Under review as a conference paper at ICLR 2026

DYNAMIC EARLY EXIT IN REASONING MODELS

Anonymous authors
Paper under double-blind review

100% 100% 100% 100% 100% 100%

100% A
90% A
80% 1
70% 1 70%
60%_60%

50% 1
40% A
30% 1
20% 1

90%
70%
50%

40%
30% 30% 30% 30%

Exit Position

20% 20% 20% 20% 20%

123456 7 8 91011121314151617 18192021 22 2324252627 2829 30
AIME24 Question ID

correct incorrect \ The earliest correct position , The position where LRLM must exit early to answer correctly

Figure 1: Correctness statistics for early exits at various reasoning steps.

ABSTRACT

Recent advances in large reasoning language models (LRMs) rely on test-time
scaling, which extends long chain-of-thought (CoT) generation to solve complex
tasks. However, overthinking in long CoT not only slows down the efficiency of
problem solving, but also risks accuracy loss due to the extremely detailed or re-
dundant reasoning steps. We propose a simple yet effective method that allows
LLMs to self-truncate CoT sequences by early exit during generation. Instead of
relying on fixed heuristics, the proposed method monitors model behavior at po-
tential reasoning transition points and dynamically terminates the next reasoning
chain’s generation when the model exhibits high confidence in a trial answer. Our
method requires no additional training and can be seamlessly integrated into ex-
isting ol-like reasoning LLMs. Experiments on 10 reasoning benchmarks (e.g.,
GSMB8K, MATH-500, AMC, GPQA, AIME and LiveCodeBench) show that the
proposed method is consistently effective on 11 cutting-edge reasoning LLMs of
varying series and sizes, reducing the length of CoT sequences by an average of
19.1% to 80.1% while improving accuracy by 0.3% to 5.0%.

1 INTRODUCTION

The emergence of large reasoning models (Xu et al., 2025a), such as DeepSeek-R1 (DeepSeek-Al
et al.,|2025) and GPT-O1 (OpenAl, 2025)), has marked a significant breakthrough in natural language
processing, particularly in solving complex and intricate tasks(WANG et al.| [2025). These models
leverage the test-time scaling (Snell et al., 2024) law by generating a longer CoT (Wei et al., [2023))
with rich and diverse reasoning paths, unleashing the potential of their reasoning ability.

However, the generation of overlong CoT significantly increases computational overload and rea-
soning latency, which hinders their deployment in computationally sensitive applications. Moreover,
recent research (Chen et al.| 2025b; [Team et al.| [2025a) reveals an intrinsic overthinking problem in
LRMs: These models persistently generate verbose reasoning sequences (Wu et al.| 2025} |Cuadron
et all 2025) , introducing irrelevant information and unnecessary thought steps. Such redundant
processing not only wastes computational resources but also leads to accuracy degradation by de-
railing from correct reasoning paths to erroneous ones (see Questions 11, 19 and 26 in Fig. [I] This
redundancy can be attributed to the design of the Supervised Fine-Tuning (Achiam et al., 2023}

Under review as a conference paper at ICLR 2026

Wei et al} [2021; [Ouyang et al.l |2022) or Reinforcement Learning (Bai et al.| [2022; (Ouyang et al.|
2022; [Schulman et al., 2017; Ramesh et al.,|2024) stage, where the ability to dynamically adjust its
reasoning length during generation is overlooked, leaving a gap in the inference efficiency of LRMs.

Intuitively, as the number of reasoning paths increases, more information is referenced when gen-
erating conclusions. If we can identify the critical point where the reasoning information becomes
just sufficient (termed Pearl Reasoning) and force the model to stop further thinking and directly
output conclusions at this point, we can achieve both accuracy and efficiency. This paper aims to
find such pearls in long CoT sequences. To validate our motivation, we forced the model to switches
from thinking to directly generating answers, at different transition points in the thought process. If
the answers obtained are correct, the existence of such pearl reasoning is verified. As shown in Fig.
about 75% samples contain such pearls (early exit yields correct answers), even 36.7% samples
required only less than half of the original reasoning paths to reach correct conclusions. Therefore,
how to find the pearl reasoning is a valuable topic to achieve efficient reasoning.

To this end, we propose a novel, training-free approach DEER that allows large reasoning lan-
guage models to achieve Dynamic Early Exit in Reasoning. It regards the key moments when
the model switches thought chains in reasoning as chances of early exit, and prompting LRMs to
stop thinking and generate trial answers at these moments. The confidence of each trial answer is
the decision-making reference of early exit in reasoning. Specifically, the proposed method con-
tains three actions: 1) Reasoning Transition Monitoring. During the generation of long CoTs,
DEER monitors the positions of reasoning transitions through either linguistic marker-based (such
as "Wait”) or entropy-based methods. When the reasoning transition points are found, the action
of 2) Trial Answer Inducing is triggered: we replace it with "final answer” tokens to induce the
model to immediately generate a trial answer, which will be used for 3) Confidence Evaluating. If
the confidence is sufficiently high, set the model to stop further thinking and generate a conclusion
based on the generated thoughts. Otherwise, the action of Trial Answer Inducing is revoked, and
the model continues reasoning along the original path. Moreover, Considering the potential sensi-
tivity of models to answer inducing prompts, we propose DEER-Pro (a Parallel and Robust variant
of DEER), which performs multiple parallel answer inductions at potential early-exit points and
calibrates confidence based on the aggregated results, thereby further ensuring DEER’s robustness.

Our method is simple yet effective, and can be seamlessly extended to eleven reasoning models of
varying architectures and sizes, achieving excellent results in the ten reasoning benchmarks, includ-
ing mathematical tasks (e.g., AIME 2024, AMC 2023 and MATH-500), scientific tasks (e.g., GPQA
Diamond) and programming tasks (e.g., BigCodeBench). Specifically, our method, when integrated
into cutting-edge reasoning models, can reduce the length of CoT sequences by an average of 19.1%
to 80.1% while improving accuracy by 0.3% to 5.0% across different reasoning benchmarks. Our
DEER offers a plug-and-play solution for improving both the efficiency and accuracy of LRMs.

2 MOTIVATIONS AND OBSERVATIONS

In this section, we analyze the overthinking phenomenon in LRMs and investigate the impact of
static early exits on model performance. We define ”pearl reasoning” as the critical juncture where
reasoning information becomes precisely sufficient for accurate problem-solving. Our analysis in
Figure [I] reveals that approximately 75% of samples contain such pearls (where early exit yields
correct answers). Furthermore, we identified a subset of samples for which correct answers are
exclusively obtainable through early exits (exemplified by Questions 11, 19, and 26 in Figure [I).
Quantitative analysis presented in Figure (a) further demonstrates that 60.8% and 35.1% of cor-
rectly answered samples in MATH-500 and GPQA, respectively, maintain their accuracy when em-
ploying early exits after completing merely 20% of the reasoning steps. These empirical findings
substantiate our hypothesis that LRMs possess the potential to achieve simultaneous improvements
in both computational efficiency and prediction accuracy through strategic early termination.

Fig. 2[b) illustrates that exiting at different positions corrects varying proportions of wrong answers.
For the MATH dataset, the highest correction rate is achieved when exiting at 40% of the reasoning
steps, whereas for the GPQA dataset, the optimal correction occurs when exiting at 50%. The
optimal early exit point varies for each problem and is closely related to the inherent difficulty of
the problem itself. Therefore, it is intuitive that relying on a static early exit strategy based on fixed
heuristics is suboptimal, underscoring the necessity of designing a dynamic early exit mechanism.

Under review as a conference paper at ICLR 2026

MATH-500 GPQA Diamond MATH-500 GPQA Diamond
@ 200 20 25 25
g 181
a 175 1 175 168 20 20 19
< 150 1 P 17 16 17
= 137 150 15 15
§ 5 15{ 14 14 1352 3 15{ 14 1415 22 14
1 125 11
3 10051 01051 10 10 9
& 1 Z 5 5
P
E 75 75
] 7 0 0
5 5o 50 0 0
Z 02 04 06 038 10 5%; 04 06 08 10 02 04 06 08 10 02 04 06 08 10
Exit Position Exit Position Exit Position Exit Position
(a) The number of originally correct samples that remain correct (b) The number of originally incorrect samples that become correct
with early exiting on different positions. with early exiting on different positions.

Figure 2: Quantitative pilot experiment results. Please refer to Appendix [A|for setups.
3 METHOD

3.1 THE GENERATION PATTERN OF LARGE REASONING MODELS

In contrast to traditional large language models (System I), large reasoning models (System 2) (Li
et al.,|2025b) exhibit distinct generation patterns during the inference stage. (1) LRMs use delimiters
to divide the output into two processes: slow thinking and conclusion. LRMs conduct systematic
and thorough reasoning in the slow thinking, ultimately summarizing the thought process and pro-
viding the final answer in the conclusion. (2) During the slow thinking process, LRMs engage in
complex thinking actions (thoughts), such as problem comprehension, approach exploration, and
result verification (Luo et al.l [2025b). Within each reasoning action (thought), the model performs
specific procedural action execution, while transitions between different reasoning actions are typi-
cally marked by action transition points (ATP), such as "Wait”, ”Alternatively”.

System 1: [Prompt] + [Completion], @)
System 2: [Prompt] + (think) + [Slow Thinking] + (/think) + [Conclusion], (2)
[Slow Thinking] : [Action Execution] + (ATP) + [Action Execution] + (ATP) +---, (3)

where (think) and (/think) are begin-of-thinking and end-of-thinking delimiters respectively.

3.2 DyYNAMIC EARLY EXIT IN REASONING

In this section, we introduce the Dynamic Early Exit in Reasoning (DEER) method to determine
optimal positions for early exits (pearl reasoning path), thereby alleviating the overthinking issue.

The core idea behind DEER is that a model’s confidence in its trial answer dynamically indicates
whether the thinking information required for LRMs to generate the final answer is sufficient. We
observe that when the model’s reasoning process is incomplete or flawed, the trial answer tends
to exhibit significantly lower confidence. Conversely, when the reasoning is comprehensive and
logically sound, the model generates answers with higher confidence, as illustrated in Fig. This
suggests that the model implicitly recognizes when pearl reasoning occurs, but lacks an explicit
mechanism during inference to leverage this awareness for early termination. DEER aims to bridge
this gap by converting implicit awareness into explicit early-exit decisions.

As shown in Fig. [3] DEER involves three designs to determine whether to exit early: reasoning
transition monitor, answer inducer, and confidence evaluator.

Reasoning transition monitor. Within the DEER framework, we propose two alternative monitor
design strategies: (i) linguistic marker-based, and (ii) entropy-based monitoring. For the first
strategy, as mentioned in Section [3.1] LRMs explicitly utilize ATPs to mark boundaries between dif-
ferent thoughts. This feature enables DEER to recognize ATPs as potential early-exit opportunities.
In the second strategy, DEER employs ”\n\n" as delimiters to demarcate reasoning steps. Follow-
ing each reasoning step, DEER computes the entropy of the initial token, denoted as H (p(-|z<¢)).
Low entropy values indicate that the model is engaged in procedural action execution, characterized
by stable reasoning patterns. Conversely, high entropy values suggest that the model is deliberating
on its subsequent reasoning action, with multiple potential pathways being activated concurrently.
These positions exhibiting high entropy are identified as candidate points for early-exit.

Under review as a conference paper at ICLR 2026

2
Original CoT Question @ '

@ @ @ Define $p = \sum_{k = 1}A\infty \frac{1}(kA2}$ and $q = \sum_{k =
g & g t T % t) T 1}M\infty \frac{1}{k*3}$. Find a way to write $\sum_{j = 1}"\infty

\sum_{k = 1}M\infty \frac{1}{(j + k)*3}$ in terms of p and $q.$

Large Reasoning Language Model @

[- - - T - T . T Original CoT
3 1 X P b
d’) @ @ @ d;) Cb dg) @ Tj : Okay, so | have this problem where | need to ... <omitted>

Wait, T : that seems too straightforward. Let me check <omitted>

‘i*%' DEER @ J— Wait, T3 : another approach is to note that S can be ... <omitted>
Swi

itch Signal | ™— Wait, T, : another idea: since the sum is ..., perhaps ... <omitted>

F Reasoning Transition Q Answer _ Canfndence] T Wait, Ts : that's different from the previous result. Hmm, now | have
= LT
Monlfor < Inducer Evaluator 4/rhmk> Sh,gp a contradiction. Which one is correct? Let me check ... <omitted>

C Signal C : <Conclusion> \boxed{p - q}
@ Prompt More than 5000 tokens

$2
Large Reasoning Language Model] @ M DEER :

= T} : Okay, so | have this problem where | need to <omitted>.

T ® Ce) fir e e

@ fi)-. _'_. </rhmk> Confidence Evaluator Final Answer** \n\\boxed {p - q} (@)
Traceback

Thinking Exit Confldencz C : <Conclusion> \boxed{p - q} Only 1037 tokens

Figure 3: An overview of the Dynamic Early Exit in Reasoning (DEER) method.

Our subsequent experiments in Section[4.3|demonstrate that DEER with external linguistic markers
satisfies similar properties as the second internal state-based approach while achieving comparable
performance. When applied to English LRMs, existing models consistently exhibit a pattern of gen-
erating such linguistic markers. Following the Occam’s Razor principle (Rasmussen & Ghahramani,
2000), we recommend adopting the first strategy. For non-English reasoning scenarios, the alterna-
tive second strategy can also accurately capture early-exit points, demonstrating the generality and
robustness of DEER.

Answer inducer. When the LRM pauses at a potential early exit point, the trial answer inducer
module prompts the model to generate an intermediate answer based on the reasoning content pro-
duced so far. We incorporated the answer delimiters (\boxed{}) into the prompt to facilitate a
more precise identification of the trial answers, as follows: A = LRM(P, T, I) where P denotes
the input prompt, T denotes the generated thoughts, I denotes the answer inducer prompt, and
A =ag,ay,...,a,)]is the trial answer.

Confidence evaluator. The confidence evaluator computes the confidence of the induced trial an-
swer. It takes the maximum predicted probability of each token as its confidence. For multi-token
trial answers, the overall confidence is computed as their mean score across all tokens as follows:

n 1/n

p(a;) = softmax(M(P,T,I,a~¢)), C= maxp(at) 4)
at€V
i=1
where M is the language model head at the final layer of the LRM. The calculation of C employs the
geometric mean, which better aligns with the multiplicative nature of joint probabilities and exhibits

greater sensitivity to low probability values, thereby providing enhanced robustness.

Finally, the comparison between the obtained confidence and the empirical threshold A determines
whether to exit early. If C > A, we consider the reasoning information currently generated by the
LRM to be sufficient, indicating that the model has reached the pearl reasoning. At this point,
DEER stops further reasoning actions and proceeds to deliver the conclusion. Otherwise, the model
reverts to the previous transition point to generate the next thoughts.

DEER-PRo. To further improve the reliability and accuracy of pearl reasoning identification, we
introduce DEER-PRo, a Parallel and Robust variant of DEER. Through answer elicitation using
varied prompts at early-exit points, DEER-PRo calculates both the mean and Mean Absolute Devi-
ation (MAD) of multiple confidence values, deriving a calibrated confidence score C.,;; as follows:

N N
1 1
Ccali = Cavg — Q- CMAD; Cavg = N E Ci7 CMAD = N § |Cz - Cavg| (5)
=1 i=1

; 1
where C; = (]}, max,, ey softmax(M(P, T, I;,a’,))) /™ denotes the confidence score ob-
tained using a specific answer inducing prompt I;, N denotes the number of inducing attempts, and

Under review as a conference paper at ICLR 2026

« is the fluctuation penalty strength coefficient. The introduced conservative bias Cyap effectively
prevents erroneous early exits caused by overestimated confidence scores resulting from positive
noise in prompts, where the estimated confidence exceeds the true confidence. We demonstrate in
the Appendix [B] that C.q; effectively eliminates the influence of the model’s sensitivity to answer
inducer prompts on early-exit accuracy, thus substantially improving DEER’s robustness.

3.3 BRANCH-PARALLEL DECODING ACCELERATION

Intuitively, the computation of the answer inducer and confidence evaluator in DEER introduces
additional latency during inference, particularly in code generation tasks where trial answers remain
lengthy. This overhead diminishes the efficiency gains achieved through substantial reduction of
generated CoT sequences. To address this challenge, we integrate DEER with a branch-parallel
acceleration strategy (Fig. [0) that mitigates these efficiency limitations through two key mecha-
nisms: (1) linearization of multiple branches into a single sequence for parallel generation using
a specialized causal attention mask, and (2) dynamic KV cache management via confidence-based
pruning. This strategy facilitates temporal overlap between trial answer evaluation and concurrent
reasoning-chain generation, thereby optimizing overall inference efficiency.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Benchmarks, Metrics and Implementations. We evaluate model performance across 10 bench-
marks, including 6 mathematical reasoning benchmarks: GSM8K (Cobbe et al.,[2021), MATH-500
(Hendrycks et al.,2021), AMC 2023 (AI-MO\ [2024), AIME 2024, AIME 2025 (MAA Committees|),
OlympiadBench (He et al.,[2024), one scientific reasoning benchmark: GPQA Diamond (Rein et al.,
2023)), and 3 code reasoning benchmarks: HumanEval (Chen et al., 2021)), BigCodeBench (Zhuo
et al.| [2024), and LiveCodeBench (Jain et al.,[2024). Among the six mathematical reasoning bench-
marks, GSM8K, MATH-500, and AMC 2023 are generally considered to be relatively simple rea-
soning tasks, whereas AIME 2024, AIME 2025, and OlympiadBench are regarded as more chal-
lenging. Given the extensive set of evaluation benchmarks, we selectively present the most popular
ones (GSM8K, MATH-500, AMC 2023, AIME 2024 and GPQA Diamond) in the main experiment.
More experimental results are provided in the Appendix [KI We selected Accuracy (Acc), Token
Number (Tok), and Compression Rate (CR) as the evaluation metrics. Acc denotes the final answer
accuracy. Tok denotes the average generation length per sample to evaluate the cost. CR is defined
as the ratio of the average response length to that of the original model, with lower values indicating
higher compression. Given the limited number of samples in datasets AMC 2023, AIME 2024, and
AIME 2025, we conduct 4 sampling rounds per instance and average the results across all metrics
to ensure stability and reliability. We have implemented DEER using both HuggingFace Transform-
ers (Wolf et al.l 2020) and the vLLM inference acceleration framework (Kwon et al., [2023). The
experimental results presented in this paper are based on the vLLM implementation. We set the
hyperparameter A to 0.95 (A = 0.95). For entropy-based DEER, following the 80/20 principle pro-
posed in (Wang et al.|[2025b), we designate reasoning step termination positions with entropy values
exceeding 0.672 as early-exit points. For DEER-Pro, we set NV = 4 and o« = 1. More experimental
setup details are placed in Appendix [C]

Backbone LRMs and Baselines. We conducted experiments on the open-source DeepSeek-R1-
Distill-Qwen series of models (1.5B, 7B, 14B, and 32B)(DeepSeek-Al et al., 2025), Qwen3 series of
models (1.7B, 4B, 8B, 14B, 32B) (Qwen et al., [2025)), QwQ-32B (Team) 2025), and DeepSeek-R1
(Liu et al.} 2025c¢)). Due to the large number of models evaluated, we selectively present DeepSeek-
R1-Distill-Qwen-7B, Qwen3-14B, and QwQ-32B as representative examples in the main experi-
ment. More experimental results are provided in the Appendix [C| We compare DEER against exist-
ing prompt-based and output-based efficient reasoning approaches, including Vanilla, TCC (Muen-
nighoff et al. |2025), CoD (Xu et al.| 2025c), NoThinking (Ma et al., [2025a)), Dynasor-CoT (Fu
et al.| [2025), and SEAL (Chen et al., [2025a). Vanilla performs direct evaluation of the LRM with-
out any intervention. Token-Conditional Control (TCC) specifies a fixed token count in the system
prompt to enforce a token budget; in our experiments, we set this limit based on the actual token
length generated by DEER. Chain-of-Draft (CoD) reduce verbosity by limiting the number of words

Under review as a conference paper at ICLR 2026

Table 1: Experimental results across various types of reasoning models. ”Acc” denotes accuracy,
”Tok” denotes token count, and "CR” denotes compression rate. 1 indicates that higher values are
better, while | indicates that lower values are better. The best results are highlighted in bold.

MATH SCIENCE
Method | GSMSK MATH-500 AMC23 AIME24 | GPQA-D | Overall
Acct Tok] CR| Acct Tok| CR| Acct Tok] CR| Acct Tok] CR| Acct Tok| CR| Acct CRJ
DeepSeek-R1-Distill-Qwen-7B

Vanilla 89.6 1,484 100% 87.4 3,858 100% 78.8 6,792 100% 41.7 13,765 100% 23.7 10,247 100% |64.2 100%
TCcC 88.0 892 60.1% 89.2 3,864 100.2% 82.5 6,491 95.6% 48.4 10,603 77.0% 27.3 8,442 82.4% |67.1 83.0%
CoD 84.7 298 20.1% 83.2 1987 51.5% 77.5 4,440 65.4% 40.0 10,519 76.4% 379 6,431 62.8% |64.7 55.3%

NoThinking 87.1 284 19.1% 80.6 834 21.6% 650 1911 28.1% 26.7 4,427 322% 298 724 7.1% |57.8 21.6%
Dynasor-CoT 89.6 1,285 86.6% 89.0 2,971 77.0% 85.0 5980 88.0% 46.7 12,695 92.2% 30.5 7,639 74.5% |68.2 83.7%
SEAL 88.4 811 54.6% 89.4 2,661 69.0% — - -
DEER 90.6 917 61.8% 89.8 2,143 55.5% 85.0 4,451 655% 49.2 9839 71.5% 313 5469 53.4% |69.2 61.5%

DEER-PRo 91.0 989 66.7% 90.2 2,391 62.0% 87.5 4877 71.8% 49.2 10,046 73.0% 30.6 5,682 55.5% |69.7 65.8%
QOwen3-14B

Vanilla 95.1 2,047 100% 93.8 4,508 100% 95.0 7,139 100% 70.0 10,859 100% 60.1 7,339 100% |82.8 100%
Tce 95.7 1,241 60.6% 94.6 4,484 99.5% 95.0 7,261 101.7% 70.8 11,573 106.6% 60.1 7,138 97.3% |83.3 93.1%
CoD 85.7 648 31.7% 75.2 2,359 523% 725 4,122 57.7% 60.0 10,768 99.2% 51.0 1,177 16.0% |68.9 51.4%

NoThinking 94.8 286 14.0% 85.0 1,228 27.2% 77.5 2,133 29.9% 26.7 7,337 67.6% 505 2,320 31.6% [66.9 34.1%
Dynasor-CoT 95.6 1,483 72.4% 93.8 4,063 90.1% 95.6 6,582 92.2% 73.3 10,369 95.5% 59.6 5,968 81.3% (83.6 86.3%

DEER 953 840 41.0% 94.0 3,074 682% 950 4,763 66.7% 767 7,619 702% 57.6 2,898 39.5% |837 57.1%
DEER-PRo 953 926 452% 944 3260 72.3% 95.6 4,905 68.7% 750 8,135 749% 612 4062 554% |84.3 63.3%
OwQ-32B

Vanilla 96.7 1427 100% 938 4,508 100% 925 6,792 100% 667 10,821 100% 63.1 7,320 100% [82.6 100%
TCC 95.8 1348 94.5% 944 4315 957% 90.0 6818 100.4% 60.0 11263 104.1% 61.6 7,593 103.7%|80.4 99.7%
CoD 96.0 627 439% 94.0 3,630 80.5% 925 5943 87.5% 60.0 10,731 99.2% 62.6 6,039 82.5% |81.0 78.7%

NoThinking ~ 96.2 1,113 78.0% 94.8 3,930 87.2% 87.5 6,908 101.7% 66.7 10,859 100.4% 63.6 7,668 104.8% |81.8 94.4%
Dynasor-CoT 952 1,095 76.7% 94.2 4,176 92.6% 93.8 6,544 96.3% 63.3 11,156 103.1% 64.1 7,024 96.0% |82.1 93.0%
DEER 96.3 977 68.5% 94.6 3,316 73.6% 95.0 5,782 85.1% 70.0 10,097 93.3% 64.1 6,163 84.2% |84.0 80.9%
DEER-PRo 96.2 1032 72.3% 94.8 3,650 80.9% 95.0 5811 85.6% 70.0 10,264 949% 64.7 6,201 84.7% |84.1 83.7%

used in each reasoning step, focusing only on the essential calculations or transformations needed
to progress. NoThinking prompts the model to skip the reasoning phase and directly generate the
final answer. Dynasor-CoT periodically prompts the model to produce intermediate answers at fixed
token intervals and triggers early exit when three consecutive answers are consistent. SEAL trains a
steering vector to calibrate the CoT process, guiding the model toward more reliable reasoning.

4.2 MAIN RESULTS

Overall Performance. Due to space constraints, Tabl[I] presents five widely adopted reasoning
benchmarks, evaluated across three state-of-the-art reasoning models specifically covering three
model scales, which comprehensively demonstrates DEER’s superior performance. We also pro-
vide more results across 10 datasets covering 11 models ranging from 1.5B to 671B parameters
in the Appendix. It can be found that DEER demonstrates strong adaptability across various rea-
soning models and tasks, achieving accuracy improvements of 0.9 to 4.8 points while reducing se-
quence length by 19.1% to 42.9% compared to vanilla models. DEER-Pro achieves higher accuracy
with only a marginal increase in generation length ranging from 2.8% to 6.2% compared to DEER.
We conducted comparative experiments between DEER and DEER-Pro on additional smaller-scale
models. The experimental results in Table [2] demonstrate that DEER-Pro achieves more significant
accuracy improvements. It indicates that DEER-Pro effectively addresses the prompt sensitivity
issues in smaller models, demonstrating its superior robustness.

Comparison with Efficient Reasoning SoTAs. Tab. [l| presents comparisons between DEER and
recent efficient reasoning methods. It can be observed that DEER consistently outperforms all base-
lines, whereas baselines either struggle to generalize across tasks and base models, or must trade
off accuracy for efficiency. Specifically, while TCC Muennighoff et al.| (2025)) achieve reasonable
efficiency-accuracy tradeoffs on simpler tasks like GSM8K by incorporating token budgets into
prompts, it fails on complex problems (such as AIME24) where models ignore prompts’ length con-
straints and generate even longer responses than vanilla CoT. As for NoThinking and CoD, while
achieving dramatic length reduction, they severely compromises models’ inherent reasoning capa-
bilities. In contrast, Dynasor-CoT preserves reasoning quality but suffers from late termination due
to its conservative early-exit condition, resulting in minimal length reduction. Notably, nearly all
baselines fail completely on QwQ-32B due to the sporadic invalidation of its end-of-thinking delim-
iter </think> where the model continues generating reasoning steps after it and often produces
duplicate </think> tokens (as shown in Appendix Fig. [T8). Remarkably, DEER still achieves a
19.1% length reduction on QwQ-32B despite these challenges, further demonstrating its robustness.

Under review as a conference paper at ICLR 2026

Accuracy of Vanilla COT B Accuracy of DEER (Ours) Generation Length of Vanilla COT EE Generation Length of DEER (Ours)

MATH-500 MATH-500 AIME 2024 AIME 2024
100 7000 100 16000

. Average: Vanilla: 83.55 DEER: 84.45 s00016028.0 Average: Vanilla: 43.35 DEER: 51.05 140003702.0 13765.0

89.8 89.8 90.4
88.6

11211.0
9557.0 | 9839.0 10293.0

0 | 74240

12000

[e | 10000

3000

Accuracy (%)
Len (tokens)

Figure 4: Experimental results of DEER compared to Vanilla CoT across DeepSeek-R1-Distill-
Qwen-Series models of varying sizes on MATH-500 and AIME 2024.

Performance on Programming Tasks. Tab. |3| reports DEER’s evaluation results across three
programming tasks, completing our comprehensive coverage of reasoning models’ three primary
domains: mathematics, science, and programming. It demonstrates DEER’s consistent effectiveness
across varying programming tasks and model sizes, achieving smaller compression ratios compared
to math and science tasks (average 19.9% vs. 61.5%). This enhanced compression likely originates
from the inherent characteristics of code generation, where each reasoning step typically produces
verbose code segments containing substantial redundant tokens.

Performance Trends across Model Sizes and Reasoning Difficulty. Fig[4] [I0]presents evaluation
results on MATH-500 and AIME 2024 datasets to examine DEER’s performance gains across dif-
ferent model sizes. It can be seen that DEER consistently enhances accuracy while reducing token
consumption across all model sizes. A key observation is that smaller models (e.g., 1.5B) tend to
generate significantly longer reasoning sequences with more severe overthinking phenomena. This
stems from their limited reasoning capacity in discovering the correct reasoning steps during CoT
generation. Consequently, our method achieves greater length reduction for these smaller models.
Fig. [utilizes the MATH-500 (simple reasoning) and AIME 2024 (challenging reasoning) datasets
as representative benchmarks. The results demonstrate DEER’s dual capability: it achieves more
superior compression ratios on simpler problems while delivering more substantial accuracy gains
on complex tasks. This precisely addresses two critical needs in reasoning systems: the efficiency
demands in simple scenarios and the growing accuracy requirements in challenging scenarios.

4.3 ABLATION STUDY

Performance Trends across Token Budges. Fig. [5|evaluates DEER’s performance across varying
token budgets (controlled by different max length settings). In plots (a) and (f), the x-axis represents
the actual length of model-generated CoT sequences, while the y-axis indicates model accuracy.
The optimal balance between accuracy and efficiency is demonstrated by curves positioned closer
to the top-left corner. The blue shaded regions quantitatively represent DEER’s performance gains:
vertical height corresponds to accuracy improvement and horizontal width to token compression
benefit. It can be seen that DEER consistently outperforms vanilla methods, as all points located
upper-left to vanilla ones. As shown in the four-column plots on the right, we observe that vanilla
models generate longer sequences with higher accuracy as token budgets increase, confirming test-
time scaling. Notably, DEER demonstrates an adaptive tradeoff: under constrained token budgets,
it achieves greater gains in accuracy but reduced benefits in length compression. Conversely, the
opposite trend is observed with larger token budgets. This indicates that our method can dynamically
adjust token budgets to meet varying requirements for accuracy-efficiency in different scenarios.

Impact of Reasoning Transition Monitor Choices. In the main experiments, we employ ~Wait”
as the early-exit monitoring signal, denoted as DEER(W). This simple linguistic marker-based ap-
proach yields promising results. To compare the impact of different early-exit signals on DEER
performance, we conduct additional experiments using “Alternatively” as the signal, as well as
entropy-based monitoring for early-exit detection. The corresponding results are presented in Tab.
[land[f] Tab. [B|collects statistics on the number and average length of reasoning chunks obtained by
dividing the original CoT with potential exit points. The chunk numbers indicate that DEER(Ent)
presents the most early-exit opportunities while DEER(A) offers the fewest, exhibiting a negative
correlation with average generation length. The results in Tab. [6]across additional datasets and mod-
els demonstrate that both entropy-based and linguistic marker-based monitoring exhibit comparable
superior performance, significantly outperforming the baseline. In large-scale real-world deploy-

Under review as a conference paper at ICLR 2026

—~
o
~
—_~
)
=

(a) (b) ©

MATH MATH AIME24 HumanEval BigCodeBench
9 % 0 95.0 L. 46
=30 370 340 3 44
s < < [g £ 90.0 &
> 60 60 J 20
87.5
o 2000 3000 4000 5000 10 20 30 10 20 30 5 10 15 5 10 15
Tokens Max Length (K tokens) Max Length (K tokens) i) Max Length (K tokens)) Max Length (K tokens)
o ® AIME24 (@) MATH (h) AIME24 oo HumanEval () BigCodeBench
= e Len Decreast 15000
= > ,» 4000 " " "
at 2 2 2 3000 2 4000
540 £ 2 10000 g g
4 g c Improvement 2 Q 2 2000 e
20 2000 5000 A 2000 —————————
1000
5000 10000 15000 10 20 30 10 20 30 5 10 15 5 1 15

0
Tokens Max Length (K tokens) Max Length (K tokens) Max Length (K tokens) Max Length (K tokens)

Figure 5: Performance comparison between DEER and baselines based on the DeepSeek-R1-Distill-
Qwen-14B model across four datasets under different token budget settings.

ments, we advocate for the linguistic marker-based approach given its implementation simplicity
and efficiency. Appendix [[provides further exploration between these two monitoring strategies.

Robustness of threshold \. Fig. [6]shows the performance of DEER MATH 5
on MATH-500 dataset with different threshold A. The results indicate
that when the threshold is set too low, a minor additional reduction
in reasoning length leads to a significant drop in accuracy, reflecting T
an overcorrection of overthinking. Conversely, when the threshold ' Threshold A

is set too high, the model exits reasoning too late, resulting in pro- § [~""7=""=~""7=~-
longed reasoning lengths with a decline in accuracy. Moreover, it can
be seen that our method is robust to A whthin the range of 0.9-0.97,
eliminating the need for hyperparameter tuning. Tab. [presents our L N

. . . oy reshold A

robustness investigation of the threshold A across additional datasets

using Qwen3. The experimental results demonstrate that Qwen3 ex-
hibits superior robustness to A, maintaining consistently strong performance within the range of
0.8-0.97. Additionally, the experimental results in the appendix, conducted across 11 models and
10 datasets, uniformly employ 0.95 as the threshold value. The consistently strong results further
demonstrate DEER’s generalization capability and robustness. Appendix Section [J]reveals that the
underlying source of DEER’s robustness originates from confidence polarization phenomenon.

©
3

Accuracy

~®- DEER
Vanilla CoT

<

S
N
S
3
3

—8— DEER
= = Vanilla CoT

Length (tokens)

Figure 6: Impact of \.

4.4 DISCUSSION

Efficiency Improvement. To accurately verify the

gains brought by DEER and its Branch-Parallel ac- sy "o tPsliaenio® o
celerated variant in end-to-end inference efficiency, -
we measured the average latency on MATH-500
and AMC 2023 datasets based on huggingface
transformers (Wolf et al.; 2020). As shown in Fig.

Duration Speedup vs Length Speedup

Latency (s)

ration Length (tokens)

Duration Speedup

2000 @
c

[7 (a), original DEER reduces the latency by 27.9% wd yoxiean
to 40.1% while the proposed branch-parallel decod- ~ “ wam amc wamm amc * Output Length Specdup
ing variant reduces the latency by 36.3% to 58.6%. (a) Generation Latency (b) Speedup Ratio
This suggests that Branch-Paralle]l DEER achieves Figure 7: Efficiency Improvement.

further speed improvements by efficiently reducing

the latency of trial answer inducing and confidence evaluation. Additionally, we mapped the latency
speedup against the length savings for every sample on MATH-500. Fig. [7] (b) illustrates that the
ratio between latency speedup and length savings exhibits a superlinear trend, reinforcing the sig-
nificance of DEER in enhancing inference speed. In Section [H] of the Appendix, we theoretically
prove the efficiency of DEER and explain the underlying cause of the superlinear speedup.

Exploring the Effectiveness of DEER’s Early-Exit Mechanism. Fig. [§|presents the early-exit rate
and the accuracy of early-exited samples across Qwen3-series models of varying sizes. As shown
in Fig. [B[a), DEER’s early-exit rate decreases with increasing task difficulty, which accounts for its
relatively lower compression performance on complex tasks compared to simpler ones. Fig. [§(b)
reveals that, although early-exit accuracy declines somewhat as task difficulty increases, it remains
consistently high—ranging from 88% to 98%. In a concurrent study, Zhang et al.|(2025a) trained
a probe to decide whether to early exit. However, their probe achieves an accuracy of only around

Under review as a conference paper at ICLR 2026

100 100 105 105 100 100
—e— 178 —o— o
e a8 100
80 —e— 83 |80 o 8 ‘\'/.\t 80
148 95
A 60 60
90

100

H
o
3

©

v

©
&
q
©
S

©
S

®

&

—e— 32B
40 40
85

—8— GSMBK

~®~ MATH-500

~8- AMC

80 OlympiadBench [75

20 20 ~8- AIME24&25
75 0 [70 70

GSM MATH AMC Olym AIME (© 178 4B 8B 14B 32B (d) 178 4B 8B 14B 32B

Benchmarks Model Size Model Size

™
Early Exit Ratio

Early Exit Ratio
3
3
Early Exit Accuracy
Early Exit Accuracy
®
8

20 20

S
&

S ®
& 3

(a) GSM MATH AMC Olym AIME
Benchmarks

—_
=
-

Figure 8: Early-exit rates and accuracy of early-exited samples of DEER. Figures (a) and (b) share
a common legend, as do figures (c) and (d). The height of each bar reflects the average value.

80% on MATH-500, which is significantly lower than DEER’s 95%. This indicates that the model
inherently possesses the ability to assess answer correctness, and that DEER effectively harnesses
this capability. As illustrated in Figures [§[c) and (d), although minor differences exist across tasks
of varying difficulty, there is a general trend toward higher early-exit rates and improved accuracy as
model size increases. This observation implies a positive relationship between DEER’s performance
and the capacity of the model: larger models yield more accurate confidence estimates, which in turn
lead to better early-exit decisions. We further investigate the reasons behind DEER’s accuracy gains.
Fig. indicates that DEER corrects more answers (green bars) than it alters incorrectly (red bars)
through early exits. This suggests that DEER not only saves computational cost by exiting early on
questions it could correctly answer, but also corrects problematic thinking.

Case Study. Fig. [13|shows that both DEER and vanilla CoT arrive at the correct answer during the
first reasoning step, as shown in the green box. The difference lies in the fact that DEER exits early
after evaluating the confidence of the trial answer as sufficiently high, thus producing the correct
result. In contrast, the vanilla CoT proceeds to the next reasoning action. After double-checking
and switching reasoning approaches, the model becomes trapped in an endless cycle of verification
due to inconsistent answers from the two approaches, ultimately failing to provide a final answer.
Besides, Fig. shows that LRMs implicitly know when to leave early, and our method is simple
and effective to realize such potential of the model itself. Please refer to Appendix [[] for details.

5 RELATED WORK

Following the taxonomy of efficient reasoning established in (Sui et al., [2025; Wang et al.| 2025a),
we categorize related work into three classes: post-traning based methods use SFT (Yu et al.,2024;
Kang et al., 2025} [Xia et al., 2025; [Ma et al., |2025b; Munkhbat et al., 2025} |Liu et al., |2024; Han
et al., [2024) with variable-length CoT data or incorporate length rewards (Team et al., [2025b; [Luo
et al., 2025a; |Aggarwal & Welleckl 2025; |Arora & Zanette, 2025; |Yeo et al.l [2025; [Shen et al.,
2025b; |Qu et al.} 2025} |Cui et al., |2025)) in reinforcement learning to enable the model to adaptively
generate chains of thought of different lengths, which is beyond our training-free scope. Prompt-
based methods (Han et al., [2024; [Xu et al., 2025b; [Lee et al., |2025; Renze & Guvenl 2024} |Chen
et al.| [2024) use varying prompts to enforce reasoning models to generate concise CoT with less
unnecessary reasoning steps. Qutput-based methods aim to accelerate reasoning generation during
the model’s decoding phase, and DEER falls into this category. However, most prior works (Xie
et al., 2023} |Liao et al.| [2025} |Li et al., [2024; [Manvi et al., 2024; |Aggarwal et al.l [2023) focus on
optimizing best-of-N sampling, which is irrelevant to our study. Instead, we select three recent
concurrent works Nothinking (Ma et al., [2025a), Dynasor-CoT (Fu et al.| [2025), and SEAL (Chen
et al.| 2025a) as baselines for comparison. More related works can be seen in Appendix

6 CONCLUSION

This paper verifies the rationale behind the early exit motivation in CoT generation, and accordingly
proposes a training-free dynamic early exit algorithm, which makes the reasoning model withdraw
from subsequent thinking when the thinking amount is just enough. Our method comprehensively
evaluated across reasoning models of varying model sizes and demonstrates superior performance
with fewer tokens on ten classical reasoning benchmarks, which offers a win-win solution to the
trade-off between accuracy and efficiency commonly encountered in test-time scaling.

Under review as a conference paper at ICLR 2026

7 ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. We affirm that our research has been conducted with
integrity, honesty, and respect for ethical principles throughout all stages of the work.

* All findings presented in this paper are reported accurately and honestly. We have not
fabricated, falsified, or misrepresented any data or results. Our methods and experimental
procedures are described transparently to ensure reproducibility.

» All datasets used in this research were obtained and utilized in accordance with their li-
censes and terms of use. For any data involving personal information, we ensured compli-
ance with privacy regulations and obtained appropriate ethical approvals where necessary.

* All contributions to this work have been properly acknowledged. We have appropriately
cited all sources and prior work that influenced our research. All co-authors have made
substantial contributions to the work and have agreed to the submission.

* We have carefully considered the broader implications of our work. While our research
aims to advance the field positively, we acknowledge potential dual-use concerns and en-
courage responsible deployment of our methods in real-world applications.

8 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we have provided detailed descriptions of our experi-
mental setup, hyperparameters, and implementation details. Code and supplementary materials are
made available where possible to facilitate verification and future research.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Pranjal Aggarwal and Sean Welleck. L1: Controlling how long a reasoning model thinks with
reinforcement learning. arXiv preprint arXiv:2503.04697, 2025.

Pranjal Aggarwal, Aman Madaan, Yiming Yang, et al. Let’s sample step by step: Adaptive-
consistency for efficient reasoning and coding with llms. arXiv preprint arXiv:2305.11860, 2023.

AI-MO. Amc 2023, 2024. URL https://huggingface.co/datasets/AI-MO/
aimo-validation—amc.

Daman Arora and Andrea Zanette. Training language models to reason efficiently. arXiv preprint
arXiv:2502.04463, 2025.

Simon A Aytes, Jinheon Baek, and Sung Ju Hwang. Sketch-of-thought: Efficient 1lm reasoning with
adaptive cognitive-inspired sketching. arXiv preprint arXiv:2503.05179, 2025.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
assistant with reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862,
2022.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec

10

https://huggingface.co/datasets/AI-MO/ aimo-validation-amc
https://huggingface.co/datasets/AI-MO/ aimo-validation-amc

Under review as a conference paper at ICLR 2026

Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
language models trained on code, 2021. URL https://arxiv.org/abs/2107.03374,

Qiguang Chen, Libo Qin, Jiaqi Wang, Jingxuan Zhou, and Wanxiang Che. Unlocking the capa-
bilities of thought: A reasoning boundary framework to quantify and optimize chain-of-thought.
Advances in Neural Information Processing Systems, 37:54872-54904, 2024.

Runjin Chen, Zhenyu Zhang, Junyuan Hong, Souvik Kundu, and Zhangyang Wang. Seal: Steerable
reasoning calibration of large language models for free, 2025a. URL https://arxiv.org/
abs/2504.07986.

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu,
Mengfei Zhou, Zhuosheng Zhang, Rui Wang, Zhaopeng Tu, Haitao Mi, and Dong Yu. Do not
think that much for 24+3=? on the overthinking of ol-like llms, 2025b. URL https://arxiv.
org/abs/2412.21187.

Jeffrey Cheng and Benjamin Van Durme. Compressed chain of thought: Efficient reasoning through
dense representations. arXiv preprint arXiv:2412.13171, 2024.

Yu-Neng Chuang, Helen Zhou, Prathusha Sarma, Parikshit Gopalan, John Boccio, Sara Bolouki,
and Xia Hu. Learning to route 1lms with confidence tokens. arXiv preprint arXiv, 2410, 2024.

Yu-Neng Chuang, Leisheng Yu, Guanchu Wang, Lizhe Zhang, Zirui Liu, Xuanting Cai, Yang Sui,
Vladimir Braverman, and Xia Hu. Confident or seek stronger: Exploring uncertainty-based on-
device 1lm routing from benchmarking to generalization. arXiv preprint arXiv:2502.04428, 2025.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.
org/abs/2110.14168.

Alejandro Cuadron, Dacheng Li, Wenjie Ma, Xingyao Wang, Yichuan Wang, Siyuan Zhuang, Shu
Liu, Luis Gaspar Schroeder, Tian Xia, Huanzhi Mao, et al. The danger of overthinking: Examin-
ing the reasoning-action dilemma in agentic tasks. arXiv preprint arXiv:2502.08235, 2025.

Yingqian Cui, Pengfei He, Jingying Zeng, Hui Liu, Xianfeng Tang, Zhenwei Dai, Yan Han, Chen
Luo, Jing Huang, Zhen Li, et al. Stepwise perplexity-guided refinement for efficient chain-of-
thought reasoning in large language models. arXiv preprint arXiv:2502.13260, 2025.

Muzhi Dai, Chenxu Yang, and Qingyi Si. S-grpo: Early exit via reinforcement learning in reasoning
models, 2025. URL https://arxiv.org/abs/2505.07686.

Renfei Dang, Shujian Huang, and Jiajun Chen. Internal bias in reasoning models leads to overthink-
ing, 2025. URL https://arxiv.org/abs/2505.16448,

DeepSeek-Al, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai
Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng
Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing
Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen
Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong

11

https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2504.07986
https://arxiv.org/abs/2504.07986
https://arxiv.org/abs/2412.21187
https://arxiv.org/abs/2412.21187
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2505.07686
https://arxiv.org/abs/2505.16448

Under review as a conference paper at ICLR 2026

Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,
Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xi-
aosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia
Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong
Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong,
Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou,
Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying
Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda
Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu,
Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
Zhang, and Zhen Zhang. Deepseek-rl: Incentivizing reasoning capability in llms via reinforce-
ment learning, 2025. URL https://arxiv.org/abs/2501.12948,

Razvan-Gabriel Dumitru, Darius Peteleaza, Vikas Yadav, and Liangming Pan. Conciserl:
Conciseness-guided reinforcement learning for efficient reasoning models, 2025. URL https:
//arxiv.org/abs/2505.17250.

Yichao Fu, Junda Chen, Yonghao Zhuang, Zheyu Fu, Ion Stoica, and Hao Zhang. Reasoning without
self-doubt: More efficient chain-of-thought through certainty probing. In ICLR 2025 Workshop
on Foundation Models in the Wild, 2025. URL https://openreview.net/forum?id=
wpK4IMJIfdX.

Tingxu Han, Zhenting Wang, Chunrong Fang, Shiyu Zhao, Shiging Ma, and Zhenyu Chen. Token-
budget-aware 1lm reasoning. arXiv preprint arXiv:2412.18547, 2024.

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong
Tian. Training large language models to reason in a continuous latent space. arXiv preprint
arXiv:2412.06769, 2024.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi
Hu, Xu Han, Yujie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan Liu, and Maosong Sun.
Olympiadbench: A challenging benchmark for promoting agi with olympiad-level bilingual mul-
timodal scientific problems, 2024. URL https://arxiv.org/abs/2402.14008

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset, 2021.
URLhttps://arxiv.org/abs/2103.03874.

Yao Huang, Huanran Chen, Shouwei Ruan, Yichi Zhang, Xingxing Wei, and Yinpeng Dong. Mit-
igating overthinking in large reasoning models via manifold steering, 2025. URL https:
//arxiv.org/abs/2505.22411.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code, 2024. URL https://arxiv.org/abs/
2403.07974.

Lingjie Jiang, Xun Wu, Shaohan Huang, Qingxiu Dong, Zewen Chi, Li Dong, Xingxing Zhang,
Tengchao Lv, Lei Cui, and Furu Wei. Think only when you need with large hybrid-reasoning
models, 2025a. URL https://arxiv.org/abs/2505.14631.

Yuxuan Jiang, Dawei Li, and Frank Ferraro. Drp: Distilled reasoning pruning with skill-aware
step decomposition for efficient large reasoning models, 2025b. URL |https://arxiv.org/
abs/2505.13975.

Yu Kang, Xianghui Sun, Liangyu Chen, and Wei Zou. C3ot: Generating shorter chain-of-thought
without compromising effectiveness. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 39, pp. 24312-24320, 2025.

kvcache ai. KTransformers: A flexible framework for experiencing cutting-edge 1lm inference
optimizations. |https://github.com/kvcache-ai/ktransformers, 2025. URL
https://github.com/kvcache-ai/ktransformers. GitHub repository, commit
alb2c3d, accessed 2025-05-16.

12

https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2505.17250
https://arxiv.org/abs/2505.17250
https://openreview.net/forum?id=wpK4IMJfdX
https://openreview.net/forum?id=wpK4IMJfdX
https://arxiv.org/abs/2402.14008
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2505.22411
https://arxiv.org/abs/2505.22411
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2505.14631
https://arxiv.org/abs/2505.13975
https://arxiv.org/abs/2505.13975
https://github.com/kvcache-ai/ktransformers
https://github.com/kvcache-ai/ktransformers

Under review as a conference paper at ICLR 2026

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention, 2023. URL https://arxiv.org/abs/2309.06180,

Ayeong Lee, Ethan Che, and Tianyi Peng. How well do llms compress their own chain-of-thought?
a token complexity approach. arXiv preprint arXiv:2503.01141, 2025.

Yiwei Li, Peiwen Yuan, Shaoxiong Feng, Boyuan Pan, Xinglin Wang, Bin Sun, Heda Wang, and
Kan Li. Escape sky-high cost: Early-stopping self-consistency for multi-step reasoning. arXiv
preprint arXiv:2401.10480, 2024.

Zheng Li, Qingxiu Dong, Jingyuan Ma, Di Zhang, Kai Jia, and Zhifang Sui. Selfbudgeter: Adaptive
token allocation for efficient llm reasoning, 2025a. URL https://arxiv.org/abs/2505.
11274

Zhong-Zhi Li, Duzhen Zhang, Ming-Liang Zhang, Jiaxin Zhang, Zengyan Liu, Yuxuan Yao, Haotian
Xu, Junhao Zheng, Pei-Jie Wang, Xiuyi Chen, Yingying Zhang, Fei Yin, Jiahua Dong, Zhijiang
Guo, Le Song, and Cheng-Lin Liu. From system 1 to system 2: A survey of reasoning large
language models, 2025b. URL https://arxiv.org/abs/2502.174109.

Baohao Liao, Yuhui Xu, Hanze Dong, Junnan Li, Christof Monz, Silvio Savarese, Doyen Sahoo, and
Caiming Xiong. Reward-guided speculative decoding for efficient llm reasoning. arXiv preprint
arXiv:2501.19324, 2025.

Hanbing Liu, Lang Cao, Yuanyi Ren, Mengyu Zhou, Haoyu Dong, Xiaojun Ma, Shi Han, and
Dongmei Zhang. Bingo: Boosting efficient reasoning of llms via dynamic and significance-based
reinforcement learning, 2025a. URL https://arxiv.org/abs/2506.08125.

Tengxiao Liu, Qipeng Guo, Xiangkun Hu, Cheng Jiayang, Yue Zhang, Xipeng Qiu, and Zheng
Zhang. Can language models learn to skip steps? arXiv preprint arXiv:2411.01855, 2024.

Wei Liu, Ruochen Zhou, Yiyun Deng, Yuzhen Huang, Junteng Liu, Yuntian Deng, Yizhe Zhang,
and Junxian He. Learn to reason efficiently with adaptive length-based reward shaping, 2025b.
URLhttps://arxiv.org/abs/2505.15612.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and
Min Lin. Understanding rl-zero-like training: A critical perspective, 2025c. URL https:
//arxiv.org/abs/2503.20783.

Haotian Luo, Li Shen, Haiying He, Yibo Wang, Shiwei Liu, Wei Li, Naiqiang Tan, Xiaochun Cao,
and Dacheng Tao. Ol-pruner: Length-harmonizing fine-tuning for ol-like reasoning pruning.
arXiv preprint arXiv:2501.12570, 2025a.

Yijia Luo, Yulin Song, Xingyao Zhang, Jiaheng Liu, Weixun Wang, GengRu Chen, Wenbo Su, and
Bo Zheng. Deconstructing long chain-of-thought: A structured reasoning optimization framework
for long cot distillation, 2025b. URL https://arxiv.org/abs/2503.16385.

Wenjie Ma, Jingxuan He, Charlie Snell, Tyler Griggs, Sewon Min, and Matei Zaharia. Reasoning
models can be effective without thinking. arXiv preprint arXiv:2504.09858, 2025a.

Xinyin Ma, Guangnian Wan, Runpeng Yu, Gongfan Fang, and Xinchao Wang. Cot-valve: Length-
compressible chain-of-thought tuning. arXiv preprint arXiv:2502.09601, 2025b.

Rohin Manvi, Anikait Singh, and Stefano Ermon. Adaptive inference-time compute: Llms can
predict if they can do better, even mid-generation. arXiv preprint arXiv:2410.02725, 2024.

MAA Committees. Aime problems and solutions. https://artofproblemsolving.com/
wiki/index.php/AIME_Problems_and_Solutions.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candes, and Tatsunori Hashimoto. sl: Simple test-time
scaling, 2025. URL https://arxiv.org/abs/2501.19393!

13

https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2505.11274
https://arxiv.org/abs/2505.11274
https://arxiv.org/abs/2502.17419
https://arxiv.org/abs/2506.08125
https://arxiv.org/abs/2505.15612
https://arxiv.org/abs/2503.20783
https://arxiv.org/abs/2503.20783
https://arxiv.org/abs/2503.16385
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://arxiv.org/abs/2501.19393

Under review as a conference paper at ICLR 2026

Tergel Munkhbat, Namgyu Ho, Seo Hyun Kim, Yongjin Yang, Yujin Kim, and Se-Young Yun. Self-
training elicits concise reasoning in large language models. arXiv preprint arXiv:2502.20122,
2025.

Isaac Ong, Amjad Almahairi, Vincent Wu, Wei-Lin Chiang, Tianhao Wu, Joseph E Gonzalez,
M Waleed Kadous, and Ion Stoica. Routellm: Learning to route llms with preference data, 2024.
URL https://arxiv. org/abs/2406.18665.

OpenAl Learning to reason with Ilms. https://openai.com/research/
learning-to-reason—-with-11ms, 2025. Accessed: 15 March 2025.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730-27744, 2022.

Ziqing Qiao, Yongheng Deng, Jiali Zeng, Dong Wang, Lai Wei, Guanbo Wang, Fandong Meng,
Jie Zhou, Ju Ren, and Yaoxue Zhang. Concise: Confidence-guided compression in step-by-step
efficient reasoning, 2025. URL https://arxiv.org/abs/2505.04881.

Yuxiao Qu, Matthew YR Yang, Amrith Setlur, Lewis Tunstall, Edward Emanuel Beeching, Ruslan
Salakhutdinov, and Aviral Kumar. Optimizing test-time compute via meta reinforcement fine-
tuning. arXiv preprint arXiv:2503.07572, 2025.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen?2.5 technical report, 2025.
URLhttps://arxiv.org/abs/2412.15115.

Shyam Sundhar Ramesh, Yifan Hu, lason Chaimalas, Viraj Mehta, Pier Giuseppe Sessa,
Haitham Bou Ammar, and Ilija Bogunovic. Group robust preference optimization in reward-
free RLHF. In The Thirty-eighth Annual Conference on Neural Information Processing Systems,
2024. URL https://openreview.net/forum?id=PRAs jrmXXK.

Carl Rasmussen and Zoubin Ghahramani. Occam's razor. In T. Leen, T. Dietterich, and
V. Tresp (eds.), Advances in Neural Information Processing Systems, volume 13. MIT Press,
2000. URL https://proceedings.neurips.cc/paper_files/paper/2000/
file/0950ca92a4dcf426067cfd2246bb5ff3-Paper.pdf.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
Dirani, Julian Michael, and Samuel R. Bowman. Gpga: A graduate-level google-proof q&a
benchmark, 2023. URL https://arxiv.org/abs/2311.12022.

Matthew Renze and Erhan Guven. The benefits of a concise chain of thought on problem-solving in
large language models. In 2024 2nd International Conference on Foundation and Large Language
Models (FLLM), pp. 476-483. IEEE, 2024.

Nikunj Saunshi, Nishanth Dikkala, Zhiyuan Li, Sanjiv Kumar, and Sashank J Reddi. Reasoning
with latent thoughts: On the power of looped transformers. arXiv preprint arXiv:2502.17416,
2025.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347,2017.

Xuan Shen, Yizhou Wang, Xiangxi Shi, Yanzhi Wang, Pu Zhao, and Jiuxiang Gu. Efficient reasoning
with hidden thinking. arXiv preprint arXiv:2501.19201, 2025a.

Yi Shen, Jian Zhang, Jieyun Huang, Shuming Shi, Wenjing Zhang, Jiangze Yan, Ning Wang, Kai

Wang, and Shiguo Lian. Dast: Difficulty-adaptive slow-thinking for large reasoning models.
arXiv preprint arXiv:2503.04472, 2025b.

14

https://openai.com/research/learning-to-reason-with-llms
https://openai.com/research/learning-to-reason-with-llms
https://arxiv.org/abs/2505.04881
https://arxiv.org/abs/2412.15115
https://openreview.net/forum?id=PRAsjrmXXK
https://proceedings.neurips.cc/paper_files/paper/2000/file/0950ca92a4dcf426067cfd2246bb5ff3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2000/file/0950ca92a4dcf426067cfd2246bb5ff3-Paper.pdf
https://arxiv.org/abs/2311.12022

Under review as a conference paper at ICLR 2026

Zhenyi Shen, Hanqi Yan, Linhai Zhang, Zhanghao Hu, Yali Du, and Yulan He. Codi: Compressing
chain-of-thought into continuous space via self-distillation. arXiv preprint arXiv:2502.21074,
2025c.

Charlie Snell, Jachoon Lee, Kelvin Xu, and Aviral Kumar. Scaling 1lm test-time compute optimally
can be more effective than scaling model parameters, 2024. URL https://arxiv.org/
abs/2408.03314.

Jiwon Song, Dongwon Jo, Yulhwa Kim, and Jae-Joon Kim. Reasoning path compression: Com-
pressing generation trajectories for efficient llm reasoning, 2025. URL https://arxiv.org/
abs/2505.13866.

DiJia Su, Hanlin Zhu, Yingchen Xu, Jiantao Jiao, Yuandong Tian, and Qinqing Zheng. Token
assorted: Mixing latent and text tokens for improved language model reasoning. arXiv preprint
arXiv:2502.03275, 2025.

Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi Liu,
Andrew Wen, Shaochen Zhong, Hanjie Chen, and Xia Hu. Stop overthinking: A survey on effi-
cient reasoning for large language models, 2025. URL https://arxiv.org/abs/2503.
164109.

Wenhui Tan, Jiaze Li, Jianzhong Ju, Zhenbo Luo, Jian Luan, and Ruihua Song. Think silently, think
fast: Dynamic latent compression of 1lm reasoning chains, 2025. URL https://arxiv.org/
abs/2505.16552.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, Chuning Tang, Congcong Wang, Dehao Zhang, Enming
Yuan, Enzhe Lu, Fengxiang Tang, Flood Sung, Guangda Wei, Guokun Lai, Haiqing Guo, Han
Zhu, Hao Ding, Hao Hu, Hao Yang, Hao Zhang, Haotian Yao, Haotian Zhao, Haoyu Lu, Haoze
Li, Haozhen Yu, Hongcheng Gao, Huabin Zheng, Huan Yuan, Jia Chen, Jianhang Guo, Jianlin Su,
Jianzhou Wang, Jie Zhao, Jin Zhang, Jingyuan Liu, Junjie Yan, Junyan Wu, Lidong Shi, Ling Ye,
Longhui Yu, Mengnan Dong, Neo Zhang, Ningchen Ma, Qiwei Pan, Qucheng Gong, Shaowei
Liu, Shengling Ma, Shupeng Wei, Sihan Cao, Siying Huang, Tao Jiang, Weihao Gao, Weimin
Xiong, Weiran He, Weixiao Huang, Wenhao Wu, Wenyang He, Xianghui Wei, Xianqing Jia,
Xingzhe Wu, Xinran Xu, Xinxing Zu, Xinyu Zhou, Xuehai Pan, Y. Charles, Yang Li, Yangyang
Hu, Yangyang Liu, Yanru Chen, Yejie Wang, Yibo Liu, Yidao Qin, Yifeng Liu, Ying Yang, Yiping
Bao, Yulun Du, Yuxin Wu, Yuzhi Wang, Zaida Zhou, Zhaoji Wang, Zhaowei Li, Zhen Zhu, Zheng
Zhang, Zhexu Wang, Zhilin Yang, Zhiqi Huang, Zihao Huang, Ziyao Xu, and Zonghan Yang.
Kimi k1.5: Scaling reinforcement learning with llms, 2025a. URL https://arxiv.org/
abs/2501.12599.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
llms. arXiv preprint arXiv:2501.12599, 2025b.

Qwen Team. Qwq-32b: Embracing the power of reinforcement learning, March 2025. URL
https://gwenlm.github.io/blog/qwg-32b/.

Songjun Tu, Jiahao Lin, Qichao Zhang, Xiangyu Tian, Linjing Li, Xiangyuan Lan, and Dongbin
Zhao. Learning when to think: Shaping adaptive reasoning in rl-style models via multi-stage rl,
2025. URL https://arxiv.org/abs/2505.10832.

Hongru WANG, Deng Cai, Wanjun Zhong, Shijue Huang, Jeff Z. Pan, Zeming Liu, and Kam-Fai
Wong. Self-reasoning language models: Unfold hidden reasoning chains with few reasoning
catalyst. In Workshop on Reasoning and Planning for Large Language Models, 2025. URL
https://openreview.net/forum?id=p4wXiD8FX1.

Rui Wang, Hongru Wang, Boyang Xue, Jianhui Pang, Shudong Liu, Yi Chen, Jiahao Qiu, Derek Fai

Wong, Heng Ji, and Kam-Fai Wong. Harnessing the reasoning economy: A survey of efficient rea-
soning for large language models, 2025a. URL https://arxiv.org/abs/2503.24377,

15

https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2505.13866
https://arxiv.org/abs/2505.13866
https://arxiv.org/abs/2503.16419
https://arxiv.org/abs/2503.16419
https://arxiv.org/abs/2505.16552
https://arxiv.org/abs/2505.16552
https://arxiv.org/abs/2501.12599
https://arxiv.org/abs/2501.12599
https://qwenlm.github.io/blog/qwq-32b/
https://arxiv.org/abs/2505.10832
https://openreview.net/forum?id=p4wXiD8FX1
https://arxiv.org/abs/2503.24377

Under review as a conference paper at ICLR 2026

Shenzhi Wang, Le Yu, Chang Gao, Chujie Zheng, Shixuan Liu, Rui Lu, Kai Dang, Xionghui Chen,
Jianxin Yang, Zhenru Zhang, Yuqiong Liu, An Yang, Andrew Zhao, Yang Yue, Shiji Song, Bowen
Yu, Gao Huang, and Junyang Lin. Beyond the 80/20 rule: High-entropy minority tokens drive
effective reinforcement learning for 1lm reasoning, 2025b. URL https://arxiv.org/abs/
2506.01939.

Yibo Wang, Li Shen, Huanjin Yao, Tiansheng Huang, Rui Liu, Naigiang Tan, Jiaxing Huang, Kai
Zhang, and Dacheng Tao. R1-compress: Long chain-of-thought compression via chunk compres-
sion and search, 2025c. URL https://arxiv.org/abs/2505.16838.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. arXiv preprint
arXiv:2109.01652, 2021.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models,
2023. URL https://arxiv.org/abs/2201.11903!

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Huggingface’s transformers: State-of-
the-art natural language processing, 2020. URL https://arxiv.org/abs/1910.03771\

Yuyang Wu, Yifei Wang, Tianqi Du, Stefanie Jegelka, and Yisen Wang. When more is less: Under-
standing chain-of-thought length in llms. arXiv preprint arXiv:2502.07266, 2025.

Heming Xia, Yongqi Li, Chak Tou Leong, Wenjie Wang, and Wenjie Li. Tokenskip: Controllable
chain-of-thought compression in llms. arXiv preprint arXiv:2502.12067, 2025.

Yuxi Xie, Kenji Kawaguchi, Yiran Zhao, James Xu Zhao, Min-Yen Kan, Junxian He, and Michael
Xie. Self-evaluation guided beam search for reasoning. Advances in Neural Information Process-
ing Systems, 36:41618-41650, 2023.

Fengli Xu, Qianyue Hao, Zefang Zong, Jingwei Wang, Yunke Zhang, Jingyi Wang, Xiaochong
Lan, Jiahui Gong, Tianjian Ouyang, Fanjin Meng, Chenyang Shao, Yuwei Yan, Qinglong Yang,
Yiwen Song, Sijian Ren, Xinyuan Hu, Yu Li, Jie Feng, Chen Gao, and Yong Li. Towards large
reasoning models: A survey of reinforced reasoning with large language models, 2025a. URL
https://arxiv.org/abs/2501.09686.

Silei Xu, Wenhao Xie, Lingxiao Zhao, and Pengcheng He. Chain of draft: Thinking faster by writing
less. arXiv preprint arXiv:2502.18600, 2025b.

Silei Xu, Wenhao Xie, Lingxiao Zhao, and Pengcheng He. Chain of draft: Thinking faster by writing
less, 2025¢c. URL https://arxiv.org/abs/2502.18600.

Yige Xu, Xu Guo, Zhiwei Zeng, and Chunyan Miao. Softcot: Soft chain-of-thought for efficient
reasoning with llms. arXiv preprint arXiv:2502.12134, 2025d.

Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. Limo: Less is more
for reasoning, 2025. URL https://arxiv.org/abs/2502.03387,

Edward Yeo, Yuxuan Tong, Morry Niu, Graham Neubig, and Xiang Yue. Demystifying long chain-
of-thought reasoning in llms. arXiv preprint arXiv:2502.03373, 2025.

Bin Yu, Hang Yuan, Haotian Li, Xueyin Xu, Yuliang Wei, Bailing Wang, Weizhen Qi, and Kai Chen.
Long-short chain-of-thought mixture supervised fine-tuning eliciting efficient reasoning in large
language models, 2025. URL https://arxiv.org/abs/2505.03469.

Ping Yu, Jing Xu, Jason Weston, and Ilia Kulikov. Distilling system 2 into system 1. arXiv preprint
arXiv:2407.06023, 2024.

16

https://arxiv.org/abs/2506.01939
https://arxiv.org/abs/2506.01939
https://arxiv.org/abs/2505.16838
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/2501.09686
https://arxiv.org/abs/2502.18600
https://arxiv.org/abs/2502.03387
https://arxiv.org/abs/2505.03469

Under review as a conference paper at ICLR 2026

Angi Zhang, Yulin Chen, Jane Pan, Chen Zhao, Aurojit Panda, Jinyang Li, and He He. Reason-
ing models know when they’re right: Probing hidden states for self-verification. arXiv preprint
arXiv:2504.05419, 2025a.

Jiajie Zhang, Nianyi Lin, Lei Hou, Ling Feng, and Juanzi Li. Adaptthink: Reasoning models can
learn when to think, 2025b. URL https://arxiv.org/abs/2505.13417.

Wenyuan Zhang, Shuaiyi Nie, Xinghua Zhang, Zefeng Zhang, and Tingwen Liu. Sl-bench:
A simple benchmark for evaluating system 1 thinking capability of large reasoning mod-
els. ArXiv, abs/2504.10368, 2025c. URL lhttps://api.semanticscholar.org/
CorpusID:277781494.

Zhen Zhang, Xuehai He, Weixiang Yan, Ao Shen, Chenyang Zhao, Shuohang Wang, Yelong Shen,
and Xin Eric Wang. Soft thinking: Unlocking the reasoning potential of llms in continuous
concept space, 2025d. URL https://arxiv.org/abs/2505.15778,

Rongzhi Zhu, Yi Liu, Zequn Sun, Yiwei Wang, and Wei Hu. When can large reasoning models
save thinking? mechanistic analysis of behavioral divergence in reasoning, 2025. URL https:
//arxiv.org/abs/2505.15276.

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari,
Imam Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, et al. Bigcodebench: Bench-

marking code generation with diverse function calls and complex instructions. arXiv preprint
arXiv:2406.15877, 2024.

17

https://arxiv.org/abs/2505.13417
https://api.semanticscholar.org/CorpusID:277781494
https://api.semanticscholar.org/CorpusID:277781494
https://arxiv.org/abs/2505.15778
https://arxiv.org/abs/2505.15276
https://arxiv.org/abs/2505.15276

Under review as a conference paper at ICLR 2026

A PILOT EXPERIMENT SETUP

We selected AIME2024 (MAA Committees) as the test set for exploratory experiments to perform
a qualitative analysis and further conducted a quantitative analysis through experiments on MATH-
500 (Hendrycks et al., 2021), GPQA-Diamond (Rein et al.| 2023)). All experiments were conducted
on DeepSeek-R1-Distill-Qwen-14B (DeepSeek-Al et al, [2025). In our experiments, we first en-
abled the LRM to perform a complete inference on the test set (including both the slow thinking
and conclusion contents). Then, we preserved the thinking content and divided it into thinking
chunks based on the action transition points. Samples with more than five thinking chunks were
retained. For these samples, we retained varying proportions (20%-90%) of their thinking chunks
and appended an end-of-thinking token delimiter to each truncated reasoning sequence to forcibly
terminate the slow-thinking process. The model then generated its final conclusion based on the par-
tial reasoning contents. For the conclusions obtained with varying thinking contents, we evaluated
their correctness and presented the results of each sample in Figure [T} Furthermore, we investigated
the number of samples that remained correct after early exiting when they were originally correct,
as well as the number of samples that became correct after early exiting when they were originally
incorrect, across three datasets in Figure@

B PROOF OF DEER-PRO’S EFFECTIVENESS AGAINST NOISE.

B.1 NOISE INDEPENDENCE OF THE MAD-CALIBRATED STRATEGY

Let us define the true confidence p as the model’s actual probability of deriving the correct answer
given the current reasoning content, corresponding to the real probability of pearl reasoning existing
at this location. The early-exit decision threshold is denoted as A, and the model executes early
exit when . > A. Since answer inducing prompts may introduce ¢, the model’s output confidence
fluctuates around the true confidence, yielding an observed confidence of C; = p + ¢;. In practical
testing environments, we compare C; with A to determine whether to perform early exit. Without loss
of generality, we assume the noise terms ¢; to be independently and identically distributed (i.i.d.), a
Gaussian distribution with mean 0 and standard deviation o, i.e., &; ~ N (0, 02). Here, o represents
the model’s sensitivity to prompt phrasing. A larger ¢ indicates higher model sensitivity, resulting
in greater confidence fluctuations.

Next, we demonstrate DEER-PRO’s effectiveness against noise interference by comparing the de-
cision error rates of DEER-PRO (Cq:;), DEER (C;), an averaging approach (Cq.4) in critical risk
scenarios. Suppose Ccq1; and Cqyg €ach conduct N times answer inducing in parallel, with N identi-
cal to that in Equation (5). Given that preserving accuracy takes precedence over early-exit speedup
gains in reasoning scenarios, we designate risk scenarios as those where true confidence . < A. We
then compute the false positive probability of observing C > X due to noise interference.

B.1.1 PROBABILITY OF ERROR FOR A SINGLE PROMPT:

Pep(Single) = P(C; > A\) = P(u+¢e; > A) =Ple; > A—p) (6)
Since ; ~ N(0, 0?), we can standardize it as:
A=
Prp(Single) = P <€Z > M) (7)
o o

Let Z = =L, then Z ~ N(0, 1), then:
A— A
Prp(Single) = P (Z > “> =1-0 (“))

g g

where @ is the cumulative distribution function (CDF) of the standard normal distribution.

B.1.2 PROBABILITY OF ERROR FOR AVERAGED CONFIDENCE:

For the averaged confidence Cq,, the noise term is still Gaussian, €4,y ~ N(0,02/N). The proba-
bility of error for averaged confidence is:

A —
PFP(AVg) = P<Ca'ug >)\) =1—-9 (\/ N('u)> ©)]

g

18

Under review as a conference paper at ICLR 2026

Since Q=N % for N > 1, it follows that Prp(Avg) < Ppp(Single). It indicates that sim-

ply averagtiyng multiple observed confidence values can mitigate noise interference. Nevertheless,
confidence averaging fails to address the fundamental problem, as the error rate Prp remains de-
pendent on the noise standard deviation o, increasing monotonically as o grows. For models with
substantial intrinsic noise (large o), the parameter inside the ® function converges to zero, driving
Prp toward 0.5. This indicates that high-noise models reduce to random guessing, regardless of the
decision threshold A. Therefore, the reliability of traditional approaches is severely constrained by
the model’s inherent noise level o, a factor beyond our control.

B.1.3 PROBABILITY OF ERROR FOR MAD-CALIBRATED CONFIDENCE (DEER-PRO):
Prp(calibration) = P(Ceqri > A) = P(Caqpg — @ - Cymap >) (10)

Substituting Cqyg = & + E4vg, We Obtain:

Prp(calibration) = P(p + €409 — & - Cmap > A) (11)
Rearranging the terms in the equation yields:

Prp(calibration) = P(eg49 > @ - Cymap + A —) (12)
Next, we will discuss the robustness of DEER-PRo under two distinct scenarios.
Scenario 1: Approximate estimation of Cyjap

Under our assumption where ¢; ~ N(0,0?), we have 4,y ~ N(0,0%/N) and E[Cuap] ~ 0.80
(we will provide the proof in Section [B.3). For large NV, the law of large numbers allows us to
approximate Cyap as 0.80. Given this assumption, we have:

Pgp(calibration) = P(Cavg > A+ 0.80) (13)

The above equation reveals that DEER-PRo fundamentally differs by employing an adaptive thresh-
old that scales with noise:
Aeffective = A + 0.8ac (14)

We proceed to reformulate the equation by transforming Prp(calibration) into the cumulative dis-
tribution function (CDF) of the standard normal distribution ®. For Equation , we substitute
Cmap = 0.80 and obtain:

Pgp(calibration) = P(eqyg > 0.80a + A — p) (15)
Since £4yg ~ N(0,02/N):

A— 0.8 N
Pe(calibration) = 1 — & ((A= p+08a0) f) (16)
o
Simplifying:
A —
Prp(calibration) = 1 — & <\/N <’“L i O.8a>) (17)
o
When noise is minimal:
/\effeclive — A (18)
The calibrated method behaves like standard thresholding, maintaining high efficiency.
‘When noise dominates, A ;“ — 0. The false positive rate becomes:
Pep =1 — ®(0.8aV/N) (19)

which is independent of ¢. It indicates that DEER-PRo effectively prevent early exit from reducing
to random guessing (Prp — 0.5).

Scenario 2: Exact computation of Cyjsp without approximation.

From Cyap = % Efil |C; — Caugl, we know that Carap is positive, therefore dividing both sides
of the equation by this term, we obtain:

P(gavg/Cymap > a4 (A — 1) /Cumap) (20)

19

Under review as a conference paper at ICLR 2026

Since ;1 < A, then o + (A — u)/Carap > @, so we can obtain:
P(Eavg/CMAD > o+ ()\ — ,U,)/CMAD) < P(gavg/CMAD > a) 21

Therefore, P(gqv9/Cmap > «) is an upper bound for Pgp(calibration). For the ratio €4,9/Carap,
Eavg Tepresents the signal of the noise, while Cjs4p represents the internal disorder of the noise.
Therefore, we can define €4,,,/Carap as the Signal-to-Noise Ratio (SNR).

Next, let us analyze the properties of SNR. Under our assumption where ; ~ N (0, 02), we have
Eavg ~ N(0,02/N) and E[Cmap] ~ 0.80. Since both £, and Cyap are proportional to o, we can
write SNR as:

SNR = (CT * Zm,g)/(O' * ZMAD) = Zavg/ZMAD (22)

where Zg,q ~ N(0,1 /N) is a standardized noise mean, and Z,,,4 is a random variable related to
M AD /o whose distribution does not depend on o. Hence, the probability distribution of the SNR
is independent of the model noise standard deviation o.

Prp(calibration) < P(Zgyg/Znvap > @) (23)

Therefore, Pgp(calibration) is influenced only by the number of prompts N and the signal-to-noise
ratio threshold «, where larger values of [V and « lead to lower error rates.

Through the transformation from an absolute threshold test to a self-normalized SNR test, our MAD
strategy effectively decouples decision-making from the model’s intrinsic and uncontrollable noise
level 0. In contrast to traditional approaches that break down under high-noise conditions, our
method delivers consistent, robust performance independent of model noise levels.

B.2 ANALYSIS OF MAD-CALIBRATED STRATEGY’S SUPERIOR PERFORMANCE

In this section, we formally prove based on the event space that the false positive probability of the
MAD strategy, Prp(MAD) (Ppp(calibration)), is significantly superior to that of the simple averag-
ing strategy, Prp(Avg), and consequently also outperforms Pgp(Single).

Theorem. The false positive probability of the MAD-calibrated strategy satisfies Prp(MAD) <
p - Pep(Avg), where p = O(exp(—O(N))) is an exponentially decaying factor in the number of
prompts N.

Proof. The false positive events are defined as:
Eave = {e : €avg > ¢} (24)
Enmap = {€ : oy —a - MAD > ¢} (25)

where ¢ = A—p > 0 is the threshold gap, MAD = % ZZ\; |ei—€ave| is the mean absolute deviation,

Cavg = % > i, € is the average noise, and there are N independent noise terms &; ~ N (0, 0?) for
i=1,...,N.

Since o > 0 and MAD > 0 by definition, we have:
Eavg — - MAD < g4y, (26)

Therefore, if €4y — o - MAD > ¢, then necessarily €, > c. This establishes:

Envap € Eayg (27

Consequently:
Pep(MAD) = P(Emap) < P(Eave) = Prp(Avg) (28)

To quantify the improvement beyond this basic inequality, we decompose the probability using
conditional probability:

Prp(MAD) = P(Emap N Eavg) = P(Emap|Eavg) - P(Eave) (29)

Since Envap € Eavg, we have:

P(EMAD|EAvg) = P(aavg — a - MAD > C|83Vg > C) (30)

20

Under review as a conference paper at ICLR 2026

This can be rewritten as:

P(BEniap| Eavg) = P (MAD < Ega — e > c) 31)
Define the improvement factor:
Eavg — C
p=P|MAD < Eavg > C (32)
Then:

To evaluate p, we analyze the structure of noise vectors that satisfy €,y > c. There are two primary
patterns:

Pattern A (Coherent Pattern): All noise terms are close to c¢. Formally, for some small § > 0:
Pattern A ={ec:|g; —¢| < dforalli=1,...,N} (34)
Under Pattern A:

* g = ¢+ O(6/V/N) (by the central limit theorem)
* MAD < 2§ (since all values are within 26 of each other)

Pattern B (Outlier Pattern): A few large outliers with remaining values near zero. For example:

* k values with g; &~ Nc¢/k (large outliers)
e N — k values with g; ~ 0

Under Pattern B:

*cag R C

* MAD = ¢(1 — 1/N) (large due to outliers)

Probability of Pattern A:

For a single noise term to fall in (¢ — §, ¢ + 9):

0 -0
P(|€ic<5)—¢<c+ >c1><c) (35)
o o
Using Taylor expansion for small ¢:
c\ 26 26 c?
P(lei —c| <0) = (—)-—:7 - 36
(-l <)~ o (£)- 2 = 2o (-) G6)
For all NV noise terms to satisfy this condition independently:
26 2 \1Y
P(Pattern A) = | —— - 37
(Pattern A) L 27Texp(202)} 37
Probability of c4yg > c:
Since eqg ~ N(0,0%/N):
N
P(Eavg>c):1—q)(ca) (38)
Using Mill’s ratio approximation for large arguments:
N
P ~ - 39
<5an > c) IAN exp (952 > (39)

21

Under review as a conference paper at ICLR 2026

The key insight is that Pattern A is the only pattern where MAD remains small enough to satisfy
MAD < (gay5 — €) /0.

For Pattern B and other outlier-driven patterns, MAD = O(c), while €4y — ¢ = O(1/v/N) when
conditioned on &,y ~ c. Thus:
Eavg — C

MAD >> (40)
e
Therefore, the improvement factor is dominated by Pattern A:
P(Pattern A)
< —= 41
P P(eag >) “D
Substituting the expressions:
2 \1N
oo (5]
p 5 o 2N (42)
Vo P (—52)
Simplifying:
VN 25 \V 2N AN
< -+ — 43
Py (O’ 27r> exp(202+202> @3)
25 \"
<ceVN 44
5o () “
For § = O(o), let 0 = ko where k is a constant. Then:
2k \ "~
<eVN ([—= 45
5o () “

When k < +/7/2, the term (2k/+/27)N decays exponentially. The polynomial factor /N is
dominated by the exponential decay, yielding:

p=O0(N -exp(—BN)) = Oexp(—O(N))) (46)

for some positive constant 3.
We have established that:
where p = O(exp(—O(NN))) decays exponentially with the number of prompts N.

This demonstrates that the MAD-calibrated strategy provides an exponential improvement over the
simple averaging approach. []

Conclusion: The MAD penalty term effectively filters out the more probable outlier patterns
while only allowing the exponentially rare coherent patterns to trigger false positives, thus
achieving superior robustness against prompt-induced noise.

B.3 PROOF OF THE EXPECTED VALUE OF MAD
B.3.1 THEOREM 1

For a random variable X ~ A (u, 0?), the expected value of the Cpap is:

E[CMAD] = O'\/5 ~ 0.80 (48)
T

22

Under review as a conference paper at ICLR 2026

B.3.2 PROOF
Definition. The Mean Absolute Deviation of a random variable X with mean p is defined as:
Cmap = E[|X — 4] (49)
Let X ~ N (p,0?). Consider the standardized random variable:
X —
z="—E~ N0 (50)
Therefore:
X —pl =0lZ| (51)
Taking expectations on both sides:
E[|X — pll = o - E[|Z]] (52)
For Z ~ N (0, 1) with probability density function ¢(z) = \/%e’zz/ 2
B2l = [1l o) dz 53)
Due to the symmetry of the standard normal distribution about zero and the even nature of |z|:
oo 2 o0 2
IE[|Z|]=2/ z-(b(z)dz:—/ z-e % /%dz 34
0 V21 Jo
Let u = 22/2, then du = 2z dz. When z = 0, u = 0; when z — o0, u — 0.
/ e * 2y = / e “du= [—e_"]go =1 (55)
0 0
Substituting back:
2 2
E[|Z]] = —=-1=/— 56
171 = o= 1=/~ (56)
Therefore:
2
Cvap = E[|X —pl] =0 - E[|Z]] = a\/; ~ 0.80 (57)

C MORE EXPERIMENT SETUP

Metrics. The goal of DEER is to maintain the correctness performance of LRMs while avoiding
the redundant token overhead caused by overthinking. To this end, we selected Accuracy (ACC)
and Generation Length (LEN) as the evaluation metrics. Accuracy (ACC) is calculated as follows:
Accuracy = +; Zf\il {M(LRM(x;)) = y;}, where z; is the question and y; is the ground-truth
answer from the dataset. M(-) extracts the answer from the LRM’s response. I{-} is an indicator
function that determines whether the inside given condition is valid. The accuracy evaluation is
based on the evaluation framework publicly released by |Ye et al.| (2025) (LIMO). Intuitively, the
longer the generated text, the greater the inference cost for LRMs. Therefore, we calculate the
average generation tokens per sample to evaluate the cost as follows: Generation Length(LEN) =

+ Zf\;1 |LRM(x;)|, where |-| measures the number of generated tokens. For the two programming
benchmarks, we use the Pass@ 1 metric to measure generated code correctness.

Implementation details. All evaluations are conducted in a Zero-shot Chain-of-Thought (CoT)
setting with the following prompt: ”Please reason step by step, and put your final answer within
\boxed{}.” For the decoding strategy, we employ greedy decoding with a single sample for the
correctness evaluation. The ground-truth answers to the evaluation problems in our experiments are
all well-structured numerical values or options. Therefore, we apply rule-based evaluations directly
to verify mathematical equivalence. We set the maximum generation length at 16,384 to ensure
that the evaluation captures complete problem-solving attempts. For DEER, the answer-inducing
prompt employed is: "\n\n Final Answer\n\boxed’ For DEER-Pro, we additionally incorporated
the following three prompts: *\n\n Final Answer\n\n Based on the analysis above, the answer is
\boxed’, "\n\n Final Answer\n\n The correct final answer is \boxed’, "\n\n Based on the previous
thinking, I believe I already know the answer.\n Final Answer\n \boxed’.

23

Under review as a conference paper at ICLR 2026

Algorithm 1 Dynamic Early Exit in Reasoning (DEER)

1: Initialization: Large Reasoning Language Model LRM(:), zero-shot-CoT zs_cot, question,
answer inducer prompt I, set of action transition points P, end-of-thinking delimiter (/think),

maximum length max_len, and confidence threshold .

2: @ + zs_cot + question, r + ||
3: while len(x) < maz_len do
4: y < LRM(x)
5: if y € P then > Generate thoughts until meets action transition points
6: A+ LRM(z+1I) > Prompt LRM to generate trial answer tokens
7: Get C according to Equation] > Calculate the confidence of the trial answer
8: if C > A then
9: x < x + (/think), r < r + (/think) > Exit when thinking is sufficient
10: end if
11: else
12: r—x+yr<r+y
13: end if
14: end while
15: return r
Ongoing reasoning-chain generation 4 | /l | | | | | | |
i e e e <

Okay, so I have this problem where I
need to ... <omitted> Trial answer evaluation
\ n**Final Answer**\n\nThe final answer

is \\boxed{... <omitted

[lasttoken] Wait 'n * Final Answer : ** n

I I S

1 t+1 t+1 t+2 143 t+4 15 16 147

The that final seems answer

step 2 <

ks

step 3 QG

M

|

v
step 4 <

g
step 1 step 2 step 3 step 4

Figure 9: Branch-parallel decoding and dynamic KV cache management.

D MORE METHOD DETAILS

Fig. [illustrates the workflow of the proposed Branch-Parallel Decoding Acceleration. Algorithm

presents the pseudocode of DEER.

E MORE BENCHMARK DESCRIPTIONS.
Benchmarks.

as follows:

MATH BENCHMARKS:

To thoroughly evaluate the models’ performance across various reasoning capabili-
ties, we have chosen 6 math reasoning benchmarks, 1 science benchmarks, and 3 coding benchmarks

* GSMSK is a well-curated collection of 1,319 problems in elementary mathematics. This
benchmark is specifically designed to evaluate multi-step reasoning in foundational math
tasks. Problems typically involve two to eight sequential operations, relying primarily on
basic arithmetic performed over multiple intermediate steps.

* MATH-500 is a challenging benchmark comprising competition-level problems drawn
from diverse high school mathematics domains, including Prealgebra, Algebra, and Num-
ber Theory. For consistency with previous research, we adopt the same 500-problem subset
originally curated by OpenAl for evaluation.

* AMC 2023 contains 40 mathematical problems, covering algebra, geometry, number the-
ory, and combinatorics. The American Mathematics Competitions (AMC), organized by
the Mathematical Association of America (MAA), are prestigious contests designed to de-
velop problem-solving skills and identify mathematical talent. For evaluation, we used 40
questions from AMC 23 in LIMO.

24

Under review as a conference paper at ICLR 2026

* AIME 2024 comprises 30 challenge problems selected from the 2024 American Invita-
tional Mathematics Examination (AIME). This prestigious contest evaluates participants’
mathematical reasoning abilities across diverse domains, including arithmetic, algebra,
counting, geometry, number theory, probability, and other secondary school math topics. A
distinctive feature of the AIME is its answer format: all solutions must be integers between
000 and 999 (inclusive). Each problem is categorized by difficulty level (1-5) according
to the Art of Problem Solving (AoPS) scale. Beyond these three math problems, we also
conducted evaluations on scientific questions.

* AIME 2025 comprises 30 challenge problems selected from the 2025 American Invita-
tional Mathematics Examination (AIME).

* OlympiadBench OlympiadBench is an Olympiad-level bilingual multimodal scientific
benchmark dataset that aims to challenge and evaluate the advanced capabilities of Large
Language Models and Large Multimodal Models. It features 8,476 problems sourced from
mathematics and physics competitions at the Olympiad level, including those from the
Chinese college entrance exam. Our experimental evaluation selects the same subset of
675 samples as used in LIMO, allowing for direct rule-based evaluation of the generated
answers.

SCIENCE BENCHMARKS:

* GPQA is a PhD-level benchmark consisting of high-quality questions spanning physics,
chemistry, and biology subdomains. Notably, domain experts with PhDs in these fields
achieved only 69.7% accuracy on this dataset. For our experiments, we specifically select
the highest quality subset, known as GPQA Diamond (composed of 198 questions).

PROGRAMMING BENCHMARKS:

* HumanEval is proposed by OpenAl, containing 164 hand-crafted (to avoid data leakage)
Python programming tasks focusing on basic algorithms, each with function signatures,
docstrings, canonical solutions, and unit tests.

* BigCodeBench is designed as a real-world-oriented benchmark, which includes 1,140
tasks requiring interactions with 139 libraries and diverse function calls.

* LiveCodeBench is a newly proposed benchmark dataset designed to evaluate the capabil-
ities of large language models in code generation and related tasks. It aims to mitigate
issues such as test set contamination found in existing benchmarks by emphasizing scenar-
ios beyond code generation, ensuring high-quality problem sources, adequate test cases,
and balanced difficulty levels. The dataset comprises problems sourced from well-known
competitive programming platforms like AtCoder, LeetCode, and CodeForces, collected
from specific time windows. Our evaluation is based on LiveCodeBench-vS, which con-
tains 880 programming problems collected from May 2023 to January 2025.

F COMPUTATION SOURCE

In our experiments, 8 x 80g memory H100 was used to perform evaluations.

G MORE LRM DESCRIPTIONS.

In this work, we validate the effectiveness of DEER across 12 reasoning models. The evaluated
models include: Qwen3-1.7B, Qwen3-4B, Qwen3-8B, Qwen3-14B, Qwen3-32B, DeepSeek-R1-
Distill-Qwen-1.5B, DeepSeek-R1-Distill-Qwen-7B, DeepSeek-R1-Distill-Qwen-14B, DeepSeek-
R1-Distill-Qwen-32B, QwQ-32B, DeepSeek-R1-671B, and Llama-3.1-Nemotron-Nano-8B-v1. All
models in the DeepSeek-R1-Distill-Series were supervised fine-tuned using reasoning data gener-
ated by the DeepSeek-R1 model. The Qwen3-1.7B, Qwen3-4B, Qwen3-8B, and Qwen3-14B mod-
els were trained using a method known as Strong-to-Weak Distillation. Trained via reinforcement
learning, the non-distilled models QwQ-32B and Qwen3-32B demonstrate competitive performance
on reasoning benchmarks, matching that of DeepSeek-R1-671B. Due to computational constraints,
we implemented a quantized version of Deepseek-R1 based on KTransformers (kvcache ail 2025).

25

Under review as a conference paper at ICLR 2026

H COMPUTATIONAL COST ANALYSIS

In this section, we provide a theoretical analysis to demonstrate that DEER effectively reduces com-
putational costs. Let L denote the total length generated by the original CoT method, and « represent
DEER’s compression ratio relative to L, such that DEER generates a sequence of length aL. Then,
we define k as the number of answer induction triggers within these L tokens of reasoning and
m as the average length generated per answer induction, which is typically a small constant. Dur-
ing transformer inference, the primary computational overhead stems from attention calculations,
which constitutes our main focus. Assuming the generation process employs key-value caching
technology, each new token only needs to compute attention with the cached key-value pairs.

H.1 COMPUTATIONAL COST ANALYSIS ON TIME

For the original CoT method, the computational cost is:

T=0(1)+0(2)+---+0(L) = O(L?) (58)

For our DEER, The computational cost comprises two components: L forward passes in the main
reasoning chain and km forward passes for answer inducing.

First, we calculate the cost of the main reasoning chain:

al
Thnain =)t = %LH) = 0 (a?L?) (59)
t=1

Next, for the computational overhead during answer inducing, we first calculate the time cost of a
single inducing. Suppose the j-th answer inducing is triggered at position p;, yielding a cost of:

- . AN m(m —1
CsingleZZ(Pjﬂ—l)Zm'ijrZ(@—l)Zm'pfri(5) (60)
i=1

i=1

Assuming the inducing positions p; are uniformly distributed over the interval [0, L], the average
inducing position is E[p;]| ~ % Hence, the total cost of answer inducing is:
alL k m(m — 1)

Oinduce%k'm'7+ 9

Even in the worst-case scenario where most trigger points p; cluster near the end of reasoning, the
average inducing position is E[p;] ~ aL. The total cost of answer inducing is:

=O(k-m-aL)+O(k-m?) (61)

Cmducezk.m-aLM.w:O(k.m-aL)+0(k.m2) (62)
As the length of each answer inducing m is negligible compared to the reasoning length L, we have:
Cinduce = O(k - m - aL) (63)

Finally, the total cost of DEER is:
Cbeer = Crmain + Cinduce = O(0®L?) + O(k - m - alLL) (64)

DEER reduces the quadratic term from O(L?) to O(«?L?) while only introducing a linear term O (k-
m - aL). Since k,m < L in long chain-of-thought reasoning, the savings from the quadratic term
reduction far exceed the overhead of the additional linear term. This analysis effectively explains
the superlinear speedup phenomenon observed in Section 4.4}

H.2 COMPUTATIONAL COST ANALYSIS ON MEMORY

The memory overhead analysis can be decomposed into two components: primary memory con-
sumption from the KV cache and additional overhead from parallel decoding operations.

26

Under review as a conference paper at ICLR 2026

Peak Memory Reduction. The dominant memory overhead in modern LLM inference stems from
the storage of attention keys and values in the KV cache, whose size scales linearly with the pro-
cessed sequence length. Standard Chain-of-Thought (CoT) approaches necessitate maintaining KV
cache for all L tokens, resulting in memory complexity of O(L). Through early termination at po-
sition o where a@ < 1, DEER effectively reduces the peak sequence length during inference from
L to aL. Consequently, the peak KV cache memory consumption is reduced from O(L) to O(aL).

This memory reduction proves particularly valuable when processing long-context reasoning tasks.
Beyond reducing peak memory requirements for individual requests, this approach enables systems
to accommodate increased concurrent requests under identical memory constraints during batch
processing, thereby enhancing overall throughput.

Additional Overhead for Parallel Decoding. The proposed parallel decoding variant, which per-
forms answer induction forward passes concurrently with main reasoning, introduces minimal addi-
tional memory overhead. This efficiency is achieved through prefix caching and sharing mechanisms
implemented in modern inference frameworks such as vLLM. When multiple reasoning branches
share a common prefix sequence, the corresponding portions of their KV caches require only single
storage in physical memory through technologies such as vLLM’s PagedAttention.

During parallel decoding, the answer induction branch incurs virtually no additional KV cache over-
head, as it fully leverages the KV cache already computed by the main reasoning branch. The only
marginal additional memory requirement arises from storing a limited number of tokens represent-
ing the answer induction branch’s decoding state.

For code generation tasks, our implementation incorporates specific optimizations whereby only the
initial 50 tokens are generated for confidence estimation. This design choice represents an imple-
mentation detail rather than a core methodological contribution. Experimental validation confirms
that utilizing partial answer tokens for early-exit confidence calculation remains effective for coding
tasks.

I INVESTIGATION OF REASONING TRANSITION MONITORS

In Section [4.3] of the main text, our experiments reveal that the choice of Reasoning Transition
Monitor exerts subtle effects on DEER, primarily manifested in how the number of potential early-
exit opportunities affects the final generation length. In this section, we investigate the underlying
connections between linguistic marker-based and entropy-based monitoring approaches.

Table |10| presents a comparative analysis of average token entropy between linguistic markers and
other tokens across multiple datasets and models. Our findings reveal that linguistic markers exhibit
significantly higher entropy compared to other tokens, suggesting that the linguistic marker-based
approach inherently targets high-entropy positions where multiple candidate actions exist.

Additionally, we compute cosine similarity scores between consecutive tokens in the final layer’s
hidden state representations, comparing linguistic markers with their adjacent tokens against reg-
ular token pairs. The similarity metric serves as an indicator of the model’s reasoning coherence:
high similarity reflects continuous, coherent reasoning processes, whereas low similarity signals the
occurrence of reasoning transitions. The results presented in Table [IT] demonstrate that linguis-
tic markers exhibit substantially lower similarity scores, indicating disruptions in representational
continuity.

Collectively, these experiments provide compelling evidence that large reasoning language mod-
els do not undergo uncertain states silently; instead, they explicitly express uncertainty through
language. The external linguistic markers leveraged by DEER constitute direct manifestations of
internal state transitions, thereby providing strong empirical support for the theoretical foundations
of our approach.

27

Under review as a conference paper at ICLR 2026

Accuracy of Vanilla COT B Accuracy of DEER (Ours) Generation Length of Vanilla COT B Generation Length of DEER (Ours)

- Average: wmaT-500 w00 MATH-500 o A AIME 2024 AIME 2024
5216.0 verage:
160.0
4767.0 25080 4440.0 8

34180 ¥

Vanilla: 60.32 DEER: 61.68
5000 76.7
12110.0

12000 11916.0 11388840
27.0

65.0 70.f
63.63 3 10859.0

B814.0 3074.0

3000

Len (tokens)

o
178 48 88 148 32B 178 4B 88 148 328 178 48 88 148 328

(b) Experimental results on Qwen3-Series models.

Figure 10: Experimental results of DEER compared to Vanilla CoT across Qwen3-Series models of
varying sizes on MATH-500 and AIME 2024.

AMC OlympiadBench AIME24
Qwen3-32B | 5 34 $0 441 2 4 19 3
Qwen3-148 37 54 401 2 4 19 2
Qwen3-8B |2 36 52 369 3 2 17 2
R1-Distill-7B | 5 28 2 |69 286 3 3 10 1
[DEER® & vanillacoTX | [DEERD & vanillacoT® | [DEERX & VanillacOT@ | M DEER X & VanillacOTX |

Figure 11: More detailed experimental results of DEER compared to Vanilla CoT. 4/ denotes a
correct answer, and X denotes an incorrect answer.

J INVESTIGATION INTO THE REASONS BEHIND DEER’S THRESHOLD
ROBUSTNESS

In Section A3 of the main text, we demonstrate DEER’s robustness to the threshold A through
experiments across various models and datasets. In this section, we investigate the underlying source
of this robustness. We analyze the confidence scores of induced answers at all potential exit positions
across three models on three mathematical reasoning datasets, calculating the proportion of scores
falling within three distinct intervals. Specifically, 0-0.9 represents the low-confidence interval,
0.97-1.0 represents the high-confidence interval, and 0.9-0.97 constitutes the error-prone gray zone.

The results presented in Table [T2] reveal that the model’s confidence distribution exhibits a pro-
nounced polarization phenomenon. The vast majority of cases concentrate at either the highly confi-
dent or insufficiently confident extremes, with minimal presence in the intermediate range (the error-
prone gray zone). When our method induces the model to generate final answers, the confidence
scores follow a distinctive U-shaped distribution, with remarkably low probability mass between
0.9 and 0.97. This phenomenon indicates that when the model possesses sufficient certainty about
an answer based on its preceding reasoning chain, it generates the answer with exceptionally high
probability (typically exceeding 0.99). Conversely, when uncertainty exists, the assigned probability
drops substantially.

Furthermore, we observe that all three models exhibit higher proportions of high-confidence scores
compared to low-confidence scores on simpler problems (GSM8K); While on more challenging
problems (AIME24), the proportion of low-confidence scores exceeds that of high-confidence
scores. This observation further validates the rationality of the DEER method: the confidence
assigned to trial answers accurately reflects whether the existing reasoning is sufficient to solve
the problem. Consequently, confidence scores are generally lower on difficult problems, leading
to many failed early-exit attempts in the initial stages. This pattern also explains DEER’s varying
performance across different problem difficulties. On simpler problems, the model demonstrates
sufficient confidence, resulting in better compression effects. On challenging problems, the model
becomes more cautious, yielding weaker compression but maintaining satisfactory accuracy. This
adaptive behavior shows that DEER naturally balances computational efficiency and solution quality
based on problem complexity.

28

Under review as a conference paper at ICLR 2026

Table 2: Comparison of Vanilla, DEER, and DEER-PRo across multiple models and datasets. Acc
= accuracy (%), Len = average tokens, CR = compression ratio.

GSMS8K MATH AMC AIME GPQA Overall
Method Acc Len CR Acc Len CR Acc Len CR Acc Len CR Acc Len CR Acc CR

DeepSeek-R1-Distill-Qwen-1.5B

Vanilla 76.1 1,617 100% 69.0 6,018 100% 52.5 8,819 100% 23.3 13,702 100% 7.1 13,029 100% 45.6 100%
DEER 747 984 60.9% 67.8 2,497 41.5% 60.0 5,496 62.3% 23.3 9,557 69.7% 12.1 5,762 44.2% 47.6 55.7%
DEER-PRo 77.3 1,062 65.7% 70.0 2,891 48.0% 62.5 5,701 64.6% 26.7 10,390 75.8% 14.5 6,820 52.3% 50.2 61.3%

QOwen3-4B

Vanilla 94.1 2,175 100% 92.2 4,767 100% 87.5 7,443 100% 63.3 11,916 100% 46.5 9,294 100% 76.7 100%
DEER 94.5 1,250 57.5% 92.6 3,214 67.4% 87.5 4,906 65.9% 63.3 9,327 78.3% 47.5 3,275 352% 77.1 60.9%
DEER-PRo 94.5 1,301 59.8% 93.0 3,517 73.8% 92.5 5,153 69.2% 65.0 9,651 81.0% 49.2 3,750 40.3% 78.8 64.8%

Owen3-1.7B

Vanilla 90.1 2,045 100% 85.6 5,160 100% 70.0 8,637 100% 30.0 13,758 100% 35.9 9,271 100% 62.3 100%
DEER 90.3 1,066 52.1% 85.6 2,463 47.7% 70.0 4,673 54.1% 30.0 7,943 57.7% 43.4 3,549 383% 63.9 50.0%
DEER-PRo 90.7 1,261 61.7% 87.2 2,702 52.4% 75.0 5,143 59.5% 35.0 8,644 62.8% 44.5 3,960 42.7% 66.5 55.8%

Table 3: Experimental results on programming tasks. Acc = accuracy (%), Tok. = average tokens,
CR = compression ratio.

HumanEval BigCodeBench LiveCodeBench \ Overall
Acc Tok. CR Acc Tok. CR Acc Tok. CR Acc CR

R1-Distill-Qwen Series
Vanilla 91.5 3,861 100% 44.5 5,459 100% 56.0 9,109 100% 64.0 100%

Model Method

328 DEER 939 1,254 325% 46.1 1929 353% 56.6 3,677 40.4% 655 36.1%
14B Vanilla 89.0 4,039 100% 40.9 4,806 100% 52.7 9,259 100% 60.9 100%

DEER 90.9 1,000 24.8% 40.7 1,583 329% 52.1 4,000 432% 61.2 33.6%
7B Vanilla 78.6 5,666 100% 26.1 8516 100% 384 10,482 100% 47.7 100%

DEER 78.6 913 16.1% 252 1,605 18.8% 403 2582 24.6% 48.0 19.9%

Qwen3 Series
Vanilla 93.3 3,277 100% 44.6 5,072 100% 73.4 8,203 100% 70.4 100%

14B DEER 939 1,118 34.1% 443 792 15.6% 74.1 5437 663% 70.8 38.7%
3B Vanilla 85.4 3,904 100% 37.9 6,994 100% 64.7 8,871 100% 62.7 100%
DEER 87.8 793 203% 41.1 608 8.7% 65.1 4257 48.0% 64.7 25.7%
4B Vanilla 91.5 3,768 100% 36.1 7,804 100% 64.7 8,789 100% 64.1 100%
DEER 92.7 1,050 27.9% 37.1 826 10.6% 63.5 5,626 64.0% 64.4 34.2%
1.7B Vanilla 83.5 3,580 100% 25.7 6,151 100% 51.7 9,447 100% 53.6 100%

DEER 84.1 2,236 62.5% 283 2,104 342% 514 8425 89.2% 54.6 62.0%

K MORE EXPERIMENTAL RESULTS

More experiments across Model Sizes on Qwen3. The performance of the Qwen3-series models
across model sizes and reasoning difficulty in Fig. [T0]is consistent with the findings presented in

Section 4.2

Performance on SoTA Reasoning Models.

We evaluated DEER’s effectiveness on two state- Accuracy of Vanilla COT Generation Length of Vanilla COT
of-the-art reasoning models: QWCH3-32B (rep_ Bl Accuracy of DEER (Ours) EE Generation L::?:;)Zj DEER (Ours)
resenting dense models) and Deepseek-R1 671B g
(representing MoE models). To fully leverage =

their reasoning capabilities, we set their maxi-
mum sequence lengths to the officially recom-
mended 32k and 16k, respectively. The impact .
of max length will be further discussed in the next
section. Due to computational constraints, we im-
plemented a quantized version of Deepseek-R1 Figyre 12: Performance on SoTA models.
based on KTransformers (kvcache ai, [2025). Fig.

[12] provides a close look at DEER’s performance on two challenging datasets, AIME and MATH.

14000 14000

84.2 12874.0
12000 11531015000

10000 10000

8000

Accuracy (%)
Accuracy (%)

Generation Length (tokens)
Generation Length (tokens)

0) o o
DS-R1Qwen-32BDS-R1Qwen-32B DS-R1Qwen-32BDS-R1Qwen-32B

29

Under review as a conference paper at ICLR 2026

Table 4: Additional threshold sensitivity experiments across more models and tasks.

Qwen3-14B GSMSK MATH AMC

Vanilla 95.1 93.8 95.0
0.80 96.0 93.8 93.8
0.85 95.7 94.4 93.8
0.90 96.1 93.8 95.0
0.95 96.0 94.0 95.6
0.97 95.7 93.8 944
Qwen3-8B GSMSK MATH AMC
Vanilla 94.9 91.2 87.5
0.80 95.2 914 38.8
0.85 94.9 92.0 90.0
0.90 95.5 92.8 91.3
0.95 95.3 93.2 92.5
0.97 95.3 93.0 92.5

The results show that DEER maintains competitive accuracy (with R1 making only one additional
error on each dataset) while significantly reducing sequence length by 10.4% - 35.7%.

Performance Trends across More Model Sizes and Benchmarks. To provide a more compre-
hensive demonstration of DEER’s effectiveness and facilitate comparison for researchers, we present
experimental results on seven reasoning benchmarks and eleven large reasoning language models.
Fig. |13| compares the experimental results between DEER and vanilla CoT, demonstrating that the
conclusions drawn in the main text of the paper hold consistently across more benchmarks and
additional models.

In addition to popular reasoning models, we also evaluate DEER on less commonly used models. As
mentioned in the Limitations section, Llama-3.1-Nemotron-Nano-8B-v1 consistently exhibits low
confidence in generating intermediate answers, resulting in a significantly lower early stopping rate
during evaluation compared to mainstream models (Qwen3-8B: 80%, R1-Distill-Qwen-7B: 85%,
Llama-3.1-Nemotron-Nano-8B-vl: 55%). Consequently, as shown in Table 5, the improvement
in reasoning efficiency for Llama-3.1-Nemotron-Nano-8B-v1 is limited. Nevertheless, DEER still
effectively mitigates overthinking in this model, as evidenced by its ability to prevent subsequent
reasoning steps from altering correct answers into incorrect ones through early stopping.

Performance with Different Decoding Configurations. As the configuration of DeepSeek-R1-
Distill-Series models recommends a maximum length of 16k (16,384), we evaluate Qwen3-14B
under the same setting in the main experiments to maintain setup consistency. In practice, this
length is sufficient for most real-world applications. In addition, to ensure experimental stability
and reproducibility, we employ greedy decoding in the main experiments. Nevertheless, to provide a
more comprehensive assessment of DEER’s performance, we further conduct experiments on larger
variants of the Qwen3-series models (8B, 14B, 32B) using the officially recommended decoding
strategy (max_len = 32768, top_p = 0.95, temperature = 0.6). Fig. [§] shows that DEER remains
significantly effective under these configurations, demonstrating the robustness of our approach.

Performance with Different Multi-Token Confidence Averaging Methods. In the main text,
we mentioned adopting the geometric mean strategy for calculating multi-token answer confidence
scores, as it better aligns with the multiplicative nature of joint probability computation in language
models and exhibits higher sensitivity to low probability values. In this section, we supplement our
analysis with comparative experiments using arithmetic mean calculation (DEER-AM), employing
the same early-exit threshold of 0.95. The results in Table [/|demonstrate that DEER-AM exhibits a
significant decrease in accuracy compared to DEER-GM, while achieving marginal improvements
in compression ratio. This indicates that the arithmetic mean dilutes the contribution of low-valued
tokens, resulting in overall inflated confidence scores and consequently leading to premature in-
correct exits. Therefore, we recommend using the geometric mean for estimating true confidence
scores.

30

Under review as a conference paper at ICLR 2026

Table 5: Results on MATH-500 (DeepSeek-R1-Distill-Qwen-14B) with different reasoning transi-
tion monitors. DEER(W) denotes transition via Wait, DEER(A) via Alternatively, and DEER(Ent)
via entropy threshold. Chunk Size denotes the length (token numbers) of one reasoning chunk
(thought), and Chunk Num denotes the number of reasoning chunks.

Method Accuracy Tokens Chunk Size Chunk Num Exit Ratio Exit Acc.

Vanilla 88.6 3815 - - - -

DEER(W) 89.6,10 2572369 259.5 14.7 87.6% 93.4%
DEER(A) 90.8.,, 2775 57 39, 719.8 5.3 54.8% 91.2%
DEER(Ent) 90.2,,6 2339 3579 183.7 20.8 90.2 % 93.0%

Table 6: Comparison of Vanilla, DEER-W, and DEER-Ent across multiple models and datasets.
Acc = accuracy (%), Len = average tokens, CR = compression ratio.

GSMS8K MATH AMC AIME GPQA Overall
Method Acc Len CR Acc Len CR Acc Len CR Acc Len CR Acc Len CR Acc CR

DeepSeek-R1-Distill-Qwen-7B

Vanilla 89.6 1,484 100% 87.4 3,858 100% 78.8 6,792 100% 41.7 13,765 100% 23.7 10,247 100% 64.2 100%
DEER-W 90.6 917 61.8% 89.8 2,143 55.5% 85.0 4,451 65.5% 49.2 9,839 71.5% 313 5469 53.4% 69.2 61.5%
DEER-Ent 90.8 876 59.0% 89.2 2,261 58.6% 85.0 4,072 60.0% 48.4 8,961 65.1% 29.6 5,037 49.2% 68.6 58.4%

Owen3-14B

Vanilla 95.1 2,047 100% 93.8 4,508 100% 95.0 7,139 100% 70.0 10,859 100% 60.1 7,339 100% 82.8 100%
DEER-W 953 840 41.0% 94.0 3,074 68.2% 95.0 4,763 66.7% 76.7 7,619 70.2% 57.6 2,898 39.5% 83.7 57.1%
DEER-Ent 96.1 803 39.2% 93.8 2,979 66.1% 93.3 4,903 68.7% 73.3 7,128 65.6% 58.1 2,818 38.4% 82.9 55.6%

QOwen3-8B

Vanilla 94.9 2,245 100% 91.2 5216 100% 87.5 7,986 100% 65.0 12,110 100% 51.5 9,145 100% 78.0 100%
DEER-W 952 1,071 47.7% 92.6 2,732 52.4% 92.5 4,392 55.0% 61.7 8,796 72.6% 52.5 3,111 34.0% 78.9 52.3%
DEER-Ent 95.8 1,037 46.2% 93.6 2,789 53.5% 91.3 4,003 50.1% 63.3 8,328 68.8% 51.5 3,248 35.5% 79.1 50.8%

Error Bars with 95% Confidence Intervals. To demonstrate the statistical significance of
DEER’s accuracy gains, we conducted multiple experimental runs on two models and calculated
error bars with 95% confidence intervals. Specifically, we performed four independent runs on
GSMSK, MATH, and GPQA benchmarks. Given the limited sample sizes of AMC23 and AIME24,
we increased the number of experimental repetitions to eight for these datasets. The results pre-
sented in Table 0] confirm that the accuracy improvements achieved by our method are statistically
significant.

L CASE STUDY DETAILS

In Fig. we provide examples of results on MATH-500 to visually demonstrate the effectiveness
of DEER. The design of DEER ensures that it follows the same reasoning process as the vanilla CoT
method before early exiting. Both methods arrive at the correct answer during the first reasoning
step, as shown in the green box. The difference lies in the fact that our method exits early after
evaluating the confidence of the trial answer as sufficiently high, thus producing the correct result.
In contrast, the vanilla CoT method proceeds to the next reasoning action. After double-checking
and switching reasoning approaches, the model becomes trapped in an endless cycle of verification
due to inconsistent answers from the two approaches, ultimately failing to provide a final answer. In
addition, Fig. [14} [T3] [I6] provides additional generated examples to more comprehensively demon-
strate the effectiveness of DEER’s early-exit mechanism and illustrate the underlying mechanisms
of the approach.

Figure [17] shows the detailed process of DEER applied on a mathematical example. It can be ob-
served that, at each reasoning switch point (”Wait” token), DEER generates a trial answer and
evaluates its confidence. The change in confidence is consistent with the reliability of the current
reasoning chunks and trial answers. This shows that LRMs implicitly know when to leave early, and
our method is simple and effective to realize such potential of the model itself.

31

Under review as a conference paper at ICLR 2026

Table 7: Comparison of Vanilla, DEER-GM (Geometric Mean), and DEER-AM (Arithmetic
Mean) across multiple models and datasets. Acc = accuracy (%), Len = average tokens, CR =
compression ratio.

GSMSK MATH AMC AIME GPQA Overall
Method Acc Len CR Acc Len CR Acc Len CR Acc Len CR Acc Len CR Acc CR

DeepSeek-R1-Distill-Qwen-7B

Vanilla 89.6 1,484 100% 87.4 3,858 100% 78.8 6,792 100% 41.7 13,765 100% 23.7 10,247 100% 64.2 100%
DEER-GM 90.6 917 61.8% 89.8 2,143 55.5% 85.0 4,451 65.5% 49.2 9,839 71.5% 31.3 5469 53.4% 69.2 61.5%
DEER-AM 90.2 832 56.1% 88.2 1,879 48.7% 80.0 3,872 57.0% 43.3 8,095 58.8% 22.6 4,116 40.2% 64.9 52.2%

Owen3-14B

Vanilla 95.1 2,047 100% 93.8 4,508 100% 95.0 7,139 100% 70.0 10,859 100% 60.1 7,339 100% 82.8 100%
DEER-GM 953 840 41.0% 94.0 3,074 68.2% 95.0 4,763 66.7% 76.7 7,619 70.2% 57.6 2,898 39.5% 83.7 57.1%
DEER-AM 953 811 39.6% 92.4 2,620 58.1% 90.0 4,513 63.2% 63.3 6,933 63.8% 53.6 2,508 34.2% 78.9 51.8%

Owen3-8B

Vanilla 94.9 2,245 100% 91.2 5,216 100% 87.5 7,986 100% 65.0 12,110 100% 51.5 9,145 100% 78.0 100%
DEER-GM 95.2 1,071 47.7% 92.6 2,732 52.4% 92.5 4,392 55.0% 61.7 8,796 72.6% 52.5 3,111 34.0% 78.9 52.3%
DEER-AM 94.9 972 433% 92.0 2,522 48.4% 87.5 3,899 48.8% 56.7 7,697 63.6% 49.7 2950 323% 76.2 47.3%

M RELATED WORK DETAILS

The advent of Open-Al ol (OpenAl, [2025) established test-time scaling (Snell et al} 2024) as a
pivotal research direction in the LLM community. This approach enhances LLMs’ slow think-
ing capabilities, enabling breakthroughs in complex problem solving. The recent open-sourcing of
DeepSeek-R1 (DeepSeek-Al et al.,|2025) has further intensified interest in locally deployed reason-
ing models. However, two critical challenges have emerged: 1) excessively long CoT generated
significantly degrades inference efficiency, and 2) growing empirical evidence (Chen et al., [2025b;
Team et al.| 2025a)) reveals their susceptibility to overthinking — a phenomenon where models con-
tinue reasoning beyond the point of optimal output. Zhang et al.[(2025c)) introduces a novel bench-
mark named S1-Bench to test the performance of LRMs on simple tasks, evaluating the overthinking
issues of these LRMs. Following the taxonomy of efficient reasoning established in (Sui et al., 2025
Wang et al.,|2025a), we categorize related work into three classes: post-traning based, prompt-based,
and output-based efficient reasoning methods.

Post-training based efficient reasoning methods use supervised fine-tuning (Yu et al., [2024} |Kang
et al.l 2025 [Xia et al., 2025 Ma et al.| 2025b; Munkhbat et al., 2025; |[Zhu et al., 2025} |Liu et al.,
2024; Han et al.l [2024; |Q1ao et al., 2025; |Yu et al, 2025) with variable-length CoT data or incor-
porate length rewards (Team et al., [2025b; [Luo et al., 2025a; |Aggarwal & Welleck, [2025} |Arora &
Zanettel 2025; Yeo et al., 2025 Shen et al., 2025b; |Qu et al., {2025} |Cui et al., 2025; Dai et al., [2025}
Liu et al.| 2025ajb; Tu et al., 2025} Wang et al., |2025c; Dumitru et al., [2025} [Li et al., [2025a; Jiang
et al.,2025a; Zhang et al.,|2025b) in reinforcement learning to enable the model to adaptively gen-
erate chains of thought of different lengths. However, these methods often require a large amount
of computational resources and face challenges in dataset construction. Recently, some work (Hao
et al.} 2024;|Shen et al.,[2025¢; |(Cheng & Van Durme, [2024} Dang et al., 20255 Shen et al., 2025a; |Su
et al., 2025; Tan et al., [2025} |Saunshi et al., [2025}; [Zhang et al.| 2025d) has shown that using latent
representations to replace explicit textual reasoning steps allows reasoning models to be more effi-
cient. However, such methods often require extensive-epoch SFT on carefully curated datasets(Hao
et al.| [2024; Xu et al., 2025d), leading to overfitting on the output format and consequently compro-
mising the model’s inherent expressiveness and generalization ability.

Prompt-based efficient reasoning methods (Han et al., [2024; |Xu et al.| [2025b} [Lee et al., 2025
Renze & Guven, 2024} (Chen et al., 2024) use varying prompts to enforce reasoning models to
generate concise CoT with less unnecessary reasoning steps. Especially, (Aytes et al.; 2025} |Chuang
et al., 2024; [2025} Ong et al.) assign different prompts to queries based on their difficulty, thereby
adjusting the length of the CoT generated by reasoning models. We also explored the performance
of our method combined with prompt design in Tab. [I] demonstrating further reductions in the
length of reasoning chains while maintaining considerable accuracy.

Most of the Output-based efficient reasoning methods focus on optimizing the best-of-N sampling
for LLMs, such as pruning low-quality samples (Xie et al.| [2023;Liao et al.,|2025) and implement-
ing early stopping (Li et al.,2024; Manvi et al.|[2024;|Aggarwal et al.|[2023) when multiple samples

32

Under review as a conference paper at ICLR 2026

Table 8: Experimental results on the Qwen3-series models under the officially recommended set-
tings (max_len = 32768, top_p = 0.95, temperature = 0.6).

GSM8K MATH-500 AMC23 AIME24 AIME25 OlympiadB| Overall

Budget Method "1k Acc Tok. Acc Tok. Acc Tok. Acc Tok. Acc Tok. Acc CR

Owen3-8B

32K Vanilla 957 2246 93.8 5368 93.8 9424 70.0 16717 65.0 17880 67.9 11025|81.0 100%
DEER 955 981 94.0 3227 95.0 5898 75.8 12465 63.3 15135 67.0 9075 |81.8 68.0%

Owen3-14B

32K Vanilla 95.7 1699 94.8 4800 95.0 6837 75.0 14347 76.7 16437 68.7 9992 |84.3 100%
DEER 958 933 95.0 3301 96.3 6299 74.2 10896 76.7 15014 68.9 8263 |84.5 77.6%

Owen3-32B

32k Vanilla 96.0 1714 95.8 4609 98.8 7209 83.3 12874 78.3 15292 69.3 9775 |86.9 100%

DEER 958 992 954 3325 98.8 5617 84.2 11531 78.3 13981 69.8 8671 |87.1 79.6%

Table 9: Accuracy performance on reasoning benchmarks with 95% confidence intervals.

Model GSMSK MATH AMC23 AIME24 GPQA
Vanilla (ds-7B) 0.897 [0.891, 0.902] 0.877 [0.869, 0.884] 0.794[0.767, 0.821] 0.425 [0.400, 0.449] 0.247 [0.203, 0.291]
DEER (ds-7B) 0.904 [0.896, 0.912] 0.897 [0.883,0.911] 0.856 [0.835, 0.878] 0.492 [0.463, 0.520] 0.299 [0.257, 0.341]

Vanilla (Qwen3-14B) 0.948 [0.942, 0.955] 0.938 [0.932, 0.943] 0.938 [0.918, 0.957] 0.708 [0.660, 0.757] 0.596 [0.571, 0.621]
DEER (Qwen3-14B) 0.955 [0.949, 0.962] 0.942 [0.936, 0.948] 0.953 [0.940, 0.967] 0.754 [0.718,0.791] 0.587 [0.566, 0.608]

achieve self-consistency. However, following the introduction of advanced reasoning models like
R1, there is less reliance on best-of-N sampling methods, as these models exhibit strong reason-
ing capabilities independently. Very recently, two concurrent works share similar motivations with
ours. [Zhang et al.| (2025a) also proposes to terminate early based on trial answers, but requires an
additional probe model to determine the correctness. They focus on enhancing the verification capa-
bilities of the probe model, whereas our method explore how to enable the model to self-determine
when to exit early and integrate seamlessly into existing reasoning logic. Ma et al.|(2025a)) prompts
reasoning models to directly output final answers during decoding, but only achieves better per-
formance in the low-budget regime or being adapted to best-of-N methods compared to baselines,
which limits the applicability and generalization. Song et al.|(2025) periodically compresses the KV
cache by retaining KV cache that receive high importance score to accelerates inference by leverag-
ing the semantic sparsity of reasoning paths. Jiang et al. (2025b) uses a teacher model to perform
skill-aware step decomposition and content pruning, and then distills the pruned reasoning paths
into a student model. [Huang et al.| (2025)) projects the steering direction onto the low-dimensional
activation manifold and intervenes the activations to reduce thinking tokens.

N USE oF LLMS

In the preparation of this manuscript, Large Language Models (LLMs) were employed as auxiliary
tools for Language Polishing. During the final stages of manuscript preparation, LLMs were uti-
lized to refine the language of selected passages, including grammar checking, sentence structure
optimization, and expression standardization. This process was limited to linguistic improvements
and did not involve the generation or modification of any substantive academic content, including
research insights, data analysis, or conclusion derivation. It should be emphasized that all core argu-
ments, research methodologies, experimental designs, data analyses, and conclusions presented in
this paper were independently developed by the authors. LLMs served solely as language processing
aids, and the authors assume full academic responsibility for all content.

33

Under review as a conference paper at ICLR 2026

Table 10: Token Entropy for Linguistic Markers and Other Tokens.

Qwen3-8B Linguistic Markers Other Tokens

gsm8k 0.901 0.438
math 1.058 0.385
gpga 1.269 0.500
DS-7B Linguistic Markers Other Tokens
gsm8k 1.550 0.658
math 1.753 0.565
gpqa 1.241 0.510

Table 11: Hidden States Cosine Similarity between Linguistic Markers and Other Tokens.

Qwen3-8B Linguistic Markers Other Tokens

gsm8k 0.262 0.543
math 0.237 0.493
gpqa 0.240 0.509
DS-7B Linguistic Markers Other Tokens
gsm8k 0.306 0.608
math 0.247 0.530
gpqa 0.231 0.505

Table 12: Confidence interval distribution (%) across tasks for different models.

Qwen3-14B 0-0.9 0.9-0.97 0.97-1.0

gsm8k
math
aime

38.92 5.95 55.06
49.53 4.83 45.46
77.20 245 20.35

Qwen3-8B

0-0.9 0.9-0.97 0.97-1.0

gsm8k
math
aime

35.31 5.34 59.12
45.27 4.58 49.98
78.61 2.39 19.00

DS-7B

0-0.9 0.9-0.97 0.97-1.0

gsm8k
math
aime

26.54 5.29 68.17
34.09 5.46 60.45
80.90 1.41 17.69

34

Under review as a conference paper at ICLR 2026

%S'88 0°69 | %8E6 9LS'L SLy BSLY LOV9 L09 %968 0T8TI L9E %906 SSL'6 L99 %6LS S0V'S 006 %68L S66T +16 %016 SLV'T 868 ¥AAd
%001 $S9| %00l +LOS 61 %001 1TEL €¥S %00 TOI'El 0SS %001 12801 L9S %001 €SI°9 006 %001 +6L'E TI6 %001 8191 T68 DIUUA
Na-ﬁ%-@ﬁ@(-nsekwe:sZ-N.M-§SS‘N
%O0P8 SOL| %TH8 €919 I'¥9 %v68 6£9°L TS %BEV6 86STI 00S %EE6 L600I 00L %IS8 T8L'S 056 %IEL 9IEC 9¥6 %S89 LL6 €96 yAAd
%001 OSL| %001 0TEL 1°€9 %001 9S8 TS9 %0O0I 00€TI L9y %001 12801 L99 %001 T6LO ST6 %001 80S‘t 8€6 %001 LTv'l L96 DIIUA
gz£-040
%9'8S 1'8S | %E8E 6VS'E PEY %69L LSTL 9TS BOES 6LSTI L9E %BLLS €H6'L 00€ BIYS €L9F% O00L %LLY €9%'T 968 %ITS 990°T €06 JAAA
%001 8SS| %00l 1LT6 6SE %001 LEV'6 TTS %OOI E€P6°Cl L9T %001 8SL'Cl 00€ %00I L£9'8 00L %00T 091°S 968 %001 SHOT 106 DIMUIA
gL T-EuInQ
%S89 TTIL| %Y'SE SLTE SLy %TES 69SL L1 %816 6£0TI 0SS %ESL LTE6 €€9 %6SY 9067 SL8 %YL VITE 976 %SLS 0ST1 Sv6 yAdd
%001 TOL| %001 +6T°6 S9% %001 8606 €65 %00 TIICl '8y %001 9I6TI €€9 %00l E€h¥'L SL8 %001 LOLY TT6 %001 SLIT 16 DIuvA
gr-cuanp
%ETY SEL| %OYE TII°E STS %YL 6LYV'L vT9 %BES6 6TTTI 009 %9TL 96L'8 L19 %OSS T6EY ST6 %YTS TELT 976 %L LY 1L0°1 TS6 yAdd
%001 61L| %00I SPI'6 SIS %001 L8Y'6 €65 %0O0T SE€8CTI TS %001 OITTI 059 %00T 986°L SL8 %001 9ITS TI6 %001 SHTT 66 DIMUUA
gg-suong
%0°S9 0°6L| %S6E 868T 9LS %TIS 090°L +L9 %906 SEITI L99 %TOL 619°L LIL %BLI9 €9LFY 0S6 %T89 YLO'E OF6 %01y Ov8 €S6 yAdd
%001 T'LL| %001 6£EL 109 %001 T69'® ST9 %001 98TTI €€9 %001 65801 00L %001 6EI'L 0S6 %001 80S‘tv 8€6 %001 LYOT 1°S6 DHMDA
grI-§Usn0
%6 IL 908 | %S 09 LIV LTI %908 681S 6L9 %BSLS €6801 L99 %EIL T89'8 LIL BYSL €SL'S SL6 BOLL 8IF'E TY6 %I9% 69L T96 yAAd
%001 68L| %00l €689 TS9 %001 8E€¥'9 +'€9 %001 9bF'TI 0S9 %001 VLETI €€L %001 LI9L 0S6 %001 OWv'v vv6 %001 8991 €96 DIUDA
gzg-cuong
%99S 00V | %THr TIL'S 1TI %TES 096'S 0TE %BTHY 18T6 001 %L69 LSS6 €€ %ETY 96¥'S 009 %Sy L6V'T $L9 %609 #86 LvL dAAd
%001 $8¢| %00l 6T0°CT 1L %001 00TT1 08T %001 OSHFYI €€I %001 TOLEl €€T %001 6188 STS %001 8109 069 %001 LI9T 19L DIuvA
s [-uomO-nusia-1y-4225doaq
%BIT9 TIY| %YES 69Y'S €IE %EEY 0TH'S 9TS %89S LSTL L9IE %STIL 6686 TO6Y %SS9 ISHY 0S8 %SSS €vI'T 863 %819 Ll6 906 yIAd
%001 §9S | %001 LYTOl L'E€T %001 €9S°8 €Ly %001 LILTI %LIT %001 SOLEl LIv %0O0T TOGLO $'8L %001 8S8E€ +L8 %001 +8Y1 968 DIuA
gL-uomO-11ys1d- 144225 doaq
%6IL €69 %ITL 9S8V 995 %STL 9EL'S 0SS BETY STIOI L9E %YTL SIT'S +'89 %8Y9 OvCy 0S8 %SL9 LLST 863 %EIL OWO'T €€6 yAAA
%001 ¥'S9| %00l 1€L9 0TS %001 806L 9TS %001 YOSTI L9E %001 TITTIT LIS %00T SS9 ST8 %001 SISE 988 %001 8SHI 6°€6 DIUA
GE1-UonO-1Iysid-1Y-Y228dooq
%BYTL TEL| %889 €6t IF9 %OEL ISE'S LS %S08 €168 L9y %ITL ¥IFL €€9 %BY6L TSTY S6 %619 STKT +06 %189 618 1S6 yAdd
%001 069 | %001 I8I°L 19S5 %001 +E€L LSS %00 SLOTI €€F %001 €6T01 L9S %00I ¥SES SL8 %001 9€L°€ T68 %001 TOTT €6 DIUDA

gze-uonQ-1ysid-1y4-32a8dooq
D Jooy 4O Mol oy TMD ™oL Jooy 4O Mol ooy MO Mol ooy tMD Mol Joov TMD Mol Jooy O Mol [ooy
ewLAsQ | a-vodo PoudgperdwiiQ STHINIV YTHINTV €OV 00S-HLVIN SISINSD POYdIN

HIONAIDS HLVIA

‘Proq ut pAySiySIy ore s}NsaI 3saq Y], “10)Jaq 9Ie SONJeA JOMO] Jey) SJedIpul T J[IyMm ‘19339q dIe sonfeA JoySIy Jey) SeJedIpul | "ajel uorssaiduwod sejouap
D, PUB JUNOD U0} SAJOUIP MO, ‘AOBINOOE SJOUIP 00V, "SYIeWouaq Suruoseal pue spopouwr Juruosear Jo sad£) a1owr uo synsar feyuswiadxyg :¢1 9[qeL,

35

Under review as a conference paper at ICLR 2026

Question:

Answer:

DEER

A Senate committee has 5 Democrats, 5 Republicans, and 1 Independent. In how many ways can they
sit around a circular table if all the members of each party all sit next to each other? (Two seatings
are considered equivalent if one is a rotation of the other.)

Vanilla CoT

[Slow thinking]
Okay, so I have this problem about a Senate committee with 5 Democrats,
5 Republicans, and 1 Independent. They need to sit around a circular table,
and all the members of each party have to sit next to each other. I need to
figure out in how many different ways this can happen. The problem also
mentions that two seatings are considered the same if one is just a rotation
of the other. Hmm, okay, let me break this down.

First, since it's a circular table, the number of arrangements is usually less
than a straight line because rotations are considered the same.
omitted

So, let me think. There are three parties: Democrats, Republicans, and
Independents. Each party is a group that needs to be seated together. So,
instead of thinking of 11 individuals, I can think of three blocks:
D (Democrats), R (Republicans), and I (Independent). Each block has to
be seated together, so the problem reduces to arranging these three blocks
around the table.

omitted:
So, for three blocks, it's 2! = 2 distinct arrangements.

But now, within each block, the members can be arranged among
themselves. For the Democrats, there are 5 people, so they can be
arranged in 5! ways. Similarly, the Republicans can be arranged in 5!
ways. The Independent is just one person, so there's only 1 way to arrange
that block.

Therefore, the total number of arrangements is the number of ways to
arrange the blocks multiplied by the number of ways to arrange the
people within each block. So, that would be 2! * (5! * 5! * 11) =2 * (120
*120 * 1) =2 * 14400 = 28800.

Early Exit !

</think>

[Conclusion)
The Senate committee consists of three parties: Democrats (D), Republicans
(R), and an Independent (I). Since they must sit together, we treat each party
as a single block.

1. **Arranging the Blocks**: Around a circular table, the number of ways
to arrange 3 blocks is \\((3-1)! = 2!\\).

2. **Arranging Within Blocks**: \n - Democrats can be arranged in \\(5!\\)
ways.\n - Republicans can be arranged in \\(5!\\) ways.\n - The Independent
is a single person, so there's \\(1!\\) way.

3. **Total Arr **: Multiply the ar of the blocks by the
arrangements within each block:\n \\[\n 2! \\times 5! \\times 5! \\times 1! =2
\\times 120 \\times 120 \\times 1 = 28,800\n \\]

Answer: \\boxed {28800} "

Token number: 870

[Slow thinking]

Okay, so I have this problem about a Senate committee with 5 Democrats, 5
Republicans, and 1 Independent. They need to sit around a circular table, and
all the members of each party have to sit next to each other.

omitted

Therefore, the total number of arrangements is the number of ways to arrange

the blocks multiplied by the number of ways to arrange the people within each
block. So, that would be 2! * (5! * 5! * 11) =2 * (120 * 120 * 1) =2 * 14400 =
28800.

Wait, hold on. Is that all? Let me double-check. So, we have three blocks: D, R,
1. Arrange them around the table: (3-1)! = 2. Then, within each block, arrange
the members: 5! for D, 5! for R, and 1! for I. So, yes, 2 * 5! * 5! * 11 =2 * 120
* 120 = 28800.

But wait, another thought: since the table is circular, does the direction matter?
Like, clockwise vs. counterclockwise. In circular permutations, sometimes
arrangements that are mirror images are considered different unless specified
otherwise.

omitted

But let me think again. Is there another way to approach this problem? Maybe
by considering the circular arr as a linear ar where we fix
one person's position to eliminate rotational symmetry.

<omitted

But since we've fixed the Democrats, the remaining seats are in a line, so the
number of ways to arrange the Republican block and the Independent is 2!
(since there are two blocks: R and I). Then, within the Republican block, they
can be arranged in 5! ways, and the Independent is just 1.

So, the total number of arrangements would be 1 (for the fixed Democrat) * 2!
* 51 % 11=2 %120 =240.

Wait, that's different from the previous answer. Hmm, so which one is correct?
Wait, no, actually, if we fix one Democrat's seat, we're not just fixing that one
seat, but the entire block of Democrats. So, the number of ways to arrange the
blocks is 2! (for R and I), and within each block, it's 5! for R and 1! for I. So, 2!
*51% 11=2 * 120 = 240. But that seems too low because earlier we had 28800.

Wait, so which approach is correct? Let me think.
omitted>
Wait, so which approach is correct? Let me think. Repef”"on

<omitted>

Wait, so which approach is correct? Let me think.

[No Conclusion]

Token number: 16384

Figure 13: Comparison of generated content samples between DEER and Vanilla CoT on MATH-
500. Both DEER and vanilla CoT arrive at the correct answer during the first reasoning step, as
shown in the green box. The difference lies in the fact that DEER exits early after evaluating the
confidence of the trial answer as sufficiently high, thus producing the correct result.

36

Under review as a conference paper at ICLR 2026

Question: The coordinates of a parallelogram are (5, 3), (6, 8), (7, 4) and (x, y) and $x > 7$.

What is the value of $x +y$?
DEER

Okay, so | have this problem where | need to find the
coordinates of the fourth vertex of a parallelogram. The
given points are (5, 3), (6, 8), (7, 4), and (x, y) with the
condition that x > 7. Then, | need to find the value of x +y.
Hmm, let me think about how to approach this.\n\nFirst, |
remember that in a parallelogram, opposite sides are equal
and parallel. That means the midpoints of the diagonals
should be the same. So, if | can find the midpoint of one
diagonal, it should be equal to the midpoint of the other
diagonal\n\nLet me label the points to make it clearer. Let's
say point A is (5, 3), point B is (6, 8), point C is (7, 4), and
point D is (x, y). Now, | need to figure out which points are
connected to each other. Since it's a parallelogram, the
order of the points matters. | think the points should be
connected in order, so A to B to C to D and back to A. But
I'm not entirely sure, so maybe | should consider different
possibilities.

<omitted>

Let me try another approach.\n\nAnother property of a
parallelogram is that the diagonals bisect each other. So, the
midpoint of diagonal AC should be the same as the
midpoint of diagonal BD\n\nLet me calculate the midpoint
of AC first. Point A is (5, 3) and point C is (7, 4). The midpoint
formula is ((x1 + x2)/2, (y1 + y2)/2). So, midpoint of AC is ((5
+7)/2, (3 +4)/2) =(12/2,7/2) = (6, 3.5).

<omitted>

Midpoint is (5 + x)/2, (3 + y)/2).\n\nMidpoint of BC: Point B
is (6, 8) and point C is (7, 4). Midpoint is (6 + 7)/2, (8 + 4)/2)
= (13/2, 12/2) = (6.5, 6).\n\nSetting midpoints equal:\n\n(5
+x)/2 = 6.5 and (3 + y)/2 = 6.\n\nSolving the first equation:
(5+x)/2=65=>5+x=13=>x=8\n\nSolving the
second equation: 3 +Yy)/2=6=>3+y=12=>y=
9.\n\nOkay, this gives x = 8 and y = 9, which satisfies x > 7.
So, the fourth point is (8,9), and x +y =8 + 9 = 17.
</think>

To find the coordinates of the fourth vertex of the
parallelogram, we use the property that the diagonals of a
parallelogram bisect each other. \n\n1. **Calculate the
midpoint of diagonal BC:**\n - Points B (6, 8) and C (7,
4)\n - Midpoint formula: \\(\\left(\\frac{6 + 7}{2}, \\frac{8 +
4}2\\right) = \\left(\\frac{13}{2}, 6\\right) = (6.5, 6)\\).\n\n2.
**Set the midpoint of diagonal AD equal to the midpoint of
BC:**\n - Let D be (x, y).\n - Midpoint of AD:
\W(\left(\frac{5 + x}2}, \\frac{3 + yH2\\right)\\).\n -
Equate to (6.5, 6)\n - \\(\\frac{5 + x}{2} = 6.5 \\Rightarrow
5 + x = 13 \\Rightarrow x = 8\\).\n - \\(\\frac{3 + y}{2} = 6
\\Rightarrow 3 +y = 12 \\Rightarrow y = 9\\).\n\n3.
Calculate \\(x + Y\\):\n -\\(x +y =8 +9 =
17\\).\n\n**Answer:** \\(\\boxed{17}\\)

Answer:

Token number: ~800

Vanilla CoT

Okay, so | have this problem where | need to find the
coordinates of the fourth vertex of a parallelogram. The
given points are (5, 3), (6, 8), (7, 4), and (x, y) with the
condition that x > 7. Then, | need to find the value of x +y.
Hmm, let me think about how to approach this.\n\nFirst, |
remember that in a parallelogram, opposite sides are equal
and parallel. That means the midpoints of the diagonals
should be the same. So, if | can find the midpoint of one
diagonal, it should be equal to the midpoint of the other
diagonal\n\nLet me label the points to make it clearer. Let's
say point A'is (5, 3), point B is (6, 8), point C is (7, 4), and
point D is (x, y). Now, | need to figure out which points are
connected to each other. Since it's a parallelogram, the
order of the points matters. | think the points should be
connected in order, so A to B to C to D and back to A. But
I'm not entirely sure, so maybe | should consider different
possibilities.

Let me try another approach.\n\nAnother property of a
parallelogram is that the diagonals bisect each other. So, the
midpoint of diagonal AC should be the same as the
midpoint of diagonal BD.

<omitted>

Midpoint is ((5 + x)/2, (3 + y)/2).\n\nMidpoint of BC: Point B
is (6, 8) and point C is (7, 4). Midpoint is ((6 + 7)/2, (8 + 4)/2)
= (13/2, 12/2) = (6.5, 6).\n\nSetting midpoints equal:\n\n(5
+x)/2 = 6.5 and (3 + y)/2 = 6\n\nSolving the first equation:
(5 +x)/2=6.5=>5+x =13 =>x = 8\n\nSolving the
second equation: (3 +y)/2=6=>3+y=12=>y=
9.\n\nOkay, this gives x = 8 and y = 9, which satisfies x > 7.
So, the fourth point is (8,9), andx +y =8 + 9 = 17.

Wait, let me verify this. If the points are A(5,3), B(6,8),
C(7,4), and D(8,9), does this form a parallelogram?\n\nLet
me check the vectors.

<omitted>

These aren't equal either. Hmm, that's confusing.\n\nWait,
maybe | made a mistake in assigning the points. Let me try
another approach.

<omitted>

Hmm, these aren't equal. Wait, that's a problem.\n\nWait,
but according to the vector addition, D should be (8,9). So,
why are vectors AD and BC not equal?\n\nWait, maybe |
need to check the other pair of sides. Vector AD and vector
BC are not equal, but vector AB and vector DC are equal.
<omitted>

These aren't equal, but in a parallelogram, both pairs should
be equal. So, that's a problem.\n\nWait, but according to
the midpoint method, it's a parallelogram. So, maybe I'm

missing something.
<omitted> No answer |

Token number: 16384

Figure 14: Comparison of generated content between DEER and Vanilla on MATH-500.

Under review as a conference paper at ICLR 2026

Question: Point A lies somewhere within or on the square which has opposite corners at $(0,0)$
and $(2,2)$. Point B lies somewhere within or on the square which has opposite

Answer:

corners at points $(4,2)$ and $(5,3)$. What is the greatest possible value of the slope of

the line containing points A and B? Express your answer as a common fraction.

DEER

Okay, so | have this problem where | need to find the
greatest possible slope of a line connecting two points, A
and B. Point A is somewhere inside or on a square with
opposite corners at (0,0) and (2,2). Point B is inside or on
another square with opposite corners at (4,2) and (5,3). |
need to figure out the maximum slope possible between
any two points A and B in these squares.\n\nFirst, let me
visualize the squares. The first square has corners at (0,0)
and (2,2). Similarly, the second square has opposite corners
at (4,2) and (5,3). Hmm, so that square is a bit smaller. Let
me figure out its sides. The distance between (4,2) and (5,3)
is sqrt[(5-4)22 + (3-2)"2] = sqrt[1 + 1] = sqrt(2). So, it's a
square with side length sqrt(2), rotated 45 degrees relative
to the axes.\n\nWait, actually, no. If the opposite corners are
(4,2) and (5,3), then the sides are not aligned with the axes.
<omitted>

But wait, is that achievable? Because point A is in the first
square, so if A is at (2,0), which is a corner, and point B is at
(4,3), which is a corner of the second square. So, connecting
(2,0) to (4,3) would give a slope of (3 - 0)/(4 - 2) = 3/2. But is
that the maximum?

</think>

To find the greatest possible slope of the line containing
points \\(A \\) and \\(B \\), we need to maximize the
expression \\(\\fracfy B - y A}{x_B - x_A} \\). \n\n- Point

\\(A \\) lies within or on the square with opposite corners at
\\((0,0) \\) and \\((2,2) \\). The minimum \\(y \\)-coordinate
for W(A\\) is \\(0\\) and the maximum \\(x \\)-coordinate
is \\(2 \\)-\n- Point \\(B \\) lies within or on the square with
opposite corners at \\((4,2) \\) and \\((5,3) \\). The
maximum \\(y \\)-coordinate for \\(B \\) is \\(3 \\) and the
minimum \\(x \\)-coordinate is \\(4 \\).\n\nTo maximize the
slope, we should choose \\(A \\) at \\((2,0) \\) and \\(B \\)
at \\((4,3) \\). The slope is then:\n\\[\n\\text{slope} =
\\frac{3 - 0}{4 - 2} = \\frac{3{2A\n\\]\n\nHowever, upon
closer inspection, the square for \\(B \\) is actually a
diamond with corners at \\((4,2) \\), \\((5,3) \\), \\((5,2) \\),
and \\((4,3) \\). The point \\((4,3) \\) is indeed a corner of
this square. Therefore, the maximum slope is
achievable.\n\nThe greatest possible slope is \\(\\frac{3}{2}
\\).\n\n\\boxed{\\dfrac{3}{2}}"], "gold_answer": "\\frac{3}{2}"}

Token number: ~1000

Vanilla CoT

Okay, so | have this problem where | need to find the
greatest possible slope of a line connecting two points, A
and B. Point A is somewhere inside or on a square with
opposite corners at (0,0) and (2,2). Point B is inside or on
another square with opposite corners at (4,2) and (5,3). |
need to figure out the maximum slope possible between
any two points A and B in these squares.\n\nFirst, let me
visualize the squares. The first square has corners at (0,0)
and (2,2). Similarly, the second square has opposite corners
at (4,2) and (5,3). Hmm, so that square is a bit smaller. Let
me figure out its sides. The distance between (4,2) and (5,3)
is sqrt[(5-4)A2 + (3-2)72] = sqrt[1 + 1] = sqrt(2). So, it's a
square with side length sqrt(2), rotated 45 degrees relative
to the axes.\n\nWait, actually, no. If the opposite corners are
(4,2) and (5,3), then the sides are not aligned with the axes.
<omitted>

But wait, is that achievable? Because point A is in the first
square, so if A is at (2,0), which is a corner, and point B is at
(4,3), which is a corner of the second square. So, connecting
(2,0) to (4,3) would give a slope of (3 - 0)/(4 - 2) = 3/2. But is
that the maximum?

Wait, but maybe we can get a steeper slope by choosing
points that are not at the corners. Because if we can have

a larger yB - yA with a smaller xB - xA, that would give a
steeper slope.

<omitted>

Wait, but hold on. Let me think again. Maybe if we don't
take A at (2,0) and B at (4,3), but somewhere else, we can

get a steeper slope.

<omitted>

But wait, is there a way to have a larger slope? For example,
if Ais at (2,2) and B is at (4,3). Then, the slope is (3 - 2)/(4 - 2)
= 1/2, which is less than 3/2.\n\nAlternatively, if A is at (0,0)
and B is at (5,3), then the slope is (3 - 0)/(5 - 0) = 3/5, which
is less than 3/2.

<omitted>

Alternatively, if point A is at (x, yA) where x < 2, then point B
would have to be at (x + 2, yB). But since the second square
starts at x=4, x + 2 must be at least 4, so x must be at least 2.

<omitted> No answer !

Token number: 16384

Figure 15: Comparison of generated content between DEER and Vanilla on MATH-500.

38

Under review as a conference paper at ICLR 2026

The expression $$1 + 2 + 3 - 4 + 5 + 6$$is equivalent to 13. If we add parentheses in
Question: Various locations, we can change this value. For example, $1+2+3-(4+5)+6=1+2+3-
9+6=6-9+6=3%. If we only add parentheses (and not rearrange the order of the terms),
what is the minimum possible value this expression can obtain? (For the purposes of
this problem, we cannot change addition or subtraction into multiplication. For
example, $ (1+2+3)(-4)+5+6 $ is not a valid placement of parentheses.)\n\nEnter your

answer as a single value.",

DEER

Okay, so | have this math problem here: the expression is 1
+2+3-4+5+6, andit's equal to 13. The task is to add
parentheses in various places to change the value, but | can't
rearrange the terms or turn the operations into
multiplication. | need to find the minimum possible value
this expression can obtain by adding parentheses. Hmm,
interesting.\n\nFirst, let me make sure | understand the
problem correctly. | can only add parentheses, which will
change the order in which operations are performed, but |
can't move the numbers around or change the plus and
minus signs into multiplication or division. So, for example, |
can do something like (1 + 2) + 3-4 + 5 + 6, but | can't do
1*(2+3) - 4 + 5 + 6 because that would involve
multiplication, which isn't allowed.

<omitted>

Yep, that's correct. So, 13 is the original
value\n\nAlternatively, group (1 + 2) + (3-4 + 5 + 6). So, 1
+2=33-4=-1,-1+5=44+6=10.Then, 3+ 10 =
13.\n\nAlternatively, group 1 + (2 + 3-4 + 5) + 6. S0, 2 + 3
=55-4=11+5=6.Then, 1+ 6 + 6 = 13.\n\nHmm,
seems like 3 is the lowest | can get so far. But let me think if
there's another way.\n\nWhat if | group 1 + 2 + 3- (4 + 5 +
6). Let's compute that: 4 + 5 + 6 = 15. Then, 1 +2 +3=6,6
- 15 = -9. So, that's -9. Wait, that's way lower than 3. Is that
allowed?

Answer:

</think>

To find the minimum possible value of the expression \\(1 +
2 +3-4+5+6\\) by adding parentheses, we can
strategically group terms to maximize the impact of the
subtraction. \n\nBy grouping the terms after the subtraction,
we can create a larger number to subtract, significantly
reducing the overall value. For example, grouping \\(4 + 5 +
6\\) together\n\n\\\n1 +2 +3-(4+5+6)=6-15=-
9\n\\I\n\nThus, the minimum possible value is \\(\\boxed{-
9N\

Token number: ~1500

Vanilla CoT

Okay, so | have this math problem here: the expression is 1
+2+3-4+5+6, and it's equal to 13. The task is to add
parentheses in various places to change the value, but | can't
rearrange the terms or turn the operations into
multiplication. | need to find the minimum possible value
this expression can obtain by adding parentheses. Hmm,
interesting.\n\nFirst, let me make sure | understand the
problem correctly. | can only add parentheses, which will
change the order in which operations are performed, but |
can't move the numbers around or change the plus and
minus signs into multiplication or division. So, for example, |
can do something like (1 +2) + 3-4 + 5 + 6, but | can't do
1*(2+3) - 4 + 5 + 6 because that would involve
multiplication, which isn't allowed.

<omitted>

Yep, that's correct. So, 13 is the original
value.\n\nAlternatively, group (1 +2) + 3-4 + 5 + 6). So, 1
+2=33-4=-1,-1+5=4,4+6=10.Then, 3+ 10 =
13.\n\nAlternatively, group 1 + 2 + 3-4+5) +6.S0,2 + 3
=505-4=1,1+5=6.Then, 1 + 6 + 6 = 13.\n\nHmm,
seems like 3 is the lowest | can get so far. But let me think if
there's another way.\n\nWhat if | group 1 + 2 + 3- (4 + 5 +
6). Let's compute that: 4 + 5+ 6 = 15.Then, 1 +2+3=6,6
- 15 = -9. So, that's -9. Wait, that's way lower than 3. Is that
allowed?

Wait, hold on. The original expressionis 1 +2 +3-4 +5 +
6. If I group 4 + 5 + 6, that would be subtracting 15, so 6 -
15=-9.

<omitted>

Wait, but in the original expression, after the subtraction,
it's +5 +6. So, if | group 4 +5 +6, that would be changing
the operations after the subtraction, but | can't rearrange
terms. So, is that allowed?

<omitted>

Alternatively, group 1 + (2 +3 -4 +5 +6). As before, 1
+12=13.\n\nAlternatively, group (1 +2 +3 -4 +5) +6. ...

Endless exhaustive search!

Token number: 16384

Figure 16: Comparison of generated content between DEER and Vanilla on MATH-500.

Under review as a conference paper at ICLR 2026

Question: The coordinates of a parallelogram are (5, 3), (6, 8), (7, 4) and (x, y) and $x > 7$.
What is the value of $x +y$?

Answer:
Okay, so I have this problem where I need to find the coordinates of the fourth vertex of a parallelogram. The given points are (5, 3), (6, 8), (7, 4), and
(x, y) with the condition that x > 7. Then, I need to find the value of x + y. Hmm, let me think about how to approach this.
First, I remember that in a parallelogram, opposite sides are equal and parallel. That means the midpoints of the diagonals should be the same. So, if T
can find the midpoint of one diagonal, it should be equal to the midpoint of the other diagonal.
Let me label the points to make it clearer. Let's say point A is (5, 3), point B is (6, 8), point C is (7, 4), and point D is (x, y). Now, I need to figure out
which points are connected to each other. Since it's a parallelogram, the order of the points matters. I think the points should be connected in order, so
Ato B to C to D and back to A. But I'm not entirely sure, so maybe I should consider different possibilities.
Alternatively, another way to approach this is by using vectors. In a parallelogram, the vector from one point to another should be equal to the vector
from another point to the next. So, for example, vector AB should be equal to vector DC, and vector AD should be equal to vector BC.
Let me try that. First, let's find vector AB. Point A is (5, 3) and point B is (6, 8). So, vector AB is (6 - 5, 8 - 3) = (1, 5). If vector AB is equal to vector
DC, then vector DC should also be (1, 5). Point D is (x, y) and point C is (7, 4). So, vector DC is (7 - x, 4 - y). Setting this equal to (1, 5), we get:\n\n7
-x=1land4-y=5.
Solving the first equation: 7-x=1=>x=7-1=6.
Solving the second equation: 4 -y =5=>y=4-5=-1.

<Induced trial answer>: \boxed{6+(—])}.x Confidence: 0.7344 Continue thinking

Wait, but the problem states that x > 7, and here x is 6, which is less than 7. That can't be right. So, maybe I assigned the points incorrectly.

Perhaps the order of the points isn't A, B, C, D. Maybe it's a different order. Let me try another approach.

Another property of a parallelogram is that the diagonals bisect each other. So, the midpoint of diagonal AC should be the same as the midpoint of
diagonal BD.

Let me calculate the midpoint of AC first. Point A is (5, 3) and point C is (7, 4). The midpoint formula is ((x1 + x2)/2, (y1 + y2)/2). So, midpoint of AC
is (5+7)/2, (3 +4)/2)=(12/2,7/2) = (6, 3.5).

Now, the midpoint of BD should also be (6, 3.5). Point B is (6, 8) and point D is (x, y). So, midpoint of BD is ((6 + x)/2, (8 + y)/2). Setting this equal
to (6, 3.5):\n\n(6 + x)/2 =6 and (8 +y)/2 =3.5.

Solving the first equation: (6 + x)/2 = 6 => 6 + x = 12 => x = 6.\n\nSolving the second equation: (8 +y)/2=3.5=>8 +y=7=>y=-1.

Again, I get x = 6 and y = -1, but x is supposed to be greater than 7. Hmm, that's conflicting. Maybe I need to consider a different pair of points as the
diagonal.

<Induced trial answer>: \boxed{lo}x Confidence: 0.5312 Continue thinking

Wait, perhaps I assumed the wrong diagonal. Maybe the diagonals are AD and BC instead of AC and BD. Let me try that.

Midpoint of AD: Point A is (5, 3) and point D is (x, y). Midpoint is ((5 + x)/2, (3 + y)/2).

Midpoint of BC: Point B is (6, 8) and point C is (7, 4). Midpoint is ((6 + 7)/2, (8 + 4)/2) = (13/2, 12/2) = (6.5, 6).

Setting midpoints equal:\n\n(5 + x)/2 = 6.5 and (3 +y)/2 = 6.

Solving the first equation: (5 +x)/2 = 6.5 =>5 + x = 13 => x = 8.\n\nSolving the second equation: 3 +y)2=6=>3+y=12=>y=9.
Okay, this gives x = 8 and y = 9, which satisfies x > 7. So, the fourth pointis (8,9),andx +y=8 +9=17.

<Induced trial answer>: \boxed{17}. Confidence: 0. 9993 Exitl
</think>

To find the coordinates of the fourth vertex of the parallelogram, we use the property that the diagonals of a parallelogram bisect each other.
1. **Calculate the midpoint of diagonal BC:**\n - Points B (6, 8) and C (7, 4).\n - Midpoint formula: \\(\\left(\\frac {6 + 7} {2}, \\frac{8 + 4} {2}\\right)
=\left(\\frac {13} {2}, 6\\right) = (6.5, 6)\\).

2. 2. **Set the midpoint of diagonal AD equal to the midpoint of BC:**\n - Let D be (x, y).\n - Midpoint of AD: \\(\\left(\\frac {5 + x} {2}, \\frac {3 +
y}{2}\\right)\\).\n - Equate to (6.5, 6):\n - \(\frac{5 + x} {2} = 6.5 \\Rightarrow 5 + x = 13 \\Rightarrow x = 8\\).\n - \(\\frac{3 + y} {2} =6
\\Rightarrow 3 +y = 12 \\Rightarrow y = 9\\).

. 3. **Calculate W(x + y\\):**¥\n - \\(x +y =8 + 9= 17\)).

4. **Answer:** \\(\\boxed {17}\)

w

Figure 17: An example demonstrating LRM’s implicit ability to sense the emergence of pearl reason-
ing. When the model’s reasoning content is insufficient to support the elicited answer, the confidence
remains at a low level, as demonstrated by the first two confidence values in the figure. Conversely,
when the model has provided adequate and sound reasoning as justification, the confidence reaches
high levels, potentially approaching 1, as shown by the final confidence value in the figure.

40

Under review as a conference paper at ICLR 2026

Question: Define\n\\[p = \\sum_{k = 1}"\\infty \\frac{1}{k"2} \\quad \\text{and} \\quad q =
\\sum_{k = 1}"\\infty \\frac{1}{k"3}.\\JFind a way to write\n\\[\\sum_{j = 1}"\\infty
\\sum_{k = 1}"\\infty \\frac{1}{(j + k)"3}\\lin terms of p and $q.$

Answer: DeepSeek-R1-Distill-Qwen-328

Okay, so I have this problem where I need to express the double sum \\(\\sum_ {j = 1}"\\infty \\sum_ {k = 1}"\\infty \\frac{1} {(j + k)*3}\\) in terms of

\W\(p\\) and \\(q\\), where \\(p = \\sum_ {k = 1}"\\infty \\frac{1} {k*2}\\) and \\(q = \\sum_ {k = 1}"\\infty \\frac{1} {k”3}\\). Hmm, let me think about

how to approach this.\n\nFirst, I know that \\(p\\) is the famous Basel problem, which equals \\(\\frac {\\pi*2} {6}\\), and \\(q\\) is the Riemann zeta

function at 3, which is known as Apery's constant, approximately 1.202... But I don't think I need the exact values; instead, I need to relate the double

sum to these series.\n\nLooking at the double sum, it's over all positive integers \\(j\\) and \\(k\\), and the term is \\(\\frac {1} {(j + k)*3}\\). Maybe I

can change variables to simplify this. Let me set \\(n = j + k\\). Then, for each fixed \\(n\\), \\(j\\) can range from 1 to \\(n - 1\\), and \\(k = n - j\\). So,

perhaps I can rewrite the double sum as a single sum over \\(n\\), where each term is the sum over \\(j\\) from 1 to \\(n - 1\\) of

W(\frac {1} {n"3}\\).\n\nLet me write that down:\n\n\\[\n\\sum_ {j = 1}\infty \\sum_ {k = 1}\infty \\frac{1} {(j + k)*3} =\\sum_ {n = 2}"\\infty 408
\Wsum_{j=1}"n - 1} \\frac{1} {n"3}\n\\]\n\nYes, that makes sense because the smallest \\(n\\) can be is 2 (when \\(j = 1\\) and \\(k = 1\\)), and it goes

to infinity. Now, for each \\(n\\), the inner sum is just adding \\(\\frac {1} {n"3}\\) a total of \\(n - 1\\) times. So, the inner sum simplifies to \\(\\frac {n -

1} {n”*3}\\).\n\nSo now, the double sum becomes:\n\n\\[\n\\sum_ {n = 2} \infty \\frac {n - 1} {n"3}\n\\]\n\nHmm, that seems manageable. Let me

write this as:\n\n\\[\n\\sum_ {n = 2}M\infty \\left(\\frac{n} {n"3} - \\frac {1} {n"3} \\right) =\\sum_ {n = 2}"\\infty \left(\\frac {1} {n"2} -

\\frac{1} {n"3} \\right)\n\\]\n\nYes, that's correct. So, this is equal to:\n\n\\[\n\\left(\\sum_ {n = 2}\\infty \\frac {1} {n"2} \\right) - \\left(\\sum_{n =
2}3M\infty \\frac {1} {n"3} \\right)\n\\]\n\nBut I know that \\(p =\\sum_{n = 1}"\\infty \\frac {1} {n"2}\\) and \\(q = \\sum_ {n = 1}"\\infty

\\frac{1} {n"3}\\). So, if I subtract the \\(n = 1\\) terms from both series, I can express the sums starting from \\(n = 2\\).\n\nLet's compute that:\n\nFor

the first sum:\n\n\\[\n\\sum_ {n = 2}"\\infty \\frac {1} {n"2} =p - \\frac{1} {172} = p - 1\n\\]\n\nSimilarly, for the second sum:\n\n\\[\n\\sum_ {n =

2}M\infty \\frac {1} {n"3} = q - \\frac{1} {13} = q - 1\n\\]\n\nSo, substituting back into our expression:\n\n\\[\n\\left(p - 1 \\right) - \\left(q - 1 \\right)
=p-1-q+1=p-q\n\]\n\n

</think>

\n\nSo, the double sum simplifies to \\(p - q\\). Therefore, the answer is:\n\n\\[\n\\boxed {p - q}\n\\] 15

QwQ-32B
Okay, so I need to find a way to express the double sum \\(\sum_ {j = 1}"\\infty \\sum_ {k = 1}"\\infty \\frac{1} {(j + k)"3}\\) in terms of \\(p\\) and
\W(q\\), where \\(p\\) is the sum of \\(1/k”2\\) and \\(q\\) is the sum of \\(1/k”3\\). Hmm, let me think about how to approach this.\n\nFirst, I
remember that double sums can sometimes be simplified by changing variables or switching the order of summation. Maybe I can let \\(n =j + k\\),
so that for each \\(n\\), the terms where \\(j + k = n\\) contribute to the sum. That might help me rewrite the double sum as a single sum over \\(n\\),
with each term multiplied by the number of pairs \\((j, k)\\) that add up to \\(n\\).\n\nLet me try that. Let's set \\(n =j + k\\). Then for each \\(n \\geq
2\\) (since \\(j\\) and \\(k\\) are at least 1), the number of pairs \\((j, k)\\) such that \\(j + k =n\\) is \\(n - 1\\). For example, when \\(n = 2\\), there's
only one pair (1,1); when \\(n = 3\\), there are two pairs (1,2) and (2,1), and so on. So the double sum can be rewritten
as:\n\n\\[\n\\sum_ {n=2}"\infty \\frac{n - 1} {n"3}\n\\]\n\nWait, is that right? Let me check. Each term \\(\frac {1} {(j + k)"3}\\) for each pair \\(j,
k)\\) would be grouped by \\(n =j + k\\), so each \\(n\\) contributes \\((n - 1)\\) terms each of \\(\frac {1} {n*3}\\). Therefore, the total contribution
for each \\(n\\) is \\(\\frac{n - 1} {n"3}\\). So the entire double sum becomes:\n\n\\[\n\\sum_ {n=2}"\\infty \\frac {n - 1} {n"3}\n\\]\n\nHmm, okay. 387
Now I need to express this in terms of \\(p\\) and \\(q\\). Let me see. Let's first write out the sum:\n\n\\[\n\\sum_ {n=2}"\\infty \\frac{n - 1} {n"3} =
\sum_ {n=2}\infty \\left(\\frac{n} {n"3} - \\frac{1} {n"3} \\right) = \\sum_{n=2}"\\infty \\left(\\frac {1} {n"2} - \\frac{1} {n"3}
\\right)\n\\]\n\nAh, that simplifies to the difference between two sums. Let's split that into two separate sums:\n\n\\[\n\\sum_ {n=2}"\infty
\Wfrac {1} {n"2} - \\sum_{n=2}"\\infty \\frac {1} {n"3}\n\\]\n\nNow, notice that these are just the tails of the series for \\(p\\) and \\(q\\). Since \\(p =
\\sum_ {k=1}"\infty \\frac {1} {k"2}\\), then \(\\sum_{n=2}"\\infty \\frac{1} {n"2} = p - \\frac{1} {172} = p - 1\\). Similarly, \\(q =
\W\sum_ {k=1}"\infty \\frac {1} {k"3}\\), so \(\\sum_ {n=2}"\infty \\frac{1} {n"3} = q - \\frac{1} {13} = q - 1\\).\n\nTherefore, substituting back
into the expression:\n\n\\[\n(p - 1) - (q-1)=p-1-q+1= py\\]\n\n
</think>
Let's summarize the above thought process and provide the result. The double sum can be rewritten by considering the sum over \\(n =j + k\\). For
each \\(n \\geq 2\\), there are \\(n - 1\\) pairs \\((j, k)\\) such that \\(j + k = n\\). This transforms the double sum into a single
sum:\n\n\[\n\\sum_ {j=1}"\infty \sum_ {k=1}"\infty \\frac{1} {(j + k)*3} = \\sum_ {n=2}"\\infty \\frac{n - 1} {n"3}\n\\]\n\nBreaking this into two
separate sums:\n\n\\[\n\\sum_ {n=2}"\\infty \left(\\frac {1} {n"2} - \\frac {1} {n"3} \\right) = \\left(\\sum_ {n=2}"\\infty \\frac {1} {n"2} \\right) - 260
\Weft(\\sum_ {n=2}"\\infty \\frac {1} {n"3} \\right)\n\\]\n\nRecognizing these as the tails of the series for \\(p\\) and \\(q\\), we subtract the first
terms:\n\n\\[\n\\left(p - 1 \\right) - \\left(q - 1 \\right) = p - q\n\\]\n\nThus, the double sum simplifies to \\(\\boxed {p - q}\\).\n\n**Final
Answer**\n\\boxed{p - q}\n\n
</think>
\n\nTo express the double sum \\(\\sum_{j = 1}"\\infty \\sum_{k = 1}\\infty \\frac {1} {(j + k)*3}\\) in terms of \\(p\\) and \\(q\\), we start by
changing variables. Let \\(n =j + k\\). For each \\(n \\geq 2\\), the number of pairs \\((j, k)\\) such that \\(j + k =n\\) is \\(n - 1\\). This allows us to
rewrite the double sum as:\n\n\\[\n\\sum_ {n=2}"\\infty \\frac {n - 1} {n"3}\n\\]\n\nNext, we split this into two separate 128
sums:\n\n\\[\n\\sum_ {n=2}\\infty \\left(\\frac{1} {n"2} - \\frac {1} {n"3} \\right)\n\\]\n\nRecognizing these as the tails of the series for \\(p\\) and
\\(q\\)), we have:\n\n\\[\n\\sum_ {n=2}M\infty \\frac{1} {n"2} = p - 1 \\quad \\text{and} \\quad \\sum_ {n=2}"\infty \\frac{1} {n"3} =q -
1\n\\]\n\nSubstituting these into the expression gives:\n\n\[\n(p - 1) - (q - 1) = p - g\n\\]\n\nThus, the double sum simplifies to \\(\\boxed {p - q}\\).

v

Figure 18: An example demonstrating the presence of more than one (/think) tokens in QwQ-32B.
For both models, the green thinking chunk is sufficient to draw the correct conclusion. However,
QwQ-32B proceeds with an additional summary (red chunk) and generates its own (/think) token.
Based on all the above content, it arrives at the conclusion.

Length

41

Under review as a conference paper at ICLR 2026

Question: Convert the point $(0,3)$ in rectangular coordinates to polar coordinates. Enter your answer
in the form $(r,\\theta),$ where $r > 0$ and $0 \\le \\theta < 2 \\pi.

Original Response

Okay, so I need to convert the point (0, 3) from rectangular coordinates to polar coordinates. Hmm, let me recall
how polar coordinates work. In polar coordinates, a point is represented as (r, 0), where r is the distance from the
origin to the point, and 0 is the angle measured from the positive x-axis to the line connecting the origin to the
point. <omitted> So in this case, since the point is (0, 3), 0 is 7/2. But let me think again. <omitted>
Wait, let me check if there's another way to think about this. <omitted> But let me just
verify with another method. <omitted> Just to make sure, let me think of another point.
For example,... <omitted>

</think>\n\nTo convert the rectangular coordinate point $(0, 3)$ to polar coordinates, we use the standard
conversion formulas: <omitted>

Step 1: Compute the radius $ r $ <omitted> Step 2: Determine the angle $ \\theta $ <omitted> Step 3: Final
Answer \nWe are given the requirement that $ r> 0 $ and $ 0 \\leq \\theta < 2\\pi $, which is satisfied
here.\n\nThus, the polar coordinates of the point $(0, 3)$ are:\n\n$$\n\\boxed {(3, \\frac{\\pi}{2})}\n$$

DEER's Response

Okay, so I need to convert the point (0, 3) from rectangular coordinates to polar coordinates. Hmm, let me recall
how polar coordinates work. In polar coordinates, a point is represented as (r, 0), where 1 is the distance from the
origin to the point, and 0 is the angle measured from the positive x-axis to the line connecting the origin to the
point. <omitted> So in this case, since the point is (0, 3), 0 is n/2. <Exit>

</think> To convert the point $(0, 3)$ from rectangular coordinates to polar coordinates, we use the standard
conversion formulas... <omitted> Final Answer:\n\n$$\n\\boxed{(3, \\frac{\\pi}{2})}\n$$ Less Tokens

Figure 19: Casel for rebuttal

Question: Convert the point $(0,3)$ in rectangular coordinates to polar coordinates. Enter your answer
in the form $(r,\\theta),$ where $r > 0$ and $0 \\le \\theta < 2 \\pi.

DEER's Response

Okay, so I need to convert the point (0, 3) from rectangular coordinates to polar coordinates. Hmm, let me recall
how polar coordinates work. In polar coordinates, a point is represented as (r, 0), where r is the distance from the
origin to the point, and 0 is the angle measured from the positive x-axis to the line connecting the origin to the
point. <omitted> So in this case, since the point is (0, 3), 0 is n/2. <Exit>

</think> To convert the point $(0, 3)$ from rectangular coordinates to polar coordinates, we use the standard
conversion formulas... <omitted> Final Answer:\n\n$$\n\\boxed{(3, \\frac{\\pi}{2})}\n$$

GPT5's Judgement
{

"reasoning_sufficiency": "Sufficient",

"justification": "The reasoning correctly identifies the goal: converting (0, 3) from rectangular to polar
coordinates. The student recalls the definitions of r and 6 in polar form and explicitly writes the conversion
formulas. They compute r step by step as V(0% + 32) = 3, which is consistent with their own formula. For 0, they
notice that the direct use of arctan(y/x) fails when x = 0 and explicitly acknowledge 3/0 is undefined. Instead of
forcing the formula, they reason geometrically: the point (0, 3) lies on the positive y-axis, so the angle from the
positive x-axis must be /2. They also cross-check by contrasting with the case (0, -3), which would give 3n/2,
showing awareness of quadrant/axis dependence. All necessary components—distance from origin, correct
handling of the undefined tangent case, and correct angle selection within the required range—are present and
logically connected to the final answer (3, ©/2)."

}

Figure 20: LLM-as-a-judge result for rebuttal

42

Under review as a conference paper at ICLR 2026

Question: = '3"4 $\dots,$ 7. Find $p(@)

DEER

Okay, so I have this problem where there's a polynomial
W(p(x) \\) of degree 5, and it satisfies the equation \\(p(n) =
\\frac{n}{n"2 - 1} \\) for \(n=2, 3, 4, \\dots, 7 \\). I need to
find \\(p(8) \\).\n\nHmm, let me try to break this down. First,
I know that \\(p(x) \\) is a polynomial of degree 5. That
means it's a quintic polynomial, right? So, it can be written in
the form \\(p(x) =a_5x"5 +a 4x"4 +a 3x"3 +a 2x"2 +

a Ix+a 0\\), where \\(a_5\\) is not zero.\n\nBut instead of
trying to find all the coefficients \\(a_5 \\) through \\(a_0\\),
which sounds complicated, maybe there's a smarter way. The
problem gives me specific values of \\(p(n) \\) for \\(n \\)
from 2 to 7. That's six points, and since \\(p(x) \\) is a degree
5 polynomial, these six points uniquely determine the
polynomial. <omitted> That's \\(6 \\times 5 \\times 4
\\times 3 \\times 2 \\times 1 = 6! = 720 \\).\n\nSo, numerator
becomes:\n\n\\(8 - \\frac{1} {720} \\times 720=8-1=7
\V).\n\nTherefore, \\(p(8) = \\frac{7} {63} = \\frac{1} {9} \\).\n
</think>\n\nTo find \\(p(8) \\), we start by defining a
polynomial <omitted>

The final answer is:\n\n\\[\n\\boxed {\\dfrac{1}{9}}\n\\]

continue Wrong answer

Answer:

Wait, that seems too straightforward. Let me double-
check.\n\nWait, so \\(p(8) = \\frac {8 - \\frac{1} {720} \\times
7203 {63} =\\frac{8 - 1} {63} =\\frac{7} {63} =\\frac{1} {9}
\\). Yeah, that seems correct. But let me verify the steps again
to make sure I didn't make a mistake.\n\n1. Defined \\(r(x) =
(x*2 - 1)p(x) - x \\), which has roots at 2 through 7, so \\(1(x)
=k(x - 2)...(x - 7) \).\n\n2. To find \\(k \\), plugged in \\(x =
1\\) because \\(x = 1 \\) makes \\(2 - 1 =0 \\), simplifying
the equation.\n\n3. Calculated \\(r(1) = 0 = 1 + k(-1)(-2)...(-6)
\\). The product is 720, so \\(0 = 1 + 720k \\) => \\(k = -
1/720 \\).\n\n4. Then, to find \\(p(8) \\), substituted \\(x = 8
\) into \\((x*2 - 1)p(x) = x + r(x) \\), which gave \\((63)p(8)
=8+ (-1/720)(720) \\).\n\n5. Simplified to \\(63p(8) =8 - 1
=7\\), so \\(p(8) = 7/63 = 1/9 \\).\n\nEverything seems to
check out. So, I think the answer is \\(\\frac{1} {9}
\\).\n\n**Final Answer**\n\\boxed{\\dfrac{1} {9} }
</think>\n\n Given a polynomial \\(p(x) \\) of degree 5 such
that <omitted> The final answer

is:\[\n\\boxed {\dfrac{1}{9}}\n\\] Still wrong

Let $p(x)$ be a polynomial of degree 5 such that\n\\[p(n) = \\frac{n}{n~2 - TA\\Ifor $n

Vanilla CoT

Okay, so I have this problem here where I need to find p(8) for
a polynomial p(x) of degree 5. It's given that p(n) = n/(n?- 1)
forn=2, 3,4, .., 7. Hmm, interesting. Let me try to figure this
out step by step.\n\nFirst, I know that p(x) is a degree 5
polynomial. That means it can be written as p(x) = asx® + asx* +
asx® + a2x? + aix + ao, where as isn't zero. But instead of trying
to find all these coefficients, which seems complicated, maybe
there's a smarter way.\n\nGiven that p(n) = n/(n?- 1) forn=2
to 7, that's 6 points. Since a polynomial of degree 5 is uniquely
determined by 6 points, p(x) is uniquely defined by these
conditions. But how do I find p(8)?\n\nl remember something
about constructing a polynomial that passes through certain
points. Maybe I can use the concept of Lagrange interpolation?
But Lagrange interpolation for 6 points would give me the
polynomial directly, but calculating it for 6 points seems
tedious, especially for n=2 to 7. Maybe there's a better
approach.\n\nWait, another thought: if I have a polynomial p(x)
that satisfies p(n) = n/(n* - 1) forn=2, 3, ..., 7, then maybe I
can consider another polynomial related to p(x) such that it has
roots at these points. Let me think.\n\nLet me define a function
q(x) such that q(x) = (x2 - 1)p(x) - x. <omitted>
Simplify:\n\n189=63*3, so0,\n\np(8)= (63*3)/(56*63)=3/56.So,
p(8)=3/56\n\nWait, let me double-check that calculation.\n So,
q(8)=-259/56\n\nBut q(8)=63p(8) -8\n\nSo,\n\n63p(8) = q(8)
+8 = (-259/56) +8\n\nConvert 8 to 448/56:\n\n63p(8)= (-259
+448)/56 =189/56\n\nTherefore,\n\np(8)= (189/56)/63=
(189)/(56*63)\n\nSimplify 189 and 63: 189=3*63, so,p(8)=
(3*63)/(56*63)=3/56\n\nYes, that seems correct.\n\nSo, the
final answer is 3/56.**Final Answer** \\boxed {\\dfrac{3} {56} }
</think>

Given a polynomial \\(p(x) \\) of degree 5 such that \\(p(n) =
\\frac{n} {n"2 - 1} \\) for \\(n =2, 3, 4, \\ldots, 7 \\), we need to
find \\(p(8) \\).\n\nFirst, we define a polynomial \\(q(x) \\)
such that:\n\\[q(x) = (x*2 - 1)p(x) - x \\]<omitted >

Next, we compute \\(q(8) \\):\n\\[q(8) = (8"2 - 1)p(8) - 8 =
63p(8) - 8 \\n\\[q(8) =k(8 - 2)(8 - 3)(8 - 4)(8 - 5)(8 - 6)(8 -
7)(8 - a) \\n\\[q(8) = -\\frac {29} {40320} \\cdot 720 \\cdot
\frac {259} {29} = -\\frac{259} {56} \\]\n\nThus:\n\\[63p(8) - 8
=-\\frac{259} {56} \\[\n\\[63p(8) = -\\frac {259} {56} + 8
\\n\\[63p(8) = \\frac {189} {56} \\]\n\\[p(8) = \\frac {189} {56
\\cdot 63} =\\frac{3} {56} \\]\n\nThe final answer
is:\n\\[\n\\boxed{\\dfrac{3}{56}}\n\\]

Figure 21: Case?2 for rebuttal

43

	Introduction
	Motivations and Observations
	Method
	The Generation Pattern of Large Reasoning Models
	Dynamic Early Exit in Reasoning
	Branch-Parallel Decoding Acceleration

	Experiments
	Experimental Setup
	Main Results
	Ablation Study
	Discussion

	Related Work
	Conclusion
	Ethics statement
	Reproducibility statement
	Pilot Experiment Setup
	Proof of DEER-PRo's effectiveness against noise.
	Noise Independence of the MAD-Calibrated Strategy
	Probability of Error for a Single Prompt:
	Probability of Error for Averaged Confidence:
	Probability of Error for MAD-Calibrated Confidence (DEER-PRo):

	Analysis of MAD-Calibrated Strategy’s Superior Performance
	Proof of the Expected Value of MAD
	Theorem 1
	Proof

	More Experiment Setup
	More Method Details
	More Benchmark Descriptions.
	Computation Source
	More LRM Descriptions.
	Computational Cost Analysis
	Computational Cost Analysis on Time
	Computational Cost Analysis on Memory

	Investigation of Reasoning Transition Monitors
	Investigation into the Reasons Behind DEER's Threshold Robustness
	More Experimental Results
	Case Study Details
	Related Work Details
	Use of LLMs

