Zhu et al.
(2023), and Llava Liu et al. (2023). ReCo consistently improves the performance of InstructBLIP and
MiniGPT4, while the performance of Llava remains at the same level.

MME (↑)
Model (+ReCo) InstructBLIP MiniGPT4 LLaVA
Original 1355 (+150) 939 (+051) 1543 (-019)
VCD Leng et al. (2024) 1495 (+062) 933 (+115) 1582 (+045)
M3ID Favero et al. (2024) 1458 (+080) 961 (+061) 1619 (+031)
AvisC Woo et al. (2024) 1373 (+121) 879 (-023) 1661 (-051)

G MORE QUALITATIVE RESULTS

In the following figures, we present more examples for both generative and discriminative questions.
In many of the cases, the VLMs fail to provide a cohesive answer. On the contrary, ReCo is able to
significantly improve the results, as it is apparent by the reduction of hallucinating objects, unrelated-
to-image text, as well as by the accurate answering of the discriminative questions.
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Figure 13: Generative questions on InstructBLIP Dai et al. (2023). The prompt used is “Describe the
image.”
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Figure 14: Generative questions on MiniGPT4 Zhu et al. (2023). The prompt used is “Describe the
image.”
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Figure 15: Discriminative questions on MiniGPT4 Zhu et al. (2023), taken from the AMBER
benchmarks. The unmodified VLM fails to answer cohesively in most of the cases, while the addition
of ReCo (although not trained on such data) allows the model to answer correctly.
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