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ABSTRACT

Many learning problems involve symmetries, and while invariance can be built into
neural architectures, it can also emerge implicitly when training on group-structured
data. We study this phenomenon in classical Hopfield networks and show they
can infer the full isomorphism class of a graph from a small random sample. Our
results reveal that: (i) graph isomorphism classes can be represented within a three-
dimensional invariant subspace, (ii) using gradient descent to minimize energy
flow (MEF) has an implicit bias toward norm-efficient solutions, which underpins
a polynomial sample complexity bound for learning isomorphism classes, and (iii)
across multiple learning rules, parameters converge toward the invariant subspace
as sample sizes grow. Together, these findings highlight a unifying mechanism
for generalization in Hopfield networks: a bias toward norm efficiency in learning
drives the emergence of approximate invariance under group-structured data.

1 INTRODUCTION

Here, we analyze the emergence of invariance arising implicitly during training in Hopfield networks
(HNs) (Hopfield, |1982), which represent arguably the simplest example of an Associative Mem-
ory. Building on classical ideas Rosenblatt (1958)); Willshaw et al.| (1969); |Amari| (1972); Little
(1974); Pastur & Figotin| (1977), HNs are recurrent neural networks consisting of n linear-threshold
McCulloch—Pitts neurons McCulloch & Pitts| (1943) that can store binary patterns as distributed
memories in the form of fixed-point attractors of its recurrent dynamics. In the literature, HNs are
usually associated with a particular Hebbian learning scheme called the “Outer-Product Rule", but
for the purposes of this work we also consider other standard training methods. This setting is
intentionally minimal so that we can focus on developing novel mathematical tools for understanding
generalization in a classical architecture. As data symmetry is not made explicit in this model, any
invariance must arise from the interplay of the group structure in the data and the implicit bias of the
learning rule in question. More specifically, and inspired by Hillar & Tran|(2018); [Hillar et al.| (2021,
this paper studies whether or not standard learning rules and objectives, notably minimization of the
energy flow (MEF) Hillar et al.| (2012), a tractable convex loss, can learn the isomorphism class of a
graph from a small, random subset. Our key findings are as follows.

1. HNs can memorize any graph isomorphism class. We characterize the subspace of parameters
invariant to edge-adjacency—preserving permutations (of which graph isomorphisms are a subset)
(Lemma [4.2) and observe that this subspace aligns well with the parameters of successfully
trained models (Fig. [3)). Moreover, for any graph we give an explicit construction within this
space that memorizes it (Lemma.3) as well as its isomorphism class.

2. Implicit bias towards norm efficient solutions. We reparameterize the MEF objective and
show that gradient descent on it is directionally biased towards the solution to a hard-margin
support vector machine (HSVM) problem on an induced linear representation (Theorem 3.1)).

3. Polynomial sample complexity suffices for orbit generalization. Suppose D C {0,1}" is
strictly memorizable with min-norm parameter 6%, ||z||o < m for all x € D, and let D be a
distribution supported on D. We prove N = €(n||0"||?me~?) random samples suffices for
both HSVM and MEF to memorize new samples with probability at least 1 — e (Theorem 3.2).
These theoretical results corroborate the empirical “few-shot-to-orbit” phenomenon we observe
(Figs. [T} [2). Moreover, specializing to isomorphism classes this result implies a polynomial
sample complexity in the number of vertices v, supporting a conjecture in |Hillar et al.[(2021)).
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4. Emergence of invariance. We observe that as the sample size /N grows the learned parameters
concentrate near the invariant subspace (Fig. [3). For a simplified average HSVM surrogate, we
prove the sample solution converges to the invariant set at rate O(v*/2/v/N) (Lemma b

1.1 RELATED WORK

Capacity of Hopfield networks. The capacity of a Hopfield network depends on the learning rule
and the structure of the data. For dense, uncorrelated random patterns under Hebbian learning, the
statistical-mechanics analysis of (Amit et al., |1985) gives the classic linear law: reliable retrieval
up to approximately 0.138 patterns per neuron with subsequent refinements via replica methods
(Gardner, 1988 [Krauth & Mézard, [1989). Coding-theoretic analyses further show that, for Heb-
bian constructions and exact recovery of randomly chosen patterns, one typically cannot exceed
n/(41nn) (McEliece et al.| {1987) memories. More generally, Cover’s classical bound Cover|(1965)
restricts the capacity for exact storage of dense, random data to only 2n. Nonetheless, superlinear
capacity is achievable for certain structured datasets. For example, sparse data having few active
neurons can yield an increase of capacity to nearly quadratic in n (Tsodyks & Feigel’man), |1988};
Amari, [1989). Additionally, robust exponential memory has been observed for particular examples of
group structured data (Hillar & Tranl 2018} Hillar et al.,[2021); in particular, for storing all k-clique
graphs and their hypergraph analogues. Our work builds on the observations of (Hillar & Tran| [2018;
Hillar et al., |2021) by proving that all graph isomorphism classes are memorizable.

Modern Hopfield Networks. A line of recent investigation has sought to increase the capacity
and retrieval properties of Hopfield networks by changing the energy function. Dense Associative
Memories (DAMs) replace the classical quadratic energy with higher-order polynomial interactions,
resulting in a capacity that scales polynomially with neuron count (Krotov & Hopfield,|2016; Horn
& Usher, |1988). Building on this, Modern Hopfield Networks (MHN5s) introduced a log-sum-exp
energy function that allows the capacity to grow exponentially (Ramsauer et al., 2020; Demircigil
et al., 2017). Our work provides a complementary perspective to these advancements by showing
classical HNs can achieve exponential capacity capturing the symmetry of the data in its parameters.

Generalization beyond the training set for HNs. Theoretical study of classical HNs primarily
focuses on storage limits, basins of attraction, and noise robustness around memorized patterns, rather
than sample—complexity guarantees for generalization to patterns outside the training set. Earlier
analyses of concept generalization in classical HNs investigate when networks capture latent data
regularities (Fontanari, [1990). More recently, Random-Features Hopfield Models (RFHMs) exhibit
learning phase transitions and even retrieval of previously unseen examples (Negri et al.| 2023} [Kalaj
et al.| [2024)). These results complement but are distinct from our own; in particular, they do not
provide sample—complexity bounds or analyze the emergence of invariance induced by a symmetry
present in the data. In addition, while these results primarily use techniques from statistical physics,
here we leverage tools from statistical learning theory.

Emergent invariance through data augmentation and feature averaging. One perspective on data
augmentation is as orbit averaging over a symmetry group; in particular, empirical risk minimization
on augmented data is equivalent to averaging features or predictions along group orbits. This has
been shown to induce approximate invariance and reduces estimator variance (Chen et al., [2020).
From a kernel perspective, augmentation decomposes into first-order invariant feature averaging plus
a second-order variance regularizer (Dao et al.,[2019). Enforcing invariance through this averaging
method yields provable generalization benefits in the context of invariant kernel regression (Elesedy
& Zaidi, 2021)). Beyond static estimators, recent results show that with full group augmentation deep
ensembles become equivariant in expectation at all training times in the infinite-width limit (Gerken
& Kessel, 2024) and that the expected predictions of group-convolutional networks match those of
data-augmented conventional networks throughout training (Marthaler et al., [2024). While these
results assume explicit invariance, either through architectural design or by averaging over the full
group orbit, here we ask whether simple learning rules can implicitly recover approximate invariance
from small random sample of elements.

Implicit bias. A large body of work shows that, even without explicit regularization, certain learning
dynamics have a preference for particular solutions. In particular, for classification using the logistic
loss, gradient descent drives the parameter norm to infinity while the parameter direction converges to
the max—margin classifier (Soudry et al., 2018} J1 & Telgarsky} 2018 |Nacson et al.,[2019). Our work
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leverages these results in order to show that standard learning rules for HNs are implicitly biased
towards learning invariant representations when trained on group data.

2 PRELIMINARIES

Notation: we use capitalized boldface characters to denote matrices, bold lowercase characters to
denote vectors and non-bold lowercase characters to denote scalar values. If & € R” is a vector then
x; denotes the ith entry of . If X € RNV X" then &; € R™ denotes the ith row of X and to access
individual entries of X we use the notation x;; or [ X],;, whichever is clearer in context. Whether a
matrix, vector or scalar is deterministic or random is also inferred from context. We use 11, to denote
the set of permutations on [a] and P, to denote the set of a X a permutation matrices. Overloading
our notation, we also refer to P, as the group of permutation matrices. Finally, if H is a group that
acts on a set A, then the orbit of a € A under H is denoted Orb(a, H) = {ha € A: h € H}.

Associative Memory: we consider a Hopfield network Hopfield| (1982) with asynchronous dynam-
ics but do not restrict ourselves to Hebbian learning. To this end, let Sym{ C R™*™ denote the set of
symmetric, real, n X n matrices whose diagonal entries are zero, and let © = Symy x R™. Clearly ©
is a convex vector subspace. We introduce the energy function F : {0,1}" x ® — R defined as

1
E(x;0) = 5acTWa: + b, €))

where @ = (W, b) € ©. Given an input binary vector € {0, 1}", the Hopfield network generates
a sequence of binary vectors (x(t)):>o through the following recurrent dynamics: with (0) = =
then

25(t) = { I(—w/x(t—1)>b;) t=j (modn), ®

xzj(t —1) otherwise

forallt > 1 and j € [n]. For any input & € {0, 1}", this sequence converges in finite time to
a fixed point Bruck]| (1990). We define the input-output map of the Hopfield network, denoted
Hy : {0,1}™ — {0,1}™ as follows: given an input x, the output Hy(x) is the attractor or fixed
point of |2 reached when initialized with «(0) = x. If Hy(x) = «, then x is a fixed point of the
recurrent dynamics, and furthermore, we say that Hy has memorized x. A sufficient condition for
Hy to memorize x is F(x;0) < E(x’;0) for all ' € N (x), where here V() denotes the set of all
binary vectors a Hamming distance of exactly one from x. If 0 satisfies this property, we say that Hy
strictly memorizes . We also denote the action of a permutation matrix P € P,, on the parameters
of a Hopfield network as PO := (PTW P, PTb).

Training and memorization: let S C {0,1}", we say that Hy memorizes S if it memorizes all
x € S. There are many methods [Hertz et al.| (1991)) that have been proposed to train networks to
memorize a set S, including Hebbian learning |[Hebb| (1949); [Hopfield| (1982), the projection rule
Personnaz et al.| (1985; |1986), Delta learning Widrow & Hoff| (1960), and Storkey’s learning rule
Storkey| (1999), among several others [Tolmachev & Manton| (2020). In this work, we focus on
minimization of the energy flow (MEF) Hillar et al.|(2012); Hillar & Tran|(2018)); Hillar et al.| (2021)
and study its implicit bias. If € {0,1}" and j € [n], let £\) € {0, 1}" satisfy z; # 171(]) iff | = j.
We define the energy flow loss as

L6:8) = > Y exp (E(:c; 0) — B(z); 9)) . 3)

xeS j=1

For any given set of points S, note that L is nonnegative, infinitely differentiable, and is convex in ©.
As a result, minimizing L is a convex problem to which a wide variety of numerical techniques can
be applied, including but not limited to variants of gradient descent (GD) as well as (approximate)
second order methods such as L-BFGS |Liu & Nocedal| (1989). As long as S can be memorized, then
sufficiently minimizing [3| will result in a network which memorizes S. For further details on MEF,
we refer the reader to Hillar et al.| (2021) and its inspiration from the theory of density estimation
Sohl-Dickstein et al.| (2011)).
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3 IMPLICIT BIAS, MINIMUM NORM MEMORIZERS AND GENERALIZATION

In this section, and prior to specializing to the study datasets drawn from isomorphism classes of
graphs, we connect memorization to solving a linear program and identify the implicit bias of MEF.
This enables us to provide generalization guarantees for memorization in Hopfield networks as per
Theorem 3.2} Given @ = (W, b) € O, for any j € [n] we define the vector 8; = [w;, b;] € R+
Overloading our notation, we also use 8 = [0, 05...6,,] € R™"+1 to refer to the flattened vector
of all the network parameters (W, b). For any = € {0,1}" let 2(z) = [z,1] € {0,1}""! and
yj(x) =1 — 2z; € {£1}. Using this notation it is well known that the energy difference between a
point and one of its neighbors is

E(@;0) — E(z;0) = y;(z)(z(x),6,), @

see Appendix [A.T] for further details. As a consequence, parameters which strictly memorize a set
S C {0, 1}™ must satisfy a system of linear inequalities: in particular, there must exists some ¢ > 0,
referred to as the functional margin, such that y;(x)(z(x), ;) > eforallz € S and j € [n]. Clearly
the energy function (T)) is quadratic in the inputs & but linear in the parameters, F(x; a0) = aE(x, 0).
Moreover, this implies the energy is positively homogeneous of degree 1 in the parameters and as a
result the set of attractors of a Hopfield network is invariant under positive rescaling of the parameters.
Without loss of generality, we therefore select a functional margin of one and define the feasible set
of parameters up to positive rescaling as

Fo(S)=1{0 € ©:y,(x)(z(x),0;) >1 Vx € S,Vj € [n]} ©)
In addition, the inequality constraints that define F(S) can be written with respect to a single vector
of unique parameters, which we denote w. Let p = w and ¢ = w There exists a V' €
{0,1,1/+/2}(n+1)%a guch that for any 6 € © there exists a @ € RP with w = [v/2a, b] € RY, such
that @ = Vw. In short, V' copies the unique elements, i.e., the upper triangular elements of W and the
biases b, into their appropriate locations in the flattened vector . For any j € [n] let V; € R(n+1)xq
denote the submatrix of rows of V' such that §; = Vjw. For any € {0,1}" and j € [n] let

uj(x) =y;(x )VT (z). Then each constraints can be re-written as y; (x)(z(x), 0;) = (u;(x), w)
and thus we can equlvalently define the feasible set as

Fu(S) ={w e R?: (uj(z),w) > 1 Va € §,Vj € [n]} 6)

Inspecting (6)), clearly memorization of a dataset is equivalent to solving a linear program (LP) and
therefore any algorithm which successfully memorizes S is implicitly solving an LP. Moreover,
these algorithms may have an implicit bias towards feasible points or solutions which satisfy other
conditions or criterion. A popular and well studied example is the feasible point with the smallest
norm: identifying this requires solving a quadratic program (QP) or, more specifically, a hard margin
support vector machine (HSVM) problem. In particular, note that if § = Vw where w = [v/2a, b]
then |02 = [W |2 + ||b]|> = ||[v2a]|® + ||b]|?> = ||w]||?. As a result, finding the minimum norm
feasible point for a set S C {0, 1}" is equivalent to solving

HSVM(S) = argmin ||w]|? s.t. w € F,(S). @)
weRg

The key takeaway of this section is that minimizing with gradient descent (GD) is implicitly
biased in direction towards the solution of , i.e., norm-minimization. To this end, first observe
that (3] can be re-parameterized as:

S) = Z Zexp (E(:c, x99 ) Z Zexp w)) =: L(w; S).

xzeS j=1 xzeS j=1

Consider now updates to the parameters of the Hopfield network using GD: in particular, given initial
parameters w(®) and step-size 1 > 0, for all ¢ > 0 let

w(t+1) —|—7]ZZexp —uj(z;) w) uj(x;). (8)

=1 j=1

Applying (Soudry et al.| 2018, Thm.3 ) it can be proved that this sequence of GD iterates converges
in direction to the solution of (7).
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Theorem 3.1. ((Soudry et al.| 2018, Thm.3 ) adapted to our setting) Assume S can be strictly
memorized, let w* = HSVM(Sn ), w(0) € RY be arbitrary and w(t) be generated for all t € N>q
as per (8). There exists a choice of step size 1) such that w(t) = w* log(t) + p(t) for all t € N>,

w(t)

where p(t) grows as ||p(t)|| = O(log(log(t))). Moreover, lim;_, HTEt)H = o

Informally, Theorem [3.1]states that the solution returned by minimizing the energy flow with gradient
descent (MEF-GD) after exponentially many iterations is a close approximation directionally to the
solution returned by solving the HSVM problem (7). We now derive generalization bounds both for
the HSVM solution and MEF with GD.

Theorem 3.2. Let D C {0,1}"™ be a set which can be strictly memorized and assume ||z|o <
m € N>y forall x € D. Let D be a probability distribution on D, and consider a random sample
SN = (Ti)ie[n), Where ; ~ D are mutually i.i.d. Let & = HSVM(Sy), w* = HSVM(D),
w(0) € R? be arbitrary and w(t) be generated for all t € N> as per §), 6, ¢ € (0,1) and assume
x ~ D is sampled independent of Sn. If N 2 e~ *n||w*||?mlog(1/6) then

P(H(z: V&) #2)<e and P(H(@;Vw(t) #a) =0 (%) e

hold with probability at least 1 — § over the sample Sy.

To prove Theorem [3.2] we combine a vector contraction inequality (Maurer, 2016, Corollary 1) with
Rademacher bounds, see e.g., (Mohri et al., 2018, Theorem 3.3), we refer the reader to Appendix E]
for a full proof. It is worth emphasizing that Theorem [3.2]implies any dataset D which can be strictly
memorized, can be at least nearly strictly memorized using only a polynomial number of samples.
In Section[4.3] we take preliminary steps towards relaxing this statement, from memorizing samples
drawn from D with high probability, to memorizing the set D itself with high probability. Finally, we
remark that the MEF bound implies gradient descent may require exponentially many iterations to
converge directionally to the max-margin solution. We hypothesize that this is a tail phenomenon:
once the weights are approximately aligned, all points are classified with a significant margin and
their loss contributions become exponentially small.

4  STORING ISOMORPHISM CLASSES OF GRAPHS AND INVARIANCE

4.1 ENCODING SIMPLE, UNDIRECTED GRAPHS AS BINARY VECTORS

Let G, denote the set of all simple, undirected graphs on v € N vertices. Recall two graphs
G = (V,E), G" = (V', E') are isomorphic, which we denote G = G, if there exists a bijection
¢ : V — V' such that (¢(v1), ¢(12)) € E’ if and only if (v1,12) € E. We refer to such a ¢ as an
isomorphism between G and G’. Note when V' = V", as is the case here since V- = V’ = [v], then ¢ is
a permutation. The isomorphism class of a graph G € G, is defined as Z(G) .= {G' € G, : G’ = G}.
Let V, denote the set of unordered pairs of [v], n := |V,| = (3) and Ind : V, — [n] be a bijection
which indexes the elements of V5.

Definition 1 (Edge representation of a graph). Let &), : G, — {0, 1}" be defined as follows: if

G = ([v],E) € G, and & = E,.,)(G) then, for all j € [n), v; = 1(Ind~*(j) € E). We refer to = as
the edge representation of G.

To be clear, &, is a bijection which assigns each graph to a binary vector of dimension n whose
support defines the vertex pairs present in the edge set of the graph in question. Any vertex permutation
induces an edge permutation.

Definition 2 (Edge permutation induced by a vertex permutation). Let ¢ : [v] — [v] be a permutation.
The edge permutation 4 : [n] — [n] induced by ¢ is defined as follows: if Ind™*(j) = (v1, 1)
then 74(j) = Ind((¢(11), ¢(12))). We denote the subset of these edge permutations as 11 and the
corresponding subset of permutation matrices as ©,,.

We now claim the following: first ®,, is a subgroup of II,,, second if two graphs G,G’ € G,
are isomorphic then there is a vertex induced edge permutation which maps between their edge
representations, and third, for any G € G, we have &,..,(Z(G)) = Orb(E,c,(G), ®,,). For proofs of
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these claims we refer the reader to Appendix[A.3] Two edges are said to be adjacent if they share a
vertex in common: more specifically, if j, ! € [n] then j and [ are adjacent, which we denote j ~ I, if
and only if [Ind~'(5) N Ind " (1)| = 1, otherwise we say j and [ are not adjacent, which we denote
j ~ l. We now identify a subset of edge permutations which are characterized by preserving edge
adjacency.

Definition 3 (Edge adjacency preserving permutation). A permutation = : [n] — [n] preserves
edge adjacency if 7(j) ~ (1) if and only if j ~ l. We denote such permutations as 112 and the
corresponding set of permutation matrices as Q.

Similar to ®,,, this subset forms a subgroup of P,,. Moreover ®,, is a subgroup of Q,, and as a result
Erep(Z(G)) C Orb(&rep(G), Qn). Again we refer the reader to Appendix [A.3|for further details. As
a result, the edge representations of the isomorphism class of a graph are a subset of the orbit of the
edge representation of the graph in question under edge adjacency preserving permutations.

4.2 EXPERIMENTS ON GRAPH DATA

To experimentally assess storage across isomorphism classes we study three classes of graphs: namely
cliques, bipartite and Paley graphs. Bipartite graphs split the v vertices into two equally sized groups
with all possible inter-group edges present and no intra-group edges. Paley graphs connect vertices [
and j when (I — j) is a quadratic residue mod v, as per NetworkX [Developers; cf. [Bollobas| (2001).
Clique graphs, or more specifically k-cliques, contain a fully connected subset of k vertices while the
remaining v — k vertices are isolated. We remark that extensive experiments for cliques are already
provided in Hillar & Tran|(2018); [Hillar et al.|(2021)), we include them here again for comparison and
completeness. We remark that we selected these three classes due to the ease with which we are able
to sample from them and emphasize that these families are representative rather than special. Indeed,
we observe similar behavior for many other graph isomorphism classes, including random graphs.

Figure[T]shows test accuracy versus training sample size, with mean and min-max over 10 trials, for
Hopfield networks trained by MEF, Perceptron, and Delta (the latter two used only as baselines; see
Appendix[A.2). For small graphs (v = 8) we enumerate the full isomorphism class and report the true
accuracy, i.e., the fraction of the class memorized. For larger graphs (v = 20), accuracy is estimated
on an independent random sample of 1000 graphs. We highlight two observations: (i) MEF appears
to reach higher test accuracy with fewer samples relative to the other methods, despite all methods
perfectly memorizing the training set. This suggests differing implicit biases or implicit bias strengths.
(i1) For MEF and Delta, the sample size needed to memorize an isomorphism class is tiny relative to
the class size, aligning with the findings in Hillar & Tran|(2018)); |Hillar et al.|(2021). Furthermore, the
number of iterations was capped at 1000, suggesting that the exponential dependency in Theorem [3.2]
is highly pessimistic. Finally, within our hyperparameter range, the Delta rule using Adam failed on
the k-clique class, whereas MEF learned all classes and was insensitive to optimizer choice.

Figure [2] estimates and compares the specific polynomial sample complexity of learning k-cliques
versus Paley graphs. We do this in order to highlight that different isomorphism classes may be
harder or easier to learn depending on their connectivity structure. For each graph size v we record
s50, which we define as the smallest training sample size for which MEF attains > 50% average
test accuracy on test samples of size 1000 averaged over 10 trials. The left subplot shows s5g vs.
v. The right subplot shows a log-log fit. Assuming s5y = C'vP for some constant C' € R+, this
allows us to estimate p via linear regression. While Paley graphs need N = Q(v?%¢), cliques require
N = Q(v'*¢) (note here we use ¢ € (0,1) to denote a small error term). Thus, although Hopfield
networks can memorize all classes (Lemmal4.3), the specific sample complexity appears to vary with
graph connectivity. We leave a full study of this to future work.

Figure |3| shows weight heatmaps for networks trained on clique data using MEF for sample sizes
10, 50 and 600. It is apparent that as the sample size grows the parameters returned by the optimizer
converge onto a distinct subspace: we identify this subspace as the parameters invariant to the
underlying group action of the data in Lemmabelow. In particular, weights w;; are approximately
the same between all pairs [ ~ j (purple in color) and all pairs for [ ~ j (purple in color), and this
approximation improves rapidly for larger samples sizes. An extension of Figure [3]is provided in
Figure[d] Appendix and shows heatmaps for both MEF and Delta on clique and Payley graphs.
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Figure 1: Test accuracy vs. training sample size for isomorphism classes at two scales. Top row:
v = 8 (isomorphism class sizes: bipartite 35, Paley 2520). Bottom row: v = 20 (for reference class
size for bipartite is 92,378). Curves show mean and min-max over 10 trials. Networks are trained

with Perceptron, Delta (MSE), and MEF learning rules.
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Figure 2: Sample complexity scaling. Plots showing the number of samples s5¢ required for a
Hopfield network trained via MEF using accelerated gradient descent to memorize 50% of a random
sample of 1000 graphs drawn from bipartite and Paley graph isomorphism classes on v vertices. On
the right we plot In(ss0) vs In(v) and compute the lines of best fit.
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Figure 3: Weights found by MEF on clique data varying /V: samples from isomorphism class of
10-cliques on v = 20 vertices with sample size ranging from 10 to 600.

4.3 INVARIANT PARAMETERS

In what follows let I';, denote an arbitrary subgroup of P,,. Forany Q € P, and 8 = (W ,b) € ©
recall that we define the action of @ on the parameter 8 as Q0 = (Q"WQ,QTb). Let Q € P,,,
0=(W,b)ecOand 0 = QO = (W' b'). Note WT = (QTWQ)" = QTWQ = W' and for
all j € [n] we have W/, = ef(j)Wew(j) = War)n(j) = 0. Asaresult W’ € Symg, in addition
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trivially b’ € R™ and therefore 8’ € ©. As a result, the action of P,,, or any subgroup I',, of P,,, on
O is closed.

Definition 4 (Parameter invariance to the action of a subgroup). A parameter @ € © is invariant with
respect to Ty, iff for all Q € T',, then QO = 6. We denote the set of these parameters as YV (I',,).

Recall E(Qx;0) = 127 (Q"WQ)x + (Q7b)"x, if & € U(I',), then for any = € {0,1}" and
Q €I, we have
E(Qx;0) = E(x;Q8) = E(x;0). ©)

We refer to (O) as the intertwining property of the energy function. Using this property, the following
lemma extends energy difference bounds between neighbors from a point to an orbit.

Lemma 4.1. Let xy € {0,1}" and @ € ¥(T,,). For§ € R, ifE(:Béj); 0) — E(x0;0) > 1—6 forall
j € [n], then for all x € Orb(xq,T,) it follows that E(x7);0) — E(x;0) > 1 — § forall j € [n).

For a proof of this lemma, as well as the other results presented in this section, we refer the reader to
Appendix A key implication of Lemmal[4.1]is if @ € ¥(T',,) strictly memorizes o € {0, 1}"
then @ also strictly memorizes Orb(x,T';,). We now show that invariance with respect to edge
adjacency preserving permutations, of which graph isomorphisms are a subset, corresponds to a
particular rank three subspace of the parameters.

Lemma 4.2. Let F : R® — © denote the linear map defined as follows: if (W ,b) = F(3) then
foralli,j € [n] we have w;; = 0ifi = j, w;j = p1ifi ~ j, wi; = Ba ifi = j and b; = 3. Then
U(Q,,) = F(R®) where F(R?®) denotes the image of F.

By inspection, the parameter patterns observed in Figure [3|for MEF appear to approximately lie on
the invariant subspace identified in Lemma This suggests, given a sufficiently large training
sample, that there is an implicit bias not just towards small norm solutions, but also those that are at
least approximately invariant. Following this observation, a natural question to ask is whether or not
parameters lying on this subspace can memorize any graph.

Lemma 4.3. For m € [0,n], let B = [2,2,1 —2m] € R®> and @ = F(B). Then E(z9);0) —
E(x;0) > 1 forall j € [n] and for all x € {0,1}" satisfying |x|lo = m.

Combining Lemmas [4.3] and .T] we conclude that any graph isomorphism class can be strictly
memorized by a Hopfield network. We also note that the only statistic used by the construction in
Lemma is the sparsity of the representation: in fact, this construction memorizes « € {0,1}"
iff ||z|lo = m. As a result, this is a poor parameter candidate if our goal is to memorize an
isomorphism class while avoiding spurious memories. In addition, assuming m = ©(n), the norm of
this construction grows as ©(n). For specific graph isomorphism classes we observe solutions with a
far smaller norm exist. As an example we consider k-cliques: for typographical ease we denote the
set of binary representations of k-cliques on v vertices as Cy, .

Lemma d.4. If3 = [-5/k,14/k? 0] € R3, 8 = F(B), and k > 5, then the following hold.
1. E(xY);0) — E(z;0) > 1forall x € C,, and j € [n).

2. If k = cv for some constant ¢ € (0, 1], then there exists a constant C > 0 such that
16]1> < Cw.

Lemma shows that a parameter exists which strictly memorizes C, j with norm only O(y/v)
rather than ©(v?). The construction in also does not memorize all m-sparse binary vectors.
For example and fixing some j € [n], suppose  is such that ||z|lo = m < 2(v — 2) and for all
| € supp(x) we have | ~ j. Then u;j(x)T@ = —5m/k and as a result z is not strictly memorized.
We speculate that perhaps a correlation between the size of the norm and the number of spurious
memories exists, but we leave a proper investigation to future work.

Before proceeding we pause to reflect on the implications of our results with respect to (Hillar et al.|
2021}, Conjecture 1). Together, Theorem [3.2] Lemma[4.3]and Lemma[.4]imply that k-cliques on
v vertices can be strictly memorized with high probability as long as N = Q(v3k2). If £ = av,
where « € (0,1) is a constant and we assume aw is an integer, then using Stirling’s approximation
the critical ratio satisfies O(v®)/( ")) = O (27"H(®)¢>5) where here H denotes the binary entropy

av
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function. Clearly the critical ratio decays to zero at a rate which as v — oo is dominated by
the exponential term. Our experiments and results thus far suggest that memorization of a graph
isomorphism class occurs when the training sample is sufficiently large that the optimizer is forced to
return a solution lying close to the invariant set ¥(®,,) C F(R?). The following lemma establishes
that the HSVM solution on the full isomorphism class, which as N — oo is equivalent to the training
sample with probability one, must be graph isomorphism invariant.

Lemma 4.5. Let zg € {0,1}" and T',, denote a subgroup of P, and assume Orb(x,T',,) can be
strictly memorized. If 0° = Vw* where w* = HSVMg (Orb(zg,I',)) then 0° € U(T',,).

Following Lemma[4.5] we ask how many samples do we require in order to achieve at least approxi-
mate invariance? Deriving a sample complexity result is challenging, primarily due to the fact that
the feasible set of the HSVM problem changes non-smoothly with respect to the training sample.
Instead and to gain intuition, we conclude this section by analyzing a related but simpler problem,
which we refer to as the average hard-margin support vector machine (AHSVM) problem. To this
end, we define the following,

Fa(8) = {we R é S (a(@).w) > 1}, AHSVM(S) = argmin  [lo]? 5. @ € F(S).

zeS weR4

The following lemma bounds the difference between the sample AHSVM solution and the population
AHSVM solution in the the context of a uniform distribution over an arbitrary O C {0, 1}"™.

Lemma 4.6. Let O C {0,1}" satisfy ||z|lo < m € N>q and assume w* = HSVM(O) is feasible.
Consider a random sample S = (x;)N_, where z; ~ U(O) are mutually i.i.d. and define wo =
AHSVM(O) and ws = AHSVM(S). For § € (0,1] and € € Rsq, if N 2 ¢ ?||w*|*mlog(1/5)
then ||ws — we|| < € with probability at least 1 — 4.

Now let Projfl;(q,n)(a) denote the projection onto the subspace orthogonal to ¥(®,,). Together,
Lemmas and [B.6|characterize proximity of the AHSVM solution for a k-clique sample to
the invariant subspace.

Corollary 4.0.1. Assume k = cv > 3 for some constant ¢ € (0,1) and let Sy = (x;)ic[n),
where x; ~ U(C, 1) are mutually i.i.d. Let w = AHSVM(Sy) and 8 = Vw. Foré € (0,1), if
N > e 2v31log(1/d)) then ||Pr0j$(<pn)(w)|| < € with probability at least 1 — 6.

Corollary illustrates that, at least for the AHSVM problem, we can get arbitrarily close to the
invariant subspace with high probability using a sample size cubic in the number of vertices. We
emphasize that even in the AHSVM setting bounding the distance from the learned parameters to the
invariant subspace is challenging. We leave further refinement of these results as well as a derivation
of an analogous one for the HSVM problem to future work.

5 LIMITATIONS AND FUTURE WORK

This work has limits: we do not prove convergence of the full HSVM/ MEF solutions to the invariant
subspace (although we observe it empirically), and we do not yet explain why some isomorphism
classes appear to be easier to learn than others. Future work should quantify spurious fixed points
and basin robustness, treat other subgroups and unions of orbits, handle noisy or non-uniform
group data, extend the analysis to hypergraphs, and involve continuous and modern HNs. Towards
achieving these goals, we highlight preliminary experimental findings around the two themes outlined
below. In addition, we highlight preliminary experiments detailed in Appendix [C|concerning robust
generalization, the hidden clique problem and isomorphic graph checking.

Reproducibility Statement: To ensure reproducibility, we make the code public https://
github.com/hopnetorbit/HopfieldNetworksIsomorphism.

Ethics Statement: This work uses only synthetic, non-sensitive data, involves no human or ani-
mal subjects, carries minimal dual-use or environmental risks (modest compute), and we release
reproducible code while noting limitations.
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APPENDIX A BACKGROUND

A.1 ENERGY GAP FOR BINARY VECTORS A HAMMING DISTANCE ONE APART

As discussed in Section [2] memorization is equivalent of a point is equivalent to ensuring an energy
gap between it and its neighbors. Recall we define /) {0,1}™ as the vector that differs from
x € {0,1}" only at the jth location, and z(x) = [z, 1] € R"+1.

Lemma A.l. E(zY);0) — E(x;0) = y;(x)(2(x), 0;).
Proof. By definition x{”) # x iff | = j. In addition, /) — z; = 1 — 2z; and, if r # I, then

T, # m(] ) (J ) iff either | = jandr # j,orl # j and r = j. Furthermore, recall W is symmetric
and W;; =0 for all J € [n]. As aresult,

— Z W,«l —Irl‘l +Zbl —J?l

E(z");0) — E(x;0)

lTE
= Z WTj(xﬂj)xy) — xyx5) + 5 Z le(xéj)xl(]) —xjxy) + bi(1 — 2z5)
re[n],r#£j le[n],l#£]
= Z W]l .’I}(])xl(]) — (Ej!l?l) + bj(]. - 2IEJ)
le[n],l#£]
= Z le(xgj) — )z +b;(1 — 2x5)
le[n],l#]

= (1 — 2:Cj) Z Wiz + b;
l€[n]

= y;(z)(2(x), 8;).

as claimed. ]

A.2 LEARNING ALGORITHMS FOR HOPFIELD NETWORKS

We briefly describe several classical learning rules [Hertz et al.| (1991) that can be applied to find
parameters in Hopfield networks. These methods typically trade off between biological plausibility
and performance. We remark that this list is far from exhaustive; see |Tolmachev & Manton|(2020)
for a recent summary.

* Outer-Product Rule (Hebb| [1949; Nakanol [1972; |/Amari, |1972; Hopfield, |1982)). In the
attractor neural network case [Hopfield| (1982)), this Hebbian rule constructs weights as
the normalized sum of training pattern outer products. This rule is simple, biologically
motivated, and local in nature, but it is often observed to suffer from spurious attractors,
shallow basins of attraction, and overall limited capacity.

* Perceptron Rule (Rosenblatt, 1958). The difference between the desired response — that the
network dynamics should fix a training sample — and the actual linear-threshold response of
a neuron gives a learning signal to update parameters.

* Delta (Hoff & Widrow, 1960; Rescorla, |1972)). The delta rule, also called the Mean Squared
Error (MSE) or Least Mean Square (LMS) rule, considers a relaxation and follows a
gradient to minimize the squared error between the linear output activations of neurons and
the training pattern to memorize.

* Projection Rule (Personnaz et al.| [1985;|1986). The weight matrix is obtained by projecting
onto the span of the training data and then zeroing the diagonal entries.

* Storkey Rule (Storkey} [1997; Storkey & Valabregue,|1999). A modification of the Hebbian
update that reduces interference between patterns by accounting for previously stored ones.
This rule achieves higher storage capacity than Hebbian learning and reduces spurious
minima.
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A.3 ENCODING SIMPLE, UNDIRECTED GRAPHS AS BINARY VECTORS

First we recap some of our notation. Let G, denote the the set of all simple, undirected graphs
on v € N vertices. Recall two graphs G = (V, E), G' = (V', E’) are isomorphic, which we
denote G = (@, if there exists a bijection ¢ : V' — V"’ such that (¢(11), d(v2)) € E’ if and only
if (v1,12) € E. We refer to such a ¢ as an isomorphism between G and G’. Furthermore, ¢ is
a permutation when V' = V': in our setting we consider V = V'’ = [v] and therefore we shall
discuss only permutations moving forward. The isomorphism class of a graph G € G, is defined
as Z(G) == {G' € G, : G’ = G}. An automorphism of a graph G = (V, E) is a permutation
¢ 'V — V such that (v1,15) € E implies (¢p(v1), ¢(v2)) € E. In short, while an isomorphism
preserves the vertex adjacency structure of a graph an automorphism preserves not just the vertex
adjacency structure but also the vertex labels. Recall that ®,, C P, refers to the set of edge
permutation matrices induced by permutations of the vertices, see Definition 2}

Lemma A.2. @, is a subgroup of P,,.

Proof. Clearly this is equivalent to showing that IT® is a subgroup of II,,. It is easy to check that
I €Ty, my € ITY implies 7, ' € TIY and 7y, 7wy € TI implies 7y 0 g € IIY, therefore ITY is a
subgroup of II,,. O

The following lemmas establish a straightforward equivalence between isomorphism classes of
graphs and certain orbits of binary vectors. First, Lemma[A.3|shows that if two graphs G, G’ € G,
are isomorphic then there is a vertex induced edge permutation which maps between their edge
representations.

Lemma A.3. Suppose G = ([v], E),G" = ([v],E') € Gy and & = E,¢p(GQ), ' = Erep(G'). Then
G = @ iff there exists a P € ®,, such that Px = x'.

Proof. Assume G = G’. Then there exists a permutation ¢ : [v] — [v] such that (v1,15) € E
implies (¢(11),p(r2)) € E'. Let my : [n] — [n] be the edge permutation induced by ¢ and
P c &, the corresponding permutation matrix. By construction xz; = x;%( ) for all j € [n],
equivalently, if P € ®,, is the permutation matrix associated with 7, then Pz = x’. Now suppose
there exists a P € ®,, such that Px = ’. Then there exists a vertex permutation ¢ : [v] — [v]
which induces an edge permutation 74 : [n] — [n] such that z; = /. ,(j)- By construction, if

j = Ind((v1, 1)) then this implies 74(j) = Ind((¢(v1), #(2))). Therefore, by the definition of
Erep We have ¢(11), ¢(12)) € E' iff (11,12) € E. Therefore ¢ is an isomorphism between G and
G and G =G O

Building on Lemma[A.3] the following lemma characterizes the isomorphism class of a graph in
terms of the orbit of its edge representation under vertex induced edge permutations.

Lemma A4. Forany G € G, we have &,.,(Z(G)) = Orb(&,¢p(G), P).

Proof. Let x = &,¢p(G), then
Orb(&rep(G), @) ={Px: P € ®,}.

Suppose E,cp(Z(G)) ¢ Orb(Erep(G), @y). Then there exists a G’ € Z(G) such that ' =
Erep(G') & Orb(E,ep(G), ®,,). Therefore there does not exist a P € ®,, such that Px = x’.
However, G = G’ which implies a contradiction by Lemma therefore &,..,(Z(G)) C
Orb(&rep(G), ). Now suppose Orb(E,ep(G), Pr) ¢ Erep(Z(G)), then there exists a ' €
Orb(&yep(G), ®y,) such that G = & L(2') & Z(G). However, as &’ € Orb(&,,(G), ®,) then
there exists a P € ®,, such that Px = &', but using Lemma[A.3|this implies G = G’ which is a
contradiction. Therefore Orb(E,c,(G), 1) C Erep(Z(G)). Combining these two observations we

conclude that £, (Z(G)) = Orb(Eep (G), D5,). O
Lemma A.5. Q,, is a subgroup of P,.

Proof. Trivially it suffices to show that TS is a subgroup of II,,. It is easy to check that I € T1<,

7 € 1S implies 7! € 12 and 71,7’ € II2 implies 7 o 7’ € II2. Therefore 112 is a subgroup of
10,,. 0
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The following lemma states that the vertex induced edge permutations form a subgroup of the
edge adjacency preserving subgroup of permutations. As a result, the edge representations of the
isomorphism class of a graph are a subset of the orbit of the edge representation of the graph in
question under edge adjacency preserving permutations.

Lemma A.6. ®,, is a subgroup of @, and E,¢,(Z(G)) C Orb(Erep(G), Qn)-

Proof. Trivially it suffices to show that II? is a subgroup of IIS, we proceed to show that any
vertex induced permutation is an edge adjacency preserving permutation. Consider two edge in-
dices i,j € [n] and let v1,v2,v3,v4 € [v] be distinct. Suppose i ~ j, then without loss of gen-
erality let Ind™*(i) = (v1,v2) and Ind"'(j) = (vo,v3). Then Ind ' (74(i)) = (p(r1),d(va))
and Ind™!(m (])) = (¢(v2), p(v3)), therefore i ~ j implies 7r¢( i) ~ my(j). Suppose now
i o j,if i = j then trivially m4(¢) = mg(j) and therefore i = j implies 74 (¢ ) o Tg(1). Oth-
erwise, and again without loss of generality, let Ind~!(i) = (11,15) and Ind ™ (j) = (v3,v4).
Then Ind™'(74(i)) = (¢(11),d(v2)) and Ind ' (m4(j)) = (H(v3),d(va)), as ¢ is bijection
then this implies 74(2) = my(j). As a result, my(i) ~ my(i) if and only if ¢ ~ j. Fi-
nally as ®,, is a group and it is a subset of Q,, the it must be a subgroup of Q,,. As a result
Orb(Erep(G), By) C Orb(Erep(G), On) O

A.4 BOUNDED REPRESENTATIONS

In order to establish the connection between Hopfield networks and SVMs discussed in Section
we identified and defined a certain feature map for the inputs to the underlying linear classification

problem. Recall there exists a matrix V' € {0,1,1/y/2}"("*1)*4 guch that for any € © there
exists aa € RP, w = [v/2a, b] such that @ = Vw. Recall also that we define V; € {0,1,1/v/2}" as
the matrix which satisfies 8; = Vjw, where ; = [w;,b;] € R". In addltlon for any « € {0,1}
then we let z(z) = [z, 1] GR”H uj(x) = VJT z(x )forallj € [n] and u(x) = L > ui(®).
The following lemma bounds the norm of these representations.

Lemma A.7. For any x € {0,1}" then

la(@)[1* < flu;(@)]* = 5 (lzllo — ;) +1

N |

forall j € [n].

Proof. Let 6,(j) € {0,1}"™ denote the one hot vector such that supp(d,,(j)) = j. In addition, let
®; : [¢] — [n] denote the injective mapping between the indices of @ and their respective positions
in wj, and let B; € {0,1}"*? be the associated matrix which copies the elements of a into their
positions in 6. Therefore, we can write

, —+ B, NG)
0. — w; _ |V nxn 2a —V.w.
! |:bJ:| |:01><n (sn(J)T] [ b 7

By definition
L BT T L BTy
T nx1
wie) = V=@ = [ ¢ Pl 3] = (207
therefore

1
||uj(:c)||2 = inBjB;‘-F:c + 1.

Recall W;; = 0 and each other element of w; corresponds to exactly one element of a, therefore B;
has one nonzero per row other than the jth row, which we let be zero. Moreover, by the injectivity of
¢; then B; has at most one nonzero per column. As a result,

B;B] =1, —¢je] .
This implies
:BTBijT:c =T (I, — eJeT) x = ||zl —

15
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forall j € [n]. As
a@)l =l > w @)l < 5 3 fus@)] < Jus(a).|

then

la(@)[* < flu;(@)]* = 5 (o — ;) +1

N

for all j € [n] as claimed. O

A.5 EUCLIDEAN DISTANCE BOUNDS BETWEEN NORMALIZED VECTORS

Here we recall some basic bounds pertaining to normalized vectors.

Lemma A.8. Define f(x) = ﬁfor all x € RY. Suppose without loss of generality that x,y € R
and ||y|| > ||| > 0, then

3l —yl
Proof. First observe
x Y
flx) = fly) = -

ll* Iyl

__.T Y y oy
lel® Ayl lel* [l

_z—y  yllyl* =)
] ?]lyl*

Taking the norm on both sides and applying the triangle inequality we have

1f (@) — f»)| = = =yl llidliyl® = ll=l*)

[l l]* [yl

By assumption ||y|| > ||«||, therefore

lyll? = Nzl = [y -z, y + )| < [ly - zllly + /| < ly —2l(ly]l + lz]) < 2]y]lly - =|.

This implies
lz =yl 2]ylPlly — ||
1f () = f(y)ll < +
]2 ?]lyl1*
_ 3z —yl
|2
as claimed. O

A.6 HOEFFDING’S INEQUALITY IN HILBERT SPACE

Lemma [4.6|rests on the application of the following concentration bound for sums of independent,
mean zero, bounded random vectors. We remark that this is a specialization of more general results
for martingales in 2-smooth Banach spaces.

Lemma A.9. [Specialization of (Pinelis| 1994, Thm. 3.5) Fori € [N] and R € Rx, let x; € R? be

independent, mean zero random vectors which satisfy ||;|| < R almost surely. Let Sy = Zil x;,
then fort € R> we have

t2
IED(HSNH > t) < exp (—QNRQ) .

16
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APPENDIX B PROOFS OF RESULTS

B.1 PROOF OF THEOREM[3.2]

Theorem 3.2. Let D C {0,1}" be a set which can be strictly memorized and assume ||z|o <
m € N>y forall ® € D. Let D be a probability distribution on D, and consider a random sample
SN = (xi)ic(n), where ©; ~ D are mutually i.i.d. Let & = HSVM(Sy), w* = HSVM(D),
w(0) € R? be arbitrary and w(t) be generated for all t € N> as per (§), 6, ¢ € (0,1) and assume
x ~ D is sampled independent of Sy. If N 2 ¢ 2n||w*||>m log(1/5) then

P(H(x; Vi) £ 2) <e and P(H(z;Vw(t)) £z) =0 (%) te
hold with probability at least 1 — 0 over the sample Sy.

Proof. For any t € R define the marginloss ¢ : R — R as

0, 1<t
plz)={1—t 0<t<l,
1 t <0,

)

and note trivially for all ¢ € R that 1(¢ < 0) < ¢(t). We note on occasion we overload this notation
and apply ¢ to vectors by applying it elementwise. Observe for any * € R™ and w € R? with
0 = Vw, that

L(H(2:0) # @) <1 (3j € [n] : uy(@)"w < 0) = 1 (m;n] u; (@) w < o) < (i ()" ) = max oy 2) ).
JEn JEn JEN

For any z € R™, let £(z) = max;¢[,,] #(2;). Using the fact that ¢ is 1-Lipschitz, for any z, 2’ € R"

we have

[0(z) — (2] < | max (6(27) = 6(2))) | = 6(2) = d(2')lloo < |2 = 2[l0 < [z = 2'[J2-

Therefore ¢ is 1-Lipschitz with respect to the Euclidean norm. Let U (x) € R"*? denote the matrix
whose jth row is u;(z)? € R'*? for all j € [n]. Furthermore, for some A € R+, define

H={x—U(x)w :weR?, ||w| <A}

and let

Gr={xr— (Lob)(x):he€Hp}
Note by construction that g € G, implies g : R™ — [0,1]. We now compute the empirical
Rademacher complexity of G5 on a sample Sy = (;);c[n), to this end let o € {£1}" and
€ € {£}V*" be a random vector and matrix respectively whose entries are mutually i.i.d. and

distributed uniformly on {£1}. As ¢ is 1-Lipschitz in the ¢5 norm, then applying a vector contraction
inequality (Maurer, 2016, Corollary 1) we have

N

Rs(Gr) = Eo bselg)A % ; ai(€ o b)(x;)

i N n
< V2E, jlelﬂgq N z:: z:: cijuj(@i)’
- 1 N n
>~ \/iEe _jgﬂlgq ) N ; Jz::l Eljuj wz
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Let Z = YN, Si_y €ijui(@;), as ¢ — /1 is concave then Ez[\/[[Z]?] < /Ez[[|Z]]*] b
Jensen’s inequality. As a result

N n
Ec Z Z €ijui(T;)

i=1 j=1

IA

N N n
Ee E E 61]11’] xz 5 E Elku'k wl
Jj=1

=1

n N n
ZZZEE eijeir]us (i) T ug ().

1j=1 =1 k=1

I
Mz

2

The Rademacher random variables are mutually i.i.d., therefore
1, G=0)N({y=k),
Eefesjen] = { (i=DAG=Fk)

0, otherwise.
Recall also from Lemmal[A.7]that for any i € [N] and for all j € [n]

1
17 = By (llxillo — @ij) + 1.

Under the assumption ||x;||o < m for all ¢ € [N], then

Bis(00) < Y228, | S0 3 ey @)

[ (:)

i=1 j=1
\/iA N n
i=1 j=1
A N n
<5 DD (lwillo — sy +2)
i=1 j=1
n(m + 2)

Let 6 € R5¢. Applying a Rademacher complexity bound, e.g., (Mohri et al}, 2018, Thm 3.3), then
with probability at least 1 — ¢ over the random sample Sy

N
Blo(@)) < Doote) + 2s(@n) + 3y
N
< ;,;9(“%) + oA /n(mN+ 2) +3 10g2(]2v/5)

for all g € Ga. In what follows let A = ||w*||. Then, with probability at least 1 — & over the random
sample Sy, for any w € R? such that ||w]|| < [|w*| we have

P(H(x;Vw) £ x) < —Z¢ min u;(z;)" w)) +2\/||w*||27”]t\(7m+2) +3\/10g2(]2v/5) (10)

JjE€[n]

First we consider w: for any sample Sy trivially set(Sy) C D, therefore w* € Fu,(Sn).
As a result, with probability one ||@| < |jw*||. Conditioning on this event, observe also that
min;epy uj(:ci)Td; > 1fori € [N]. As aresult, with probability at least 1 — ¢ over Sy we have

P(H(x;va):w)<\/4||w*||27]ﬂ<](m+2)+\/910§](§/5)’

As (a + b)? < 2(a® + b?) for a,b € R and assuming m > 1, then for any ¢ € Rwq, if N >

e 2nl|uw* [ log(1/6) A
Py (H(:0) # @) < e

18
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with probability at least 1 — J over the sample Sy.

We now turn our attention to w(t): recall for any a € R~ as E(x;a0) = aE(x; ) then
a(E(x";0) — E(x;0)) >0 < E(x");a0) — E(x;a6) > 0.

Indeed, this implies the set of memories in a Hopfield network is invariant under positive re-scalings
of the parameters. As a consequence, for any distribution D on {0,1}", a € Ry and 8 € , if
x ~ D we have

P(H(x;0) # ) = P(H(x;aB) # x).

Therefore, if we define

it follows that
P(H (@; V(b)) # @) = P(H(2; Va(t) # @).

From (Soudry et al.|[2018, Theorem 5),

Hf%uﬁﬂ\\\ﬁ&||ﬁiH0(mﬁ£?U

which trivially implies

@() -l =0 (

As aresult, for all i € [N] we have

[Jw* | 10g(10g(t))>
log(t) '

Hel%n} wi(x) o(t) = nél%n] (u;(2)"w* +uj(z)" (@(t) — w*))

= 1= max flu; (@) [|lo() — w7l
> 1 o (Yl |los(log(t)) 7
log(t)
where the final inequality follows from Lemma[A.7]and the assumption m > 2. By the definition of
¢ it follows that
vml|lw*|[log(log(t))
log(t)

for all ¢ € [N]. Using (I0), then, with probability at least 1 — § over Sy we have

mH@ﬂmm»=w>so(VmWﬂ§§@W”)+¢”“w%m+vwb§ﬂ“.

Using the inequality log(log(t)) < 3 log(t) forall ¢ > 1, then if N > e~ 2n|w*||?*mlog(1/5)

N
log (1) )*6

with probability at least 1 —  over the sample Sy O

¢(min u;(z) w(t)) = O (

J€[n]

P(H(x;Vw(t)) #x) =0 (

B.2 PROPERTIES OF INVARIANT PARAMETERS
B.2.1 ENERGY BOUNDS FOR INVARIANT PARAMETERS ACROSS ORBITS

The following result states, in the context of invariant parameters, that energy bound differences for a
point in an orbit extend to the entire orbit.

Lemma 4.1. Let z € {0,1}" and 6 € U(T,,). For§ € R, if E(x: 0) — E(x0; 0) > 1 — 6 for all
j € [n), then for all & € Orb(xq,T,,) it follows that E(x9);0) — E(x;0) > 1 — 6 forall j € [n).
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Proof. As 0 € U(T',,), recall the intertwining relation (9), for € {0,1}" and Q € I, then
E(Qz;0) = E(z; Q) = E(x; 0).

As for any & € Orb(z, T',,) there exists a Q € I',,, corresponding to a permutation 7 € II2, such
that xyp = Qx, this implies

1-6 < E(x;0) — E(z;0) = E(Qz)Y;0) — E(Qx;0) = E(xz";0) — E(x;0).
As 7 is a bijection then for all j € [n] this implies
Ex";0) — E(x;0) >1—6

as claimed. O

B.2.2 CHARACTERIZING THE INVARIANT SET FOR EDGE ADJACENCY PRESERVING
PERMUTATIONS

The following lemma identifies the invariant parameters with respect to the set of edge adjacency
preserving permutations as a particular rank three subspace.

Lemma 4.2. Let F : R3 — © denote the linear map defined as follows: if (W ,b) = F(3) then
foralli,j € [n] we have w;; = 0ifi = j, w;j = p1ifi ~ j, w;; = Ba ifi = j and b; = 3. Then
U(Q,) = F(R3) where F(R3) denotes the image of F'.

Proof. First we show that F(R3) C ¥(Q,,). Suppose 8 € F(R?), then there exists 3 € R3 such
that @ = F(B). Let Q € Q,, and 7 € TI¥ be the corresponding permutation. Then b; = briy = B3
for all i € [n] and as a result QTb = b. Furthermore, if i, j € [n] then (i) ~ 7(j) if and only
if i ~ j. Therefore if i ~ j then W;; = 1 = Wy (j)r(j)- Otherwise, if i ~ j then either i = j,
which implies W;; = 0 = Wi (j)x(j), or i # j and then W;; = B2 = Wi(i)x(;). As a result it
follows that QT W Q = W, this implies QO = 0 and so 8 € ¥(Q,,). We therefore conclude that
F(R?) C¥(Q,).

Now assume 6 € U(Q,,), to prove there exists a 3 € R such that b, = f35 for all i € [n] it suffices
to show b; = b; for all ¢, j € [n]. Similarly, to show there exist 51, 52 € R as per the statement of
the lemma, it suffices to show w;; = wg, Whenever either of the following hold: i) i ~ jand a ~ b
orii) i » j and a ~ b. It therefore suffices to prove the following two statements.

1. For any i, € [n] there exists a 7 € II9 such that w(i) = j. Note, as @ € ¥(Q,,) this
implies b; = by ;) = b;.

2. For any 4, j,a,b € [n] satisfying i ~ jand a ~ b, or i = j and a ~ b, there exists a
7 € 1% such that 7(i) = a and 7(j) = b. Note, and again as 8 € ¥(Q,,), this implies
Wij = Wr(i)w(j) — Wab-

In all that follows, for [ € [8] let v; € [v]. To prove the first statement, let i, j € [n] and suppose
i = Ind({v1,15}) and j = Ind({v3,v4}). Consider the permutation 7 € II? C TI¢ which swaps
the indices of the unordered vertex pairs involving vy with the corresponding pair involving vs,
likewise for 15 and vy, and is identity otherwise. To be clear, this is the permutation satisfying for
t € [2] the identities w(Ind({v¢, v})) = Ind({vi42,v}) and m(Ind({vi42,v})) = Ind({v, v}) for
all v € [v)\{vy, 42}, and 7(Ind " ({v,v'})) = Ind " ({v, '}) for all v, v € [v]\{r1,...4}. Note
if ¢ ~ 7 then we can without loss of generality assume v5 = v,4 and this permutation reduces to
swapping a single pair and treating the rest with identity. By construction this permutation preserves
adjacency, moreover (i) = j. As a result, for all i,j € [n] there exists a 7 € II% such that
bi = by = b;.

To prove the second statement, let ¢, j, a, b € [n] and suppose ¢ = Ind({v1,2}), 7 = Ind({vs,v4}),
a = Ind({vs,v6}) and j = Ind({v7,8}). Now consider the permutation 7 € II® C I which
swaps the indices of the unordered vertex pairs involving 1 with those of v, v5 with those of 4, v3
with those of v7, 14 with those of g and acts as identity on the indices of all other edges. To be clear,
this is the permutation satisfying for ¢ € [4] the identities 7(Ind~*({r,v})) = Ind™* ({v444,v})
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and (Ind ™ ({vy44,})) = Ind™* ({vy, v}) for all v € [W]\{vs, 414}, and w(Ind " ({r,v'})) =
Ind~'({v,v'}) forall v,/ € [v]\{v1,...5}. By construction this permutation preserves adjacency
and 7(i) = a, 7(j) = b. Moreover as € 119 then i ~ j implies a ~ band i < j implies a ~ b. As
aresult w;; = wqy forall 4, j,a,b € [n] if either i ~ jand a ~ bori »~ j and a ~ b.

With both statements proved we conclude ¥(Q,,) C F(R?). Finally, as ¥(Q,,) C F(R?) and
F(R?) C ¥(Q,), then ¥(Q,,) = F(R?) as claimed. O

The next lemma states that parameters invariant to edge adjacency preserving permutations can
memorize any binary vector. In combination with Lemma 41| this implies any graph isomorphism
class is strictly memorizable.

Lemma 4.3. For m € [0,n], let B = [2,2,1 —2m] € R® and @ = F(B). Then E(z7);0) —
E(x;0) > 1 forall j € [n] and for all x € {0,1}" satisfying |x||o = m.

Proof. Letx € {0,1}" satisfy [supp(x)| = m € [0, n]. Recall from LemmalA.1|that for any j € [n]

E(x);6) — E(x;0) = y;(x)(2(x),6;),
where y;(x) =1 — 2z;, z(x) = [x,1] and §; = [w, 1]. Furthermore,
(2(2),0;) = 2" w; + f

:Z]llesupp )AL # jlwi + B3
1=1

= Z (I € supp(x le)JrﬂgZ]l(lEsupp(m)/\le/\j#l)Jrﬁg.
=1 1=1

Let ¢;(z) = >~ 1(I € supp(x) Al ~ j) denote the number of edges of the graph adjacent to the
jth edge. Then as
Z 1(1 € supp(x) Nj#1)+ Z 1(l € supp(x) Aj=1)

1 =1

m

~

1(l € supp(x) Nl ~jNG#I) —l—Z]l(l € supp(®) Nl jAj#D) + 1(j € supp(x))
1=1

I
NE

N
Il
<

]l(lesupp(m)/\le)JrZ]l(lEsupp(a:)/\le/\j;él)erj,
1 =1

I
M3

l
it follows that

n

ZIL(ZEsupp(a:)/\le/\j;él) =m —cj(x) — z;.
=1
As a result, the condition that must be satisfied for all j € [n] is

yj(®)(z(2),0;) = (1 = 2z;) (¢;(@)(B1 = Ba2) + Pa(m — 2j) + B3) > 1.

If B, = [ then the left-hand side simplifies to an expression which depends only on the sparsity of
the representation of the graph. Under this assumption, it suffices to find a 32, 83 € R such that

(1= 2a;) (B2(m — ;) + B3) > 1.
Let B3 =1 — Bom, if T; = 0 then
(1 =2x;) (Bo(m —x;) + B3) = fam + B3 =1
while if z; = 1 then

—(Ba(m —1)+ B3) =1 — Pa.
Therefore, with 31 = 85 = 2 and 83 = 1 — 2m we have

E(x");0) — E(x;0) > 1
forall j € [n]. O
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We now make a few remarks in regard to the the construction used in the previous lemma. First,
F(2,2,1—2m) memorizes « € {0, 1}™ iff ||z||o = m. Indeed, the only if aspect can be demonstrated
as follows: if &’ satisfies ||| = m + ¢ for § € N>, the required inequalities become 2§ + 1 > 1
for j € supp(x’) and —26 + 1 > 1 for j ¢ supp(x’). These inequalities can only simultaneously
hold if § = 0. Second

1F(2,2,1—2m)||* = 2v(v + 1) + (1 — 2m)?,

therefore when the sparsity m is proportional to n then the norm scales like ©(n).

B.3 CONSTRUCTING AN INVARIANT, SMALL NORM PARAMETER WHICH MEMORIZES
k-CLIQUES

Our goal in this section is to show that small norm parameters exist which can memorize specific
isomorphism classes. In particular, we consider the case of k-cliques: recall that a k-clique graph
has a fully connected subset of k vertices while the remaining v — k vertices are isolated. We denote
the set of representations of k-cliques on v vertices as C, 5, and trivially note |C, x| = (Z) Towards
constructing low-norm invariant parameters that strictly memorize all k-cliques, the following lemma
derives specific expressions for the energy difference derived in Lemma[A.T] To state this result, for
x € Cy 1, let Clique(x) C [v] denote the subset of the vertices of the graph which are in the fully
connected subset.

Lemma B.1. Let 3 € R? and suppose 0 = F(3) = Vw, for some w € RY. For x € C, x, and any
j € [n)], define r = |Clique(x) N Ind~*(j)| € {0, 1,2} as the number of vertices in the jth vertex
pair which are also in the clique of x. Then for any j € [n]
%k2+%k+ﬂg, r=0,
uj(a:)Tw = yj(m)z(a:)TOj = %kz + (Bl - %) kE+ (B2 + B3 — B1), r=1,
— (k2 + (28— 4B k+ (382 — 481+ Ba), T =2

Proof. By definition
z2(z)'0; = 'ijac +b;

= w;l(l € supp(x)) + Bs
=1

5lz]ll€supp /\le)—&—ﬁgz:]l(l€supp(:v)/\loOj/\l7éj)+,6’3
=1 =1
Observe each j € [n] can be placed in one of three distinct categories with respect to @: in particular,

either both, one or neither of the vertices of j are in the k-clique of the graph represented by «. Fixing
an arbitrary j € [n], we denote these events in turn as ®,. for r € {0, 1,2}, where

®,(z) ={j €[n] : [Ind"*(j) N Clique(z)| = r}.

Note ®o(x) = supp(x). If j € ®g(x) then neither of the vertices of j are in the clique of x, as a
result the jth edge cannot be adjacent to any edge in the clique. If j € ®;(x) then exactly one vertex
of j is in the clique, furthermore there are k — 1 other vertices in the clique this vertex is connected
to via an edge. Finally, if j € ®5() then both of its vertices are connected via edges to k — 2 other
vertices in the clique. As a result,

n 0, J € (I)()(w),
d 1l esupp@) Al~j)=k—1,  jedi(a),
=1 2(k—2), jePyx).

Moreover, as there are ( ) edges in total in a k-clique, and as if [ € supp(x) then j = [ can be true
only if j € supp(x) € 3(x), then

n (g)a je (I)()((L'),
Z]l(lesupp(:c)/\le/\l:j): (g)—k—i—l, j e ®i(x),
=1 (5) —2k+3, j€ Dy ().
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As aresult: if j € ®¢(x) then

@70, = (50 1 ) = 20+ 2k
If j € &1 () then
2(x)"0; = pi(k — 1) +52w + 85 = %kﬂQ + (51 = ﬁ;) k+ (B2 + B3 — ).
Finally, if j € ®s(z) then
(00, = a2k~ 9+ 500 g = B (2= 36 ) ok (9 - 05 0.
To conclude, observe y; (@) = (1 — 2zy;) = —1iff j € Bo(). 0

We now derive a simple bound on the norm of parameters which are invariant to edge adjacency
preserving permutations.

Lemma B.2. Let B3 € R3 and 0 = F(B3). Then
16117 < B3v* + 2870 + B0,

Proof. For any fixed edge index r € [n], note as each vertex of this edge is a member of v — 2 other
vertex pairs then

> l(e~r)=2(v-2)

Moreover, as there are (Z) unordered vertex pairs in total

;]l(cwr/\c;ér)z (Z)—2@-2)-1:”2_‘ZU+6.

Therefore, and also noting that n = (;’) < v2, we have

1611 = W% + [1b]]*

_Z<5%Z]l(c~r)+B§Z]l(c»or/\c#r)+5§>
r=1 c=1

c=1

2 _
=n (ﬁ%%f —2)+ 63 (U?’”M) + ﬁ%)

2
< n(B3v° +2B5v + B3)
< Bivt +2870° + B30°.
O

We now present a low norm construction for memorizing k-cliques: in particular, Lemma
illustrates that the k-clique graph isomorphism class can be memorized using a parameter whose
norm is O(+/n). This is in contrast to the general construction used in the proof of Lemmawhose
norm grew as ©(n).

Lemmadd. If3 = [-5/k,14/k* 0] € R3, 0 = F(3), and k > 5, then the following hold.
1. E(x");0) — E(z;0) > 1 forallx € C, ; and j € [n].

2. If k = cv for some constant ¢ € (0, 1], then there exists a constant C > 0 such that
16]]> < Cw.

23



Under review as a conference paper at ICLR 2026

Proof. For the proof of the first statement, from Lemma [B.T| there are three cases we need to check.
First, if j € ®g(x) then

i (@)=()70; = 282 52k+53—7( k) -1
Second, if j € ®;(x) then
B B
yj(@)2(x)0; = T+ (B = ) kot (B2 Bs = B)
T )
- ko k2 K
SE-
- k
> 1.
Third and finally, if j € ®3(x) then
3
yi(x)z(x)"0; = - (62 (251 - 251) + (382 — 41 + ﬂ3)>
L (g 42
B ko k2 Ok
42
>3- 5l
> 1.
For the proof the second statement, using Lemma [B.2] we have
14 25
1612 < 50 +2550°

< (14072) + (5¢7H2w
< 2(14c¢%)%v
=: Cv.

B.3.1 INVARIANCE OF THE FULL ORBIT HSVM SOLUTION

The following lemma states a well known result that the average orbit action of a parameter is
invariant to the action of the underlying group.

Lemma B.3. Let 6 = (W,b) € © and Iy, denote a subgroup of P,. Then Projp (0) =
IFiln\ >_qer, QO € ¥(Iy,).

Proof. For typographical ease let 8’ = Proj. (6). Then

0 =(W.b)=—> Qb > Q'WQ — > Q"b
\F | gz, |F | gt \Fnl St

Given I, is a subgroup, then for any Q' € T,
Qlel — (Q/Tlel QlTb/)

1 NT !
| > (QQNTW(QQ),

" Qer, Tl QerT,

_ T T
(g S ewer; e
' Qer, Qerl,
therefore ' € W(T',,). O
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Using the previous lemma, we show that the full orbit HSVM solution lies in the invariant set.

Lemma 4.5. Ler zg € {0,1}" and T',, denote a subgroup of P, and assume Orb(x,T',) can be
strictly memorized. If 0° = Vw* where w* = HSVMg (Orb(xg,I',)) then 0° € U(T,,).

Proof. We use a symmetrization argument. To this end, with 8" = (W*, b*) let

0= W)= 30 Qo= 3 Q'

Qerl'y, QeTy, QeF,L
By Lemmawe know that @ € ¥(T',,). By the definition of 8™ we also have
E(x"),0") — E(x,0%) > 1

Therefore, using both the intertwining property (9) and Lemma for any x € Orb(xo,T',,) and
j € [n], and with z(x) = [z, 1], we have

E(ﬂJ(”,O)—E(w,@)—(?fﬂj—l) (z)"6;
Z (2z; — 1)z(z)" Q6

QEF”
z9) Q%) - E 0
QEFn
| Z E(zY),0%) — E(z,0")
Qerly,
= E(m@, 0*) — E(x,0")

> 1.

As aresult, 0 is a feasible point of the HSVM problem (7)) defined on the full orbit dataset Orb(xq, I'y,).
Therefore, by the definition of 6* it must follow that |[0*|| < ||@||. On the other hand, using the
triangle inequality and the fact that @ € I';; is a permutation we have

1 N |
Hﬂlzllm > Qo) < |F | > 1Qe | =16
" Qer, Qer,

This implies (|0*|2 = 1||6||%, as this objective is 1-strongly convex this in turn implies 8* = 6 €
U(Ty,). O

B.4 APPROXIMATELY INVARIANT PARAMETERS

B.4.1 APPROXIMATE INVARIANCE IS SUFFICIENT FOR GENERALIZATION

The following lemma states a sufficient condition for strict memorization of an orbit dataset based
on proximity to the relevant invariant space. In particular, given a graph G € G, and letting
2o = Erep(G), if w* = HSVM(S), where S C Orb(xg, ¢,,), and w* is sufficiently close to the
subspace Q,,, then 8" = Ew* will strictly memorize all graphs isomorphic to G.

Lemma B.4. Ler xy € {0,1}" satisfy ||zo|| = m € N>g, 0 = Ew € O, satisfy E(a:(()]),e)

E(x0;0) > 1forall j € [n], and 8' = Ew' € ¥(T',) be such that |w — w'|| < ﬁ Then
E(zY);0) — E(z;0) > 1 forall x € Orb(zo,T,) and j € [n).

Proof. Inspecting Lemma if [|zo]| = m € N> then |Ju;(x)|| < \/m forall x € Orb(x,T',,)
and j € [n]. By assumption u;(x¢)Tw > 1 forall j € [n], therefore
E(2{);0') — B(x0;0') = y;(z0)z(x0)76)
= u(ao) W’
= u;(@o) w — u; (@) (w — )
> 1= [luj(wo)flw — o'
> 3
21
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forall j € [n]. As @' € ¥(T,), then Lemmaimplies for any « € Orb(xo,T",) that
E(@Y);0") — BE(x;0') = uj(z)’w' > 3.
Moreover, and using the same trick as before, we also observe for all & € Orb(xg, ;) that

E(z");0) — E(z;6) = y;(x)z(2)"6,
)T

uj(x)’ w
— (@) — uy(@) (@~ w)

1l @)lllw — |

(AVARAYS
D=

forall j € [n]. O

B.4.2 PROXIMITY OF AHSVM SOLUTION TO THE INVARIANT SET

Lemma B.5. Let S C {0,1}", ps = ﬁ Y zes W(x) and assume w* = AHSVM(S) is feasible.

Then w* = £,
sl

Proof. Note by the feasibility assumption ﬁ Y wes @(x) # 0, Forming the Lagrangian with
Lagrange variable a we have

L(w,0) = gl +a (1 - Z<a<w>,w>> .

zeS

Clearly this is a strongly convex objective with a unique minimizer w*. Zeroing the gradient with
respect to w and rearranging gives the identity

on the solution pair (w*, a*). In addition, as there is only a single constraint and the problem is
feasible then the constraint must be active, meaning

1 — *
5] (a(z),w”) =1
xES
As a result ]
llw* |12 =o' gy 2 (a(@) W) =a”. (11)
x€S
Therefore

w* 1 _
[w*|2 = E Z u(x) = ps.
xzeS

As ps # 0, then
2

w* 1
sl = |25 | = e
w2 [|ew[?
giving
. bs
= 2
sl
as claimed. O

Similar to Lemma[4.5] we now show that the full orbit AHSVM solution lies on the relevant invariance
space.

Lemma B.6. Let o € {0,1}", T';, denote a subgroup of P, and assume O = Orb(zo,T',)
satisfies |O| = |T'y|. Let w* = AHSVMg(Orb(zxq,T',)) be feasible and define 0 = V w*, then
0" € ¥(T,).
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Proof. Again we use a symmetrization argument. To this end, with 8* = (W*, b*) let

0= = 390 = | L @TW g 3 QT

Qel, Qery, Qerl'y

By Lemmawe know that @ € ¥(T',,). Letx € O and Q € I';, be such that Qx = x(, and let 7
denote the permutation associated with Q. As @ € ¥(T',,) then using the intertwining property (@)

a(x) w 1 > E(xY;6) - E(x;6)

= 3" B(Q2)™;0) - B(Qw:0)

n

1
= > E(xy):0) — E(z0;0)
=1

= a(xo) T w.

u(z)Tw* = 1.

As the AHSVM problem is feasible and has a single constraint then ﬁ Y ozco

Therefore

ﬁ Z a(z) w = a(zo) w

1 n
=~ Elwy):0) — E(zo;0)
=1

7ZE zl; |r| > Qo |-E w”’\Fnl > Qe

Qerl'y Qerl'y

- 3 LS r@aie) - pi@ego

Qer, 1=
|O\Z ZE (£9); 0) — E(x;0)

zcO
1 — *

= 4] Z a(x)w
zcO

As aresult, 0 is a feasible point of the AHSVM problem defined on the full orbit dataset Orb(xg, I';,).
Therefore, by the definition of 8 it must follow that ||@*|| < ||@]|. On the other hand, using the
triangle inequality and the fact that Q € I',, is a permutation, we have

0 0" 0% =|6"
ol =l 30 Q0% < 1y 3 196" = o7,

Qely, Qerl,

This implies (/0" = 1||6||%, as this objective is 1-strongly convex this in turn implies 8* = 6 €
U(Tn). O

The lemma below bounds the difference between the sample AHSVM solution and the population
AHSVM solution, leveraging only the boundedness of the data.
Lemma 4.6. Let O C {0,1}" satisfy |z|lo < m € N>q and assume w* = HSVM(O) is feasible.

Consider a random sample S = (x;)N., where z; ~ U(O) are mutually i.i.d. and define wo =
AHSVM(O) and ws = AHSVM(S). For § € (0,1] and € € Rsq, if N > e 2||w*||*mlog(1/9)
then ||ws — we|| < € with probability at least 1 — 4.
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Proof Let p = E[a(z)] where z ~ U(O), then pr = 157 > c0 @(). In addition, let fis =
|5| > zcs (x). Then using Lemmawe have

wo = Lv ws = {J/is
([l s?
Taking norms this clearly also implies
1 N 1
el = m7 s = m,

Observe by definition that w* satisfies E(x7); %) — E(z;0") = (u;(x),w*) > 1, therefore for
any S C O we have

5 D) Zzuj )21

xes wGSJ 1

As a result we have both w* € F4(S) and w* € F4(O), which in turn implies ||w*| > ||ws|| and
lw*|| > |wol|. Defining f(x) = x/||x|* for any = € RY, then applying Lemma|A.8|this gives

s — pl|
min{flwol| 72, ws| =2} ~

lws = woll = If(fs) — f(p)]l < < 3w |l fas — well-

Observe
| N
s — pll = Il D_(a(x) = w
i=1
clearly @(x) — p is a centered random vector, moreover for any « € {0,1}

la(z) — pll < flu(@)| + ||MH

= [u()] + Z
x’' €O
<lla@) + 5 ) llu(z
o1 2 Z
< 2y/m,
where the last inequality follows from Lemma and the assumption m > 2. We now deploy
Lemma a specialization of (Pinelis| 1994, Th, 3.5). In particular, given some € € R>( and letting

Sy = 27, (a(e) — ) then

N Neé?
(s — pll > ) = B(ISw| > Ne) < exp (-

As aresult, for 0 € (0,1],if N > 1% log(1/6) then
lws —woll < 3[lw™|e

with probability at least 1 — §. To arrive at the claimed result we substitute € for m
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APPENDIX C ADDITIONAL EXPERIMENTS AND PRELIMINARY RESULTS

C.1 FURTHER PARAMETER HEATMAPS

Figure[]is an extension of Figure 3] and shows the weight matrices for MEF and Delta on clique and
Payley graph data. We observe that the Delta rule also returns solutions which approach the invariant
space as the sample size IV increases.

MEF on Clique, N = 10 MEF on Clique, N = 50 MEF on Clique, N = 600

50 75 100 125 150 175

MEF on Paley, N = 10 MEF on Paley, N = 50 MEF on Paley, N = 600

3

2

1

4

-1

-2

.ls
25 50 75 100 125 150 175

Delta on Clique, N = 10 Delta on Clique, N = 50 Delta on Clique, N = 600

25 50 75 100 125 150 175 25 50 75 100 125 150 175

2

1

0

-1

-2

.l3
25 50 75 100 125 150 175

Delta on Paley, N = 50 Delta on Paley, N = 600

2

1

0

-1

-2

.l3
25 50 75 100 125 150 175

Figure 4: Weights found by MEF and Delta on clique and Payley graph data while varying
N': networks where trained on samples from isomorphism class of 10-cliques and Payley graphs on
v = 20 vertices with sample size ranging from 10 to 600.

50 75 100 125 150 175 50 75 100 125 150 175

Delta on Paley, N = 10

C.2 HIDDEN CLIQUE PROBLEM

An equivalent interpretation of robust exponential memory [Hillar & Tran| (2018) in Hopfield networks
is that of error-correcting codes [Hillar et al.| (2021)). In particular, a network trained on sufficiently
many cliques will not only generalize its memorization abilities to all cliques but will also have
all cliques with non-trivial basins of attraction (e.g., 5% noise tolerance). For an example of this
robust generalization, see Fig.[5} which plots over sample count both the generalization and denoising
accuracy of HNs trained with MEF. These networks appear to learn to solve the Hidden Clique
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Problem in computer science Dekel et al.| (2014) with only a polynomial number of samples. Proving
this observation rigorously will be the focus of future work.

C.3 CLIQUE GENERALIZATION IN DAMS

We conducted experiments testing generalization performance in DAMs when presented with increas-
ing numbers of cliques as training data. We used the architecture and algorithm described in Krotov
& Hopfield (2016)) for polynomial degrees 4 and 6 in the energy function. The results in Fig. [6|show
that these networks have very different generalization behaviors depending on degree. In particular,
in our experiments, they are not able to store all cliques when the degree is 4, and when they do for
degree 6, it is when the training set contains nearly all cliques. Our preliminary investigations suggest
that DAMs have challenges generalizing in the setting of cliques, but much more work is needed to
understand their behavior.

C.4 THE HOPFIELD NETWORK NOT GRAPH ISOMORPHIC CHECK (HNNGIC)

Lemma [4.3] implies any isomorphism class of a graph can be stored in a Hopfield network. This
prompts investigation into the potential for using Hopfield networks to check for graph isomorphisms,

0.81

4
o
-
o

9 0 —— beta_1
@ ] "~
5 = beta_2
3 )
g > —+— beta_3
0.4
5
—— Train Exact
0.2 Test Exact
—— Test Bit 0 I
—— Denoise Exact
0.0 4 —t— Denoise Bit e — S

200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
Sample count (of 137846528820 total graphs) Sample count
a) P orap b) p

Figure 5: Generalization solves the Hidden Clique Problem. a) Generalization and denoising
accuracy (exact / average bits) are plotted as a function of number of 20-clique samples (in 40-vertex
graphs; n = 780) for MEF-trained HNs. Accuracy for generalization was computed using 10000
novel graphs as Test set. Denoising accuracy was computed by corrupting 5% bits in these 10000
and evaluating correctness of the attractor when dynamics is initialized at the noisy patterns (5 trials,
standard deviation error bars). b) For each type of parameter (adjacent edges, non-adjacent, or
thresholds), we plot their average over number of training samples (normalized so that thresholds are
mean 1).
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g B
] 3
2 2
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9 @
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£ °
2 2
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& Test DAM (Deg 4) =
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Figure 6: DAM models trained on cliques. We compare the generalization performance between
DAMs of different degrees a) 4 and b) 6, and MEF-trained HNs for the 6-clique problem on graphs
with v = 12 vertices. The Train (resp. Test) accuracy is the percentage of 6-clique training samples
(resp. all 6-cliques) that are neural network attractors. Averaged over four trials, with standard
deviation error bars.
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a fundamental and important problem in computer science. To this end we propose Algorithm [T}
which we refer to as the Hopfield Network Not Graph Isomorphic Check (HNNGIC). As the name
suggests, this algorithm provides a check if two graphs are not graph isomorphic, returning true in
certain cases when they are not graph isomorphic and unknown, otherwise.

Algorithm 1: Hopfield Network Not Graph Isomorphic Check (HNNGIC)

Input: two graphs x1, 2 € {0, 1}" and computational budget B
Output: True or Unknown

Step 1: minimize L(F(3); z;) within computational budget B, return 8* € R3;
Step 2: if H(x1; F(8*)) = x; then

if H(x2; F(8*)) # 2 then

| return True

end

else
| return Unknown

end

The idea behind this algorithm is simple: given two graphs, we pick one, i.e., x1, arbitrarily at
random. We then attempt to train the Hopfield network by minimizing the energy flow defined on
this single graph, but restrict the parameters to lie on the edge adjacency invariant subspace ¥V (Q,, ).
If the resulting invariant parameters F'(3*) strictly memorize x; then this implies every point in the
orbit of &1 under graph isomorphism is also strictly memorized. Therefore, if @2 is graph isomorphic
to @1, then it must be a fixed point. As a result, 5 and &1 cannot be graph isomorphic if x5 is not a
fixed point of an invariant Hopfield network which stores x;. Note, that if o is a fixed point, it does
not follow that x; and x5 are isomorphic. Indeed, there may be other fixed points, i.e., “spurious
states", in the landscape, not related to the orbit of ;. Also note that Lemmas [4.3]and .T]imply that
there is always a 3-parameter network storing any graph; in particular, given enough computation, we
are guaranteed to find an approximation of 3* that is sufficient to store x;.

Statement on the use of LLMs. Large language models (LLMs) were used to assist with literature
search, checking and refining the clarity of writing, high level ideation and planning as well as
organizing related work.

31



	Introduction
	Related work

	Preliminaries
	Implicit bias, minimum norm memorizers and generalization
	Storing isomorphism classes of graphs and invariance
	Encoding Simple, Undirected Graphs as Binary Vectors
	Experiments on graph data
	Invariant parameters

	Limitations and Future Work
	Background
	Energy gap for binary vectors a hamming distance one apart
	Learning algorithms for Hopfield Networks
	Encoding simple, undirected graphs as binary vectors
	Bounded representations
	Euclidean distance bounds between normalized vectors
	Hoeffding's inequality in Hilbert space

	Proofs of results
	Proof of Theorem 3.2
	Properties of invariant parameters
	Energy bounds for invariant parameters across orbits
	Characterizing the invariant set for edge adjacency preserving permutations

	Constructing an invariant, small norm parameter which memorizes k-cliques
	Invariance of the full orbit HSVM solution

	Approximately invariant parameters
	Approximate invariance is sufficient for generalization
	Proximity of AHSVM solution to the invariant set


	Additional Experiments and Preliminary Results
	Further parameter heatmaps
	Hidden Clique Problem
	Clique generalization in DAMs
	The Hopfield Network Not Graph Isomorphic Check (HNNGIC)


