
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DYNAMIC EARLY EXIT IN REASONING MODELS

Anonymous authors
Paper under double-blind review

Ex
it

 P
os

it
io

n

60%

100%

70%

30% 30% 30%

20%

40%

20%

100%

50%

20%

100% 100%

30%

90%

100%

20%

100%

70%

20%

AIME24 Question ID

⭐

correct ⭐The earliest correct positionincorrect The position where LRLM must exit early to answer correctly

Pearl Reasoning

⭐

⭐

Figure 1: Correctness statistics for early exits at various reasoning steps.

ABSTRACT

Recent advances in large reasoning language models (LRMs) rely on test-time
scaling, which extends long chain-of-thought (CoT) generation to solve complex
tasks. However, overthinking in long CoT not only slows down the efficiency of
problem solving, but also risks accuracy loss due to the extremely detailed or re-
dundant reasoning steps. We propose a simple yet effective method that allows
LLMs to self-truncate CoT sequences by early exit during generation. Instead of
relying on fixed heuristics, the proposed method monitors model behavior at po-
tential reasoning transition points and dynamically terminates the next reasoning
chain’s generation when the model exhibits high confidence in a trial answer. Our
method requires no additional training and can be seamlessly integrated into ex-
isting o1-like reasoning LLMs. Experiments on 10 reasoning benchmarks (e.g.,
GSM8K, MATH-500, AMC, GPQA, AIME and LiveCodeBench) show that the
proposed method is consistently effective on 11 cutting-edge reasoning LLMs of
varying series and sizes, reducing the length of CoT sequences by an average of
19.1% to 80.1% while improving accuracy by 0.3% to 5.0%.

1 INTRODUCTION

The emergence of large reasoning models (Xu et al., 2025a), such as DeepSeek-R1 (DeepSeek-AI
et al., 2025) and GPT-O1 (OpenAI, 2025), has marked a significant breakthrough in natural language
processing, particularly in solving complex and intricate tasks(WANG et al., 2025). These models
leverage the test-time scaling (Snell et al., 2024) law by generating a longer CoT (Wei et al., 2023)
with rich and diverse reasoning paths, unleashing the potential of their reasoning ability.

However, the generation of overlong CoT significantly increases computational overload and rea-
soning latency, which hinders their deployment in computationally sensitive applications. Moreover,
recent research (Chen et al., 2025b; Team et al., 2025a) reveals an intrinsic overthinking problem in
LRMs: These models persistently generate verbose reasoning sequences (Wu et al., 2025; Cuadron
et al., 2025) , introducing irrelevant information and unnecessary thought steps. Such redundant
processing not only wastes computational resources but also leads to accuracy degradation by de-
railing from correct reasoning paths to erroneous ones (see Questions 11, 19 and 26 in Fig. 1. This
redundancy can be attributed to the design of the Supervised Fine-Tuning (Achiam et al., 2023;

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Wei et al., 2021; Ouyang et al., 2022) or Reinforcement Learning (Bai et al., 2022; Ouyang et al.,
2022; Schulman et al., 2017; Ramesh et al., 2024) stage, where the ability to dynamically adjust its
reasoning length during generation is overlooked, leaving a gap in the inference efficiency of LRMs.

Intuitively, as the number of reasoning paths increases, more information is referenced when gen-
erating conclusions. If we can identify the critical point where the reasoning information becomes
just sufficient (termed Pearl Reasoning) and force the model to stop further thinking and directly
output conclusions at this point, we can achieve both accuracy and efficiency. This paper aims to
find such pearls in long CoT sequences. To validate our motivation, we forced the model to switches
from thinking to directly generating answers, at different transition points in the thought process. If
the answers obtained are correct, the existence of such pearl reasoning is verified. As shown in Fig.
1, about 75% samples contain such pearls (early exit yields correct answers), even 36.7% samples
required only less than half of the original reasoning paths to reach correct conclusions. Therefore,
how to find the pearl reasoning is a valuable topic to achieve efficient reasoning.

To this end, we propose a novel, training-free approach DEER that allows large reasoning lan-
guage models to achieve Dynamic Early Exit in Reasoning. It regards the key moments when
the model switches thought chains in reasoning as chances of early exit, and prompting LRMs to
stop thinking and generate trial answers at these moments. The confidence of each trial answer is
the decision-making reference of early exit in reasoning. Specifically, the proposed method con-
tains three actions: 1) Reasoning Transition Monitoring. During the generation of long CoTs,
DEER monitors the positions of reasoning transitions through either linguistic marker-based (such
as ”Wait”) or entropy-based methods. When the reasoning transition points are found, the action
of 2) Trial Answer Inducing is triggered: we replace it with ”final answer” tokens to induce the
model to immediately generate a trial answer, which will be used for 3) Confidence Evaluating. If
the confidence is sufficiently high, set the model to stop further thinking and generate a conclusion
based on the generated thoughts. Otherwise, the action of Trial Answer Inducing is revoked, and
the model continues reasoning along the original path. Moreover, Considering the potential sensi-
tivity of models to answer inducing prompts, we propose DEER-Pro (a Parallel and Robust variant
of DEER), which performs multiple parallel answer inductions at potential early-exit points and
calibrates confidence based on the aggregated results, thereby further ensuring DEER’s robustness.

Our method is simple yet effective, and can be seamlessly extended to eleven reasoning models of
varying architectures and sizes, achieving excellent results in the ten reasoning benchmarks, includ-
ing mathematical tasks (e.g., AIME 2024, AMC 2023 and MATH-500), scientific tasks (e.g., GPQA
Diamond) and programming tasks (e.g., BigCodeBench). Specifically, our method, when integrated
into cutting-edge reasoning models, can reduce the length of CoT sequences by an average of 19.1%
to 80.1% while improving accuracy by 0.3% to 5.0% across different reasoning benchmarks. Our
DEER offers a plug-and-play solution for improving both the efficiency and accuracy of LRMs.

2 MOTIVATIONS AND OBSERVATIONS

In this section, we analyze the overthinking phenomenon in LRMs and investigate the impact of
static early exits on model performance. We define ”pearl reasoning” as the critical juncture where
reasoning information becomes precisely sufficient for accurate problem-solving. Our analysis in
Figure 1 reveals that approximately 75% of samples contain such pearls (where early exit yields
correct answers). Furthermore, we identified a subset of samples for which correct answers are
exclusively obtainable through early exits (exemplified by Questions 11, 19, and 26 in Figure 1).
Quantitative analysis presented in Figure 2(a) further demonstrates that 60.8% and 35.1% of cor-
rectly answered samples in MATH-500 and GPQA, respectively, maintain their accuracy when em-
ploying early exits after completing merely 20% of the reasoning steps. These empirical findings
substantiate our hypothesis that LRMs possess the potential to achieve simultaneous improvements
in both computational efficiency and prediction accuracy through strategic early termination.

Fig. 2(b) illustrates that exiting at different positions corrects varying proportions of wrong answers.
For the MATH dataset, the highest correction rate is achieved when exiting at 40% of the reasoning
steps, whereas for the GPQA dataset, the optimal correction occurs when exiting at 50%. The
optimal early exit point varies for each problem and is closely related to the inherent difficulty of
the problem itself. Therefore, it is intuitive that relying on a static early exit strategy based on fixed
heuristics is suboptimal, underscoring the necessity of designing a dynamic early exit mechanism.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

MATH-500GPQA Diamond GPQA Diamond

(a) The number of originally correct samples that remain correct
with early exiting on different positions.

(b) The number of originally incorrect samples that become correct
with early exiting on different positions.

N
um

be
r o

f C
or

re
ct

 A
ns

w
er

s

MATH-500

Figure 2: Quantitative pilot experiment results. Please refer to Appendix A for setups.

3 METHOD

3.1 THE GENERATION PATTERN OF LARGE REASONING MODELS

In contrast to traditional large language models (System 1), large reasoning models (System 2) (Li
et al., 2025b) exhibit distinct generation patterns during the inference stage. (1) LRMs use delimiters
to divide the output into two processes: slow thinking and conclusion. LRMs conduct systematic
and thorough reasoning in the slow thinking, ultimately summarizing the thought process and pro-
viding the final answer in the conclusion. (2) During the slow thinking process, LRMs engage in
complex thinking actions (thoughts), such as problem comprehension, approach exploration, and
result verification (Luo et al., 2025b). Within each reasoning action (thought), the model performs
specific procedural action execution, while transitions between different reasoning actions are typi-
cally marked by action transition points (ATP), such as ”Wait”, ”Alternatively”.

System 1: [Prompt] + [Completion], (1)

System 2: [Prompt] + ⟨think⟩+ [Slow Thinking] + ⟨/think⟩+ [Conclusion], (2)

[Slow Thinking] : [Action Execution] + (ATP) + [Action Execution] + (ATP) + · · · , (3)

where ⟨think⟩ and ⟨/think⟩ are begin-of-thinking and end-of-thinking delimiters respectively.

3.2 DYNAMIC EARLY EXIT IN REASONING

In this section, we introduce the Dynamic Early Exit in Reasoning (DEER) method to determine
optimal positions for early exits (pearl reasoning path), thereby alleviating the overthinking issue.

The core idea behind DEER is that a model’s confidence in its trial answer dynamically indicates
whether the thinking information required for LRMs to generate the final answer is sufficient. We
observe that when the model’s reasoning process is incomplete or flawed, the trial answer tends
to exhibit significantly lower confidence. Conversely, when the reasoning is comprehensive and
logically sound, the model generates answers with higher confidence, as illustrated in Fig. 17. This
suggests that the model implicitly recognizes when pearl reasoning occurs, but lacks an explicit
mechanism during inference to leverage this awareness for early termination. DEER aims to bridge
this gap by converting implicit awareness into explicit early-exit decisions.

As shown in Fig. 3, DEER involves three designs to determine whether to exit early: reasoning
transition monitor, answer inducer, and confidence evaluator.

Reasoning transition monitor. Within the DEER framework, we propose two alternative monitor
design strategies: (i) linguistic marker-based, and (ii) entropy-based monitoring. For the first
strategy, as mentioned in Section 3.1, LRMs explicitly utilize ATPs to mark boundaries between dif-
ferent thoughts. This feature enables DEER to recognize ATPs as potential early-exit opportunities.
In the second strategy, DEER employs ”\n\n” as delimiters to demarcate reasoning steps. Follow-
ing each reasoning step, DEER computes the entropy of the initial token, denoted as H(p(·|x<t)).
Low entropy values indicate that the model is engaged in procedural action execution, characterized
by stable reasoning patterns. Conversely, high entropy values suggest that the model is deliberating
on its subsequent reasoning action, with multiple potential pathways being activated concurrently.
These positions exhibiting high entropy are identified as candidate points for early-exit.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

𝑇!

Large Reasoning Language Model

𝑃 𝑇!

𝑇"

𝑇" </think>

𝐶

Traceback Thinking Exit

Original CoT
𝑇! 𝑇" … 𝑇# </think>

Large Reasoning Language Model

𝑃 𝑇! 𝑇" … 𝑇#

𝐶

</think>

DEER
Reasoning Transition

Monitor
Answer
Inducer

Confidence
Evaluator

𝑇!	: Okay, so I have this problem where I need to … <omitted>

Wait, 𝑇"	: that seems too straightforward. Let me check <omitted>

Wait, 𝑇$: another approach is to note that S can be … <omitted>

Wait, 𝑇%	: another idea: since the sum is …, perhaps … <omitted>

Wait, 𝑇&	: that's different from the previous result. Hmm, now I have
a contradiction. Which one is correct? Let me check … <omitted>

</think> 𝐶 : <Conclusion> \boxed{p - q}

Thought
Switch Signal

𝑇' Thoughts

𝐶 Conclusion

𝑃 Prompt

Confidence

Define $p = \sum_{k = 1}^\infty \frac{1}{k^2}$ and $q = \sum_{k =
1}^\infty \frac{1}{k^3}$. Find a way to write $\sum_{j = 1}^\infty
\sum_{k = 1}^\infty \frac{1}{(j + k)^3}$ in terms of p and $q.$

Question

Original CoT

More than 5000 tokens

DEER

𝑇!	: Okay, so I have this problem where I need to <omitted>. Wait

</think> 𝐶 : <Conclusion> \boxed{p - q} Only 1037 tokens

Thought
Stop

Signal

𝑆

</think>

𝑆

𝑆

𝑆

𝑆

𝑆

𝑆

𝑆

𝑆

𝑆

Confidence Evaluator **Final Answer** \n\\boxed {p - q}

Figure 3: An overview of the Dynamic Early Exit in Reasoning (DEER) method.

Our subsequent experiments in Section 4.3 demonstrate that DEER with external linguistic markers
satisfies similar properties as the second internal state-based approach while achieving comparable
performance. When applied to English LRMs, existing models consistently exhibit a pattern of gen-
erating such linguistic markers. Following the Occam’s Razor principle (Rasmussen & Ghahramani,
2000), we recommend adopting the first strategy. For non-English reasoning scenarios, the alterna-
tive second strategy can also accurately capture early-exit points, demonstrating the generality and
robustness of DEER.

Answer inducer. When the LRM pauses at a potential early exit point, the trial answer inducer
module prompts the model to generate an intermediate answer based on the reasoning content pro-
duced so far. We incorporated the answer delimiters (\boxed{}) into the prompt to facilitate a
more precise identification of the trial answers, as follows: A = LRM(P ,T , I) where P denotes
the input prompt, T denotes the generated thoughts, I denotes the answer inducer prompt, and
A = [a0, a1, . . . , an] is the trial answer.

Confidence evaluator. The confidence evaluator computes the confidence of the induced trial an-
swer. It takes the maximum predicted probability of each token as its confidence. For multi-token
trial answers, the overall confidence is computed as their mean score across all tokens as follows:

p(at) = softmax(M(P ,T , I,a<t)), C =

(
n∏

i=1

max
at∈V

p(at)

)1/n

(4)

whereM is the language model head at the final layer of the LRM. The calculation of C employs the
geometric mean, which better aligns with the multiplicative nature of joint probabilities and exhibits
greater sensitivity to low probability values, thereby providing enhanced robustness.

Finally, the comparison between the obtained confidence and the empirical threshold λ determines
whether to exit early. If C > λ, we consider the reasoning information currently generated by the
LRM to be sufficient, indicating that the model has reached the pearl reasoning. At this point,
DEER stops further reasoning actions and proceeds to deliver the conclusion. Otherwise, the model
reverts to the previous transition point to generate the next thoughts.

DEER-PRo. To further improve the reliability and accuracy of pearl reasoning identification, we
introduce DEER-PRo, a Parallel and Robust variant of DEER. Through answer elicitation using
varied prompts at early-exit points, DEER-PRo calculates both the mean and Mean Absolute Devi-
ation (MAD) of multiple confidence values, deriving a calibrated confidence score Ccali as follows:

Ccali = Cavg − α · CMAD, Cavg =
1

N

N∑
i=1

Ci, CMAD =
1

N

N∑
i=1

|Ci − Cavg| (5)

where Ci =
(∏n

i=1 maxat∈V softmax(M(P ,T , Ii,a
i
<t))

)1/n
denotes the confidence score ob-

tained using a specific answer inducing prompt Ii, N denotes the number of inducing attempts, and

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

α is the fluctuation penalty strength coefficient. The introduced conservative bias CMAD effectively
prevents erroneous early exits caused by overestimated confidence scores resulting from positive
noise in prompts, where the estimated confidence exceeds the true confidence. We demonstrate in
the Appendix B that Ccali effectively eliminates the influence of the model’s sensitivity to answer
inducer prompts on early-exit accuracy, thus substantially improving DEER’s robustness.

3.3 BRANCH-PARALLEL DECODING ACCELERATION

Intuitively, the computation of the answer inducer and confidence evaluator in DEER introduces
additional latency during inference, particularly in code generation tasks where trial answers remain
lengthy. This overhead diminishes the efficiency gains achieved through substantial reduction of
generated CoT sequences. To address this challenge, we integrate DEER with a branch-parallel
acceleration strategy (Fig. 9) that mitigates these efficiency limitations through two key mecha-
nisms: (1) linearization of multiple branches into a single sequence for parallel generation using
a specialized causal attention mask, and (2) dynamic KV cache management via confidence-based
pruning. This strategy facilitates temporal overlap between trial answer evaluation and concurrent
reasoning-chain generation, thereby optimizing overall inference efficiency.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Benchmarks, Metrics and Implementations. We evaluate model performance across 10 bench-
marks, including 6 mathematical reasoning benchmarks: GSM8K (Cobbe et al., 2021), MATH-500
(Hendrycks et al., 2021), AMC 2023 (AI-MO, 2024), AIME 2024, AIME 2025 (MAA Committees),
OlympiadBench (He et al., 2024), one scientific reasoning benchmark: GPQA Diamond (Rein et al.,
2023), and 3 code reasoning benchmarks: HumanEval (Chen et al., 2021), BigCodeBench (Zhuo
et al., 2024), and LiveCodeBench (Jain et al., 2024). Among the six mathematical reasoning bench-
marks, GSM8K, MATH-500, and AMC 2023 are generally considered to be relatively simple rea-
soning tasks, whereas AIME 2024, AIME 2025, and OlympiadBench are regarded as more chal-
lenging. Given the extensive set of evaluation benchmarks, we selectively present the most popular
ones (GSM8K, MATH-500, AMC 2023, AIME 2024 and GPQA Diamond) in the main experiment.
More experimental results are provided in the Appendix K. We selected Accuracy (Acc), Token
Number (Tok), and Compression Rate (CR) as the evaluation metrics. Acc denotes the final answer
accuracy. Tok denotes the average generation length per sample to evaluate the cost. CR is defined
as the ratio of the average response length to that of the original model, with lower values indicating
higher compression. Given the limited number of samples in datasets AMC 2023, AIME 2024, and
AIME 2025, we conduct 4 sampling rounds per instance and average the results across all metrics
to ensure stability and reliability. We have implemented DEER using both HuggingFace Transform-
ers (Wolf et al., 2020) and the vLLM inference acceleration framework (Kwon et al., 2023). The
experimental results presented in this paper are based on the vLLM implementation. We set the
hyperparameter λ to 0.95 (λ = 0.95). For entropy-based DEER, following the 80/20 principle pro-
posed in (Wang et al., 2025b), we designate reasoning step termination positions with entropy values
exceeding 0.672 as early-exit points. For DEER-Pro, we set N = 4 and α = 1. More experimental
setup details are placed in Appendix C.

Backbone LRMs and Baselines. We conducted experiments on the open-source DeepSeek-R1-
Distill-Qwen series of models (1.5B, 7B, 14B, and 32B)(DeepSeek-AI et al., 2025), Qwen3 series of
models (1.7B, 4B, 8B, 14B, 32B) (Qwen et al., 2025), QwQ-32B (Team, 2025), and DeepSeek-R1
(Liu et al., 2025c). Due to the large number of models evaluated, we selectively present DeepSeek-
R1-Distill-Qwen-7B, Qwen3-14B, and QwQ-32B as representative examples in the main experi-
ment. More experimental results are provided in the Appendix C. We compare DEER against exist-
ing prompt-based and output-based efficient reasoning approaches, including Vanilla, TCC (Muen-
nighoff et al., 2025), CoD (Xu et al., 2025c), NoThinking (Ma et al., 2025a), Dynasor-CoT (Fu
et al., 2025), and SEAL (Chen et al., 2025a). Vanilla performs direct evaluation of the LRM with-
out any intervention. Token-Conditional Control (TCC) specifies a fixed token count in the system
prompt to enforce a token budget; in our experiments, we set this limit based on the actual token
length generated by DEER. Chain-of-Draft (CoD) reduce verbosity by limiting the number of words

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Experimental results across various types of reasoning models. ”Acc” denotes accuracy,
”Tok” denotes token count, and ”CR” denotes compression rate. ↑ indicates that higher values are
better, while ↓ indicates that lower values are better. The best results are highlighted in bold.

Method
MATH SCIENCE

GSM8K MATH-500 AMC23 AIME24 GPQA-D Overall
Acc↑ Tok↓ CR↓ Acc↑ Tok↓ CR↓ Acc↑ Tok↓ CR↓ Acc↑ Tok↓ CR↓ Acc↑ Tok↓ CR↓ Acc↑ CR↓

DeepSeek-R1-Distill-Qwen-7B
Vanilla 89.6 1,484 100% 87.4 3,858 100% 78.8 6,792 100% 41.7 13,765 100% 23.7 10,247 100% 64.2 100%
TCC 88.0 892 60.1% 89.2 3,864 100.2% 82.5 6,491 95.6% 48.4 10,603 77.0% 27.3 8,442 82.4% 67.1 83.0%
CoD 84.7 298 20.1% 83.2 1,987 51.5% 77.5 4,440 65.4% 40.0 10,519 76.4% 37.9 6,431 62.8% 64.7 55.3%
NoThinking 87.1 284 19.1% 80.6 834 21.6% 65.0 1,911 28.1% 26.7 4,427 32.2% 29.8 724 7.1% 57.8 21.6%
Dynasor-CoT 89.6 1,285 86.6% 89.0 2,971 77.0% 85.0 5,980 88.0% 46.7 12,695 92.2% 30.5 7,639 74.5% 68.2 83.7%
SEAL 88.4 811 54.6% 89.4 2,661 69.0% – – – – – – – – – – –
DEER 90.6 917 61.8% 89.8 2,143 55.5% 85.0 4,451 65.5% 49.2 9,839 71.5% 31.3 5,469 53.4% 69.2 61.5%
DEER-PRo 91.0 989 66.7% 90.2 2,391 62.0% 87.5 4,877 71.8% 49.2 10,046 73.0% 30.6 5,682 55.5% 69.7 65.8%
Qwen3-14B

Vanilla 95.1 2,047 100% 93.8 4,508 100% 95.0 7,139 100% 70.0 10,859 100% 60.1 7,339 100% 82.8 100%
TCC 95.7 1,241 60.6% 94.6 4,484 99.5% 95.0 7,261 101.7% 70.8 11,573 106.6% 60.1 7,138 97.3% 83.3 93.1%
CoD 85.7 648 31.7% 75.2 2,359 52.3% 72.5 4,122 57.7% 60.0 10,768 99.2% 51.0 1,177 16.0% 68.9 51.4%
NoThinking 94.8 286 14.0% 85.0 1,228 27.2% 77.5 2,133 29.9% 26.7 7,337 67.6% 50.5 2,320 31.6% 66.9 34.1%
Dynasor-CoT 95.6 1,483 72.4% 93.8 4,063 90.1% 95.6 6,582 92.2% 73.3 10,369 95.5% 59.6 5,968 81.3% 83.6 86.3%
DEER 95.3 840 41.0% 94.0 3,074 68.2% 95.0 4,763 66.7% 76.7 7,619 70.2% 57.6 2,898 39.5% 83.7 57.1%
DEER-PRo 95.3 926 45.2% 94.4 3,260 72.3% 95.6 4,905 68.7% 75.0 8,135 74.9% 61.2 4,062 55.4% 84.3 63.3%
QwQ-32B

Vanilla 96.7 1,427 100% 93.8 4,508 100% 92.5 6,792 100% 66.7 10,821 100% 63.1 7,320 100% 82.6 100%
TCC 95.8 1,348 94.5% 94.4 4,315 95.7% 90.0 6,818 100.4% 60.0 11,263 104.1% 61.6 7,593 103.7% 80.4 99.7%
CoD 96.0 627 43.9% 94.0 3,630 80.5% 92.5 5,943 87.5% 60.0 10,731 99.2% 62.6 6,039 82.5% 81.0 78.7%
NoThinking 96.2 1,113 78.0% 94.8 3,930 87.2% 87.5 6,908 101.7% 66.7 10,859 100.4% 63.6 7,668 104.8% 81.8 94.4%
Dynasor-CoT 95.2 1,095 76.7% 94.2 4,176 92.6% 93.8 6,544 96.3% 63.3 11,156 103.1% 64.1 7,024 96.0% 82.1 93.0%
DEER 96.3 977 68.5% 94.6 3,316 73.6% 95.0 5,782 85.1% 70.0 10,097 93.3% 64.1 6,163 84.2% 84.0 80.9%
DEER-PRo 96.2 1032 72.3% 94.8 3,650 80.9% 95.0 5,811 85.6% 70.0 10,264 94.9% 64.7 6,201 84.7% 84.1 83.7%

used in each reasoning step, focusing only on the essential calculations or transformations needed
to progress. NoThinking prompts the model to skip the reasoning phase and directly generate the
final answer. Dynasor-CoT periodically prompts the model to produce intermediate answers at fixed
token intervals and triggers early exit when three consecutive answers are consistent. SEAL trains a
steering vector to calibrate the CoT process, guiding the model toward more reliable reasoning.

4.2 MAIN RESULTS

Overall Performance. Due to space constraints, Tab.1 presents five widely adopted reasoning
benchmarks, evaluated across three state-of-the-art reasoning models specifically covering three
model scales, which comprehensively demonstrates DEER’s superior performance. We also pro-
vide more results across 10 datasets covering 11 models ranging from 1.5B to 671B parameters
in the Appendix. It can be found that DEER demonstrates strong adaptability across various rea-
soning models and tasks, achieving accuracy improvements of 0.9 to 4.8 points while reducing se-
quence length by 19.1% to 42.9% compared to vanilla models. DEER-Pro achieves higher accuracy
with only a marginal increase in generation length ranging from 2.8% to 6.2% compared to DEER.
We conducted comparative experiments between DEER and DEER-Pro on additional smaller-scale
models. The experimental results in Table 2 demonstrate that DEER-Pro achieves more significant
accuracy improvements. It indicates that DEER-Pro effectively addresses the prompt sensitivity
issues in smaller models, demonstrating its superior robustness.

Comparison with Efficient Reasoning SoTAs. Tab. 1 presents comparisons between DEER and
recent efficient reasoning methods. It can be observed that DEER consistently outperforms all base-
lines, whereas baselines either struggle to generalize across tasks and base models, or must trade
off accuracy for efficiency. Specifically, while TCC Muennighoff et al. (2025) achieve reasonable
efficiency-accuracy tradeoffs on simpler tasks like GSM8K by incorporating token budgets into
prompts, it fails on complex problems (such as AIME24) where models ignore prompts’ length con-
straints and generate even longer responses than vanilla CoT. As for NoThinking and CoD, while
achieving dramatic length reduction, they severely compromises models’ inherent reasoning capa-
bilities. In contrast, Dynasor-CoT preserves reasoning quality but suffers from late termination due
to its conservative early-exit condition, resulting in minimal length reduction. Notably, nearly all
baselines fail completely on QwQ-32B due to the sporadic invalidation of its end-of-thinking delim-
iter </think> where the model continues generating reasoning steps after it and often produces
duplicate </think> tokens (as shown in Appendix Fig. 18). Remarkably, DEER still achieves a
19.1% length reduction on QwQ-32B despite these challenges, further demonstrating its robustness.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Accuracy of Vanilla COT Accuracy of DEER (Ours) Generation Length of DEER (Ours)Generation Length of Vanilla COT

Average: Vanilla: 83.55 DEER: 84.45 Average: Vanilla: 43.35 DEER: 51.05

Figure 4: Experimental results of DEER compared to Vanilla CoT across DeepSeek-R1-Distill-
Qwen-Series models of varying sizes on MATH-500 and AIME 2024.

Performance on Programming Tasks. Tab. 3 reports DEER’s evaluation results across three
programming tasks, completing our comprehensive coverage of reasoning models’ three primary
domains: mathematics, science, and programming. It demonstrates DEER’s consistent effectiveness
across varying programming tasks and model sizes, achieving smaller compression ratios compared
to math and science tasks (average 19.9% vs. 61.5%). This enhanced compression likely originates
from the inherent characteristics of code generation, where each reasoning step typically produces
verbose code segments containing substantial redundant tokens.

Performance Trends across Model Sizes and Reasoning Difficulty. Fig.4, 10 presents evaluation
results on MATH-500 and AIME 2024 datasets to examine DEER’s performance gains across dif-
ferent model sizes. It can be seen that DEER consistently enhances accuracy while reducing token
consumption across all model sizes. A key observation is that smaller models (e.g., 1.5B) tend to
generate significantly longer reasoning sequences with more severe overthinking phenomena. This
stems from their limited reasoning capacity in discovering the correct reasoning steps during CoT
generation. Consequently, our method achieves greater length reduction for these smaller models.
Fig. 4 utilizes the MATH-500 (simple reasoning) and AIME 2024 (challenging reasoning) datasets
as representative benchmarks. The results demonstrate DEER’s dual capability: it achieves more
superior compression ratios on simpler problems while delivering more substantial accuracy gains
on complex tasks. This precisely addresses two critical needs in reasoning systems: the efficiency
demands in simple scenarios and the growing accuracy requirements in challenging scenarios.

4.3 ABLATION STUDY

Performance Trends across Token Budges. Fig. 5 evaluates DEER’s performance across varying
token budgets (controlled by different max length settings). In plots (a) and (f), the x-axis represents
the actual length of model-generated CoT sequences, while the y-axis indicates model accuracy.
The optimal balance between accuracy and efficiency is demonstrated by curves positioned closer
to the top-left corner. The blue shaded regions quantitatively represent DEER’s performance gains:
vertical height corresponds to accuracy improvement and horizontal width to token compression
benefit. It can be seen that DEER consistently outperforms vanilla methods, as all points located
upper-left to vanilla ones. As shown in the four-column plots on the right, we observe that vanilla
models generate longer sequences with higher accuracy as token budgets increase, confirming test-
time scaling. Notably, DEER demonstrates an adaptive tradeoff: under constrained token budgets,
it achieves greater gains in accuracy but reduced benefits in length compression. Conversely, the
opposite trend is observed with larger token budgets. This indicates that our method can dynamically
adjust token budgets to meet varying requirements for accuracy-efficiency in different scenarios.

Impact of Reasoning Transition Monitor Choices. In the main experiments, we employ ”Wait”
as the early-exit monitoring signal, denoted as DEER(W). This simple linguistic marker-based ap-
proach yields promising results. To compare the impact of different early-exit signals on DEER
performance, we conduct additional experiments using ”Alternatively” as the signal, as well as
entropy-based monitoring for early-exit detection. The corresponding results are presented in Tab.
5 and 6. Tab. 5 collects statistics on the number and average length of reasoning chunks obtained by
dividing the original CoT with potential exit points. The chunk numbers indicate that DEER(Ent)
presents the most early-exit opportunities while DEER(A) offers the fewest, exhibiting a negative
correlation with average generation length. The results in Tab. 6 across additional datasets and mod-
els demonstrate that both entropy-based and linguistic marker-based monitoring exhibit comparable
superior performance, significantly outperforming the baseline. In large-scale real-world deploy-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

D
E
E
R

Va
ni
lla

(a) (c)(b) (d)

(f) (h)(g)

(e)

(i) (j)

Acc Improvement

Len Decrease

Figure 5: Performance comparison between DEER and baselines based on the DeepSeek-R1-Distill-
Qwen-14B model across four datasets under different token budget settings.

ments, we advocate for the linguistic marker-based approach given its implementation simplicity
and efficiency. Appendix I provides further exploration between these two monitoring strategies.

0.85 0.90 0.95 1.00
Threshold

88

90

Ac
cu

ra
cy

MATH-500

DEER
Vanilla CoT

0.85 0.90 0.95 1.00
Threshold

2000

3000

4000

Le
ng

th
 (t

ok
en

s)

DEER
Vanilla CoT

Figure 6: Impact of λ.

Robustness of threshold λ. Fig. 6 shows the performance of DEER
on MATH-500 dataset with different threshold λ. The results indicate
that when the threshold is set too low, a minor additional reduction
in reasoning length leads to a significant drop in accuracy, reflecting
an overcorrection of overthinking. Conversely, when the threshold
is set too high, the model exits reasoning too late, resulting in pro-
longed reasoning lengths with a decline in accuracy. Moreover, it can
be seen that our method is robust to λ whthin the range of 0.9-0.97,
eliminating the need for hyperparameter tuning. Tab. 4 presents our
robustness investigation of the threshold λ across additional datasets
using Qwen3. The experimental results demonstrate that Qwen3 ex-
hibits superior robustness to λ, maintaining consistently strong performance within the range of
0.8-0.97. Additionally, the experimental results in the appendix, conducted across 11 models and
10 datasets, uniformly employ 0.95 as the threshold value. The consistently strong results further
demonstrate DEER’s generalization capability and robustness. Appendix Section J reveals that the
underlying source of DEER’s robustness originates from confidence polarization phenomenon.

4.4 DISCUSSION

(a) Generation Latency (b) Speedup Ratio

Figure 7: Efficiency Improvement.

Efficiency Improvement. To accurately verify the
gains brought by DEER and its Branch-Parallel ac-
celerated variant in end-to-end inference efficiency,
we measured the average latency on MATH-500
and AMC 2023 datasets based on huggingface
transformers (Wolf et al., 2020). As shown in Fig.
7 (a), original DEER reduces the latency by 27.9%
to 40.1% while the proposed branch-parallel decod-
ing variant reduces the latency by 36.3% to 58.6%.
This suggests that Branch-Parallel DEER achieves
further speed improvements by efficiently reducing
the latency of trial answer inducing and confidence evaluation. Additionally, we mapped the latency
speedup against the length savings for every sample on MATH-500. Fig. 7 (b) illustrates that the
ratio between latency speedup and length savings exhibits a superlinear trend, reinforcing the sig-
nificance of DEER in enhancing inference speed. In Section H of the Appendix, we theoretically
prove the efficiency of DEER and explain the underlying cause of the superlinear speedup.

Exploring the Effectiveness of DEER’s Early-Exit Mechanism. Fig. 8 presents the early-exit rate
and the accuracy of early-exited samples across Qwen3-series models of varying sizes. As shown
in Fig. 8(a), DEER’s early-exit rate decreases with increasing task difficulty, which accounts for its
relatively lower compression performance on complex tasks compared to simpler ones. Fig. 8(b)
reveals that, although early-exit accuracy declines somewhat as task difficulty increases, it remains
consistently high—ranging from 88% to 98%. In a concurrent study, Zhang et al. (2025a) trained
a probe to decide whether to early exit. However, their probe achieves an accuracy of only around

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a) (b) (c) (d)

Figure 8: Early-exit rates and accuracy of early-exited samples of DEER. Figures (a) and (b) share
a common legend, as do figures (c) and (d). The height of each bar reflects the average value.

80% on MATH-500, which is significantly lower than DEER’s 95%. This indicates that the model
inherently possesses the ability to assess answer correctness, and that DEER effectively harnesses
this capability. As illustrated in Figures 8(c) and (d), although minor differences exist across tasks
of varying difficulty, there is a general trend toward higher early-exit rates and improved accuracy as
model size increases. This observation implies a positive relationship between DEER’s performance
and the capacity of the model: larger models yield more accurate confidence estimates, which in turn
lead to better early-exit decisions. We further investigate the reasons behind DEER’s accuracy gains.
Fig. 11 indicates that DEER corrects more answers (green bars) than it alters incorrectly (red bars)
through early exits. This suggests that DEER not only saves computational cost by exiting early on
questions it could correctly answer, but also corrects problematic thinking.

Case Study. Fig. 13 shows that both DEER and vanilla CoT arrive at the correct answer during the
first reasoning step, as shown in the green box. The difference lies in the fact that DEER exits early
after evaluating the confidence of the trial answer as sufficiently high, thus producing the correct
result. In contrast, the vanilla CoT proceeds to the next reasoning action. After double-checking
and switching reasoning approaches, the model becomes trapped in an endless cycle of verification
due to inconsistent answers from the two approaches, ultimately failing to provide a final answer.
Besides, Fig. 17 shows that LRMs implicitly know when to leave early, and our method is simple
and effective to realize such potential of the model itself. Please refer to Appendix L for details.

5 RELATED WORK

Following the taxonomy of efficient reasoning established in (Sui et al., 2025; Wang et al., 2025a),
we categorize related work into three classes: post-traning based methods use SFT (Yu et al., 2024;
Kang et al., 2025; Xia et al., 2025; Ma et al., 2025b; Munkhbat et al., 2025; Liu et al., 2024; Han
et al., 2024) with variable-length CoT data or incorporate length rewards (Team et al., 2025b; Luo
et al., 2025a; Aggarwal & Welleck, 2025; Arora & Zanette, 2025; Yeo et al., 2025; Shen et al.,
2025b; Qu et al., 2025; Cui et al., 2025) in reinforcement learning to enable the model to adaptively
generate chains of thought of different lengths, which is beyond our training-free scope. Prompt-
based methods (Han et al., 2024; Xu et al., 2025b; Lee et al., 2025; Renze & Guven, 2024; Chen
et al., 2024) use varying prompts to enforce reasoning models to generate concise CoT with less
unnecessary reasoning steps. Output-based methods aim to accelerate reasoning generation during
the model’s decoding phase, and DEER falls into this category. However, most prior works (Xie
et al., 2023; Liao et al., 2025; Li et al., 2024; Manvi et al., 2024; Aggarwal et al., 2023) focus on
optimizing best-of-N sampling, which is irrelevant to our study. Instead, we select three recent
concurrent works Nothinking (Ma et al., 2025a), Dynasor-CoT (Fu et al., 2025), and SEAL (Chen
et al., 2025a) as baselines for comparison. More related works can be seen in Appendix M.

6 CONCLUSION

This paper verifies the rationale behind the early exit motivation in CoT generation, and accordingly
proposes a training-free dynamic early exit algorithm, which makes the reasoning model withdraw
from subsequent thinking when the thinking amount is just enough. Our method comprehensively
evaluated across reasoning models of varying model sizes and demonstrates superior performance
with fewer tokens on ten classical reasoning benchmarks, which offers a win-win solution to the
trade-off between accuracy and efficiency commonly encountered in test-time scaling.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. We affirm that our research has been conducted with
integrity, honesty, and respect for ethical principles throughout all stages of the work.

• All findings presented in this paper are reported accurately and honestly. We have not
fabricated, falsified, or misrepresented any data or results. Our methods and experimental
procedures are described transparently to ensure reproducibility.

• All datasets used in this research were obtained and utilized in accordance with their li-
censes and terms of use. For any data involving personal information, we ensured compli-
ance with privacy regulations and obtained appropriate ethical approvals where necessary.

• All contributions to this work have been properly acknowledged. We have appropriately
cited all sources and prior work that influenced our research. All co-authors have made
substantial contributions to the work and have agreed to the submission.

• We have carefully considered the broader implications of our work. While our research
aims to advance the field positively, we acknowledge potential dual-use concerns and en-
courage responsible deployment of our methods in real-world applications.

8 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we have provided detailed descriptions of our experi-
mental setup, hyperparameters, and implementation details. Code and supplementary materials are
made available where possible to facilitate verification and future research.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Pranjal Aggarwal and Sean Welleck. L1: Controlling how long a reasoning model thinks with
reinforcement learning. arXiv preprint arXiv:2503.04697, 2025.

Pranjal Aggarwal, Aman Madaan, Yiming Yang, et al. Let’s sample step by step: Adaptive-
consistency for efficient reasoning and coding with llms. arXiv preprint arXiv:2305.11860, 2023.

AI-MO. Amc 2023, 2024. URL https://huggingface.co/datasets/AI-MO/
aimo-validation-amc.

Daman Arora and Andrea Zanette. Training language models to reason efficiently. arXiv preprint
arXiv:2502.04463, 2025.

Simon A Aytes, Jinheon Baek, and Sung Ju Hwang. Sketch-of-thought: Efficient llm reasoning with
adaptive cognitive-inspired sketching. arXiv preprint arXiv:2503.05179, 2025.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
assistant with reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862,
2022.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec

10

https://huggingface.co/datasets/AI-MO/ aimo-validation-amc
https://huggingface.co/datasets/AI-MO/ aimo-validation-amc

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
language models trained on code, 2021. URL https://arxiv.org/abs/2107.03374.

Qiguang Chen, Libo Qin, Jiaqi Wang, Jingxuan Zhou, and Wanxiang Che. Unlocking the capa-
bilities of thought: A reasoning boundary framework to quantify and optimize chain-of-thought.
Advances in Neural Information Processing Systems, 37:54872–54904, 2024.

Runjin Chen, Zhenyu Zhang, Junyuan Hong, Souvik Kundu, and Zhangyang Wang. Seal: Steerable
reasoning calibration of large language models for free, 2025a. URL https://arxiv.org/
abs/2504.07986.

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu,
Mengfei Zhou, Zhuosheng Zhang, Rui Wang, Zhaopeng Tu, Haitao Mi, and Dong Yu. Do not
think that much for 2+3=? on the overthinking of o1-like llms, 2025b. URL https://arxiv.
org/abs/2412.21187.

Jeffrey Cheng and Benjamin Van Durme. Compressed chain of thought: Efficient reasoning through
dense representations. arXiv preprint arXiv:2412.13171, 2024.

Yu-Neng Chuang, Helen Zhou, Prathusha Sarma, Parikshit Gopalan, John Boccio, Sara Bolouki,
and Xia Hu. Learning to route llms with confidence tokens. arXiv preprint arXiv, 2410, 2024.

Yu-Neng Chuang, Leisheng Yu, Guanchu Wang, Lizhe Zhang, Zirui Liu, Xuanting Cai, Yang Sui,
Vladimir Braverman, and Xia Hu. Confident or seek stronger: Exploring uncertainty-based on-
device llm routing from benchmarking to generalization. arXiv preprint arXiv:2502.04428, 2025.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.
org/abs/2110.14168.

Alejandro Cuadron, Dacheng Li, Wenjie Ma, Xingyao Wang, Yichuan Wang, Siyuan Zhuang, Shu
Liu, Luis Gaspar Schroeder, Tian Xia, Huanzhi Mao, et al. The danger of overthinking: Examin-
ing the reasoning-action dilemma in agentic tasks. arXiv preprint arXiv:2502.08235, 2025.

Yingqian Cui, Pengfei He, Jingying Zeng, Hui Liu, Xianfeng Tang, Zhenwei Dai, Yan Han, Chen
Luo, Jing Huang, Zhen Li, et al. Stepwise perplexity-guided refinement for efficient chain-of-
thought reasoning in large language models. arXiv preprint arXiv:2502.13260, 2025.

Muzhi Dai, Chenxu Yang, and Qingyi Si. S-grpo: Early exit via reinforcement learning in reasoning
models, 2025. URL https://arxiv.org/abs/2505.07686.

Renfei Dang, Shujian Huang, and Jiajun Chen. Internal bias in reasoning models leads to overthink-
ing, 2025. URL https://arxiv.org/abs/2505.16448.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai
Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng
Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing
Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen
Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong

11

https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2504.07986
https://arxiv.org/abs/2504.07986
https://arxiv.org/abs/2412.21187
https://arxiv.org/abs/2412.21187
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2505.07686
https://arxiv.org/abs/2505.16448

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,
Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xi-
aosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia
Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong
Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong,
Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou,
Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying
Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda
Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu,
Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforce-
ment learning, 2025. URL https://arxiv.org/abs/2501.12948.

Razvan-Gabriel Dumitru, Darius Peteleaza, Vikas Yadav, and Liangming Pan. Conciserl:
Conciseness-guided reinforcement learning for efficient reasoning models, 2025. URL https:
//arxiv.org/abs/2505.17250.

Yichao Fu, Junda Chen, Yonghao Zhuang, Zheyu Fu, Ion Stoica, and Hao Zhang. Reasoning without
self-doubt: More efficient chain-of-thought through certainty probing. In ICLR 2025 Workshop
on Foundation Models in the Wild, 2025. URL https://openreview.net/forum?id=
wpK4IMJfdX.

Tingxu Han, Zhenting Wang, Chunrong Fang, Shiyu Zhao, Shiqing Ma, and Zhenyu Chen. Token-
budget-aware llm reasoning. arXiv preprint arXiv:2412.18547, 2024.

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong
Tian. Training large language models to reason in a continuous latent space. arXiv preprint
arXiv:2412.06769, 2024.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi
Hu, Xu Han, Yujie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan Liu, and Maosong Sun.
Olympiadbench: A challenging benchmark for promoting agi with olympiad-level bilingual mul-
timodal scientific problems, 2024. URL https://arxiv.org/abs/2402.14008.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset, 2021.
URL https://arxiv.org/abs/2103.03874.

Yao Huang, Huanran Chen, Shouwei Ruan, Yichi Zhang, Xingxing Wei, and Yinpeng Dong. Mit-
igating overthinking in large reasoning models via manifold steering, 2025. URL https:
//arxiv.org/abs/2505.22411.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code, 2024. URL https://arxiv.org/abs/
2403.07974.

Lingjie Jiang, Xun Wu, Shaohan Huang, Qingxiu Dong, Zewen Chi, Li Dong, Xingxing Zhang,
Tengchao Lv, Lei Cui, and Furu Wei. Think only when you need with large hybrid-reasoning
models, 2025a. URL https://arxiv.org/abs/2505.14631.

Yuxuan Jiang, Dawei Li, and Frank Ferraro. Drp: Distilled reasoning pruning with skill-aware
step decomposition for efficient large reasoning models, 2025b. URL https://arxiv.org/
abs/2505.13975.

Yu Kang, Xianghui Sun, Liangyu Chen, and Wei Zou. C3ot: Generating shorter chain-of-thought
without compromising effectiveness. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 39, pp. 24312–24320, 2025.

kvcache ai. KTransformers: A flexible framework for experiencing cutting-edge llm inference
optimizations. https://github.com/kvcache-ai/ktransformers, 2025. URL
https://github.com/kvcache-ai/ktransformers. GitHub repository, commit
a1b2c3d, accessed 2025-05-16.

12

https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2505.17250
https://arxiv.org/abs/2505.17250
https://openreview.net/forum?id=wpK4IMJfdX
https://openreview.net/forum?id=wpK4IMJfdX
https://arxiv.org/abs/2402.14008
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2505.22411
https://arxiv.org/abs/2505.22411
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2505.14631
https://arxiv.org/abs/2505.13975
https://arxiv.org/abs/2505.13975
https://github.com/kvcache-ai/ktransformers
https://github.com/kvcache-ai/ktransformers

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention, 2023. URL https://arxiv.org/abs/2309.06180.

Ayeong Lee, Ethan Che, and Tianyi Peng. How well do llms compress their own chain-of-thought?
a token complexity approach. arXiv preprint arXiv:2503.01141, 2025.

Yiwei Li, Peiwen Yuan, Shaoxiong Feng, Boyuan Pan, Xinglin Wang, Bin Sun, Heda Wang, and
Kan Li. Escape sky-high cost: Early-stopping self-consistency for multi-step reasoning. arXiv
preprint arXiv:2401.10480, 2024.

Zheng Li, Qingxiu Dong, Jingyuan Ma, Di Zhang, Kai Jia, and Zhifang Sui. Selfbudgeter: Adaptive
token allocation for efficient llm reasoning, 2025a. URL https://arxiv.org/abs/2505.
11274.

Zhong-Zhi Li, Duzhen Zhang, Ming-Liang Zhang, Jiaxin Zhang, Zengyan Liu, Yuxuan Yao, Haotian
Xu, Junhao Zheng, Pei-Jie Wang, Xiuyi Chen, Yingying Zhang, Fei Yin, Jiahua Dong, Zhijiang
Guo, Le Song, and Cheng-Lin Liu. From system 1 to system 2: A survey of reasoning large
language models, 2025b. URL https://arxiv.org/abs/2502.17419.

Baohao Liao, Yuhui Xu, Hanze Dong, Junnan Li, Christof Monz, Silvio Savarese, Doyen Sahoo, and
Caiming Xiong. Reward-guided speculative decoding for efficient llm reasoning. arXiv preprint
arXiv:2501.19324, 2025.

Hanbing Liu, Lang Cao, Yuanyi Ren, Mengyu Zhou, Haoyu Dong, Xiaojun Ma, Shi Han, and
Dongmei Zhang. Bingo: Boosting efficient reasoning of llms via dynamic and significance-based
reinforcement learning, 2025a. URL https://arxiv.org/abs/2506.08125.

Tengxiao Liu, Qipeng Guo, Xiangkun Hu, Cheng Jiayang, Yue Zhang, Xipeng Qiu, and Zheng
Zhang. Can language models learn to skip steps? arXiv preprint arXiv:2411.01855, 2024.

Wei Liu, Ruochen Zhou, Yiyun Deng, Yuzhen Huang, Junteng Liu, Yuntian Deng, Yizhe Zhang,
and Junxian He. Learn to reason efficiently with adaptive length-based reward shaping, 2025b.
URL https://arxiv.org/abs/2505.15612.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and
Min Lin. Understanding r1-zero-like training: A critical perspective, 2025c. URL https:
//arxiv.org/abs/2503.20783.

Haotian Luo, Li Shen, Haiying He, Yibo Wang, Shiwei Liu, Wei Li, Naiqiang Tan, Xiaochun Cao,
and Dacheng Tao. O1-pruner: Length-harmonizing fine-tuning for o1-like reasoning pruning.
arXiv preprint arXiv:2501.12570, 2025a.

Yijia Luo, Yulin Song, Xingyao Zhang, Jiaheng Liu, Weixun Wang, GengRu Chen, Wenbo Su, and
Bo Zheng. Deconstructing long chain-of-thought: A structured reasoning optimization framework
for long cot distillation, 2025b. URL https://arxiv.org/abs/2503.16385.

Wenjie Ma, Jingxuan He, Charlie Snell, Tyler Griggs, Sewon Min, and Matei Zaharia. Reasoning
models can be effective without thinking. arXiv preprint arXiv:2504.09858, 2025a.

Xinyin Ma, Guangnian Wan, Runpeng Yu, Gongfan Fang, and Xinchao Wang. Cot-valve: Length-
compressible chain-of-thought tuning. arXiv preprint arXiv:2502.09601, 2025b.

Rohin Manvi, Anikait Singh, and Stefano Ermon. Adaptive inference-time compute: Llms can
predict if they can do better, even mid-generation. arXiv preprint arXiv:2410.02725, 2024.

MAA Committees. Aime problems and solutions. https://artofproblemsolving.com/
wiki/index.php/AIME_Problems_and_Solutions.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling, 2025. URL https://arxiv.org/abs/2501.19393.

13

https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2505.11274
https://arxiv.org/abs/2505.11274
https://arxiv.org/abs/2502.17419
https://arxiv.org/abs/2506.08125
https://arxiv.org/abs/2505.15612
https://arxiv.org/abs/2503.20783
https://arxiv.org/abs/2503.20783
https://arxiv.org/abs/2503.16385
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://arxiv.org/abs/2501.19393

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Tergel Munkhbat, Namgyu Ho, Seo Hyun Kim, Yongjin Yang, Yujin Kim, and Se-Young Yun. Self-
training elicits concise reasoning in large language models. arXiv preprint arXiv:2502.20122,
2025.

Isaac Ong, Amjad Almahairi, Vincent Wu, Wei-Lin Chiang, Tianhao Wu, Joseph E Gonzalez,
M Waleed Kadous, and Ion Stoica. Routellm: Learning to route llms with preference data, 2024.
URL https://arxiv. org/abs/2406.18665.

OpenAI. Learning to reason with llms. https://openai.com/research/
learning-to-reason-with-llms, 2025. Accessed: 15 March 2025.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

Ziqing Qiao, Yongheng Deng, Jiali Zeng, Dong Wang, Lai Wei, Guanbo Wang, Fandong Meng,
Jie Zhou, Ju Ren, and Yaoxue Zhang. Concise: Confidence-guided compression in step-by-step
efficient reasoning, 2025. URL https://arxiv.org/abs/2505.04881.

Yuxiao Qu, Matthew YR Yang, Amrith Setlur, Lewis Tunstall, Edward Emanuel Beeching, Ruslan
Salakhutdinov, and Aviral Kumar. Optimizing test-time compute via meta reinforcement fine-
tuning. arXiv preprint arXiv:2503.07572, 2025.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.
URL https://arxiv.org/abs/2412.15115.

Shyam Sundhar Ramesh, Yifan Hu, Iason Chaimalas, Viraj Mehta, Pier Giuseppe Sessa,
Haitham Bou Ammar, and Ilija Bogunovic. Group robust preference optimization in reward-
free RLHF. In The Thirty-eighth Annual Conference on Neural Information Processing Systems,
2024. URL https://openreview.net/forum?id=PRAsjrmXXK.

Carl Rasmussen and Zoubin Ghahramani. Occam's razor. In T. Leen, T. Dietterich, and
V. Tresp (eds.), Advances in Neural Information Processing Systems, volume 13. MIT Press,
2000. URL https://proceedings.neurips.cc/paper_files/paper/2000/
file/0950ca92a4dcf426067cfd2246bb5ff3-Paper.pdf.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
Dirani, Julian Michael, and Samuel R. Bowman. Gpqa: A graduate-level google-proof q&a
benchmark, 2023. URL https://arxiv.org/abs/2311.12022.

Matthew Renze and Erhan Guven. The benefits of a concise chain of thought on problem-solving in
large language models. In 2024 2nd International Conference on Foundation and Large Language
Models (FLLM), pp. 476–483. IEEE, 2024.

Nikunj Saunshi, Nishanth Dikkala, Zhiyuan Li, Sanjiv Kumar, and Sashank J Reddi. Reasoning
with latent thoughts: On the power of looped transformers. arXiv preprint arXiv:2502.17416,
2025.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Xuan Shen, Yizhou Wang, Xiangxi Shi, Yanzhi Wang, Pu Zhao, and Jiuxiang Gu. Efficient reasoning
with hidden thinking. arXiv preprint arXiv:2501.19201, 2025a.

Yi Shen, Jian Zhang, Jieyun Huang, Shuming Shi, Wenjing Zhang, Jiangze Yan, Ning Wang, Kai
Wang, and Shiguo Lian. Dast: Difficulty-adaptive slow-thinking for large reasoning models.
arXiv preprint arXiv:2503.04472, 2025b.

14

https://openai.com/research/learning-to-reason-with-llms
https://openai.com/research/learning-to-reason-with-llms
https://arxiv.org/abs/2505.04881
https://arxiv.org/abs/2412.15115
https://openreview.net/forum?id=PRAsjrmXXK
https://proceedings.neurips.cc/paper_files/paper/2000/file/0950ca92a4dcf426067cfd2246bb5ff3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2000/file/0950ca92a4dcf426067cfd2246bb5ff3-Paper.pdf
https://arxiv.org/abs/2311.12022

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Zhenyi Shen, Hanqi Yan, Linhai Zhang, Zhanghao Hu, Yali Du, and Yulan He. Codi: Compressing
chain-of-thought into continuous space via self-distillation. arXiv preprint arXiv:2502.21074,
2025c.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters, 2024. URL https://arxiv.org/
abs/2408.03314.

Jiwon Song, Dongwon Jo, Yulhwa Kim, and Jae-Joon Kim. Reasoning path compression: Com-
pressing generation trajectories for efficient llm reasoning, 2025. URL https://arxiv.org/
abs/2505.13866.

DiJia Su, Hanlin Zhu, Yingchen Xu, Jiantao Jiao, Yuandong Tian, and Qinqing Zheng. Token
assorted: Mixing latent and text tokens for improved language model reasoning. arXiv preprint
arXiv:2502.03275, 2025.

Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi Liu,
Andrew Wen, Shaochen Zhong, Hanjie Chen, and Xia Hu. Stop overthinking: A survey on effi-
cient reasoning for large language models, 2025. URL https://arxiv.org/abs/2503.
16419.

Wenhui Tan, Jiaze Li, Jianzhong Ju, Zhenbo Luo, Jian Luan, and Ruihua Song. Think silently, think
fast: Dynamic latent compression of llm reasoning chains, 2025. URL https://arxiv.org/
abs/2505.16552.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, Chuning Tang, Congcong Wang, Dehao Zhang, Enming
Yuan, Enzhe Lu, Fengxiang Tang, Flood Sung, Guangda Wei, Guokun Lai, Haiqing Guo, Han
Zhu, Hao Ding, Hao Hu, Hao Yang, Hao Zhang, Haotian Yao, Haotian Zhao, Haoyu Lu, Haoze
Li, Haozhen Yu, Hongcheng Gao, Huabin Zheng, Huan Yuan, Jia Chen, Jianhang Guo, Jianlin Su,
Jianzhou Wang, Jie Zhao, Jin Zhang, Jingyuan Liu, Junjie Yan, Junyan Wu, Lidong Shi, Ling Ye,
Longhui Yu, Mengnan Dong, Neo Zhang, Ningchen Ma, Qiwei Pan, Qucheng Gong, Shaowei
Liu, Shengling Ma, Shupeng Wei, Sihan Cao, Siying Huang, Tao Jiang, Weihao Gao, Weimin
Xiong, Weiran He, Weixiao Huang, Wenhao Wu, Wenyang He, Xianghui Wei, Xianqing Jia,
Xingzhe Wu, Xinran Xu, Xinxing Zu, Xinyu Zhou, Xuehai Pan, Y. Charles, Yang Li, Yangyang
Hu, Yangyang Liu, Yanru Chen, Yejie Wang, Yibo Liu, Yidao Qin, Yifeng Liu, Ying Yang, Yiping
Bao, Yulun Du, Yuxin Wu, Yuzhi Wang, Zaida Zhou, Zhaoji Wang, Zhaowei Li, Zhen Zhu, Zheng
Zhang, Zhexu Wang, Zhilin Yang, Zhiqi Huang, Zihao Huang, Ziyao Xu, and Zonghan Yang.
Kimi k1.5: Scaling reinforcement learning with llms, 2025a. URL https://arxiv.org/
abs/2501.12599.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
llms. arXiv preprint arXiv:2501.12599, 2025b.

Qwen Team. Qwq-32b: Embracing the power of reinforcement learning, March 2025. URL
https://qwenlm.github.io/blog/qwq-32b/.

Songjun Tu, Jiahao Lin, Qichao Zhang, Xiangyu Tian, Linjing Li, Xiangyuan Lan, and Dongbin
Zhao. Learning when to think: Shaping adaptive reasoning in r1-style models via multi-stage rl,
2025. URL https://arxiv.org/abs/2505.10832.

Hongru WANG, Deng Cai, Wanjun Zhong, Shijue Huang, Jeff Z. Pan, Zeming Liu, and Kam-Fai
Wong. Self-reasoning language models: Unfold hidden reasoning chains with few reasoning
catalyst. In Workshop on Reasoning and Planning for Large Language Models, 2025. URL
https://openreview.net/forum?id=p4wXiD8FX1.

Rui Wang, Hongru Wang, Boyang Xue, Jianhui Pang, Shudong Liu, Yi Chen, Jiahao Qiu, Derek Fai
Wong, Heng Ji, and Kam-Fai Wong. Harnessing the reasoning economy: A survey of efficient rea-
soning for large language models, 2025a. URL https://arxiv.org/abs/2503.24377.

15

https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2505.13866
https://arxiv.org/abs/2505.13866
https://arxiv.org/abs/2503.16419
https://arxiv.org/abs/2503.16419
https://arxiv.org/abs/2505.16552
https://arxiv.org/abs/2505.16552
https://arxiv.org/abs/2501.12599
https://arxiv.org/abs/2501.12599
https://qwenlm.github.io/blog/qwq-32b/
https://arxiv.org/abs/2505.10832
https://openreview.net/forum?id=p4wXiD8FX1
https://arxiv.org/abs/2503.24377

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Shenzhi Wang, Le Yu, Chang Gao, Chujie Zheng, Shixuan Liu, Rui Lu, Kai Dang, Xionghui Chen,
Jianxin Yang, Zhenru Zhang, Yuqiong Liu, An Yang, Andrew Zhao, Yang Yue, Shiji Song, Bowen
Yu, Gao Huang, and Junyang Lin. Beyond the 80/20 rule: High-entropy minority tokens drive
effective reinforcement learning for llm reasoning, 2025b. URL https://arxiv.org/abs/
2506.01939.

Yibo Wang, Li Shen, Huanjin Yao, Tiansheng Huang, Rui Liu, Naiqiang Tan, Jiaxing Huang, Kai
Zhang, and Dacheng Tao. R1-compress: Long chain-of-thought compression via chunk compres-
sion and search, 2025c. URL https://arxiv.org/abs/2505.16838.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. arXiv preprint
arXiv:2109.01652, 2021.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models,
2023. URL https://arxiv.org/abs/2201.11903.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Huggingface’s transformers: State-of-
the-art natural language processing, 2020. URL https://arxiv.org/abs/1910.03771.

Yuyang Wu, Yifei Wang, Tianqi Du, Stefanie Jegelka, and Yisen Wang. When more is less: Under-
standing chain-of-thought length in llms. arXiv preprint arXiv:2502.07266, 2025.

Heming Xia, Yongqi Li, Chak Tou Leong, Wenjie Wang, and Wenjie Li. Tokenskip: Controllable
chain-of-thought compression in llms. arXiv preprint arXiv:2502.12067, 2025.

Yuxi Xie, Kenji Kawaguchi, Yiran Zhao, James Xu Zhao, Min-Yen Kan, Junxian He, and Michael
Xie. Self-evaluation guided beam search for reasoning. Advances in Neural Information Process-
ing Systems, 36:41618–41650, 2023.

Fengli Xu, Qianyue Hao, Zefang Zong, Jingwei Wang, Yunke Zhang, Jingyi Wang, Xiaochong
Lan, Jiahui Gong, Tianjian Ouyang, Fanjin Meng, Chenyang Shao, Yuwei Yan, Qinglong Yang,
Yiwen Song, Sijian Ren, Xinyuan Hu, Yu Li, Jie Feng, Chen Gao, and Yong Li. Towards large
reasoning models: A survey of reinforced reasoning with large language models, 2025a. URL
https://arxiv.org/abs/2501.09686.

Silei Xu, Wenhao Xie, Lingxiao Zhao, and Pengcheng He. Chain of draft: Thinking faster by writing
less. arXiv preprint arXiv:2502.18600, 2025b.

Silei Xu, Wenhao Xie, Lingxiao Zhao, and Pengcheng He. Chain of draft: Thinking faster by writing
less, 2025c. URL https://arxiv.org/abs/2502.18600.

Yige Xu, Xu Guo, Zhiwei Zeng, and Chunyan Miao. Softcot: Soft chain-of-thought for efficient
reasoning with llms. arXiv preprint arXiv:2502.12134, 2025d.

Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. Limo: Less is more
for reasoning, 2025. URL https://arxiv.org/abs/2502.03387.

Edward Yeo, Yuxuan Tong, Morry Niu, Graham Neubig, and Xiang Yue. Demystifying long chain-
of-thought reasoning in llms. arXiv preprint arXiv:2502.03373, 2025.

Bin Yu, Hang Yuan, Haotian Li, Xueyin Xu, Yuliang Wei, Bailing Wang, Weizhen Qi, and Kai Chen.
Long-short chain-of-thought mixture supervised fine-tuning eliciting efficient reasoning in large
language models, 2025. URL https://arxiv.org/abs/2505.03469.

Ping Yu, Jing Xu, Jason Weston, and Ilia Kulikov. Distilling system 2 into system 1. arXiv preprint
arXiv:2407.06023, 2024.

16

https://arxiv.org/abs/2506.01939
https://arxiv.org/abs/2506.01939
https://arxiv.org/abs/2505.16838
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/2501.09686
https://arxiv.org/abs/2502.18600
https://arxiv.org/abs/2502.03387
https://arxiv.org/abs/2505.03469

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Anqi Zhang, Yulin Chen, Jane Pan, Chen Zhao, Aurojit Panda, Jinyang Li, and He He. Reason-
ing models know when they’re right: Probing hidden states for self-verification. arXiv preprint
arXiv:2504.05419, 2025a.

Jiajie Zhang, Nianyi Lin, Lei Hou, Ling Feng, and Juanzi Li. Adaptthink: Reasoning models can
learn when to think, 2025b. URL https://arxiv.org/abs/2505.13417.

Wenyuan Zhang, Shuaiyi Nie, Xinghua Zhang, Zefeng Zhang, and Tingwen Liu. S1-bench:
A simple benchmark for evaluating system 1 thinking capability of large reasoning mod-
els. ArXiv, abs/2504.10368, 2025c. URL https://api.semanticscholar.org/
CorpusID:277781494.

Zhen Zhang, Xuehai He, Weixiang Yan, Ao Shen, Chenyang Zhao, Shuohang Wang, Yelong Shen,
and Xin Eric Wang. Soft thinking: Unlocking the reasoning potential of llms in continuous
concept space, 2025d. URL https://arxiv.org/abs/2505.15778.

Rongzhi Zhu, Yi Liu, Zequn Sun, Yiwei Wang, and Wei Hu. When can large reasoning models
save thinking? mechanistic analysis of behavioral divergence in reasoning, 2025. URL https:
//arxiv.org/abs/2505.15276.

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari,
Imam Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, et al. Bigcodebench: Bench-
marking code generation with diverse function calls and complex instructions. arXiv preprint
arXiv:2406.15877, 2024.

17

https://arxiv.org/abs/2505.13417
https://api.semanticscholar.org/CorpusID:277781494
https://api.semanticscholar.org/CorpusID:277781494
https://arxiv.org/abs/2505.15778
https://arxiv.org/abs/2505.15276
https://arxiv.org/abs/2505.15276

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A PILOT EXPERIMENT SETUP

We selected AIME2024 (MAA Committees) as the test set for exploratory experiments to perform
a qualitative analysis and further conducted a quantitative analysis through experiments on MATH-
500 (Hendrycks et al., 2021), GPQA-Diamond (Rein et al., 2023). All experiments were conducted
on DeepSeek-R1-Distill-Qwen-14B (DeepSeek-AI et al., 2025). In our experiments, we first en-
abled the LRM to perform a complete inference on the test set (including both the slow thinking
and conclusion contents). Then, we preserved the thinking content and divided it into thinking
chunks based on the action transition points. Samples with more than five thinking chunks were
retained. For these samples, we retained varying proportions (20%-90%) of their thinking chunks
and appended an end-of-thinking token delimiter to each truncated reasoning sequence to forcibly
terminate the slow-thinking process. The model then generated its final conclusion based on the par-
tial reasoning contents. For the conclusions obtained with varying thinking contents, we evaluated
their correctness and presented the results of each sample in Figure 1. Furthermore, we investigated
the number of samples that remained correct after early exiting when they were originally correct,
as well as the number of samples that became correct after early exiting when they were originally
incorrect, across three datasets in Figure 2.

B PROOF OF DEER-PRO’S EFFECTIVENESS AGAINST NOISE.

B.1 NOISE INDEPENDENCE OF THE MAD-CALIBRATED STRATEGY

Let us define the true confidence µ as the model’s actual probability of deriving the correct answer
given the current reasoning content, corresponding to the real probability of pearl reasoning existing
at this location. The early-exit decision threshold is denoted as λ, and the model executes early
exit when µ > λ. Since answer inducing prompts may introduce ε, the model’s output confidence
fluctuates around the true confidence, yielding an observed confidence of Ci = µ + εi. In practical
testing environments, we compare Ci with λ to determine whether to perform early exit. Without loss
of generality, we assume the noise terms εi to be independently and identically distributed (i.i.d.), a
Gaussian distribution with mean 0 and standard deviation σ, i.e., εi ∼ N(0, σ2). Here, σ represents
the model’s sensitivity to prompt phrasing. A larger σ indicates higher model sensitivity, resulting
in greater confidence fluctuations.

Next, we demonstrate DEER-PRO’s effectiveness against noise interference by comparing the de-
cision error rates of DEER-PRO (Ccali), DEER (Ci), an averaging approach (Cavg) in critical risk
scenarios. Suppose Ccali and Cavg each conduct N times answer inducing in parallel, with N identi-
cal to that in Equation (5). Given that preserving accuracy takes precedence over early-exit speedup
gains in reasoning scenarios, we designate risk scenarios as those where true confidence µ < λ. We
then compute the false positive probability of observing C > λ due to noise interference.

B.1.1 PROBABILITY OF ERROR FOR A SINGLE PROMPT:

PFP(Single) = P (Ci > λ) = P (µ+ εi > λ) = P (εi > λ− µ) (6)
Since εi ∼ N(0, σ2), we can standardize it as:

PFP(Single) = P

(
εi
σ

>
λ− µ

σ

)
(7)

Let Z = ε1
σ , then Z ∼ N(0, 1), then:

PFP(Single) = P

(
Z >

λ− µ

σ

)
= 1− Φ

(
λ− µ

σ

)
(8)

where Φ is the cumulative distribution function (CDF) of the standard normal distribution.

B.1.2 PROBABILITY OF ERROR FOR AVERAGED CONFIDENCE:

For the averaged confidence Cavg, the noise term is still Gaussian, εavg ∼ N(0, σ2/N). The proba-
bility of error for averaged confidence is:

PFP(Avg) = P (Cavg > λ) = 1− Φ

(√
N

(λ− µ)

σ

)
(9)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Since (λ−µ)
√
N

σ > λ−µ
σ for N > 1, it follows that PFP(Avg) < PFP(Single). It indicates that sim-

ply averaging multiple observed confidence values can mitigate noise interference. Nevertheless,
confidence averaging fails to address the fundamental problem, as the error rate PFP remains de-
pendent on the noise standard deviation σ, increasing monotonically as σ grows. For models with
substantial intrinsic noise (large σ), the parameter inside the Φ function converges to zero, driving
PFP toward 0.5. This indicates that high-noise models reduce to random guessing, regardless of the
decision threshold λ. Therefore, the reliability of traditional approaches is severely constrained by
the model’s inherent noise level σ, a factor beyond our control.

B.1.3 PROBABILITY OF ERROR FOR MAD-CALIBRATED CONFIDENCE (DEER-PRO):

PFP(calibration) = P (Ccali > λ) = P (Cavg − α · CMAD > λ) (10)
Substituting Cavg = µ+ εavg , we obtain:

PFP(calibration) = P (µ+ εavg − α · CMAD > λ) (11)

Rearranging the terms in the equation yields:

PFP(calibration) = P (εavg > α · CMAD + λ− µ) (12)

Next, we will discuss the robustness of DEER-PRo under two distinct scenarios.

Scenario 1: Approximate estimation of CMAD

Under our assumption where εi ∼ N(0, σ2), we have εavg ∼ N(0, σ2/N) and E[CMAD] ≈ 0.8σ
(we will provide the proof in Section B.3). For large N , the law of large numbers allows us to
approximate CMAD as 0.8σ. Given this assumption, we have:

PFP(calibration) = P (Cavg > λ+ 0.8σα) (13)

The above equation reveals that DEER-PRo fundamentally differs by employing an adaptive thresh-
old that scales with noise:

λeffective = λ+ 0.8ασ (14)
We proceed to reformulate the equation by transforming PFP(calibration) into the cumulative dis-
tribution function (CDF) of the standard normal distribution Φ. For Equation (12), we substitute
CMAD = 0.8σ and obtain:

PFP(calibration) = P (εavg > 0.8σα+ λ− µ) (15)

Since εavg ∼ N(0, σ2/N):

PFP(calibration) = 1− Φ

(
(λ− µ+ 0.8ασ)

√
N

σ

)
(16)

Simplifying:

PFP(calibration) = 1− Φ

(√
N

(
λ− µ

σ
+ 0.8α

))
(17)

When noise is minimal:
λeffective → λ (18)

The calibrated method behaves like standard thresholding, maintaining high efficiency.

When noise dominates, λ−µ
σ → 0. The false positive rate becomes:

PFP = 1− Φ(0.8α
√
N) (19)

which is independent of σ. It indicates that DEER-PRo effectively prevent early exit from reducing
to random guessing (PFP → 0.5).

Scenario 2: Exact computation of CMAD without approximation.

From CMAD = 1
N

∑N
i=1 |Ci − Cavg|, we know that CMAD is positive, therefore dividing both sides

of the equation by this term, we obtain:

P (εavg/CMAD > α+ (λ− µ)/CMAD) (20)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Since µ < λ, then α+ (λ− µ)/CMAD > α, so we can obtain:

P (εavg/CMAD > α+ (λ− µ)/CMAD) < P (εavg/CMAD > α) (21)

Therefore, P (εavg/CMAD > α) is an upper bound for PFP(calibration). For the ratio εavg/CMAD,
εavg represents the signal of the noise, while CMAD represents the internal disorder of the noise.
Therefore, we can define εavg/CMAD as the Signal-to-Noise Ratio (SNR).

Next, let us analyze the properties of SNR. Under our assumption where εi ∼ N(0, σ2), we have
εavg ∼ N(0, σ2/N) and E[CMAD] ≈ 0.8σ. Since both εavg and CMAD are proportional to σ, we can
write SNR as:

SNR = (σ ∗ Zavg)/(σ ∗ ZMAD) = Zavg/ZMAD (22)
where Zavg ∼ N(0, 1/N) is a standardized noise mean, and Zmad is a random variable related to
MAD/σ whose distribution does not depend on σ. Hence, the probability distribution of the SNR
is independent of the model noise standard deviation σ.

PFP(calibration) < P (Zavg/ZMAD > α) (23)

Therefore, PFP(calibration) is influenced only by the number of prompts N and the signal-to-noise
ratio threshold α, where larger values of N and α lead to lower error rates.

Through the transformation from an absolute threshold test to a self-normalized SNR test, our MAD
strategy effectively decouples decision-making from the model’s intrinsic and uncontrollable noise
level σ. In contrast to traditional approaches that break down under high-noise conditions, our
method delivers consistent, robust performance independent of model noise levels.

B.2 ANALYSIS OF MAD-CALIBRATED STRATEGY’S SUPERIOR PERFORMANCE

In this section, we formally prove based on the event space that the false positive probability of the
MAD strategy, PFP(MAD) (PFP(calibration)), is significantly superior to that of the simple averag-
ing strategy, PFP(Avg), and consequently also outperforms PFP(Single).

Theorem. The false positive probability of the MAD-calibrated strategy satisfies PFP(MAD) ≤
ρ · PFP(Avg), where ρ = O(exp(−Θ(N))) is an exponentially decaying factor in the number of
prompts N .

Proof. The false positive events are defined as:

EAvg = {ε : εavg > c} (24)

EMAD = {ε : εavg − α ·MAD > c} (25)

where c = λ−µ > 0 is the threshold gap, MAD = 1
N

∑N
i=1 |εi−εavg| is the mean absolute deviation,

εavg = 1
N

∑N
i=1 εi is the average noise, and there are N independent noise terms εi ∼ N(0, σ2) for

i = 1, . . . , N .

Since α > 0 and MAD ≥ 0 by definition, we have:

εavg − α ·MAD ≤ εavg (26)

Therefore, if εavg − α ·MAD > c, then necessarily εavg > c. This establishes:

EMAD ⊆ EAvg (27)

Consequently:
PFP(MAD) = P (EMAD) ≤ P (EAvg) = PFP(Avg) (28)

To quantify the improvement beyond this basic inequality, we decompose the probability using
conditional probability:

PFP(MAD) = P (EMAD ∩ EAvg) = P (EMAD|EAvg) · P (EAvg) (29)

Since EMAD ⊆ EAvg, we have:

P (EMAD|EAvg) = P (εavg − α ·MAD > c|εavg > c) (30)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

This can be rewritten as:

P (EMAD|EAvg) = P

(
MAD <

εavg − c

α

∣∣∣∣εavg > c

)
(31)

Define the improvement factor:

ρ = P

(
MAD <

εavg − c

α

∣∣∣∣εavg > c

)
(32)

Then:
PFP(MAD) = ρ · PFP(Avg) (33)

To evaluate ρ, we analyze the structure of noise vectors that satisfy εavg > c. There are two primary
patterns:

Pattern A (Coherent Pattern): All noise terms are close to c. Formally, for some small δ > 0:

Pattern A = {ε : |εi − c| < δ for all i = 1, . . . , N} (34)

Under Pattern A:

• εavg ≈ c+O(δ/
√
N) (by the central limit theorem)

• MAD ≤ 2δ (since all values are within 2δ of each other)

Pattern B (Outlier Pattern): A few large outliers with remaining values near zero. For example:

• k values with εi ≈ Nc/k (large outliers)
• N − k values with εi ≈ 0

Under Pattern B:

• εavg ≈ c

• MAD ≈ c(1− 1/N) (large due to outliers)

Probability of Pattern A:

For a single noise term to fall in (c− δ, c+ δ):

P (|εi − c| < δ) = Φ

(
c+ δ

σ

)
− Φ

(
c− δ

σ

)
(35)

Using Taylor expansion for small δ:

P (|εi − c| < δ) ≈ ϕ
(c
σ

)
· 2δ
σ

=
2δ

σ
√
2π

exp

(
− c2

2σ2

)
(36)

For all N noise terms to satisfy this condition independently:

P (Pattern A) =

[
2δ

σ
√
2π

exp

(
− c2

2σ2

)]N
(37)

Probability of εavg > c:

Since εavg ∼ N(0, σ2/N):

P (εavg > c) = 1− Φ

(
c
√
N

σ

)
(38)

Using Mill’s ratio approximation for large arguments:

P (εavg > c) ≈ σ

c
√
2πN

exp

(
−c2N

2σ2

)
(39)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

The key insight is that Pattern A is the only pattern where MAD remains small enough to satisfy
MAD < (εavg − c)/α.

For Pattern B and other outlier-driven patterns, MAD = O(c), while εavg − c = O(1/
√
N) when

conditioned on εavg ≈ c. Thus:

MAD≫
εavg − c

α
(40)

Therefore, the improvement factor is dominated by Pattern A:

ρ ≲
P (Pattern A)

P (εavg > c)
(41)

Substituting the expressions:

ρ ≲

[
2δ

σ
√
2π

exp
(
− c2

2σ2

)]N
σ

c
√
2πN

exp
(
− c2N

2σ2

) (42)

Simplifying:

ρ ≲
c
√
N

σ

(
2δ

σ
√
2π

)N

exp

(
−c2N

2σ2
+

c2N

2σ2

)
(43)

ρ ≲ c
√
N

(
2δ

σ2
√
2π

)N

(44)

For δ = O(σ), let δ = kσ where k is a constant. Then:

ρ ≲ c
√
N

(
2k√
2π

)N

(45)

When k <
√
π/2, the term (2k/

√
2π)N decays exponentially. The polynomial factor

√
N is

dominated by the exponential decay, yielding:

ρ = O(
√
N · exp(−βN)) = O(exp(−Θ(N))) (46)

for some positive constant β.

We have established that:
PFP(MAD) = ρ · PFP(Avg) (47)

where ρ = O(exp(−Θ(N))) decays exponentially with the number of prompts N .

This demonstrates that the MAD-calibrated strategy provides an exponential improvement over the
simple averaging approach. □

Conclusion: The MAD penalty term effectively filters out the more probable outlier patterns
while only allowing the exponentially rare coherent patterns to trigger false positives, thus
achieving superior robustness against prompt-induced noise.

B.3 PROOF OF THE EXPECTED VALUE OF MAD

B.3.1 THEOREM 1

For a random variable X ∼ N (µ, σ2), the expected value of the CMAD is:

E[CMAD] = σ

√
2

π
≈ 0.8σ (48)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

B.3.2 PROOF

Definition. The Mean Absolute Deviation of a random variable X with mean µ is defined as:
CMAD = E[|X − µ|] (49)

Let X ∼ N (µ, σ2). Consider the standardized random variable:

Z =
X − µ

σ
∼ N (0, 1) (50)

Therefore:
|X − µ| = σ|Z| (51)

Taking expectations on both sides:
E[|X − µ|] = σ · E[|Z|] (52)

For Z ∼ N (0, 1) with probability density function ϕ(z) = 1√
2π

e−z2/2:

E[|Z|] =
∫ ∞

−∞
|z| · ϕ(z) dz (53)

Due to the symmetry of the standard normal distribution about zero and the even nature of |z|:

E[|Z|] = 2

∫ ∞

0

z · ϕ(z) dz =
2√
2π

∫ ∞

0

z · e−z2/2 dz (54)

Let u = z2/2, then du = z dz. When z = 0, u = 0; when z →∞, u→∞.∫ ∞

0

z · e−z2/2 dz =

∫ ∞

0

e−u du =
[
−e−u

]∞
0

= 1 (55)

Substituting back:

E[|Z|] = 2√
2π
· 1 =

√
2

π
(56)

Therefore:

CMAD = E[|X − µ|] = σ · E[|Z|] = σ

√
2

π
≈ 0.8σ (57)

C MORE EXPERIMENT SETUP

Metrics. The goal of DEER is to maintain the correctness performance of LRMs while avoiding
the redundant token overhead caused by overthinking. To this end, we selected Accuracy (ACC)
and Generation Length (LEN) as the evaluation metrics. Accuracy (ACC) is calculated as follows:
Accuracy = 1

N

∑N
i=1 I{M(LRM(xi)) = yi}, where xi is the question and yi is the ground-truth

answer from the dataset. M(·) extracts the answer from the LRM’s response. I{·} is an indicator
function that determines whether the inside given condition is valid. The accuracy evaluation is
based on the evaluation framework publicly released by Ye et al. (2025) (LIMO). Intuitively, the
longer the generated text, the greater the inference cost for LRMs. Therefore, we calculate the
average generation tokens per sample to evaluate the cost as follows: Generation Length(LEN) =
1
N

∑N
i=1 |LRM(xi)|, where |·|measures the number of generated tokens. For the two programming

benchmarks, we use the Pass@1 metric to measure generated code correctness.

Implementation details. All evaluations are conducted in a Zero-shot Chain-of-Thought (CoT)
setting with the following prompt: ”Please reason step by step, and put your final answer within
\boxed{}.” For the decoding strategy, we employ greedy decoding with a single sample for the
correctness evaluation. The ground-truth answers to the evaluation problems in our experiments are
all well-structured numerical values or options. Therefore, we apply rule-based evaluations directly
to verify mathematical equivalence. We set the maximum generation length at 16,384 to ensure
that the evaluation captures complete problem-solving attempts. For DEER, the answer-inducing
prompt employed is: ’\n\n Final Answer\n\boxed’ For DEER-Pro, we additionally incorporated
the following three prompts: ’\n\n Final Answer\n\n Based on the analysis above, the answer is
\boxed’, ’\n\n Final Answer\n\n The correct final answer is \boxed’, ’\n\n Based on the previous
thinking, I believe I already know the answer.\n Final Answer\n \boxed’.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Algorithm 1 Dynamic Early Exit in Reasoning (DEER)

1: Initialization: Large Reasoning Language Model LRM(·), zero-shot-CoT zs cot, question,
answer inducer prompt I , set of action transition points P, end-of-thinking delimiter ⟨/think⟩,
maximum length max len, and confidence threshold λ.

2: x← zs cot + question, r ← []
3: while len(x) < max len do
4: y ← LRM(x)
5: if y ∈ P then ▷ Generate thoughts until meets action transition points
6: A← LRM(x+ I) ▷ Prompt LRM to generate trial answer tokens
7: Get C according to Equation 4 ▷ Calculate the confidence of the trial answer
8: if C > λ then
9: x← x + ⟨/think⟩, r ← r + ⟨/think⟩ ▷ Exit when thinking is sufficient

10: end if
11: else
12: x← x + y, r ← r + y
13: end if
14: end while
15: return r

step 1

step 2

step 3

step 4

✔ ✔
···
✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

t t+1 t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+2 t+8 t+3 t+9 t+4 t+10

[last token] Wait \n ** Final Answer : ** \n , The that final seems answer

Okay, so I have this problem where I
need to … <omitted>

Wait, that seems too straightforward. Let
me check ... <omitted>

\n**Final Answer**\n\nThe final answer
is \\boxed{... <omitted>

✔ ✔ ✔
✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

✔ ✔ ️ ✔ ✔
✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

step 1 step 2 step 3 step 4
✔ ✔ ️ ✔ ✔ ✔
✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Ongoing reasoning-chain generation

Trial answer evaluation

Figure 9: Branch-parallel decoding and dynamic KV cache management.

D MORE METHOD DETAILS

Fig. 9 illustrates the workflow of the proposed Branch-Parallel Decoding Acceleration. Algorithm
1 presents the pseudocode of DEER.

E MORE BENCHMARK DESCRIPTIONS.

Benchmarks. To thoroughly evaluate the models’ performance across various reasoning capabili-
ties, we have chosen 6 math reasoning benchmarks, 1 science benchmarks, and 3 coding benchmarks
as follows:

MATH BENCHMARKS:

• GSM8K is a well-curated collection of 1,319 problems in elementary mathematics. This
benchmark is specifically designed to evaluate multi-step reasoning in foundational math
tasks. Problems typically involve two to eight sequential operations, relying primarily on
basic arithmetic performed over multiple intermediate steps.

• MATH-500 is a challenging benchmark comprising competition-level problems drawn
from diverse high school mathematics domains, including Prealgebra, Algebra, and Num-
ber Theory. For consistency with previous research, we adopt the same 500-problem subset
originally curated by OpenAI for evaluation.

• AMC 2023 contains 40 mathematical problems, covering algebra, geometry, number the-
ory, and combinatorics. The American Mathematics Competitions (AMC), organized by
the Mathematical Association of America (MAA), are prestigious contests designed to de-
velop problem-solving skills and identify mathematical talent. For evaluation, we used 40
questions from AMC 23 in LIMO.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

• AIME 2024 comprises 30 challenge problems selected from the 2024 American Invita-
tional Mathematics Examination (AIME). This prestigious contest evaluates participants’
mathematical reasoning abilities across diverse domains, including arithmetic, algebra,
counting, geometry, number theory, probability, and other secondary school math topics. A
distinctive feature of the AIME is its answer format: all solutions must be integers between
000 and 999 (inclusive). Each problem is categorized by difficulty level (1–5) according
to the Art of Problem Solving (AoPS) scale. Beyond these three math problems, we also
conducted evaluations on scientific questions.

• AIME 2025 comprises 30 challenge problems selected from the 2025 American Invita-
tional Mathematics Examination (AIME).

• OlympiadBench OlympiadBench is an Olympiad-level bilingual multimodal scientific
benchmark dataset that aims to challenge and evaluate the advanced capabilities of Large
Language Models and Large Multimodal Models. It features 8,476 problems sourced from
mathematics and physics competitions at the Olympiad level, including those from the
Chinese college entrance exam. Our experimental evaluation selects the same subset of
675 samples as used in LIMO, allowing for direct rule-based evaluation of the generated
answers.

SCIENCE BENCHMARKS:

• GPQA is a PhD-level benchmark consisting of high-quality questions spanning physics,
chemistry, and biology subdomains. Notably, domain experts with PhDs in these fields
achieved only 69.7% accuracy on this dataset. For our experiments, we specifically select
the highest quality subset, known as GPQA Diamond (composed of 198 questions).

PROGRAMMING BENCHMARKS:

• HumanEval is proposed by OpenAI, containing 164 hand-crafted (to avoid data leakage)
Python programming tasks focusing on basic algorithms, each with function signatures,
docstrings, canonical solutions, and unit tests.

• BigCodeBench is designed as a real-world-oriented benchmark, which includes 1,140
tasks requiring interactions with 139 libraries and diverse function calls.

• LiveCodeBench is a newly proposed benchmark dataset designed to evaluate the capabil-
ities of large language models in code generation and related tasks. It aims to mitigate
issues such as test set contamination found in existing benchmarks by emphasizing scenar-
ios beyond code generation, ensuring high-quality problem sources, adequate test cases,
and balanced difficulty levels. The dataset comprises problems sourced from well-known
competitive programming platforms like AtCoder, LeetCode, and CodeForces, collected
from specific time windows. Our evaluation is based on LiveCodeBench-v5, which con-
tains 880 programming problems collected from May 2023 to January 2025.

F COMPUTATION SOURCE

In our experiments, 8× 80g memory H100 was used to perform evaluations.

G MORE LRM DESCRIPTIONS.

In this work, we validate the effectiveness of DEER across 12 reasoning models. The evaluated
models include: Qwen3-1.7B, Qwen3-4B, Qwen3-8B, Qwen3-14B, Qwen3-32B, DeepSeek-R1-
Distill-Qwen-1.5B, DeepSeek-R1-Distill-Qwen-7B, DeepSeek-R1-Distill-Qwen-14B, DeepSeek-
R1-Distill-Qwen-32B, QwQ-32B, DeepSeek-R1-671B, and Llama-3.1-Nemotron-Nano-8B-v1. All
models in the DeepSeek-R1-Distill-Series were supervised fine-tuned using reasoning data gener-
ated by the DeepSeek-R1 model. The Qwen3-1.7B, Qwen3-4B, Qwen3-8B, and Qwen3-14B mod-
els were trained using a method known as Strong-to-Weak Distillation. Trained via reinforcement
learning, the non-distilled models QwQ-32B and Qwen3-32B demonstrate competitive performance
on reasoning benchmarks, matching that of DeepSeek-R1-671B. Due to computational constraints,
we implemented a quantized version of Deepseek-R1 based on KTransformers (kvcache ai, 2025).

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

H COMPUTATIONAL COST ANALYSIS

In this section, we provide a theoretical analysis to demonstrate that DEER effectively reduces com-
putational costs. Let L denote the total length generated by the original CoT method, and α represent
DEER’s compression ratio relative to L, such that DEER generates a sequence of length αL. Then,
we define k as the number of answer induction triggers within these αL tokens of reasoning and
m as the average length generated per answer induction, which is typically a small constant. Dur-
ing transformer inference, the primary computational overhead stems from attention calculations,
which constitutes our main focus. Assuming the generation process employs key-value caching
technology, each new token only needs to compute attention with the cached key-value pairs.

H.1 COMPUTATIONAL COST ANALYSIS ON TIME

For the original CoT method, the computational cost is:

T = O(1) +O(2) + · · ·+O(L) = O(L2) (58)

For our DEER, The computational cost comprises two components: αL forward passes in the main
reasoning chain and km forward passes for answer inducing.

First, we calculate the cost of the main reasoning chain:

Tmain =

αL∑
t=1

t =
αL(αL+ 1)

2
= O

(
α2L2

)
(59)

Next, for the computational overhead during answer inducing, we first calculate the time cost of a
single inducing. Suppose the j-th answer inducing is triggered at position pj , yielding a cost of:

Csingle =

m∑
i=1

(pj + i− 1) = m · pj +
m∑
i=1

(i− 1) = m · pj +
m(m− 1)

2
(60)

Assuming the inducing positions pj are uniformly distributed over the interval [0, αL], the average
inducing position is E[pj] ≈ αL

2 . Hence, the total cost of answer inducing is:

Cinduce ≈ k ·m · αL
2

+ k · m(m− 1)

2
= O(k ·m · αL) +O(k ·m2) (61)

Even in the worst-case scenario where most trigger points pj cluster near the end of reasoning, the
average inducing position is E[pj] ≈ αL. The total cost of answer inducing is:

Cinduce ≈ k ·m · αL+ k · m(m− 1)

2
= O(k ·m · αL) +O(k ·m2) (62)

As the length of each answer inducing m is negligible compared to the reasoning length L, we have:

Cinduce ≈ O(k ·m · αL) (63)

Finally, the total cost of DEER is:

CDEER = Cmain + Cinduce = O(α2L2) +O(k ·m · αL) (64)

DEER reduces the quadratic term from O(L2) to O(α2L2) while only introducing a linear term O(k·
m · αL). Since k,m ≪ L in long chain-of-thought reasoning, the savings from the quadratic term
reduction far exceed the overhead of the additional linear term. This analysis effectively explains
the superlinear speedup phenomenon observed in Section 4.4.

H.2 COMPUTATIONAL COST ANALYSIS ON MEMORY

The memory overhead analysis can be decomposed into two components: primary memory con-
sumption from the KV cache and additional overhead from parallel decoding operations.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Peak Memory Reduction. The dominant memory overhead in modern LLM inference stems from
the storage of attention keys and values in the KV cache, whose size scales linearly with the pro-
cessed sequence length. Standard Chain-of-Thought (CoT) approaches necessitate maintaining KV
cache for all L tokens, resulting in memory complexity of O(L). Through early termination at po-
sition αL where α < 1, DEER effectively reduces the peak sequence length during inference from
L to αL. Consequently, the peak KV cache memory consumption is reduced from O(L) to O(αL).

This memory reduction proves particularly valuable when processing long-context reasoning tasks.
Beyond reducing peak memory requirements for individual requests, this approach enables systems
to accommodate increased concurrent requests under identical memory constraints during batch
processing, thereby enhancing overall throughput.

Additional Overhead for Parallel Decoding. The proposed parallel decoding variant, which per-
forms answer induction forward passes concurrently with main reasoning, introduces minimal addi-
tional memory overhead. This efficiency is achieved through prefix caching and sharing mechanisms
implemented in modern inference frameworks such as vLLM. When multiple reasoning branches
share a common prefix sequence, the corresponding portions of their KV caches require only single
storage in physical memory through technologies such as vLLM’s PagedAttention.

During parallel decoding, the answer induction branch incurs virtually no additional KV cache over-
head, as it fully leverages the KV cache already computed by the main reasoning branch. The only
marginal additional memory requirement arises from storing a limited number of tokens represent-
ing the answer induction branch’s decoding state.

For code generation tasks, our implementation incorporates specific optimizations whereby only the
initial 50 tokens are generated for confidence estimation. This design choice represents an imple-
mentation detail rather than a core methodological contribution. Experimental validation confirms
that utilizing partial answer tokens for early-exit confidence calculation remains effective for coding
tasks.

I INVESTIGATION OF REASONING TRANSITION MONITORS

In Section 4.3 of the main text, our experiments reveal that the choice of Reasoning Transition
Monitor exerts subtle effects on DEER, primarily manifested in how the number of potential early-
exit opportunities affects the final generation length. In this section, we investigate the underlying
connections between linguistic marker-based and entropy-based monitoring approaches.

Table 10 presents a comparative analysis of average token entropy between linguistic markers and
other tokens across multiple datasets and models. Our findings reveal that linguistic markers exhibit
significantly higher entropy compared to other tokens, suggesting that the linguistic marker-based
approach inherently targets high-entropy positions where multiple candidate actions exist.

Additionally, we compute cosine similarity scores between consecutive tokens in the final layer’s
hidden state representations, comparing linguistic markers with their adjacent tokens against reg-
ular token pairs. The similarity metric serves as an indicator of the model’s reasoning coherence:
high similarity reflects continuous, coherent reasoning processes, whereas low similarity signals the
occurrence of reasoning transitions. The results presented in Table 11 demonstrate that linguis-
tic markers exhibit substantially lower similarity scores, indicating disruptions in representational
continuity.

Collectively, these experiments provide compelling evidence that large reasoning language mod-
els do not undergo uncertain states silently; instead, they explicitly express uncertainty through
language. The external linguistic markers leveraged by DEER constitute direct manifestations of
internal state transitions, thereby providing strong empirical support for the theoretical foundations
of our approach.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

(b) Experimental results on Qwen3-Series models.

Average:
Vanilla: 91.44 DEER: 91.80 Average:

Vanilla: 60.32 DEER: 61.68

Accuracy of Vanilla COT Accuracy of DEER (Ours) Generation Length of DEER (Ours)Generation Length of Vanilla COT

Figure 10: Experimental results of DEER compared to Vanilla CoT across Qwen3-Series models of
varying sizes on MATH-500 and AIME 2024.

OlympiadBench AIME24AMC
Qwen3-32B

Qwen3-14B

Qwen3-8B

R1-Distill-7B

DEER ✅ & Vanilla COT ❌ DEER ✅ & Vanilla COT ✅ DEER ❌ & Vanilla COT ✅ DEER ❌ & Vanilla COT ❌

Figure 11: More detailed experimental results of DEER compared to Vanilla CoT.
√

denotes a
correct answer, and × denotes an incorrect answer.

J INVESTIGATION INTO THE REASONS BEHIND DEER’S THRESHOLD
ROBUSTNESS

In Section 4.3 of the main text, we demonstrate DEER’s robustness to the threshold λ through
experiments across various models and datasets. In this section, we investigate the underlying source
of this robustness. We analyze the confidence scores of induced answers at all potential exit positions
across three models on three mathematical reasoning datasets, calculating the proportion of scores
falling within three distinct intervals. Specifically, 0–0.9 represents the low-confidence interval,
0.97–1.0 represents the high-confidence interval, and 0.9–0.97 constitutes the error-prone gray zone.

The results presented in Table 12 reveal that the model’s confidence distribution exhibits a pro-
nounced polarization phenomenon. The vast majority of cases concentrate at either the highly confi-
dent or insufficiently confident extremes, with minimal presence in the intermediate range (the error-
prone gray zone). When our method induces the model to generate final answers, the confidence
scores follow a distinctive U-shaped distribution, with remarkably low probability mass between
0.9 and 0.97. This phenomenon indicates that when the model possesses sufficient certainty about
an answer based on its preceding reasoning chain, it generates the answer with exceptionally high
probability (typically exceeding 0.99). Conversely, when uncertainty exists, the assigned probability
drops substantially.

Furthermore, we observe that all three models exhibit higher proportions of high-confidence scores
compared to low-confidence scores on simpler problems (GSM8K); While on more challenging
problems (AIME24), the proportion of low-confidence scores exceeds that of high-confidence
scores. This observation further validates the rationality of the DEER method: the confidence
assigned to trial answers accurately reflects whether the existing reasoning is sufficient to solve
the problem. Consequently, confidence scores are generally lower on difficult problems, leading
to many failed early-exit attempts in the initial stages. This pattern also explains DEER’s varying
performance across different problem difficulties. On simpler problems, the model demonstrates
sufficient confidence, resulting in better compression effects. On challenging problems, the model
becomes more cautious, yielding weaker compression but maintaining satisfactory accuracy. This
adaptive behavior shows that DEER naturally balances computational efficiency and solution quality
based on problem complexity.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Table 2: Comparison of Vanilla, DEER, and DEER-PRo across multiple models and datasets. Acc
= accuracy (%), Len = average tokens, CR = compression ratio.

GSM8K MATH AMC AIME GPQA Overall
Method Acc Len CR Acc Len CR Acc Len CR Acc Len CR Acc Len CR Acc CR

DeepSeek-R1-Distill-Qwen-1.5B
Vanilla 76.1 1,617 100% 69.0 6,018 100% 52.5 8,819 100% 23.3 13,702 100% 7.1 13,029 100% 45.6 100%
DEER 74.7 984 60.9% 67.8 2,497 41.5% 60.0 5,496 62.3% 23.3 9,557 69.7% 12.1 5,762 44.2% 47.6 55.7%
DEER-PRo 77.3 1,062 65.7% 70.0 2,891 48.0% 62.5 5,701 64.6% 26.7 10,390 75.8% 14.5 6,820 52.3% 50.2 61.3%

Qwen3-4B
Vanilla 94.1 2,175 100% 92.2 4,767 100% 87.5 7,443 100% 63.3 11,916 100% 46.5 9,294 100% 76.7 100%
DEER 94.5 1,250 57.5% 92.6 3,214 67.4% 87.5 4,906 65.9% 63.3 9,327 78.3% 47.5 3,275 35.2% 77.1 60.9%
DEER-PRo 94.5 1,301 59.8% 93.0 3,517 73.8% 92.5 5,153 69.2% 65.0 9,651 81.0% 49.2 3,750 40.3% 78.8 64.8%

Qwen3-1.7B
Vanilla 90.1 2,045 100% 85.6 5,160 100% 70.0 8,637 100% 30.0 13,758 100% 35.9 9,271 100% 62.3 100%
DEER 90.3 1,066 52.1% 85.6 2,463 47.7% 70.0 4,673 54.1% 30.0 7,943 57.7% 43.4 3,549 38.3% 63.9 50.0%
DEER-PRo 90.7 1,261 61.7% 87.2 2,702 52.4% 75.0 5,143 59.5% 35.0 8,644 62.8% 44.5 3,960 42.7% 66.5 55.8%

Table 3: Experimental results on programming tasks. Acc = accuracy (%), Tok. = average tokens,
CR = compression ratio.

Model Method HumanEval BigCodeBench LiveCodeBench Overall
Acc Tok. CR Acc Tok. CR Acc Tok. CR Acc CR

R1-Distill-Qwen Series

32B Vanilla 91.5 3,861 100% 44.5 5,459 100% 56.0 9,109 100% 64.0 100%
DEER 93.9 1,254 32.5% 46.1 1,929 35.3% 56.6 3,677 40.4% 65.5 36.1%

14B Vanilla 89.0 4,039 100% 40.9 4,806 100% 52.7 9,259 100% 60.9 100%
DEER 90.9 1,000 24.8% 40.7 1,583 32.9% 52.1 4,000 43.2% 61.2 33.6%

7B Vanilla 78.6 5,666 100% 26.1 8,516 100% 38.4 10,482 100% 47.7 100%
DEER 78.6 913 16.1% 25.2 1,605 18.8% 40.3 2,582 24.6% 48.0 19.9%

Qwen3 Series

14B Vanilla 93.3 3,277 100% 44.6 5,072 100% 73.4 8,203 100% 70.4 100%
DEER 93.9 1,118 34.1% 44.3 792 15.6% 74.1 5,437 66.3% 70.8 38.7%

8B Vanilla 85.4 3,904 100% 37.9 6,994 100% 64.7 8,871 100% 62.7 100%
DEER 87.8 793 20.3% 41.1 608 8.7% 65.1 4,257 48.0% 64.7 25.7%

4B Vanilla 91.5 3,768 100% 36.1 7,804 100% 64.7 8,789 100% 64.1 100%
DEER 92.7 1,050 27.9% 37.1 826 10.6% 63.5 5,626 64.0% 64.4 34.2%

1.7B Vanilla 83.5 3,580 100% 25.7 6,151 100% 51.7 9,447 100% 53.6 100%
DEER 84.1 2,236 62.5% 28.3 2,104 34.2% 51.4 8,425 89.2% 54.6 62.0%

K MORE EXPERIMENTAL RESULTS

More experiments across Model Sizes on Qwen3. The performance of the Qwen3-series models
across model sizes and reasoning difficulty in Fig. 10 is consistent with the findings presented in
Section 4.2.

Accuracy of Vanilla COT
Accuracy of DEER (Ours) Generation Length of DEER (Ours)

Generation Length of Vanilla COT

Figure 12: Performance on SoTA models.

Performance on SoTA Reasoning Models.
We evaluated DEER’s effectiveness on two state-
of-the-art reasoning models: Qwen3-32B (rep-
resenting dense models) and Deepseek-R1 671B
(representing MoE models). To fully leverage
their reasoning capabilities, we set their maxi-
mum sequence lengths to the officially recom-
mended 32k and 16k, respectively. The impact
of max length will be further discussed in the next
section. Due to computational constraints, we im-
plemented a quantized version of Deepseek-R1
based on KTransformers (kvcache ai, 2025). Fig.
12 provides a close look at DEER’s performance on two challenging datasets, AIME and MATH.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Table 4: Additional threshold sensitivity experiments across more models and tasks.

Qwen3-14B GSM8K MATH AMC

Vanilla 95.1 93.8 95.0
0.80 96.0 93.8 93.8
0.85 95.7 94.4 93.8
0.90 96.1 93.8 95.0
0.95 96.0 94.0 95.6
0.97 95.7 93.8 94.4

Qwen3-8B GSM8K MATH AMC

Vanilla 94.9 91.2 87.5
0.80 95.2 91.4 88.8
0.85 94.9 92.0 90.0
0.90 95.5 92.8 91.3
0.95 95.3 93.2 92.5
0.97 95.3 93.0 92.5

The results show that DEER maintains competitive accuracy (with R1 making only one additional
error on each dataset) while significantly reducing sequence length by 10.4% - 35.7%.

Performance Trends across More Model Sizes and Benchmarks. To provide a more compre-
hensive demonstration of DEER’s effectiveness and facilitate comparison for researchers, we present
experimental results on seven reasoning benchmarks and eleven large reasoning language models.
Fig. 13 compares the experimental results between DEER and vanilla CoT, demonstrating that the
conclusions drawn in the main text of the paper hold consistently across more benchmarks and
additional models.

In addition to popular reasoning models, we also evaluate DEER on less commonly used models. As
mentioned in the Limitations section, Llama-3.1-Nemotron-Nano-8B-v1 consistently exhibits low
confidence in generating intermediate answers, resulting in a significantly lower early stopping rate
during evaluation compared to mainstream models (Qwen3-8B: 80%, R1-Distill-Qwen-7B: 85%,
Llama-3.1-Nemotron-Nano-8B-v1: 55%). Consequently, as shown in Table 5, the improvement
in reasoning efficiency for Llama-3.1-Nemotron-Nano-8B-v1 is limited. Nevertheless, DEER still
effectively mitigates overthinking in this model, as evidenced by its ability to prevent subsequent
reasoning steps from altering correct answers into incorrect ones through early stopping.

Performance with Different Decoding Configurations. As the configuration of DeepSeek-R1-
Distill-Series models recommends a maximum length of 16k (16,384), we evaluate Qwen3-14B
under the same setting in the main experiments to maintain setup consistency. In practice, this
length is sufficient for most real-world applications. In addition, to ensure experimental stability
and reproducibility, we employ greedy decoding in the main experiments. Nevertheless, to provide a
more comprehensive assessment of DEER’s performance, we further conduct experiments on larger
variants of the Qwen3-series models (8B, 14B, 32B) using the officially recommended decoding
strategy (max len = 32768, top p = 0.95, temperature = 0.6). Fig. 8 shows that DEER remains
significantly effective under these configurations, demonstrating the robustness of our approach.

Performance with Different Multi-Token Confidence Averaging Methods. In the main text,
we mentioned adopting the geometric mean strategy for calculating multi-token answer confidence
scores, as it better aligns with the multiplicative nature of joint probability computation in language
models and exhibits higher sensitivity to low probability values. In this section, we supplement our
analysis with comparative experiments using arithmetic mean calculation (DEER-AM), employing
the same early-exit threshold of 0.95. The results in Table 7 demonstrate that DEER-AM exhibits a
significant decrease in accuracy compared to DEER-GM, while achieving marginal improvements
in compression ratio. This indicates that the arithmetic mean dilutes the contribution of low-valued
tokens, resulting in overall inflated confidence scores and consequently leading to premature in-
correct exits. Therefore, we recommend using the geometric mean for estimating true confidence
scores.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Table 5: Results on MATH-500 (DeepSeek-R1-Distill-Qwen-14B) with different reasoning transi-
tion monitors. DEER(W) denotes transition via Wait, DEER(A) via Alternatively, and DEER(Ent)
via entropy threshold. Chunk Size denotes the length (token numbers) of one reasoning chunk
(thought), and Chunk Num denotes the number of reasoning chunks.

Method Accuracy Tokens Chunk Size Chunk Num Exit Ratio Exit Acc.

Vanilla 88.6 3815 – – – –
DEER(W) 89.6+1.0 2572-32.6% 259.5 14.7 87.6% 93.4%
DEER(A) 90.8+2.2 2775-27.3% 719.8 5.3 54.8% 91.2%
DEER(Ent) 90.2+1.6 2339-38.7% 183.7 20.8 90.2% 93.0%

Table 6: Comparison of Vanilla, DEER-W, and DEER-Ent across multiple models and datasets.
Acc = accuracy (%), Len = average tokens, CR = compression ratio.

GSM8K MATH AMC AIME GPQA Overall
Method Acc Len CR Acc Len CR Acc Len CR Acc Len CR Acc Len CR Acc CR

DeepSeek-R1-Distill-Qwen-7B
Vanilla 89.6 1,484 100% 87.4 3,858 100% 78.8 6,792 100% 41.7 13,765 100% 23.7 10,247 100% 64.2 100%
DEER-W 90.6 917 61.8% 89.8 2,143 55.5% 85.0 4,451 65.5% 49.2 9,839 71.5% 31.3 5,469 53.4% 69.2 61.5%
DEER-Ent 90.8 876 59.0% 89.2 2,261 58.6% 85.0 4,072 60.0% 48.4 8,961 65.1% 29.6 5,037 49.2% 68.6 58.4%
Qwen3-14B

Vanilla 95.1 2,047 100% 93.8 4,508 100% 95.0 7,139 100% 70.0 10,859 100% 60.1 7,339 100% 82.8 100%
DEER-W 95.3 840 41.0% 94.0 3,074 68.2% 95.0 4,763 66.7% 76.7 7,619 70.2% 57.6 2,898 39.5% 83.7 57.1%
DEER-Ent 96.1 803 39.2% 93.8 2,979 66.1% 93.3 4,903 68.7% 73.3 7,128 65.6% 58.1 2,818 38.4% 82.9 55.6%
Qwen3-8B

Vanilla 94.9 2,245 100% 91.2 5,216 100% 87.5 7,986 100% 65.0 12,110 100% 51.5 9,145 100% 78.0 100%
DEER-W 95.2 1,071 47.7% 92.6 2,732 52.4% 92.5 4,392 55.0% 61.7 8,796 72.6% 52.5 3,111 34.0% 78.9 52.3%
DEER-Ent 95.8 1,037 46.2% 93.6 2,789 53.5% 91.3 4,003 50.1% 63.3 8,328 68.8% 51.5 3,248 35.5% 79.1 50.8%

Error Bars with 95% Confidence Intervals. To demonstrate the statistical significance of
DEER’s accuracy gains, we conducted multiple experimental runs on two models and calculated
error bars with 95% confidence intervals. Specifically, we performed four independent runs on
GSM8K, MATH, and GPQA benchmarks. Given the limited sample sizes of AMC23 and AIME24,
we increased the number of experimental repetitions to eight for these datasets. The results pre-
sented in Table 9 confirm that the accuracy improvements achieved by our method are statistically
significant.

L CASE STUDY DETAILS

In Fig. 13, we provide examples of results on MATH-500 to visually demonstrate the effectiveness
of DEER. The design of DEER ensures that it follows the same reasoning process as the vanilla CoT
method before early exiting. Both methods arrive at the correct answer during the first reasoning
step, as shown in the green box. The difference lies in the fact that our method exits early after
evaluating the confidence of the trial answer as sufficiently high, thus producing the correct result.
In contrast, the vanilla CoT method proceeds to the next reasoning action. After double-checking
and switching reasoning approaches, the model becomes trapped in an endless cycle of verification
due to inconsistent answers from the two approaches, ultimately failing to provide a final answer. In
addition, Fig. 14, 15, 16 provides additional generated examples to more comprehensively demon-
strate the effectiveness of DEER’s early-exit mechanism and illustrate the underlying mechanisms
of the approach.

Figure 17 shows the detailed process of DEER applied on a mathematical example. It can be ob-
served that, at each reasoning switch point (”Wait” token), DEER generates a trial answer and
evaluates its confidence. The change in confidence is consistent with the reliability of the current
reasoning chunks and trial answers. This shows that LRMs implicitly know when to leave early, and
our method is simple and effective to realize such potential of the model itself.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Table 7: Comparison of Vanilla, DEER-GM (Geometric Mean), and DEER-AM (Arithmetic
Mean) across multiple models and datasets. Acc = accuracy (%), Len = average tokens, CR =
compression ratio.

GSM8K MATH AMC AIME GPQA Overall
Method Acc Len CR Acc Len CR Acc Len CR Acc Len CR Acc Len CR Acc CR

DeepSeek-R1-Distill-Qwen-7B
Vanilla 89.6 1,484 100% 87.4 3,858 100% 78.8 6,792 100% 41.7 13,765 100% 23.7 10,247 100% 64.2 100%
DEER-GM 90.6 917 61.8% 89.8 2,143 55.5% 85.0 4,451 65.5% 49.2 9,839 71.5% 31.3 5,469 53.4% 69.2 61.5%
DEER-AM 90.2 832 56.1% 88.2 1,879 48.7% 80.0 3,872 57.0% 43.3 8,095 58.8% 22.6 4,116 40.2% 64.9 52.2%
Qwen3-14B

Vanilla 95.1 2,047 100% 93.8 4,508 100% 95.0 7,139 100% 70.0 10,859 100% 60.1 7,339 100% 82.8 100%
DEER-GM 95.3 840 41.0% 94.0 3,074 68.2% 95.0 4,763 66.7% 76.7 7,619 70.2% 57.6 2,898 39.5% 83.7 57.1%
DEER-AM 95.3 811 39.6% 92.4 2,620 58.1% 90.0 4,513 63.2% 63.3 6,933 63.8% 53.6 2,508 34.2% 78.9 51.8%
Qwen3-8B

Vanilla 94.9 2,245 100% 91.2 5,216 100% 87.5 7,986 100% 65.0 12,110 100% 51.5 9,145 100% 78.0 100%
DEER-GM 95.2 1,071 47.7% 92.6 2,732 52.4% 92.5 4,392 55.0% 61.7 8,796 72.6% 52.5 3,111 34.0% 78.9 52.3%
DEER-AM 94.9 972 43.3% 92.0 2,522 48.4% 87.5 3,899 48.8% 56.7 7,697 63.6% 49.7 2,950 32.3% 76.2 47.3%

M RELATED WORK DETAILS

The advent of Open-AI o1 (OpenAI, 2025) established test-time scaling (Snell et al., 2024) as a
pivotal research direction in the LLM community. This approach enhances LLMs’ slow think-
ing capabilities, enabling breakthroughs in complex problem solving. The recent open-sourcing of
DeepSeek-R1 (DeepSeek-AI et al., 2025) has further intensified interest in locally deployed reason-
ing models. However, two critical challenges have emerged: 1) excessively long CoT generated
significantly degrades inference efficiency, and 2) growing empirical evidence (Chen et al., 2025b;
Team et al., 2025a) reveals their susceptibility to overthinking – a phenomenon where models con-
tinue reasoning beyond the point of optimal output. Zhang et al. (2025c) introduces a novel bench-
mark named S1-Bench to test the performance of LRMs on simple tasks, evaluating the overthinking
issues of these LRMs. Following the taxonomy of efficient reasoning established in (Sui et al., 2025;
Wang et al., 2025a), we categorize related work into three classes: post-traning based, prompt-based,
and output-based efficient reasoning methods.

Post-training based efficient reasoning methods use supervised fine-tuning (Yu et al., 2024; Kang
et al., 2025; Xia et al., 2025; Ma et al., 2025b; Munkhbat et al., 2025; Zhu et al., 2025; Liu et al.,
2024; Han et al., 2024; Qiao et al., 2025; Yu et al., 2025) with variable-length CoT data or incor-
porate length rewards (Team et al., 2025b; Luo et al., 2025a; Aggarwal & Welleck, 2025; Arora &
Zanette, 2025; Yeo et al., 2025; Shen et al., 2025b; Qu et al., 2025; Cui et al., 2025; Dai et al., 2025;
Liu et al., 2025a;b; Tu et al., 2025; Wang et al., 2025c; Dumitru et al., 2025; Li et al., 2025a; Jiang
et al., 2025a; Zhang et al., 2025b) in reinforcement learning to enable the model to adaptively gen-
erate chains of thought of different lengths. However, these methods often require a large amount
of computational resources and face challenges in dataset construction. Recently, some work (Hao
et al., 2024; Shen et al., 2025c; Cheng & Van Durme, 2024; Dang et al., 2025; Shen et al., 2025a; Su
et al., 2025; Tan et al., 2025; Saunshi et al., 2025; Zhang et al., 2025d) has shown that using latent
representations to replace explicit textual reasoning steps allows reasoning models to be more effi-
cient. However, such methods often require extensive-epoch SFT on carefully curated datasets(Hao
et al., 2024; Xu et al., 2025d), leading to overfitting on the output format and consequently compro-
mising the model’s inherent expressiveness and generalization ability.

Prompt-based efficient reasoning methods (Han et al., 2024; Xu et al., 2025b; Lee et al., 2025;
Renze & Guven, 2024; Chen et al., 2024) use varying prompts to enforce reasoning models to
generate concise CoT with less unnecessary reasoning steps. Especially, (Aytes et al., 2025; Chuang
et al., 2024; 2025; Ong et al.) assign different prompts to queries based on their difficulty, thereby
adjusting the length of the CoT generated by reasoning models. We also explored the performance
of our method combined with prompt design in Tab. 1, demonstrating further reductions in the
length of reasoning chains while maintaining considerable accuracy.

Most of the Output-based efficient reasoning methods focus on optimizing the best-of-N sampling
for LLMs, such as pruning low-quality samples (Xie et al., 2023; Liao et al., 2025) and implement-
ing early stopping (Li et al., 2024; Manvi et al., 2024; Aggarwal et al., 2023) when multiple samples

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Table 8: Experimental results on the Qwen3-series models under the officially recommended set-
tings (max len = 32768, top p = 0.95, temperature = 0.6).

Budget Method GSM8K MATH-500 AMC23 AIME24 AIME25 OlympiadB Overall
Acc Tok. Acc Tok. Acc Tok. Acc Tok. Acc Tok. Acc Tok. Acc CR

Qwen3-8B

32k Vanilla 95.7 2246 93.8 5368 93.8 9424 70.0 16717 65.0 17880 67.9 11025 81.0 100%
DEER 95.5 981 94.0 3227 95.0 5898 75.8 12465 63.3 15135 67.0 9075 81.8 68.0%

Qwen3-14B

32k Vanilla 95.7 1699 94.8 4800 95.0 6837 75.0 14347 76.7 16437 68.7 9992 84.3 100%
DEER 95.8 933 95.0 3301 96.3 6299 74.2 10896 76.7 15014 68.9 8263 84.5 77.6%

Qwen3-32B

32k Vanilla 96.0 1714 95.8 4609 98.8 7209 83.3 12874 78.3 15292 69.3 9775 86.9 100%
DEER 95.8 992 95.4 3325 98.8 5617 84.2 11531 78.3 13981 69.8 8671 87.1 79.6%

Table 9: Accuracy performance on reasoning benchmarks with 95% confidence intervals.

Model GSM8K MATH AMC23 AIME24 GPQA

Vanilla (ds-7B) 0.897 [0.891, 0.902] 0.877 [0.869, 0.884] 0.794 [0.767, 0.821] 0.425 [0.400, 0.449] 0.247 [0.203, 0.291]
DEER (ds-7B) 0.904 [0.896, 0.912] 0.897 [0.883, 0.911] 0.856 [0.835, 0.878] 0.492 [0.463, 0.520] 0.299 [0.257, 0.341]

Vanilla (Qwen3-14B) 0.948 [0.942, 0.955] 0.938 [0.932, 0.943] 0.938 [0.918, 0.957] 0.708 [0.660, 0.757] 0.596 [0.571, 0.621]
DEER (Qwen3-14B) 0.955 [0.949, 0.962] 0.942 [0.936, 0.948] 0.953 [0.940, 0.967] 0.754 [0.718, 0.791] 0.587 [0.566, 0.608]

achieve self-consistency. However, following the introduction of advanced reasoning models like
R1, there is less reliance on best-of-N sampling methods, as these models exhibit strong reason-
ing capabilities independently. Very recently, two concurrent works share similar motivations with
ours. Zhang et al. (2025a) also proposes to terminate early based on trial answers, but requires an
additional probe model to determine the correctness. They focus on enhancing the verification capa-
bilities of the probe model, whereas our method explore how to enable the model to self-determine
when to exit early and integrate seamlessly into existing reasoning logic. Ma et al. (2025a) prompts
reasoning models to directly output final answers during decoding, but only achieves better per-
formance in the low-budget regime or being adapted to best-of-N methods compared to baselines,
which limits the applicability and generalization. Song et al. (2025) periodically compresses the KV
cache by retaining KV cache that receive high importance score to accelerates inference by leverag-
ing the semantic sparsity of reasoning paths. Jiang et al. (2025b) uses a teacher model to perform
skill-aware step decomposition and content pruning, and then distills the pruned reasoning paths
into a student model. Huang et al. (2025) projects the steering direction onto the low-dimensional
activation manifold and intervenes the activations to reduce thinking tokens.

N USE OF LLMS

In the preparation of this manuscript, Large Language Models (LLMs) were employed as auxiliary
tools for Language Polishing. During the final stages of manuscript preparation, LLMs were uti-
lized to refine the language of selected passages, including grammar checking, sentence structure
optimization, and expression standardization. This process was limited to linguistic improvements
and did not involve the generation or modification of any substantive academic content, including
research insights, data analysis, or conclusion derivation. It should be emphasized that all core argu-
ments, research methodologies, experimental designs, data analyses, and conclusions presented in
this paper were independently developed by the authors. LLMs served solely as language processing
aids, and the authors assume full academic responsibility for all content.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Table 10: Token Entropy for Linguistic Markers and Other Tokens.

Qwen3-8B Linguistic Markers Other Tokens

gsm8k 0.901 0.438
math 1.058 0.385
gpqa 1.269 0.500

DS-7B Linguistic Markers Other Tokens

gsm8k 1.550 0.658
math 1.753 0.565
gpqa 1.241 0.510

Table 11: Hidden States Cosine Similarity between Linguistic Markers and Other Tokens.

Qwen3-8B Linguistic Markers Other Tokens

gsm8k 0.262 0.543
math 0.237 0.493
gpqa 0.240 0.509

DS-7B Linguistic Markers Other Tokens

gsm8k 0.306 0.608
math 0.247 0.530
gpqa 0.231 0.505

Table 12: Confidence interval distribution (%) across tasks for different models.

Qwen3-14B 0–0.9 0.9–0.97 0.97–1.0

gsm8k 38.92 5.95 55.06
math 49.53 4.83 45.46
aime 77.20 2.45 20.35

Qwen3-8B 0–0.9 0.9–0.97 0.97–1.0

gsm8k 35.31 5.34 59.12
math 45.27 4.58 49.98
aime 78.61 2.39 19.00

DS-7B 0–0.9 0.9–0.97 0.97–1.0

gsm8k 26.54 5.29 68.17
math 34.09 5.46 60.45
aime 80.90 1.41 17.69

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Ta
bl

e
13

:
E

xp
er

im
en

ta
l

re
su

lts
on

m
or

e
ty

pe
s

of
re

as
on

in
g

m
od

el
s

an
d

re
as

on
in

g
be

nc
hm

ar
ks

.
”A

cc
”

de
no

te
s

ac
cu

ra
cy

,”
To

k”
de

no
te

s
to

ke
n

co
un

t,
an

d
”C

R
”

de
no

te
s

co
m

pr
es

si
on

ra
te

.↑
in

di
ca

te
s

th
at

hi
gh

er
va

lu
es

ar
e

be
tte

r,
w

hi
le
↓

in
di

ca
te

s
th

at
lo

w
er

va
lu

es
ar

e
be

tte
r.

T
he

be
st

re
su

lts
ar

e
hi

gh
lig

ht
ed

in
bo

ld
.

M
et

ho
d

M
A

T
H

SC
IE

N
C

E
G

SM
8K

M
AT

H
-5

00
A

M
C

23
A

IM
E

24
A

IM
E

25
O

ly
m

pi
ad

B
en

ch
G

PQ
A

-D
O

ve
ra

ll
A

cc
↑

To
k↓

C
R
↓

A
cc
↑

To
k↓

C
R
↓

A
cc
↑

To
k↓

C
R
↓

A
cc
↑

To
k↓

C
R
↓

A
cc
↑

To
k↓

C
R
↓

A
cc
↑

To
k↓

C
R
↓

A
cc
↑

To
k↓

C
R
↓

A
cc
↑

C
R
↓

D
ee

pS
ee

k-
R

1-
D

is
til

l-Q
w

en
-3

2B
Va

ni
lla

94
.3

1,
20

2
10

0%
89

.2
3,

73
6

10
0%

87
.5

5,
35

4
10

0%
56

.7
10

,2
93

10
0%

43
.3

11
,0

75
10

0%
55

.7
7,

33
4

10
0%

56
.1

7,
18

1
10

0%
69

.0
10

0%
D

E
E

R
95

.1
81

9
68

.1
%

90
.4

2,
42

5
64

.9
%

95
4,

25
2

79
.4

%
63

.3
7,

42
4

72
.1

%
46

.7
8,

91
3

80
.5

%
57

.8
5,

35
1

73
.0

%
64

.1
4,

94
3

68
.8

%
73

.2
72

.4
%

D
ee

pS
ee

k-
R

1-
D

is
til

l-Q
w

en
-1

4B
Va

ni
lla

93
.9

1,
45

8
10

0%
88

.6
3,

81
5

10
0%

82
.5

6,
54

5
10

0%
51

.7
11

,2
11

10
0%

36
.7

12
,3

04
10

0%
52

.6
7,

90
8

10
0%

52
.0

6,
73

1
10

0%
65

.4
10

0%
D

E
E

R
93

.3
1,

04
0

71
.3

%
89

.8
2,

57
7

67
.5

%
85

.0
4,

24
0

64
.8

%
68

.4
8,

11
5

72
.4

%
36

.7
10

,1
25

82
.3

%
55

.0
5,

73
6

72
.5

%
56

.6
4,

85
6

72
.1

%
69

.3
71

.9
%

D
ee

pS
ee

k-
R

1-
D

is
til

l-Q
w

en
-7

B
Va

ni
lla

89
.6

1,
48

4
10

0%
87

.4
3,

85
8

10
0%

78
.8

6,
79

2
10

0%
41

.7
13

,7
65

10
0%

26
.7

%
12

,7
67

10
0%

47
.3

8,
56

3
10

0%
23

.7
10

,2
47

10
0%

56
.5

10
0%

D
E

E
R

90
.6

91
7

61
.8

%
89

.8
2,

14
3

55
.5

%
85

.0
4,

45
1

65
.5

%
49

.2
9,

83
9

71
.5

%
36

.7
7,

25
7

56
.8

%
52

.6
5,

42
0

63
.3

%
31

.3
5,

46
9

53
.4

%
62

.2
61

.1
%

D
ee

pS
ee

k-
R

1-
D

is
til

l-Q
w

en
-1

.5
B

Va
ni

lla
76

.1
1,

61
7

10
0%

69
.0

6,
01

8
10

0%
52

.5
8,

81
9

10
0%

23
.3

13
,7

02
10

0%
13

.3
14

,4
50

10
0%

28
.0

11
,2

00
10

0%
7.

1
13

,0
29

10
0%

38
.5

10
0%

D
E

E
R

74
.7

98
4

60
.9

%
67

.8
2,

49
7

41
.5

%
60

.0
5,

49
6

62
.3

%
23

.3
9,

55
7

69
.7

%
10

.0
9,

28
1

64
.2

%
32

.0
5,

96
0

53
.2

%
12

.1
5,

76
2

44
.2

%
40

.0
56

.6
%

Q
w

en
3-

32
B

Va
ni

lla
96

.3
1,

66
8

10
0%

94
.4

4,
44

0
10

0%
95

.0
7,

62
7

10
0%

73
.3

11
,3

74
10

0%
65

.0
12

,4
46

10
0%

63
.4

6,
43

8
10

0%
65

.2
6,

89
3

10
0%

78
.9

10
0%

D
E

E
R

96
.2

76
9

46
.1

%
94

.2
3,

41
8

77
.0

%
97

.5
5,

75
3

75
.4

%
76

.7
8,

68
2

76
.3

%
66

.7
10

,8
93

87
.5

%
67

.9
5,

18
9

80
.6

%
64

.7
4,

16
7

60
.5

%
80

.6
71

.9
%

Q
w

en
3-

14
B

Va
ni

lla
95

.1
2,

04
7

10
0%

93
.8

4,
50

8
10

0%
95

.0
7,

13
9

10
0%

70
.0

10
,8

59
10

0%
63

.3
12

,2
86

10
0%

62
.5

8,
69

2
10

0%
60

.1
7,

33
9

10
0%

77
.1

10
0%

D
E

E
R

95
.3

84
0

41
.0

%
94

.0
3,

07
4

68
.2

%
95

.0
4,

76
3

66
.7

%
76

.7
7,

61
9

70
.2

%
66

.7
11

,1
35

90
.6

%
67

.4
7,

06
0

81
.2

%
57

.6
2,

89
8

39
.5

%
79

.0
65

.0
%

Q
w

en
3-

8B
Va

ni
lla

94
.9

2,
24

5
10

0%
91

.2
5,

21
6

10
0%

87
.5

7,
98

6
10

0%
65

.0
12

,1
10

10
0%

54
.2

12
,8

35
10

0%
59

.3
9,

48
7

10
0%

51
.5

9,
14

5
10

0%
71

.9
10

0%
D

E
E

R
95

.2
1,

07
1

47
.7

%
92

.6
2,

73
2

52
.4

%
92

.5
4,

39
2

55
.0

%
61

.7
8,

79
6

72
.6

%
60

.0
12

,2
29

95
.3

%
62

.4
7,

47
9

78
.8

%
52

.5
3,

11
1

34
.0

%
73

.8
62

.3
%

Q
w

en
3-

4B
Va

ni
lla

94
.1

2,
17

5
10

0%
92

.2
4,

76
7

10
0%

87
.5

7,
44

3
10

0%
63

.3
11

,9
16

10
0%

48
.4

13
,1

12
10

0%
59

.3
9,

09
8

10
0%

46
.5

9,
29

4
10

0%
70

.2
10

0%
D

E
E

R
94

.5
1,

25
0

57
.5

%
92

.6
3,

21
4

67
.4

%
87

.5
4,

90
6

65
.9

%
63

.3
9,

32
7

78
.3

%
55

.0
12

,0
39

91
.8

%
64

.7
7,

56
9

83
.2

%
47

.5
3,

27
5

35
.4

%
72

.2
68

.5
%

Q
w

en
3-

1.
7B

Va
ni

lla
90

.1
2,

04
5

10
0%

85
.6

5,
16

0
10

0%
70

.0
8,

63
7

10
0%

30
.0

13
,7

58
10

0%
26

.7
13

,9
43

10
0%

52
.2

9,
43

7
10

0%
35

.9
9,

27
1

10
0%

55
.8

10
0%

D
E

E
R

90
.3

1,
06

6
52

.1
%

85
.6

2,
46

3
47

.7
%

70
.0

4,
67

3
54

.1
%

30
.0

7,
94

3
57

.7
%

36
.7

11
,5

79
83

.0
%

52
.6

7,
25

7
76

.9
%

43
.4

3,
54

9
38

.3
%

58
.4

58
.6

%
Q

w
Q

-3
2B

Va
ni

lla
96

.7
1,

42
7

10
0%

93
.8

4,
50

8
10

0%
92

.5
6,

79
2

10
0%

66
.7

10
,8

21
10

0%
46

.7
12

,3
00

10
0%

65
.2

8,
54

6
10

0%
63

.1
7,

32
0

10
0%

75
.0

10
0%

D
E

E
R

96
.3

97
7

68
.5

%
94

.6
3,

31
6

73
.6

%
95

.0
5,

78
2

85
.1

%
70

.0
10

,0
97

93
.3

%
50

.0
11

,5
98

94
.3

%
65

.2
7,

63
9

89
.4

%
64

.1
6,

16
3

84
.2

%
76

.5
84

.0
%

Ll
am

a-
3.

1-
N

em
ot

ro
n-

N
an

o-
8B

-v
1

Va
ni

lla
89

.2
1,

61
8

10
0%

91
.2

3,
79

4
10

0%
90

.0
6,

15
3

10
0%

56
.7

10
,8

21
10

0%
35

.0
13

,1
92

10
0%

54
.3

7,
32

1
10

0%
41

.9
8,

07
4

10
0%

65
.5

10
0%

D
E

E
R

89
.8

1,
47

3
91

.0
%

91
.4

2,
99

5
78

.9
%

90
.0

5,
40

8
87

.9
%

66
.7

9,
75

5
90

.6
%

36
.7

11
,8

20
89

.6
%

60
.7

6,
40

7
87

.5
%

47
.5

7,
57

6
93

.8
%

69
.0

88
.5

%

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

A Senate committee has 5 Democrats, 5 Republicans, and 1 Independent. In how many ways can they
sit around a circular table if all the members of each party all sit next to each other? (Two seatings
are considered equivalent if one is a rotation of the other.)

Okay, so I have this problem about a Senate committee with 5 Democrats,
5 Republicans, and 1 Independent. They need to sit around a circular table,
and all the members of each party have to sit next to each other. I need to
figure out in how many different ways this can happen. The problem also
mentions that two seatings are considered the same if one is just a rotation
of the other. Hmm, okay, let me break this down.

First, since it's a circular table, the number of arrangements is usually less
than a straight line because rotations are considered the same.
<omitted>

So, let me think. There are three parties: Democrats, Republicans, and
Independents. Each party is a group that needs to be seated together. So,
instead of thinking of 11 individuals, I can think of three blocks:
D (Democrats), R (Republicans), and I (Independent). Each block has to
be seated together, so the problem reduces to arranging these three blocks
around the table.
<omitted>
So, for three blocks, it's 2! = 2 distinct arrangements.

But now, within each block, the members can be arranged among
themselves. For the Democrats, there are 5 people, so they can be
arranged in 5! ways. Similarly, the Republicans can be arranged in 5!
ways. The Independent is just one person, so there's only 1 way to arrange
that block.

Therefore, the total number of arrangements is the number of ways to
arrange the blocks multiplied by the number of ways to arrange the
people within each block. So, that would be 2! * (5! * 5! * 1!) = 2 * (120
* 120 * 1) = 2 * 14400 = 28800.

</think>

Okay, so I have this problem about a Senate committee with 5 Democrats, 5
Republicans, and 1 Independent. They need to sit around a circular table, and
all the members of each party have to sit next to each other.
<omitted>

Therefore, the total number of arrangements is the number of ways to arrange
the blocks multiplied by the number of ways to arrange the people within each
block. So, that would be 2! * (5! * 5! * 1!) = 2 * (120 * 120 * 1) = 2 * 14400 =
28800.

Wait, hold on. Is that all? Let me double-check. So, we have three blocks: D, R,
I. Arrange them around the table: (3-1)! = 2. Then, within each block, arrange
the members: 5! for D, 5! for R, and 1! for I. So, yes, 2 * 5! * 5! * 1! = 2 * 120
* 120 = 28800.

But wait, another thought: since the table is circular, does the direction matter?
Like, clockwise vs. counterclockwise. In circular permutations, sometimes
arrangements that are mirror images are considered different unless specified
otherwise.
<omitted>

But let me think again. Is there another way to approach this problem? Maybe
by considering the circular arrangement as a linear arrangement where we fix
one person's position to eliminate rotational symmetry.
<omitted>
But since we've fixed the Democrats, the remaining seats are in a line, so the
number of ways to arrange the Republican block and the Independent is 2!
(since there are two blocks: R and I). Then, within the Republican block, they
can be arranged in 5! ways, and the Independent is just 1.

So, the total number of arrangements would be 1 (for the fixed Democrat) * 2!
* 5! * 1! = 2 * 120 = 240.

Wait, that's different from the previous answer. Hmm, so which one is correct?
Wait, no, actually, if we fix one Democrat's seat, we're not just fixing that one
seat, but the entire block of Democrats. So, the number of ways to arrange the
blocks is 2! (for R and I), and within each block, it's 5! for R and 1! for I. So, 2!
* 5! * 1! = 2 * 120 = 240. But that seems too low because earlier we had 28800.

Wait, so which approach is correct? Let me think.

<omitted>

Wait, so which approach is correct? Let me think.

<omitted>

Wait, so which approach is correct? Let me think.

Question:

Answer: DEER Vanilla CoT

Token number: 870 Token number: 16384

Repetition

The Senate committee consists of three parties: Democrats (D), Republicans
(R), and an Independent (I). Since they must sit together, we treat each party
as a single block.

1. **Arranging the Blocks**: Around a circular table, the number of ways
to arrange 3 blocks is \\((3-1)! = 2!\\).

2. **Arranging Within Blocks**: \n - Democrats can be arranged in \\(5!\\)
ways.\n - Republicans can be arranged in \\(5!\\) ways.\n - The Independent
is a single person, so there's \\(1!\\) way.

3. **Total Arrangements**: Multiply the arrangements of the blocks by the
arrangements within each block:\n \\[\n 2! \\times 5! \\times 5! \\times 1! = 2
\\times 120 \\times 120 \\times 1 = 28,800\n \\]

Answer: \\boxed{28800}"

Early Exit !

[Slow thinking]

[No Conclusion]

[Conclusion]

[Slow thinking]

Figure 13: Comparison of generated content samples between DEER and Vanilla CoT on MATH-
500. Both DEER and vanilla CoT arrive at the correct answer during the first reasoning step, as
shown in the green box. The difference lies in the fact that DEER exits early after evaluating the
confidence of the trial answer as sufficiently high, thus producing the correct result.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Question:

Answer:

The coordinates of a parallelogram are (5, 3), (6, 8), (7, 4) and (x, y) and $x > 7$.
What is the value of $x + y$?

Okay, so I have this problem where I need to find the
coordinates of the fourth vertex of a parallelogram. The
given points are (5, 3), (6, 8), (7, 4), and (x, y) with the
condition that x > 7. Then, I need to find the value of x + y.
Hmm, let me think about how to approach this.\n\nFirst, I
remember that in a parallelogram, opposite sides are equal
and parallel. That means the midpoints of the diagonals
should be the same. So, if I can find the midpoint of one
diagonal, it should be equal to the midpoint of the other
diagonal.\n\nLet me label the points to make it clearer. Let's
say point A is (5, 3), point B is (6, 8), point C is (7, 4), and
point D is (x, y). Now, I need to figure out which points are
connected to each other. Since it's a parallelogram, the
order of the points matters. I think the points should be
connected in order, so A to B to C to D and back to A. But
I'm not entirely sure, so maybe I should consider different
possibilities.
<omitted>
Let me try another approach.\n\nAnother property of a
parallelogram is that the diagonals bisect each other. So, the
midpoint of diagonal AC should be the same as the
midpoint of diagonal BD.\n\nLet me calculate the midpoint
of AC first. Point A is (5, 3) and point C is (7, 4). The midpoint
formula is ((x1 + x2)/2, (y1 + y2)/2). So, midpoint of AC is ((5
+ 7)/2, (3 + 4)/2) = (12/2, 7/2) = (6, 3.5).
<omitted>
Midpoint is ((5 + x)/2, (3 + y)/2).\n\nMidpoint of BC: Point B
is (6, 8) and point C is (7, 4). Midpoint is ((6 + 7)/2, (8 + 4)/2)
= (13/2, 12/2) = (6.5, 6).\n\nSetting midpoints equal:\n\n(5
+ x)/2 = 6.5 and (3 + y)/2 = 6.\n\nSolving the first equation:
(5 + x)/2 = 6.5 => 5 + x = 13 => x = 8.\n\nSolving the
second equation: (3 + y)/2 = 6 => 3 + y = 12 => y =
9.\n\nOkay, this gives x = 8 and y = 9, which satisfies x > 7.
So, the fourth point is (8, 9), and x + y = 8 + 9 = 17.
</think>
To find the coordinates of the fourth vertex of the
parallelogram, we use the property that the diagonals of a
parallelogram bisect each other. \n\n1. **Calculate the
midpoint of diagonal BC:**\n - Points B (6, 8) and C (7,
4).\n - Midpoint formula: \\(\\left(\\frac{6 + 7}{2}, \\frac{8 +
4}{2}\\right) = \\left(\\frac{13}{2}, 6\\right) = (6.5, 6)\\).\n\n2.
**Set the midpoint of diagonal AD equal to the midpoint of
BC:**\n - Let D be (x, y).\n - Midpoint of AD:
\\(\\left(\\frac{5 + x}{2}, \\frac{3 + y}{2}\\right)\\).\n -
Equate to (6.5, 6):\n - \\(\\frac{5 + x}{2} = 6.5 \\Rightarrow
5 + x = 13 \\Rightarrow x = 8\\).\n - \\(\\frac{3 + y}{2} = 6
\\Rightarrow 3 + y = 12 \\Rightarrow y = 9\\).\n\n3.
Calculate \\(x + y\\):\n - \\(x + y = 8 + 9 =
17\\).\n\n**Answer:** \\(\\boxed{17}\\)

Okay, so I have this problem where I need to find the
coordinates of the fourth vertex of a parallelogram. The
given points are (5, 3), (6, 8), (7, 4), and (x, y) with the
condition that x > 7. Then, I need to find the value of x + y.
Hmm, let me think about how to approach this.\n\nFirst, I
remember that in a parallelogram, opposite sides are equal
and parallel. That means the midpoints of the diagonals
should be the same. So, if I can find the midpoint of one
diagonal, it should be equal to the midpoint of the other
diagonal.\n\nLet me label the points to make it clearer. Let's
say point A is (5, 3), point B is (6, 8), point C is (7, 4), and
point D is (x, y). Now, I need to figure out which points are
connected to each other. Since it's a parallelogram, the
order of the points matters. I think the points should be
connected in order, so A to B to C to D and back to A. But
I'm not entirely sure, so maybe I should consider different
possibilities.
Let me try another approach.\n\nAnother property of a
parallelogram is that the diagonals bisect each other. So, the
midpoint of diagonal AC should be the same as the
midpoint of diagonal BD.
<omitted>
Midpoint is ((5 + x)/2, (3 + y)/2).\n\nMidpoint of BC: Point B
is (6, 8) and point C is (7, 4). Midpoint is ((6 + 7)/2, (8 + 4)/2)
= (13/2, 12/2) = (6.5, 6).\n\nSetting midpoints equal:\n\n(5
+ x)/2 = 6.5 and (3 + y)/2 = 6.\n\nSolving the first equation:
(5 + x)/2 = 6.5 => 5 + x = 13 => x = 8.\n\nSolving the
second equation: (3 + y)/2 = 6 => 3 + y = 12 => y =
9.\n\nOkay, this gives x = 8 and y = 9, which satisfies x > 7.
So, the fourth point is (8, 9), and x + y = 8 + 9 = 17.
Wait, let me verify this. If the points are A(5,3), B(6,8),
C(7,4), and D(8,9), does this form a parallelogram?\n\nLet
me check the vectors.
<omitted>
These aren't equal either. Hmm, that's confusing.\n\nWait,
maybe I made a mistake in assigning the points. Let me try
another approach.
<omitted>
Hmm, these aren't equal. Wait, that's a problem.\n\nWait,
but according to the vector addition, D should be (8,9). So,
why are vectors AD and BC not equal?\n\nWait, maybe I
need to check the other pair of sides. Vector AD and vector
BC are not equal, but vector AB and vector DC are equal.
<omitted>
These aren't equal, but in a parallelogram, both pairs should
be equal. So, that's a problem.\n\nWait, but according to
the midpoint method, it's a parallelogram. So, maybe I'm
missing something.
<omitted> No answer !

Vanilla CoTDEER

Token number: ~800 Token number: 16384

Figure 14: Comparison of generated content between DEER and Vanilla on MATH-500.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Question:

Answer:

Point A lies somewhere within or on the square which has opposite corners at $(0,0)$
and $(2,2)$. Point B lies somewhere within or on the square which has opposite
corners at points $(4,2)$ and $(5,3)$. What is the greatest possible value of the slope of
the line containing points A and B? Express your answer as a common fraction.

Okay, so I have this problem where I need to find the
greatest possible slope of a line connecting two points, A
and B. Point A is somewhere inside or on a square with
opposite corners at (0,0) and (2,2). Point B is inside or on
another square with opposite corners at (4,2) and (5,3). I
need to figure out the maximum slope possible between
any two points A and B in these squares.\n\nFirst, let me
visualize the squares. The first square has corners at (0,0)
and (2,2). Similarly, the second square has opposite corners
at (4,2) and (5,3). Hmm, so that square is a bit smaller. Let
me figure out its sides. The distance between (4,2) and (5,3)
is sqrt[(5-4)^2 + (3-2)^2] = sqrt[1 + 1] = sqrt(2). So, it's a
square with side length sqrt(2), rotated 45 degrees relative
to the axes.\n\nWait, actually, no. If the opposite corners are
(4,2) and (5,3), then the sides are not aligned with the axes.
<omitted>
But wait, is that achievable? Because point A is in the first
square, so if A is at (2,0), which is a corner, and point B is at
(4,3), which is a corner of the second square. So, connecting
(2,0) to (4,3) would give a slope of (3 - 0)/(4 - 2) = 3/2. But is
that the maximum?
</think>
To find the greatest possible slope of the line containing
points \\(A \\) and \\(B \\), we need to maximize the
expression \\(\\frac{y_B - y_A}{x_B - x_A} \\). \n\n- Point
\\(A \\) lies within or on the square with opposite corners at
\\((0,0) \\) and \\((2,2) \\). The minimum \\(y \\)-coordinate
for \\(A \\) is \\(0 \\) and the maximum \\(x \\)-coordinate
is \\(2 \\).\n- Point \\(B \\) lies within or on the square with
opposite corners at \\((4,2) \\) and \\((5,3) \\). The
maximum \\(y \\)-coordinate for \\(B \\) is \\(3 \\) and the
minimum \\(x \\)-coordinate is \\(4 \\).\n\nTo maximize the
slope, we should choose \\(A \\) at \\((2,0) \\) and \\(B \\)
at \\((4,3) \\). The slope is then:\n\\[\n\\text{slope} =
\\frac{3 - 0}{4 - 2} = \\frac{3}{2}\n\\]\n\nHowever, upon
closer inspection, the square for \\(B \\) is actually a
diamond with corners at \\((4,2) \\), \\((5,3) \\), \\((5,2) \\),
and \\((4,3) \\). The point \\((4,3) \\) is indeed a corner of
this square. Therefore, the maximum slope is
achievable.\n\nThe greatest possible slope is \\(\\frac{3}{2}
\\).\n\n\\boxed{\\dfrac{3}{2}}"], "gold_answer": "\\frac{3}{2}"}

Wait, but maybe we can get a steeper slope by choosing
points that are not at the corners. Because if we can have
a larger yB - yA with a smaller xB - xA, that would give a
steeper slope.
<omitted>
Wait, but hold on. Let me think again. Maybe if we don't
take A at (2,0) and B at (4,3), but somewhere else, we can
get a steeper slope.
<omitted>
But wait, is there a way to have a larger slope? For example,
if A is at (2,2) and B is at (4,3). Then, the slope is (3 - 2)/(4 - 2)
= 1/2, which is less than 3/2.\n\nAlternatively, if A is at (0,0)
and B is at (5,3), then the slope is (3 - 0)/(5 - 0) = 3/5, which
is less than 3/2.
<omitted>
Alternatively, if point A is at (x, yA) where x < 2, then point B
would have to be at (x + 2, yB). But since the second square
starts at x=4, x + 2 must be at least 4, so x must be at least 2.
<omitted> No answer !

Vanilla CoTDEER

Token number: ~1000 Token number: 16384

Okay, so I have this problem where I need to find the
greatest possible slope of a line connecting two points, A
and B. Point A is somewhere inside or on a square with
opposite corners at (0,0) and (2,2). Point B is inside or on
another square with opposite corners at (4,2) and (5,3). I
need to figure out the maximum slope possible between
any two points A and B in these squares.\n\nFirst, let me
visualize the squares. The first square has corners at (0,0)
and (2,2). Similarly, the second square has opposite corners
at (4,2) and (5,3). Hmm, so that square is a bit smaller. Let
me figure out its sides. The distance between (4,2) and (5,3)
is sqrt[(5-4)^2 + (3-2)^2] = sqrt[1 + 1] = sqrt(2). So, it's a
square with side length sqrt(2), rotated 45 degrees relative
to the axes.\n\nWait, actually, no. If the opposite corners are
(4,2) and (5,3), then the sides are not aligned with the axes.
<omitted>
But wait, is that achievable? Because point A is in the first
square, so if A is at (2,0), which is a corner, and point B is at
(4,3), which is a corner of the second square. So, connecting
(2,0) to (4,3) would give a slope of (3 - 0)/(4 - 2) = 3/2. But is
that the maximum?

Figure 15: Comparison of generated content between DEER and Vanilla on MATH-500.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

Question:

Answer:

The expression $$1 + 2 + 3 - 4 + 5 + 6$$is equivalent to 13. If we add parentheses in
various locations, we can change this value. For example, $1+2+3-(4+5)+6=1+2+3-
9+6=6-9+6=3$. If we only add parentheses (and not rearrange the order of the terms),
what is the minimum possible value this expression can obtain? (For the purposes of
this problem, we cannot change addition or subtraction into multiplication. For
example, $ (1+2+3)(-4)+5+6 $ is not a valid placement of parentheses.)\n\nEnter your
answer as a single value.",

Okay, so I have this math problem here: the expression is 1
+ 2 + 3 - 4 + 5 + 6, and it's equal to 13. The task is to add
parentheses in various places to change the value, but I can't
rearrange the terms or turn the operations into
multiplication. I need to find the minimum possible value
this expression can obtain by adding parentheses. Hmm,
interesting.\n\nFirst, let me make sure I understand the
problem correctly. I can only add parentheses, which will
change the order in which operations are performed, but I
can't move the numbers around or change the plus and
minus signs into multiplication or division. So, for example, I
can do something like (1 + 2) + 3 - 4 + 5 + 6, but I can't do
1*(2+3) - 4 + 5 + 6 because that would involve
multiplication, which isn't allowed.
<omitted>
Yep, that's correct. So, 13 is the original
value.\n\nAlternatively, group (1 + 2) + (3 - 4 + 5 + 6). So, 1
+ 2 = 3, 3 - 4 = -1, -1 + 5 = 4, 4 + 6 = 10. Then, 3 + 10 =
13.\n\nAlternatively, group 1 + (2 + 3 - 4 + 5) + 6. So, 2 + 3
= 5, 5 - 4 = 1, 1 + 5 = 6. Then, 1 + 6 + 6 = 13.\n\nHmm,
seems like 3 is the lowest I can get so far. But let me think if
there's another way.\n\nWhat if I group 1 + 2 + 3 - (4 + 5 +
6). Let's compute that: 4 + 5 + 6 = 15. Then, 1 + 2 + 3 = 6, 6
- 15 = -9. So, that's -9. Wait, that's way lower than 3. Is that
allowed?

</think>

To find the minimum possible value of the expression \\(1 +
2 + 3 - 4 + 5 + 6\\) by adding parentheses, we can
strategically group terms to maximize the impact of the
subtraction. \n\nBy grouping the terms after the subtraction,
we can create a larger number to subtract, significantly
reducing the overall value. For example, grouping \\(4 + 5 +
6\\) together:\n\n\\[\n1 + 2 + 3 - (4 + 5 + 6) = 6 - 15 = -
9\n\\]\n\nThus, the minimum possible value is \\(\\boxed{-
9}\\)

Wait, hold on. The original expression is 1 + 2 + 3 - 4 + 5 +
6. If I group 4 + 5 + 6, that would be subtracting 15, so 6 -
15 = -9.
<omitted>
Wait, but in the original expression, after the subtraction,
it's +5 +6. So, if I group 4 +5 +6, that would be changing
the operations after the subtraction, but I can't rearrange
terms. So, is that allowed?
<omitted>
Alternatively, group 1 + (2 +3 -4 +5 +6). As before, 1
+12=13.\n\nAlternatively, group (1 +2 +3 -4 +5) +6. …

Endless exhaustive search!

Vanilla CoTDEER

Token number: ~1500 Token number: 16384

Okay, so I have this math problem here: the expression is 1
+ 2 + 3 - 4 + 5 + 6, and it's equal to 13. The task is to add
parentheses in various places to change the value, but I can't
rearrange the terms or turn the operations into
multiplication. I need to find the minimum possible value
this expression can obtain by adding parentheses. Hmm,
interesting.\n\nFirst, let me make sure I understand the
problem correctly. I can only add parentheses, which will
change the order in which operations are performed, but I
can't move the numbers around or change the plus and
minus signs into multiplication or division. So, for example, I
can do something like (1 + 2) + 3 - 4 + 5 + 6, but I can't do
1*(2+3) - 4 + 5 + 6 because that would involve
multiplication, which isn't allowed.
<omitted>
Yep, that's correct. So, 13 is the original
value.\n\nAlternatively, group (1 + 2) + (3 - 4 + 5 + 6). So, 1
+ 2 = 3, 3 - 4 = -1, -1 + 5 = 4, 4 + 6 = 10. Then, 3 + 10 =
13.\n\nAlternatively, group 1 + (2 + 3 - 4 + 5) + 6. So, 2 + 3
= 5, 5 - 4 = 1, 1 + 5 = 6. Then, 1 + 6 + 6 = 13.\n\nHmm,
seems like 3 is the lowest I can get so far. But let me think if
there's another way.\n\nWhat if I group 1 + 2 + 3 - (4 + 5 +
6). Let's compute that: 4 + 5 + 6 = 15. Then, 1 + 2 + 3 = 6, 6
- 15 = -9. So, that's -9. Wait, that's way lower than 3. Is that
allowed?

Figure 16: Comparison of generated content between DEER and Vanilla on MATH-500.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

Question:

Answer:
Okay, so I have this problem where I need to find the coordinates of the fourth vertex of a parallelogram. The given points are (5, 3), (6, 8), (7, 4), and
(x, y) with the condition that x > 7. Then, I need to find the value of x + y. Hmm, let me think about how to approach this.
First, I remember that in a parallelogram, opposite sides are equal and parallel. That means the midpoints of the diagonals should be the same. So, if I
can find the midpoint of one diagonal, it should be equal to the midpoint of the other diagonal.
Let me label the points to make it clearer. Let's say point A is (5, 3), point B is (6, 8), point C is (7, 4), and point D is (x, y). Now, I need to figure out
which points are connected to each other. Since it's a parallelogram, the order of the points matters. I think the points should be connected in order, so
A to B to C to D and back to A. But I'm not entirely sure, so maybe I should consider different possibilities.
Alternatively, another way to approach this is by using vectors. In a parallelogram, the vector from one point to another should be equal to the vector
from another point to the next. So, for example, vector AB should be equal to vector DC, and vector AD should be equal to vector BC.
Let me try that. First, let's find vector AB. Point A is (5, 3) and point B is (6, 8). So, vector AB is (6 - 5, 8 - 3) = (1, 5). If vector AB is equal to vector
DC, then vector DC should also be (1, 5). Point D is (x, y) and point C is (7, 4). So, vector DC is (7 - x, 4 - y). Setting this equal to (1, 5), we get:\n\n7
- x = 1 and 4 - y = 5.
Solving the first equation: 7 - x = 1 => x = 7 - 1 = 6.
Solving the second equation: 4 - y = 5 => y = 4 - 5 = -1.

<Induced trial answer>: \boxed{6 + (-1)}.

Wait, but the problem states that x > 7, and here x is 6, which is less than 7. That can't be right. So, maybe I assigned the points incorrectly.
Perhaps the order of the points isn't A, B, C, D. Maybe it's a different order. Let me try another approach.
Another property of a parallelogram is that the diagonals bisect each other. So, the midpoint of diagonal AC should be the same as the midpoint of
diagonal BD.
Let me calculate the midpoint of AC first. Point A is (5, 3) and point C is (7, 4). The midpoint formula is ((x1 + x2)/2, (y1 + y2)/2). So, midpoint of AC
is ((5 + 7)/2, (3 + 4)/2) = (12/2, 7/2) = (6, 3.5).
Now, the midpoint of BD should also be (6, 3.5). Point B is (6, 8) and point D is (x, y). So, midpoint of BD is ((6 + x)/2, (8 + y)/2). Setting this equal
to (6, 3.5):\n\n(6 + x)/2 = 6 and (8 + y)/2 = 3.5.
Solving the first equation: (6 + x)/2 = 6 => 6 + x = 12 => x = 6.\n\nSolving the second equation: (8 + y)/2 = 3.5 => 8 + y = 7 => y = -1.
Again, I get x = 6 and y = -1, but x is supposed to be greater than 7. Hmm, that's conflicting. Maybe I need to consider a different pair of points as the
diagonal.

<Induced trial answer>: \boxed{10}.

Wait, perhaps I assumed the wrong diagonal. Maybe the diagonals are AD and BC instead of AC and BD. Let me try that.
Midpoint of AD: Point A is (5, 3) and point D is (x, y). Midpoint is ((5 + x)/2, (3 + y)/2).
Midpoint of BC: Point B is (6, 8) and point C is (7, 4). Midpoint is ((6 + 7)/2, (8 + 4)/2) = (13/2, 12/2) = (6.5, 6).
Setting midpoints equal:\n\n(5 + x)/2 = 6.5 and (3 + y)/2 = 6.
Solving the first equation: (5 + x)/2 = 6.5 => 5 + x = 13 => x = 8.\n\nSolving the second equation: (3 + y)/2 = 6 => 3 + y = 12 => y = 9.
Okay, this gives x = 8 and y = 9, which satisfies x > 7. So, the fourth point is (8, 9), and x + y = 8 + 9 = 17.

<Induced trial answer>: \boxed{17}.

</think>

To find the coordinates of the fourth vertex of the parallelogram, we use the property that the diagonals of a parallelogram bisect each other.
1. **Calculate the midpoint of diagonal BC:**\n - Points B (6, 8) and C (7, 4).\n - Midpoint formula: \\(\\left(\\frac{6 + 7}{2}, \\frac{8 + 4}{2}\\right)

= \\left(\\frac{13}{2}, 6\\right) = (6.5, 6)\\).
2. 2. **Set the midpoint of diagonal AD equal to the midpoint of BC:**\n - Let D be (x, y).\n - Midpoint of AD: \\(\\left(\\frac{5 + x}{2}, \\frac{3 +

y}{2}\\right)\\).\n - Equate to (6.5, 6):\n - \\(\\frac{5 + x}{2} = 6.5 \\Rightarrow 5 + x = 13 \\Rightarrow x = 8\\).\n - \\(\\frac{3 + y}{2} = 6
\\Rightarrow 3 + y = 12 \\Rightarrow y = 9\\).

3. 3. **Calculate \\(x + y\\):**\n - \\(x + y = 8 + 9 = 17\\).
4. **Answer:** \\(\\boxed{17}\\)

The coordinates of a parallelogram are (5, 3), (6, 8), (7, 4) and (x, y) and $x > 7$.
What is the value of $x + y$?

Confidence: 0.7344

Confidence: 0.5312

Exit!

Continue thinking

Continue thinking

Confidence: 0. 9993

Figure 17: An example demonstrating LRM’s implicit ability to sense the emergence of pearl reason-
ing. When the model’s reasoning content is insufficient to support the elicited answer, the confidence
remains at a low level, as demonstrated by the first two confidence values in the figure. Conversely,
when the model has provided adequate and sound reasoning as justification, the confidence reaches
high levels, potentially approaching 1, as shown by the final confidence value in the figure.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

Question:

Answer:

Okay, so I need to find a way to express the double sum \\(\\sum_{j = 1}^\\infty \\sum_{k = 1}^\\infty \\frac{1}{(j + k)^3}\\) in terms of \\(p\\) and
\\(q\\), where \\(p\\) is the sum of \\(1/k^2\\) and \\(q\\) is the sum of \\(1/k^3\\). Hmm, let me think about how to approach this.\n\nFirst, I
remember that double sums can sometimes be simplified by changing variables or switching the order of summation. Maybe I can let \\(n = j + k\\),
so that for each \\(n\\), the terms where \\(j + k = n\\) contribute to the sum. That might help me rewrite the double sum as a single sum over \\(n\\),
with each term multiplied by the number of pairs \\((j, k)\\) that add up to \\(n\\).\n\nLet me try that. Let's set \\(n = j + k\\). Then for each \\(n \\geq
2\\) (since \\(j\\) and \\(k\\) are at least 1), the number of pairs \\((j, k)\\) such that \\(j + k = n\\) is \\(n - 1\\). For example, when \\(n = 2\\), there's
only one pair (1,1); when \\(n = 3\\), there are two pairs (1,2) and (2,1), and so on. So the double sum can be rewritten
as:\n\n\\[\n\\sum_{n=2}^\\infty \\frac{n - 1}{n^3}\n\\]\n\nWait, is that right? Let me check. Each term \\(\\frac{1}{(j + k)^3}\\) for each pair \\((j,
k)\\) would be grouped by \\(n = j + k\\), so each \\(n\\) contributes \\((n - 1)\\) terms each of \\(\\frac{1}{n^3}\\). Therefore, the total contribution
for each \\(n\\) is \\(\\frac{n - 1}{n^3}\\). So the entire double sum becomes:\n\n\\[\n\\sum_{n=2}^\\infty \\frac{n - 1}{n^3}\n\\]\n\nHmm, okay.
Now I need to express this in terms of \\(p\\) and \\(q\\). Let me see. Let's first write out the sum:\n\n\\[\n\\sum_{n=2}^\\infty \\frac{n - 1}{n^3} =
\\sum_{n=2}^\\infty \\left(\\frac{n}{n^3} - \\frac{1}{n^3} \\right) = \\sum_{n=2}^\\infty \\left(\\frac{1}{n^2} - \\frac{1}{n^3}
\\right)\n\\]\n\nAh, that simplifies to the difference between two sums. Let's split that into two separate sums:\n\n\\[\n\\sum_{n=2}^\\infty
\\frac{1}{n^2} - \\sum_{n=2}^\\infty \\frac{1}{n^3}\n\\]\n\nNow, notice that these are just the tails of the series for \\(p\\) and \\(q\\). Since \\(p =
\\sum_{k=1}^\\infty \\frac{1}{k^2}\\), then \\(\\sum_{n=2}^\\infty \\frac{1}{n^2} = p - \\frac{1}{1^2} = p - 1\\). Similarly, \\(q =
\\sum_{k=1}^\\infty \\frac{1}{k^3}\\), so \\(\\sum_{n=2}^\\infty \\frac{1}{n^3} = q - \\frac{1}{1^3} = q - 1\\).\n\nTherefore, substituting back
into the expression:\n\n\\[\n(p - 1) - (q - 1) = p - 1 - q + 1 = p - q\n\\]\n\n
</think>
Let's summarize the above thought process and provide the result. The double sum can be rewritten by considering the sum over \\(n = j + k\\). For
each \\(n \\geq 2\\), there are \\(n - 1\\) pairs \\((j, k)\\) such that \\(j + k = n\\). This transforms the double sum into a single
sum:\n\n\\[\n\\sum_{j=1}^\\infty \\sum_{k=1}^\\infty \\frac{1}{(j + k)^3} = \\sum_{n=2}^\\infty \\frac{n - 1}{n^3}\n\\]\n\nBreaking this into two
separate sums:\n\n\\[\n\\sum_{n=2}^\\infty \\left(\\frac{1}{n^2} - \\frac{1}{n^3} \\right) = \\left(\\sum_{n=2}^\\infty \\frac{1}{n^2} \\right) -
\\left(\\sum_{n=2}^\\infty \\frac{1}{n^3} \\right)\n\\]\n\nRecognizing these as the tails of the series for \\(p\\) and \\(q\\), we subtract the first
terms:\n\n\\[\n\\left(p - 1 \\right) - \\left(q - 1 \\right) = p - q\n\\]\n\nThus, the double sum simplifies to \\(\\boxed{p - q}\\).\n\n**Final
Answer**\n\\boxed{p - q}\n\n
</think>
\n\nTo express the double sum \\(\\sum_{j = 1}^\\infty \\sum_{k = 1}^\\infty \\frac{1}{(j + k)^3}\\) in terms of \\(p\\) and \\(q\\), we start by
changing variables. Let \\(n = j + k\\). For each \\(n \\geq 2\\), the number of pairs \\((j, k)\\) such that \\(j + k = n\\) is \\(n - 1\\). This allows us to
rewrite the double sum as:\n\n\\[\n\\sum_{n=2}^\\infty \\frac{n - 1}{n^3}\n\\]\n\nNext, we split this into two separate
sums:\n\n\\[\n\\sum_{n=2}^\\infty \\left(\\frac{1}{n^2} - \\frac{1}{n^3} \\right)\n\\]\n\nRecognizing these as the tails of the series for \\(p\\) and
\\(q\\), we have:\n\n\\[\n\\sum_{n=2}^\\infty \\frac{1}{n^2} = p - 1 \\quad \\text{and} \\quad \\sum_{n=2}^\\infty \\frac{1}{n^3} = q -
1\n\\]\n\nSubstituting these into the expression gives:\n\n\\[\n(p - 1) - (q - 1) = p - q\n\\]\n\nThus, the double sum simplifies to \\(\\boxed{p - q}\\).

Define\n\\[p = \\sum_{k = 1}^\\infty \\frac{1}{k^2} \\quad \\text{and} \\quad q =
\\sum_{k = 1}^\\infty \\frac{1}{k^3}.\\]Find a way to write\n\\[\\sum_{j = 1}^\\infty
\\sum_{k = 1}^\\infty \\frac{1}{(j + k)^3}\\]in terms of p and $q.$

Okay, so I have this problem where I need to express the double sum \\(\\sum_{j = 1}^\\infty \\sum_{k = 1}^\\infty \\frac{1}{(j + k)^3}\\) in terms of
\\(p\\) and \\(q\\), where \\(p = \\sum_{k = 1}^\\infty \\frac{1}{k^2}\\) and \\(q = \\sum_{k = 1}^\\infty \\frac{1}{k^3}\\). Hmm, let me think about
how to approach this.\n\nFirst, I know that \\(p\\) is the famous Basel problem, which equals \\(\\frac{\\pi^2}{6}\\), and \\(q\\) is the Riemann zeta
function at 3, which is known as Apery's constant, approximately 1.202... But I don't think I need the exact values; instead, I need to relate the double
sum to these series.\n\nLooking at the double sum, it's over all positive integers \\(j\\) and \\(k\\), and the term is \\(\\frac{1}{(j + k)^3}\\). Maybe I
can change variables to simplify this. Let me set \\(n = j + k\\). Then, for each fixed \\(n\\), \\(j\\) can range from 1 to \\(n - 1\\), and \\(k = n - j\\). So,
perhaps I can rewrite the double sum as a single sum over \\(n\\), where each term is the sum over \\(j\\) from 1 to \\(n - 1\\) of
\\(\\frac{1}{n^3}\\).\n\nLet me write that down:\n\n\\[\n\\sum_{j = 1}^\\infty \\sum_{k = 1}^\\infty \\frac{1}{(j + k)^3} = \\sum_{n = 2}^\\infty
\\sum_{j = 1}^{n - 1} \\frac{1}{n^3}\n\\]\n\nYes, that makes sense because the smallest \\(n\\) can be is 2 (when \\(j = 1\\) and \\(k = 1\\)), and it goes
to infinity. Now, for each \\(n\\), the inner sum is just adding \\(\\frac{1}{n^3}\\) a total of \\(n - 1\\) times. So, the inner sum simplifies to \\(\\frac{n -
1}{n^3}\\).\n\nSo now, the double sum becomes:\n\n\\[\n\\sum_{n = 2}^\\infty \\frac{n - 1}{n^3}\n\\]\n\nHmm, that seems manageable. Let me
write this as:\n\n\\[\n\\sum_{n = 2}^\\infty \\left(\\frac{n}{n^3} - \\frac{1}{n^3} \\right) = \\sum_{n = 2}^\\infty \\left(\\frac{1}{n^2} -
\\frac{1}{n^3} \\right)\n\\]\n\nYes, that's correct. So, this is equal to:\n\n\\[\n\\left(\\sum_{n = 2}^\\infty \\frac{1}{n^2} \\right) - \\left(\\sum_{n =
2}^\\infty \\frac{1}{n^3} \\right)\n\\]\n\nBut I know that \\(p = \\sum_{n = 1}^\\infty \\frac{1}{n^2}\\) and \\(q = \\sum_{n = 1}^\\infty
\\frac{1}{n^3}\\). So, if I subtract the \\(n = 1\\) terms from both series, I can express the sums starting from \\(n = 2\\).\n\nLet's compute that:\n\nFor
the first sum:\n\n\\[\n\\sum_{n = 2}^\\infty \\frac{1}{n^2} = p - \\frac{1}{1^2} = p - 1\n\\]\n\nSimilarly, for the second sum:\n\n\\[\n\\sum_{n =
2}^\\infty \\frac{1}{n^3} = q - \\frac{1}{1^3} = q - 1\n\\]\n\nSo, substituting back into our expression:\n\n\\[\n\\left(p - 1 \\right) - \\left(q - 1 \\right)
= p - 1 - q + 1 = p - q\n\\]\n\n
</think>
\n\nSo, the double sum simplifies to \\(p - q\\). Therefore, the answer is:\n\n\\[\n\\boxed{p - q}\n\\]

408

387

260

15

128

DeepSeek-R1-Distill-Qwen-32B

QwQ-32B

Length

Figure 18: An example demonstrating the presence of more than one ⟨/think⟩ tokens in QwQ-32B.
For both models, the green thinking chunk is sufficient to draw the correct conclusion. However,
QwQ-32B proceeds with an additional summary (red chunk) and generates its own ⟨/think⟩ token.
Based on all the above content, it arrives at the conclusion.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

Question: Convert the point $(0,3)$ in rectangular coordinates to polar coordinates. Enter your answer
in the form $(r,\\theta),$ where $r > 0$ and $0 \\le \\theta < 2 \\pi.

DEER’s Response
Okay, so I need to convert the point (0, 3) from rectangular coordinates to polar coordinates. Hmm, let me recall
how polar coordinates work. In polar coordinates, a point is represented as (r, θ), where r is the distance from the
origin to the point, and θ is the angle measured from the positive x-axis to the line connecting the origin to the
point. <omitted> So in this case, since the point is (0, 3), θ is π/2. <Exit>
</think> To convert the point $(0, 3)$ from rectangular coordinates to polar coordinates, we use the standard
conversion formulas… <omitted> Final Answer:\n\n$$\n\\boxed{(3, \\frac{\\pi}{2})}\n$$

Original Response
Okay, so I need to convert the point (0, 3) from rectangular coordinates to polar coordinates. Hmm, let me recall
how polar coordinates work. In polar coordinates, a point is represented as (r, θ), where r is the distance from the
origin to the point, and θ is the angle measured from the positive x-axis to the line connecting the origin to the
point. <omitted> So in this case, since the point is (0, 3), θ is π/2. But let me think again. <omitted>
Wait, let me check if there's another way to think about this. <omitted> But let me just
verify with another method. <omitted> Just to make sure, let me think of another point.
For example,… <omitted>
</think>\n\nTo convert the rectangular coordinate point $(0, 3)$ to polar coordinates, we use the standard
conversion formulas: <omitted>
Step 1: Compute the radius $ r $ <omitted> Step 2: Determine the angle $ \\theta $ <omitted> Step 3: Final
Answer \nWe are given the requirement that $ r > 0 $ and $ 0 \\leq \\theta < 2\\pi $, which is satisfied
here.\n\nThus, the polar coordinates of the point $(0, 3)$ are:\n\n$$\n\\boxed{(3, \\frac{\\pi}{2})}\n$$

Less Tokens

Figure 19: Case1 for rebuttal

Question: Convert the point $(0,3)$ in rectangular coordinates to polar coordinates. Enter your answer
in the form $(r,\\theta),$ where $r > 0$ and $0 \\le \\theta < 2 \\pi.

DEER’s Response
Okay, so I need to convert the point (0, 3) from rectangular coordinates to polar coordinates. Hmm, let me recall
how polar coordinates work. In polar coordinates, a point is represented as (r, θ), where r is the distance from the
origin to the point, and θ is the angle measured from the positive x-axis to the line connecting the origin to the
point. <omitted> So in this case, since the point is (0, 3), θ is π/2. <Exit>
</think> To convert the point $(0, 3)$ from rectangular coordinates to polar coordinates, we use the standard
conversion formulas… <omitted> Final Answer:\n\n$$\n\\boxed{(3, \\frac{\\pi}{2})}\n$$

{
"reasoning_sufficiency": "Sufficient",
"justification": "The reasoning correctly identifies the goal: converting (0, 3) from rectangular to polar
coordinates. The student recalls the definitions of r and θ in polar form and explicitly writes the conversion
formulas. They compute r step by step as √(0² + 3²) = 3, which is consistent with their own formula. For θ, they
notice that the direct use of arctan(y/x) fails when x = 0 and explicitly acknowledge 3/0 is undefined. Instead of
forcing the formula, they reason geometrically: the point (0, 3) lies on the positive y-axis, so the angle from the
positive x-axis must be π/2. They also cross-check by contrasting with the case (0, -3), which would give 3π/2,
showing awareness of quadrant/axis dependence. All necessary components—distance from origin, correct
handling of the undefined tangent case, and correct angle selection within the required range—are present and
logically connected to the final answer (3, π/2)."
}

GPT5’s Judgement

Figure 20: LLM-as-a-judge result for rebuttal

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

Question:

Answer:

Let $p(x)$ be a polynomial of degree 5 such that\n\\[p(n) = \\frac{n}{n^2 - 1}\\]for $n
= 2,$ 3, 4, $\\dots,$ 7. Find $p(8).

Okay, so I have this problem where there's a polynomial
\\(p(x) \\) of degree 5, and it satisfies the equation \\(p(n) =
\\frac{n}{n^2 - 1} \\) for \\(n = 2, 3, 4, \\dots, 7 \\). I need to
find \\(p(8) \\).\n\nHmm, let me try to break this down. First,
I know that \\(p(x) \\) is a polynomial of degree 5. That
means it's a quintic polynomial, right? So, it can be written in
the form \\(p(x) = a_5x^5 + a_4x^4 + a_3x^3 + a_2x^2 +
a_1x + a_0 \\), where \\(a_5 \\) is not zero.\n\nBut instead of
trying to find all the coefficients \\(a_5 \\) through \\(a_0 \\),
which sounds complicated, maybe there's a smarter way. The
problem gives me specific values of \\(p(n) \\) for \\(n \\)
from 2 to 7. That's six points, and since \\(p(x) \\) is a degree
5 polynomial, these six points uniquely determine the
polynomial. <omitted> That's \\(6 \\times 5 \\times 4
\\times 3 \\times 2 \\times 1 = 6! = 720 \\).\n\nSo, numerator
becomes:\n\n\\(8 - \\frac{1}{720} \\times 720 = 8 - 1 = 7
\\).\n\nTherefore, \\(p(8) = \\frac{7}{63} = \\frac{1}{9} \\).\n
Wait, …
</think>\n\nTo find \\(p(8) \\), we start by defining a
polynomial <omitted>
The final answer is:\n\n\\[\n\\boxed{\\dfrac{1}{9}}\n\\]

Vanilla CoTDEER
Okay, so I have this problem here where I need to find p(8) for
a polynomial p(x) of degree 5. It's given that p(n) = n/(n² - 1)
for n = 2, 3, 4, ..., 7. Hmm, interesting. Let me try to figure this
out step by step.\n\nFirst, I know that p(x) is a degree 5
polynomial. That means it can be written as p(x) = a₅x⁵ + a₄x⁴ +
a₃x³ + a₂x² + a₁x + a₀, where a₅ isn't zero. But instead of trying
to find all these coefficients, which seems complicated, maybe
there's a smarter way.\n\nGiven that p(n) = n/(n² - 1) for n = 2
to 7, that's 6 points. Since a polynomial of degree 5 is uniquely
determined by 6 points, p(x) is uniquely defined by these
conditions. But how do I find p(8)?\n\nI remember something
about constructing a polynomial that passes through certain
points. Maybe I can use the concept of Lagrange interpolation?
But Lagrange interpolation for 6 points would give me the
polynomial directly, but calculating it for 6 points seems
tedious, especially for n=2 to 7. Maybe there's a better
approach.\n\nWait, another thought: if I have a polynomial p(x)
that satisfies p(n) = n/(n² - 1) for n = 2, 3, ..., 7, then maybe I
can consider another polynomial related to p(x) such that it has
roots at these points. Let me think.\n\nLet me define a function
q(x) such that q(x) = (x² - 1)p(x) - x. <omitted>
Simplify:\n\n189=63*3, so,\n\np(8)= (63*3)/(56*63)=3/56.So,
p(8)=3/56\n\nWait, let me double-check that calculation.\n So,
q(8)= -259/56\n\nBut q(8)=63p(8) -8\n\nSo,\n\n63p(8) = q(8)
+8 = (-259/56) +8\n\nConvert 8 to 448/56:\n\n63p(8)= (-259
+448)/56 =189/56\n\nTherefore,\n\np(8)= (189/56)/63=
(189)/(56*63)\n\nSimplify 189 and 63: 189=3*63, so,p(8)=
(3*63)/(56*63)=3/56\n\nYes, that seems correct.\n\nSo, the
final answer is 3/56.**Final Answer** \\boxed{\\dfrac{3}{56}}
</think>
Given a polynomial \\(p(x) \\) of degree 5 such that \\(p(n) =
\\frac{n}{n^2 - 1} \\) for \\(n = 2, 3, 4, \\ldots, 7 \\), we need to
find \\(p(8) \\).\n\nFirst, we define a polynomial \\(q(x) \\)
such that:\n\\[q(x) = (x^2 - 1)p(x) - x \\]<omitted>
Next, we compute \\(q(8) \\):\n\\[q(8) = (8^2 - 1)p(8) - 8 =
63p(8) - 8 \\]\n\\[q(8) = k(8 - 2)(8 - 3)(8 - 4)(8 - 5)(8 - 6)(8 -
7)(8 - a) \\]\n\\[q(8) = -\\frac{29}{40320} \\cdot 720 \\cdot
\\frac{259}{29} = -\\frac{259}{56} \\]\n\nThus:\n\\[63p(8) - 8
= -\\frac{259}{56} \\]\n\\[63p(8) = -\\frac{259}{56} + 8
\\]\n\\[63p(8) = \\frac{189}{56} \\]\n\\[p(8) = \\frac{189}{56
\\cdot 63} = \\frac{3}{56} \\]\n\nThe final answer
is:\n\\[\n\\boxed{\\dfrac{3}{56}}\n\\]

Wrong answercontinue
Wait, that seems too straightforward. Let me double-
check.\n\nWait, so \\(p(8) = \\frac{8 - \\frac{1}{720} \\times
720}{63} = \\frac{8 - 1}{63} = \\frac{7}{63} = \\frac{1}{9}
\\). Yeah, that seems correct. But let me verify the steps again
to make sure I didn't make a mistake.\n\n1. Defined \\(r(x) =
(x^2 - 1)p(x) - x \\), which has roots at 2 through 7, so \\(r(x)
= k(x - 2)...(x - 7) \\).\n\n2. To find \\(k \\), plugged in \\(x =
1 \\) because \\(x = 1 \\) makes \\(x^2 - 1 = 0 \\), simplifying
the equation.\n\n3. Calculated \\(r(1) = 0 = 1 + k(-1)(-2)...(-6)
\\). The product is 720, so \\(0 = 1 + 720k \\) => \\(k = -
1/720 \\).\n\n4. Then, to find \\(p(8) \\), substituted \\(x = 8
\\) into \\((x^2 - 1)p(x) = x + r(x) \\), which gave \\((63)p(8)
= 8 + (-1/720)(720) \\).\n\n5. Simplified to \\(63p(8) = 8 - 1
= 7 \\), so \\(p(8) = 7/63 = 1/9 \\).\n\nEverything seems to
check out. So, I think the answer is \\(\\frac{1}{9}
\\).\n\n**Final Answer**\n\\boxed{\\dfrac{1}{9}}
</think>\n\n Given a polynomial \\(p(x) \\) of degree 5 such
that <omitted> The final answer
is:\\[\n\\boxed{\\dfrac{1}{9}}\n\\] Still wrong

Figure 21: Case2 for rebuttal

43

	Introduction
	Motivations and Observations
	Method
	The Generation Pattern of Large Reasoning Models
	Dynamic Early Exit in Reasoning
	Branch-Parallel Decoding Acceleration

	Experiments
	Experimental Setup
	Main Results
	Ablation Study
	Discussion

	Related Work
	Conclusion
	Ethics statement
	Reproducibility statement
	Pilot Experiment Setup
	Proof of DEER-PRo's effectiveness against noise.
	Noise Independence of the MAD-Calibrated Strategy
	Probability of Error for a Single Prompt:
	Probability of Error for Averaged Confidence:
	Probability of Error for MAD-Calibrated Confidence (DEER-PRo):

	Analysis of MAD-Calibrated Strategy’s Superior Performance
	Proof of the Expected Value of MAD
	Theorem 1
	Proof

	More Experiment Setup
	More Method Details
	More Benchmark Descriptions.
	Computation Source
	More LRM Descriptions.
	Computational Cost Analysis
	Computational Cost Analysis on Time
	Computational Cost Analysis on Memory

	Investigation of Reasoning Transition Monitors
	Investigation into the Reasons Behind DEER's Threshold Robustness
	More Experimental Results
	Case Study Details
	Related Work Details
	Use of LLMs

