
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

IMPLICIT BIAS AND INVARIANCE: HOW HOPFIELD
NETWORKS EFFICIENTLY LEARN GRAPH ORBITS

Anonymous authors
Paper under double-blind review

ABSTRACT

Many learning problems involve symmetries, and while invariance can be built into
neural architectures, it can also emerge implicitly when training on group-structured
data. We study this phenomenon in classical Hopfield networks and show they
can infer the full isomorphism class of a graph from a small random sample. Our
results reveal that: (i) graph isomorphism classes can be represented within a three-
dimensional invariant subspace, (ii) using gradient descent to minimize energy
flow (MEF) has an implicit bias toward norm-efficient solutions, which underpins
a polynomial sample complexity bound for learning isomorphism classes, and (iii)
across multiple learning rules, parameters converge toward the invariant subspace
as sample sizes grow. Together, these findings highlight a unifying mechanism
for generalization in Hopfield networks: a bias toward norm efficiency in learning
drives the emergence of approximate invariance under group-structured data.

1 INTRODUCTION

Here, we analyze the emergence of invariance arising implicitly during training in Hopfield networks
(HNs) (Hopfield, 1982), which represent arguably the simplest example of an Associative Mem-
ory. Building on classical ideas Rosenblatt (1958); Willshaw et al. (1969); Amari (1972); Little
(1974); Pastur & Figotin (1977), HNs are recurrent neural networks consisting of n linear-threshold
McCulloch–Pitts neurons McCulloch & Pitts (1943) that can store binary patterns as distributed
memories in the form of fixed-point attractors of its recurrent dynamics. In the literature, HNs are
usually associated with a particular Hebbian learning scheme called the “Outer-Product Rule", but
for the purposes of this work we also consider other standard training methods. This setting is
intentionally minimal so that we can focus on developing novel mathematical tools for understanding
generalization in a classical architecture. As data symmetry is not made explicit in this model, any
invariance must arise from the interplay of the group structure in the data and the implicit bias of the
learning rule in question. More specifically, and inspired by Hillar & Tran (2018); Hillar et al. (2021),
this paper studies whether or not standard learning rules and objectives, notably minimization of the
energy flow (MEF) Hillar et al. (2012), a tractable convex loss, can learn the isomorphism class of a
graph from a small, random subset. Our key findings are as follows.

1. HNs can memorize any graph isomorphism class. We characterize the subspace of parameters
invariant to edge-adjacency–preserving permutations (of which graph isomorphisms are a subset)
(Lemma 4.2) and observe that this subspace aligns well with the parameters of successfully
trained models (Fig. 3). Moreover, for any graph we give an explicit construction within this
space that memorizes it (Lemma 4.3) as well as its isomorphism class.

2. Implicit bias towards norm efficient solutions. We reparameterize the MEF objective and
show that gradient descent on it is directionally biased towards the solution to a hard-margin
support vector machine (HSVM) problem on an induced linear representation (Theorem 3.1).

3. Polynomial sample complexity suffices for orbit generalization. Suppose D ⊂ {0, 1}n is
strictly memorizable with min-norm parameter θ∗, ∥x∥0 ≤ m for all x ∈ D, and let D be a
distribution supported on D. We prove N = Ω̃

(
n∥θ∗∥2mϵ−2

)
random samples suffices for

both HSVM and MEF to memorize new samples with probability at least 1− ϵ (Theorem 3.2).
These theoretical results corroborate the empirical “few-shot-to-orbit” phenomenon we observe
(Figs. 1, 2). Moreover, specializing to isomorphism classes this result implies a polynomial
sample complexity in the number of vertices v, supporting a conjecture in Hillar et al. (2021).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

4. Emergence of invariance. We observe that as the sample size N grows the learned parameters
concentrate near the invariant subspace (Fig. 3). For a simplified average HSVM surrogate, we
prove the sample solution converges to the invariant set at rate Õ(v3/2/

√
N) (Lemma 4.6).

1.1 RELATED WORK

Capacity of Hopfield networks. The capacity of a Hopfield network depends on the learning rule
and the structure of the data. For dense, uncorrelated random patterns under Hebbian learning, the
statistical–mechanics analysis of (Amit et al., 1985) gives the classic linear law: reliable retrieval
up to approximately 0.138 patterns per neuron with subsequent refinements via replica methods
(Gardner, 1988; Krauth & Mézard, 1989). Coding-theoretic analyses further show that, for Heb-
bian constructions and exact recovery of randomly chosen patterns, one typically cannot exceed
n/(4 lnn) (McEliece et al., 1987) memories. More generally, Cover’s classical bound Cover (1965)
restricts the capacity for exact storage of dense, random data to only 2n. Nonetheless, superlinear
capacity is achievable for certain structured datasets. For example, sparse data having few active
neurons can yield an increase of capacity to nearly quadratic in n (Tsodyks & Feigel’man, 1988;
Amari, 1989). Additionally, robust exponential memory has been observed for particular examples of
group structured data (Hillar & Tran, 2018; Hillar et al., 2021); in particular, for storing all k-clique
graphs and their hypergraph analogues. Our work builds on the observations of (Hillar & Tran, 2018;
Hillar et al., 2021) by proving that all graph isomorphism classes are memorizable.

Modern Hopfield Networks. A line of recent investigation has sought to increase the capacity
and retrieval properties of Hopfield networks by changing the energy function. Dense Associative
Memories (DAMs) replace the classical quadratic energy with higher-order polynomial interactions,
resulting in a capacity that scales polynomially with neuron count (Krotov & Hopfield, 2016; Horn
& Usher, 1988). Building on this, Modern Hopfield Networks (MHNs) introduced a log-sum-exp
energy function that allows the capacity to grow exponentially (Ramsauer et al., 2020; Demircigil
et al., 2017). Our work provides a complementary perspective to these advancements by showing
classical HNs can achieve exponential capacity capturing the symmetry of the data in its parameters.

Generalization beyond the training set for HNs. Theoretical study of classical HNs primarily
focuses on storage limits, basins of attraction, and noise robustness around memorized patterns, rather
than sample–complexity guarantees for generalization to patterns outside the training set. Earlier
analyses of concept generalization in classical HNs investigate when networks capture latent data
regularities (Fontanari, 1990). More recently, Random-Features Hopfield Models (RFHMs) exhibit
learning phase transitions and even retrieval of previously unseen examples (Negri et al., 2023; Kalaj
et al., 2024). These results complement but are distinct from our own; in particular, they do not
provide sample–complexity bounds or analyze the emergence of invariance induced by a symmetry
present in the data. In addition, while these results primarily use techniques from statistical physics,
here we leverage tools from statistical learning theory.

Emergent invariance through data augmentation and feature averaging. One perspective on data
augmentation is as orbit averaging over a symmetry group; in particular, empirical risk minimization
on augmented data is equivalent to averaging features or predictions along group orbits. This has
been shown to induce approximate invariance and reduces estimator variance (Chen et al., 2020).
From a kernel perspective, augmentation decomposes into first-order invariant feature averaging plus
a second-order variance regularizer (Dao et al., 2019). Enforcing invariance through this averaging
method yields provable generalization benefits in the context of invariant kernel regression (Elesedy
& Zaidi, 2021). Beyond static estimators, recent results show that with full group augmentation deep
ensembles become equivariant in expectation at all training times in the infinite-width limit (Gerken
& Kessel, 2024) and that the expected predictions of group-convolutional networks match those of
data-augmented conventional networks throughout training (Marthaler et al., 2024). While these
results assume explicit invariance, either through architectural design or by averaging over the full
group orbit, here we ask whether simple learning rules can implicitly recover approximate invariance
from small random sample of elements.

Implicit bias. A large body of work shows that, even without explicit regularization, certain learning
dynamics have a preference for particular solutions. In particular, for classification using the logistic
loss, gradient descent drives the parameter norm to infinity while the parameter direction converges to
the max–margin classifier (Soudry et al., 2018; Ji & Telgarsky, 2018; Nacson et al., 2019). Our work

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

leverages these results in order to show that standard learning rules for HNs are implicitly biased
towards learning invariant representations when trained on group data.

2 PRELIMINARIES

Notation: we use capitalized boldface characters to denote matrices, bold lowercase characters to
denote vectors and non-bold lowercase characters to denote scalar values. If x ∈ Rn is a vector then
xi denotes the ith entry of x. If X ∈ RN×n then xi ∈ Rn denotes the ith row of X and to access
individual entries of X we use the notation xij or [X]ij , whichever is clearer in context. Whether a
matrix, vector or scalar is deterministic or random is also inferred from context. We use Πa to denote
the set of permutations on [a] and Pa to denote the set of a× a permutation matrices. Overloading
our notation, we also refer to Pa as the group of permutation matrices. Finally, if H is a group that
acts on a set A, then the orbit of a ∈ A under H is denoted Orb(a,H) = {ha ∈ A : h ∈ H}.

Associative Memory: we consider a Hopfield network Hopfield (1982) with asynchronous dynam-
ics but do not restrict ourselves to Hebbian learning. To this end, let Symn

0 ⊂ Rn×n denote the set of
symmetric, real, n× n matrices whose diagonal entries are zero, and let Θ = Symn

0 ×Rn. Clearly Θ
is a convex vector subspace. We introduce the energy function E : {0, 1}n ×Θ → R defined as

E(x;θ) =
1

2
xTWx+ bTx, (1)

where θ = (W , b) ∈ Θ. Given an input binary vector x ∈ {0, 1}n, the Hopfield network generates
a sequence of binary vectors (x(t))t≥0 through the following recurrent dynamics: with x(0) = x
then

xj(t) =

{
1(−wT

j x(t− 1) > bj) t ≡ j (mod n),

xj(t− 1) otherwise
(2)

for all t ≥ 1 and j ∈ [n]. For any input x ∈ {0, 1}n, this sequence converges in finite time to
a fixed point Bruck (1990). We define the input-output map of the Hopfield network, denoted
Hθ : {0, 1}n → {0, 1}n as follows: given an input x, the output Hθ(x) is the attractor or fixed
point of 2 reached when initialized with x(0) = x. If Hθ(x) = x, then x is a fixed point of the
recurrent dynamics, and furthermore, we say that Hθ has memorized x. A sufficient condition for
Hθ to memorize x is E(x;θ) < E(x′;θ) for all x′ ∈ N (x), where here N (x) denotes the set of all
binary vectors a Hamming distance of exactly one from x. If θ satisfies this property, we say that Hθ

strictly memorizes x. We also denote the action of a permutation matrix P ∈ Pn on the parameters
of a Hopfield network as Pθ := (P TWP ,P T b).

Training and memorization: let S ⊂ {0, 1}n, we say that Hθ memorizes S if it memorizes all
x ∈ S. There are many methods Hertz et al. (1991) that have been proposed to train networks to
memorize a set S, including Hebbian learning Hebb (1949); Hopfield (1982), the projection rule
Personnaz et al. (1985; 1986), Delta learning Widrow & Hoff (1960), and Storkey’s learning rule
Storkey (1999), among several others Tolmachev & Manton (2020). In this work, we focus on
minimization of the energy flow (MEF) Hillar et al. (2012); Hillar & Tran (2018); Hillar et al. (2021)
and study its implicit bias. If x ∈ {0, 1}n and j ∈ [n], let x(j) ∈ {0, 1}n satisfy xl ̸= x

(j)
l iff l = j.

We define the energy flow loss as

L(θ;S) =
∑
x∈S

n∑
j=1

exp
(
E(x;θ)− E(x(j);θ)

)
. (3)

For any given set of points S , note that L is nonnegative, infinitely differentiable, and is convex in Θ.
As a result, minimizing L is a convex problem to which a wide variety of numerical techniques can
be applied, including but not limited to variants of gradient descent (GD) as well as (approximate)
second order methods such as L-BFGS Liu & Nocedal (1989). As long as S can be memorized, then
sufficiently minimizing 3 will result in a network which memorizes S. For further details on MEF,
we refer the reader to Hillar et al. (2021) and its inspiration from the theory of density estimation
Sohl-Dickstein et al. (2011).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 IMPLICIT BIAS, MINIMUM NORM MEMORIZERS AND GENERALIZATION

In this section, and prior to specializing to the study datasets drawn from isomorphism classes of
graphs, we connect memorization to solving a linear program and identify the implicit bias of MEF.
This enables us to provide generalization guarantees for memorization in Hopfield networks as per
Theorem 3.2. Given θ = (W , b) ∈ Θ, for any j ∈ [n] we define the vector θj = [wj , bj] ∈ Rn+1.
Overloading our notation, we also use θ = [θ1,θ2...θn] ∈ Rn,n+1 to refer to the flattened vector
of all the network parameters (W , b). For any x ∈ {0, 1}n let z(x) = [x, 1] ∈ {0, 1}n+1 and
yj(x) = 1− 2xj ∈ {±1}. Using this notation it is well known that the energy difference between a
point and one of its neighbors is

E(x(j);θ)− E(x;θ) = yj(x)⟨z(x),θj⟩, (4)

see Appendix A.1 for further details. As a consequence, parameters which strictly memorize a set
S ⊆ {0, 1}n must satisfy a system of linear inequalities: in particular, there must exists some ϵ > 0,
referred to as the functional margin, such that yj(x)⟨z(x),θj⟩ ≥ ϵ for all x ∈ S and j ∈ [n]. Clearly
the energy function (1) is quadratic in the inputs x but linear in the parameters, E(x; aθ) = aE(x,θ).
Moreover, this implies the energy is positively homogeneous of degree 1 in the parameters and as a
result the set of attractors of a Hopfield network is invariant under positive rescaling of the parameters.
Without loss of generality, we therefore select a functional margin of one and define the feasible set
of parameters up to positive rescaling as

Fθ(S) = {θ ∈ Θ : yj(x)⟨z(x),θj⟩ ≥ 1 ∀x ∈ S,∀j ∈ [n]} (5)

In addition, the inequality constraints that define F(S) can be written with respect to a single vector
of unique parameters, which we denote ω. Let p = n(n−1)

2 and q = n(n+1)
2 . There exists a V ∈

{0, 1, 1/
√
2}n(n+1)×q such that for any θ ∈ Θ there exists a a ∈ Rp with ω = [

√
2a, b] ∈ Rq , such

that θ = V ω. In short, V copies the unique elements, i.e., the upper triangular elements of W and the
biases b, into their appropriate locations in the flattened vector θ. For any j ∈ [n] let Vj ∈ R(n+1)×q

denote the submatrix of rows of V such that θj = Vjω. For any x ∈ {0, 1}n and j ∈ [n] let
uj(x) = yj(x)V

T
j z(x). Then each constraints can be re-written as yj(x)⟨z(x),θj⟩ = ⟨uj(x),ω⟩

and thus we can equivalently define the feasible set as

Fω(S) = {ω ∈ Rq : ⟨uj(x),ω⟩ ≥ 1 ∀x ∈ S,∀j ∈ [n]} (6)

Inspecting (6), clearly memorization of a dataset is equivalent to solving a linear program (LP) and
therefore any algorithm which successfully memorizes S is implicitly solving an LP. Moreover,
these algorithms may have an implicit bias towards feasible points or solutions which satisfy other
conditions or criterion. A popular and well studied example is the feasible point with the smallest
norm: identifying this requires solving a quadratic program (QP) or, more specifically, a hard margin
support vector machine (HSVM) problem. In particular, note that if θ = V ω where ω = [

√
2a, b]

then ∥θ∥2 = ∥W ∥2F + ∥b∥2 = ∥
√
2a∥2 + ∥b∥2 = ∥ω∥2. As a result, finding the minimum norm

feasible point for a set S ⊂ {0, 1}n is equivalent to solving

HSVM(S) = argmin
ω∈Rq

∥ω∥2 s.t. ω ∈ Fω(S). (7)

The key takeaway of this section is that minimizing (3) with gradient descent (GD) is implicitly
biased in direction towards the solution of (7), i.e., norm-minimization. To this end, first observe
that (3) can be re-parameterized as:

L(θ;S) =
∑
x∈S

n∑
j=1

exp
(
E(x;θ)− E(x(j);θ)

)
=
∑
x∈S

n∑
j=1

exp (−⟨uj(x),ω⟩) =: L(ω;S).

Consider now updates to the parameters of the Hopfield network using GD: in particular, given initial
parameters ω(0) and step-size η > 0, for all t ≥ 0 let

ω(t+ 1) = ω(t) + η

N∑
i=1

n∑
j=1

exp
(
−uj(xi)

Tω
)
uj(xi). (8)

Applying (Soudry et al., 2018, Thm.3) it can be proved that this sequence of GD iterates converges
in direction to the solution of (7).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Theorem 3.1. ((Soudry et al., 2018, Thm.3) adapted to our setting) Assume S can be strictly
memorized, let ω∗ = HSVM(SN), ω(0) ∈ Rq be arbitrary and ω(t) be generated for all t ∈ N≥1

as per (8). There exists a choice of step size η such that ω(t) = ω∗ log(t) + ρ(t) for all t ∈ N≥1,
where ρ(t) grows as ∥ρ(t)∥ = O(log(log(t))). Moreover, limt→∞

ω(t)
∥ω(t)∥ = ω∗

∥ω∗∥ .

Informally, Theorem 3.1 states that the solution returned by minimizing the energy flow with gradient
descent (MEF-GD) after exponentially many iterations is a close approximation directionally to the
solution returned by solving the HSVM problem (7). We now derive generalization bounds both for
the HSVM solution and MEF with GD.

Theorem 3.2. Let D ⊂ {0, 1}n be a set which can be strictly memorized and assume ∥x∥0 ≤
m ∈ N≥1 for all x ∈ D. Let D be a probability distribution on D, and consider a random sample
SN = (xi)i∈[N], where xi ∼ D are mutually i.i.d. Let ω̂ = HSVM(SN), ω∗ = HSVM(D),
ω(0) ∈ Rq be arbitrary and ω(t) be generated for all t ∈ N≥1 as per (8), δ, ϵ ∈ (0, 1) and assume
x ∼ D is sampled independent of SN . If N ≳ ϵ−2n∥ω∗∥2m log(1/δ) then

P(H(x;V ω̂) ̸= x) ≤ ϵ and P(H(x;V ω(t)) ̸= x) = O

(√
m∥ω∗∥
log(t)

)
+ ϵ

hold with probability at least 1− δ over the sample SN .

To prove Theorem 3.2 we combine a vector contraction inequality (Maurer, 2016, Corollary 1) with
Rademacher bounds, see e.g., (Mohri et al., 2018, Theorem 3.3), we refer the reader to Appendix B.1
for a full proof. It is worth emphasizing that Theorem 3.2 implies any dataset D which can be strictly
memorized, can be at least nearly strictly memorized using only a polynomial number of samples.
In Section 4.3 we take preliminary steps towards relaxing this statement, from memorizing samples
drawn from D with high probability, to memorizing the set D itself with high probability. Finally, we
remark that the MEF bound implies gradient descent may require exponentially many iterations to
converge directionally to the max-margin solution. We hypothesize that this is a tail phenomenon:
once the weights are approximately aligned, all points are classified with a significant margin and
their loss contributions become exponentially small.

4 STORING ISOMORPHISM CLASSES OF GRAPHS AND INVARIANCE

4.1 ENCODING SIMPLE, UNDIRECTED GRAPHS AS BINARY VECTORS

Let Gv denote the set of all simple, undirected graphs on v ∈ N vertices. Recall two graphs
G = (V,E), G′ = (V ′, E′) are isomorphic, which we denote G ∼= G′, if there exists a bijection
ϕ : V → V ′ such that (ϕ(ν1), ϕ(ν2)) ∈ E′ if and only if (ν1, ν2) ∈ E. We refer to such a ϕ as an
isomorphism between G and G′. Note when V = V ′, as is the case here since V = V ′ = [v], then ϕ is
a permutation. The isomorphism class of a graph G ∈ Gv is defined as I(G) := {G′ ∈ Gv : G′ ∼= G}.
Let V2 denote the set of unordered pairs of [v], n := |V2| =

(
v
2

)
and Ind : V2 → [n] be a bijection

which indexes the elements of V2.

Definition 1 (Edge representation of a graph). Let Erep : Gv → {0, 1}n be defined as follows: if
G = ([v], E) ∈ Gv and x = Erep(G) then, for all j ∈ [n], xj := 1(Ind−1(j) ∈ E). We refer to x as
the edge representation of G.

To be clear, Erep is a bijection which assigns each graph to a binary vector of dimension n whose
support defines the vertex pairs present in the edge set of the graph in question. Any vertex permutation
induces an edge permutation.

Definition 2 (Edge permutation induced by a vertex permutation). Let ϕ : [v] → [v] be a permutation.
The edge permutation πϕ : [n] → [n] induced by ϕ is defined as follows: if Ind−1(j) = (ν1, ν2)
then πϕ(j) = Ind((ϕ(ν1), ϕ(ν2))). We denote the subset of these edge permutations as ΠΦ

n and the
corresponding subset of permutation matrices as Φn.

We now claim the following: first Φn is a subgroup of Πn, second if two graphs G,G′ ∈ Gv

are isomorphic then there is a vertex induced edge permutation which maps between their edge
representations, and third, for any G ∈ Gv we have Erep(I(G)) = Orb(Erep(G),Φn). For proofs of

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

these claims we refer the reader to Appendix A.3. Two edges are said to be adjacent if they share a
vertex in common: more specifically, if j, l ∈ [n] then j and l are adjacent, which we denote j ∼ l, if
and only if |Ind−1(j) ∩ Ind−1(l)| = 1, otherwise we say j and l are not adjacent, which we denote
j ≁ l. We now identify a subset of edge permutations which are characterized by preserving edge
adjacency.

Definition 3 (Edge adjacency preserving permutation). A permutation π : [n] → [n] preserves
edge adjacency if π(j) ∼ π(l) if and only if j ∼ l. We denote such permutations as ΠQ

n and the
corresponding set of permutation matrices as Qn.

Similar to Φn, this subset forms a subgroup of Pn. Moreover Φn is a subgroup of Qn and as a result
Erep(I(G)) ⊂ Orb(Erep(G),Qn). Again we refer the reader to Appendix A.3 for further details. As
a result, the edge representations of the isomorphism class of a graph are a subset of the orbit of the
edge representation of the graph in question under edge adjacency preserving permutations.

4.2 EXPERIMENTS ON GRAPH DATA

To experimentally assess storage across isomorphism classes we study three classes of graphs: namely
cliques, bipartite and Paley graphs. Bipartite graphs split the v vertices into two equally sized groups
with all possible inter-group edges present and no intra-group edges. Paley graphs connect vertices l
and j when (l − j) is a quadratic residue mod v, as per NetworkX Developers; cf. Bollobás (2001).
Clique graphs, or more specifically k-cliques, contain a fully connected subset of k vertices while the
remaining v − k vertices are isolated. We remark that extensive experiments for cliques are already
provided in Hillar & Tran (2018); Hillar et al. (2021), we include them here again for comparison and
completeness. We remark that we selected these three classes due to the ease with which we are able
to sample from them and emphasize that these families are representative rather than special. Indeed,
we observe similar behavior for many other graph isomorphism classes, including random graphs.

Figure 1 shows test accuracy versus training sample size, with mean and min–max over 10 trials, for
Hopfield networks trained by MEF, Perceptron, and Delta (the latter two used only as baselines; see
Appendix A.2). For small graphs (v = 8) we enumerate the full isomorphism class and report the true
accuracy, i.e., the fraction of the class memorized. For larger graphs (v = 20), accuracy is estimated
on an independent random sample of 1000 graphs. We highlight two observations: (i) MEF appears
to reach higher test accuracy with fewer samples relative to the other methods, despite all methods
perfectly memorizing the training set. This suggests differing implicit biases or implicit bias strengths.
(ii) For MEF and Delta, the sample size needed to memorize an isomorphism class is tiny relative to
the class size, aligning with the findings in Hillar & Tran (2018); Hillar et al. (2021). Furthermore, the
number of iterations was capped at 1000, suggesting that the exponential dependency in Theorem 3.2
is highly pessimistic. Finally, within our hyperparameter range, the Delta rule using Adam failed on
the k-clique class, whereas MEF learned all classes and was insensitive to optimizer choice.

Figure 2 estimates and compares the specific polynomial sample complexity of learning k-cliques
versus Paley graphs. We do this in order to highlight that different isomorphism classes may be
harder or easier to learn depending on their connectivity structure. For each graph size v we record
s50, which we define as the smallest training sample size for which MEF attains ≥ 50% average
test accuracy on test samples of size 1000 averaged over 10 trials. The left subplot shows s50 vs.
v. The right subplot shows a log-log fit. Assuming s50 = Cvp for some constant C ∈ R>0, this
allows us to estimate p via linear regression. While Paley graphs need N = Ω̃(v2+ϵ), cliques require
N = Ω̃(v1+ϵ) (note here we use ϵ ∈ (0, 1) to denote a small error term). Thus, although Hopfield
networks can memorize all classes (Lemma 4.3), the specific sample complexity appears to vary with
graph connectivity. We leave a full study of this to future work.

Figure 3 shows weight heatmaps for networks trained on clique data using MEF for sample sizes
10, 50 and 600. It is apparent that as the sample size grows the parameters returned by the optimizer
converge onto a distinct subspace: we identify this subspace as the parameters invariant to the
underlying group action of the data in Lemma 4.2 below. In particular, weights wlj are approximately
the same between all pairs l ≁ j (purple in color) and all pairs for l ∼ j (purple in color), and this
approximation improves rapidly for larger samples sizes. An extension of Figure 3 is provided in
Figure 4, Appendix C.1, and shows heatmaps for both MEF and Delta on clique and Payley graphs.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 1: Test accuracy vs. training sample size for isomorphism classes at two scales. Top row:
v = 8 (isomorphism class sizes: bipartite 35, Paley 2520). Bottom row: v = 20 (for reference class
size for bipartite is 92,378). Curves show mean and min-max over 10 trials. Networks are trained
with Perceptron, Delta (MSE), and MEF learning rules.

Figure 2: Sample complexity scaling. Plots showing the number of samples s50 required for a
Hopfield network trained via MEF using accelerated gradient descent to memorize 50% of a random
sample of 1000 graphs drawn from bipartite and Paley graph isomorphism classes on v vertices. On
the right we plot ln(s50) vs ln(v) and compute the lines of best fit.

Figure 3: Weights found by MEF on clique data varying N : samples from isomorphism class of
10-cliques on v = 20 vertices with sample size ranging from 10 to 600.

4.3 INVARIANT PARAMETERS

In what follows let Γn denote an arbitrary subgroup of Pn. For any Q ∈ Pn and θ = (W , b) ∈ Θ
recall that we define the action of Q on the parameter θ as Qθ := (QTWQ,QT b). Let Q ∈ Pn,
θ = (W , b) ∈ Θ and θ′ = Qθ = (W ′, b′). Note W ′T = (QTWQ)T = QTWQ = W ′ and for
all j ∈ [n] we have W ′

jj = eTπ(j)Weπ(j) = Wπ(j)π(j) = 0. As a result W ′ ∈ Symn
0 , in addition

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

trivially b′ ∈ Rn and therefore θ′ ∈ Θ. As a result, the action of Pn, or any subgroup Γn of Pn, on
Θ is closed.

Definition 4 (Parameter invariance to the action of a subgroup). A parameter θ ∈ Θ is invariant with
respect to Γn iff for all Q ∈ Γn then Qθ = θ. We denote the set of these parameters as Ψ(Γn).

Recall E(Qx;θ) = 1
2x

T (QTWQ)x + (QT b)Tx, if θ ∈ Ψ(Γn), then for any x ∈ {0, 1}n and
Q ∈ Γn we have

E(Qx;θ) = E(x;Qθ) = E(x;θ). (9)

We refer to (9) as the intertwining property of the energy function. Using this property, the following
lemma extends energy difference bounds between neighbors from a point to an orbit.

Lemma 4.1. Let x0 ∈ {0, 1}n and θ ∈ Ψ(Γn). For δ ∈ R, if E(x
(j)
0 ;θ)−E(x0;θ) ≥ 1− δ for all

j ∈ [n], then for all x ∈ Orb(x0,Γn) it follows that E(x(j);θ)− E(x;θ) ≥ 1− δ for all j ∈ [n].

For a proof of this lemma, as well as the other results presented in this section, we refer the reader to
Appendix B.2. A key implication of Lemma 4.1 is if θ ∈ Ψ(Γn) strictly memorizes x0 ∈ {0, 1}n
then θ also strictly memorizes Orb(x0,Γn). We now show that invariance with respect to edge
adjacency preserving permutations, of which graph isomorphisms are a subset, corresponds to a
particular rank three subspace of the parameters.

Lemma 4.2. Let F : R3 → Θ denote the linear map defined as follows: if (W , b) = F (β) then
for all i, j ∈ [n] we have wij = 0 if i = j, wij = β1 if i ∼ j, wij = β2 if i ≁ j and bj = β3. Then
Ψ(Qn) = F (R3) where F (R3) denotes the image of F .

By inspection, the parameter patterns observed in Figure 3 for MEF appear to approximately lie on
the invariant subspace identified in Lemma 4.2. This suggests, given a sufficiently large training
sample, that there is an implicit bias not just towards small norm solutions, but also those that are at
least approximately invariant. Following this observation, a natural question to ask is whether or not
parameters lying on this subspace can memorize any graph.

Lemma 4.3. For m ∈ [0, n], let β = [2, 2, 1 − 2m] ∈ R3 and θ = F (β). Then E(x(j);θ) −
E(x;θ) ≥ 1 for all j ∈ [n] and for all x ∈ {0, 1}n satisfying ∥x∥0 = m.

Combining Lemmas 4.3 and 4.1 we conclude that any graph isomorphism class can be strictly
memorized by a Hopfield network. We also note that the only statistic used by the construction in
Lemma 4.3 is the sparsity of the representation: in fact, this construction memorizes x ∈ {0, 1}n
iff ∥x∥0 = m. As a result, this is a poor parameter candidate if our goal is to memorize an
isomorphism class while avoiding spurious memories. In addition, assuming m = Θ(n), the norm of
this construction grows as Θ(n). For specific graph isomorphism classes we observe solutions with a
far smaller norm exist. As an example we consider k-cliques: for typographical ease we denote the
set of binary representations of k-cliques on v vertices as Cv,k.

Lemma 4.4. If β = [−5/k, 14/k2, 0] ∈ R3, θ = F (β), and k ≥ 5, then the following hold.

1. E(x(j);θ)− E(x;θ) ≥ 1 for all x ∈ Cv,k and j ∈ [n].

2. If k = cv for some constant c ∈ (0, 1], then there exists a constant C > 0 such that
∥θ∥2 ≤ Cv.

Lemma 4.4 shows that a parameter exists which strictly memorizes Cv,k with norm only O(
√
v)

rather than Θ(v2). The construction in 4.4 also does not memorize all m-sparse binary vectors.
For example and fixing some j ∈ [n], suppose x is such that ∥x∥0 = m ≤ 2(v − 2) and for all
l ∈ supp(x) we have l ∼ j. Then uj(x)

Tθ = −5m/k and as a result x is not strictly memorized.
We speculate that perhaps a correlation between the size of the norm and the number of spurious
memories exists, but we leave a proper investigation to future work.

Before proceeding we pause to reflect on the implications of our results with respect to (Hillar et al.,
2021, Conjecture 1). Together, Theorem 3.2, Lemma 4.3 and Lemma 4.4 imply that k-cliques on
v vertices can be strictly memorized with high probability as long as N = Ω̃(v3k2). If k = αv,
where α ∈ (0, 1) is a constant and we assume αv is an integer, then using Stirling’s approximation
the critical ratio satisfies Õ(v5)/

(
v
αv

)
= Õ

(
2−vH(α)v5.5

)
where here H denotes the binary entropy

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

function. Clearly the critical ratio decays to zero at a rate which as v → ∞ is dominated by
the exponential term. Our experiments and results thus far suggest that memorization of a graph
isomorphism class occurs when the training sample is sufficiently large that the optimizer is forced to
return a solution lying close to the invariant set Ψ(Φn) ⊂ F (R3). The following lemma establishes
that the HSVM solution on the full isomorphism class, which as N → ∞ is equivalent to the training
sample with probability one, must be graph isomorphism invariant.
Lemma 4.5. Let x0 ∈ {0, 1}n and Γn denote a subgroup of Pn and assume Orb(x0,Γn) can be
strictly memorized. If θ∗ = V ω∗ where ω∗ = HSVMΘ(Orb(x0,Γn)) then θ∗ ∈ Ψ(Γn).

Following Lemma 4.5, we ask how many samples do we require in order to achieve at least approxi-
mate invariance? Deriving a sample complexity result is challenging, primarily due to the fact that
the feasible set of the HSVM problem changes non-smoothly with respect to the training sample.
Instead and to gain intuition, we conclude this section by analyzing a related but simpler problem,
which we refer to as the average hard-margin support vector machine (AHSVM) problem. To this
end, we define the following,

FA(S) = {ω ∈ Rq :
1

|S|
∑
x∈S

⟨ū(x),ω⟩ ≥ 1}, AHSVM(S) = argmin
ω∈Rq

1

2
∥ω∥2 s.t. ω ∈ FA(S).

The following lemma bounds the difference between the sample AHSVM solution and the population
AHSVM solution in the the context of a uniform distribution over an arbitrary O ⊆ {0, 1}n.
Lemma 4.6. Let O ⊆ {0, 1}n satisfy ∥x∥0 ≤ m ∈ N≥2 and assume ω∗ = HSVM(O) is feasible.
Consider a random sample S = (xi)

N
i=1 where xi ∼ U(O) are mutually i.i.d. and define ωO =

AHSVM(O) and ωS = AHSVM(S). For δ ∈ (0, 1] and ϵ ∈ R>0, if N ≳ ϵ−2∥ω∗∥2m log(1/δ)
then ∥ωS − ωO∥ ≤ ϵ with probability at least 1− δ.

Now let Proj⊥Ψ(Φn)
(θ) denote the projection onto the subspace orthogonal to Ψ(Φn). Together,

Lemmas 4.4, 4.6 and B.6 characterize proximity of the AHSVM solution for a k-clique sample to
the invariant subspace.
Corollary 4.0.1. Assume k = cv ≥ 3 for some constant c ∈ (0, 1) and let SN = (xi)i∈[n],
where xi ∼ U(Cv,k) are mutually i.i.d. Let ω = AHSVM(SN) and θ = V ω. For δ ∈ (0, 1), if
N ≳ ϵ−2v3 log(1/δ)) then ∥Proj⊥Ψ(Φn)

(ω)∥ ≤ ϵ with probability at least 1− δ.

Corollary 4.0.1 illustrates that, at least for the AHSVM problem, we can get arbitrarily close to the
invariant subspace with high probability using a sample size cubic in the number of vertices. We
emphasize that even in the AHSVM setting bounding the distance from the learned parameters to the
invariant subspace is challenging. We leave further refinement of these results as well as a derivation
of an analogous one for the HSVM problem to future work.

5 LIMITATIONS AND FUTURE WORK

This work has limits: we do not prove convergence of the full HSVM/ MEF solutions to the invariant
subspace (although we observe it empirically), and we do not yet explain why some isomorphism
classes appear to be easier to learn than others. Future work should quantify spurious fixed points
and basin robustness, treat other subgroups and unions of orbits, handle noisy or non-uniform
group data, extend the analysis to hypergraphs, and involve continuous and modern HNs. Towards
achieving these goals, we highlight preliminary experimental findings around the two themes outlined
below. In addition, we highlight preliminary experiments detailed in Appendix C concerning robust
generalization, the hidden clique problem and isomorphic graph checking.

Reproducibility Statement: To ensure reproducibility, we make the code public https://
github.com/hopnetorbit/HopfieldNetworksIsomorphism.

Ethics Statement: This work uses only synthetic, non-sensitive data, involves no human or ani-
mal subjects, carries minimal dual-use or environmental risks (modest compute), and we release
reproducible code while noting limitations.

9

https://github.com/hopnetorbit/HopfieldNetworksIsomorphism
https://github.com/hopnetorbit/HopfieldNetworksIsomorphism

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Shun-ichi Amari. Learning patterns and pattern sequences by self-organizing nets of threshold
elements. IEEE Transactions on computers, 100(11):1197–1206, 1972.

Shun-Ichi Amari. Characteristics of sparsely encoded associative memory. Neural networks, 2(6):
451–457, 1989.

Daniel J Amit, Hanoch Gutfreund, and Haim Sompolinsky. Storing infinite numbers of patterns in a
spin-glass model of neural networks. Physical Review Letters, 55(14):1530, 1985.

Béla Bollobás. Explicit Constructions, pp. 348–382. Cambridge Studies in Advanced Mathematics.
Cambridge University Press, 2001.

J. Bruck. On the convergence properties of the Hopfield model. Proceedings of the IEEE, 78(10):
1579–1585, 1990. doi: 10.1109/5.58341.

Shuxiao Chen, Edgar Dobriban, and Jane H. Lee. A group-theoretic framework for data augmentation.
Journal of Machine Learning Research, 21(245):1–71, 2020. URL https://jmlr.org/
papers/v21/20-163.html.

TM Cover. Geometrical and statistical properties of systems of linear inequalities with applications
in pattern recognition. IEEE Transactions on Electronic Computers, 14(14):326–334, 1965.

Tri Dao, Albert Gu, Alexander Ratner, Virginia Smith, Christopher De Sa, and Christopher Ré. A
kernel theory of modern data augmentation. In Proceedings of the 36th International Conference
on Machine Learning (ICML), volume 97 of PMLR, pp. 1528–1537, 2019. URL https://
proceedings.mlr.press/v97/dao19b.html.

Yael Dekel, Ori Gurel-Gurevich, and Yuval Peres. Finding hidden cliques in linear time with high
probability. Combinatorics, Probability and Computing, 23(1):29–49, 2014.

Mete Demircigil, Judith Heusel, Matthias Löwe, Sven Upgang, and Franck Vermet. On a model of
associative memory with huge storage capacity. Journal of Statistical Physics, 168(2):288–299,
2017.

NetworkX Developers. URL https://networkx.org/documentation/stable/
reference/generated/networkx.generators.expanders.paley_graph.
html#networkx.generators.expanders.paley_graph. Python package for the
creation, manipulation, and study of the structure, dynamics, and functions of complex networks.

Bryn Elesedy and Sheheryar Zaidi. Provably strict generalisation benefit for invariance
in kernel ridge regression. In Advances in Neural Information Processing Systems
(NeurIPS), 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
8fe04df45a22b63156ebabbb064fcd5e-Abstract.html.

JF Fontanari. Generalization in a Hopfield network. Journal de Physique, 51(21):2421–2430, 1990.

Elizabeth Gardner. The space of interactions in neural network models. Journal of Physics A:
Mathematical and General, 21(1):257, 1988.

Jan E. Gerken and Pan Kessel. Emergent equivariance in deep ensembles. In Proceedings of the 41st
International Conference on Machine Learning (ICML), volume 235 of PMLR, pp. 15438–15465,
2024. URL https://proceedings.mlr.press/v235/gerken24a.html.

Donald O. Hebb. The Organization of Behavior: A Neuropsychological Theory. Wiley, New York,
1949.

JA Hertz, A Krogh, and RG Palmer. Introduction to the theory of neural computation. Addison-
Wesley, 1991.

Christopher Hillar, Jascha Sohl-Dickstein, and Kilian Koepsell. Efficient and optimal binary Hopfield
associative memory storage using minimum probability flow. In 4th Neural Information Processing
Systems (NeurIPS) Workshop on Discrete Optimization in Machine Learning (DISCML): structure
and scalability, pp. 1–6, 2012.

10

https://jmlr.org/papers/v21/20-163.html
https://jmlr.org/papers/v21/20-163.html
https://proceedings.mlr.press/v97/dao19b.html
https://proceedings.mlr.press/v97/dao19b.html
https://networkx.org/documentation/stable/reference/generated/networkx.generators.expanders.paley_graph.html#networkx.generators.expanders.paley_graph
https://networkx.org/documentation/stable/reference/generated/networkx.generators.expanders.paley_graph.html#networkx.generators.expanders.paley_graph
https://networkx.org/documentation/stable/reference/generated/networkx.generators.expanders.paley_graph.html#networkx.generators.expanders.paley_graph
https://proceedings.neurips.cc/paper/2021/hash/8fe04df45a22b63156ebabbb064fcd5e-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/8fe04df45a22b63156ebabbb064fcd5e-Abstract.html
https://proceedings.mlr.press/v235/gerken24a.html

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Christopher Hillar, Tenzin Chan, Rachel Taubman, and David Rolnick. Hidden hypergraphs, error-
correcting codes, and critical learning in Hopfield networks. Entropy, 23(11), 2021.

Christopher J Hillar and Ngoc M Tran. Robust exponential memory in Hopfield networks. The
Journal of Mathematical Neuroscience, 8:1–20, 2018.

ME Hoff and B Widrow. Adaptive switching circuits. In 1960 IRE WESCON Convention Record,
Part 4, pp. 96–104. IRE New York, NY, USA, 1960.

John J. Hopfield. Neural networks and physical systems with emergent collective computational
abilities. Proceedings of the National Academy of Sciences, 79(8):2554–2558, 1982. doi: 10.1073/
pnas.79.8.2554.

David Horn and Marius Usher. Capacities of multiconnected memory models. Journal de Physique,
49(3):389–395, 1988.

Ziwei Ji and Matus Telgarsky. Risk and parameter convergence of logistic regression. arXiv preprint
arXiv:1803.07300, 2018. URL https://arxiv.org/abs/1803.07300.

Silvio Kalaj, Clarissa Lauditi, Gabriele Perugini, Carlo Lucibello, Enrico M. Malatesta, and Matteo
Negri. Random features Hopfield networks generalize retrieval to previously unseen examples.
arXiv preprint arXiv:2407.05658, 2024.

Werner Krauth and Marc Mézard. Storage capacity of memory networks with binary couplings.
Journal de Physique, 50(20):3057–3066, 1989.

Dmitry Krotov and John J Hopfield. Dense associative memory for pattern recognition. Advances in
Neural Information Processing Systems (NeurIPS), 29, 2016.

William A Little. The existence of persistent states in the brain. Mathematical biosciences, 19(1-2):
101–120, 1974.

Dong C Liu and Jorge Nocedal. On the limited memory bfgs method for large scale optimization.
Mathematical programming, 45(1):503–528, 1989.

Jakob Marthaler, Oleg Makarov, Tobias Rupprecht, David A. Klindt, Anne E. Urai, Ladislau Bölöni,
Matthias Bethge, and Alexander S. Ecker. Equivariant neural tangent kernels. arXiv preprint
arXiv:2406.06504, 2024. URL https://arxiv.org/abs/2406.06504.

Andreas Maurer. A vector-contraction inequality for rademacher complexities. In Ronald Ortner,
Hans Ulrich Simon, and Sandra Zilles (eds.), Algorithmic Learning Theory, pp. 3–17, Cham, 2016.
Springer International Publishing. ISBN 978-3-319-46379-7.

Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in nervous activity.
The bulletin of mathematical biophysics, 5:115–133, 1943.

Robert J. McEliece, Edward C. Posner, Eugene R. Rodemich, and Santosh S. Venkatesh. The
capacity of the Hopfield associative memory. IEEE Trans. Inform. Theory, 33(4):461–482, 1987.
ISSN 0018-9448,1557-9654. doi: 10.1109/TIT.1987.1057328. URL https://doi.org/10.
1109/TIT.1987.1057328.

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of Machine Learning.
The MIT Press, 2nd edition, 2018. ISBN 0262039400.

Mor Shpigel Nacson, Jason D. Lee, Suriya Gunasekar, Pedro Henrique Pamplona Savarese, Nathan
Srebro, and Daniel Soudry. Convergence of gradient descent on separable data. In Proceedings of
the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS), volume 89
of Proceedings of Machine Learning Research, pp. 3420–3428. PMLR, 2019. URL https:
//proceedings.mlr.press/v89/nacson19b.html.

Kaoru Nakano. Associatron-a model of associative memory. IEEE Transactions on Systems, Man,
and Cybernetics, SMC-2(3):380–388, 1972. doi: 10.1109/TSMC.1972.4309133.

11

https://arxiv.org/abs/1803.07300
https://arxiv.org/abs/2406.06504
https://doi.org/10.1109/TIT.1987.1057328
https://doi.org/10.1109/TIT.1987.1057328
https://proceedings.mlr.press/v89/nacson19b.html
https://proceedings.mlr.press/v89/nacson19b.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Matteo Negri, Clarissa Lauditi, Gabriele Perugini, Carlo Lucibello, and Enrico Malatesta. Storage and
learning phase transitions in the random-features Hopfield model. arXiv preprint arXiv:2303.16880,
2023.

Leonid A Pastur and Alexander L Figotin. Exactly soluble model of a spin glass. Soviet Journal of
Low Temperature Physics, 3(6):378–383, 1977.

Laurent Personnaz, Isabelle Guyon, and Georges Dreyfus. Collective computational properties of
neural networks: New learning mechanisms. Physical Review A, 34(5):4217–4228, 1986. doi:
10.1103/PhysRevA.34.4217.

Lionel Personnaz, Isabelle Guyon, and Gérard Dreyfus. Storage and retrieval capacities of associative
memories. Physical Review A, 32(6):4292, 1985.

Iosif Pinelis. Optimum bounds for the distributions of martingales in banach spaces. The Annals of
Probability, 22(4):1679–1706, 1994. ISSN 00911798, 2168894X. URL http://www.jstor.
org/stable/2244912.

Hubert Ramsauer, Bernhard Schäfl, David Hopkins, Michael Widrich, Thomas Adler, Lisa Gruber,
Markus Holzleitner, Milena Pavlović, Geir Kjetil Sandve, Vibeke Greiff, David P Kreil, Michael
Kopp, Günter Klambauer, Johannes Brandstetter, and Sepp Hochreiter. Hopfield networks is all
you need. In Advances in Neural Information Processing Systems (NeurIPS), volume 33, pp.
27563–27574, 2020.

Robert A Rescorla. A theory of Pavlovian conditioning. Classical conditioning, Current research
and theory, 2:64–69, 1972.

Frank Rosenblatt. The perceptron: a probabilistic model for information storage and organization in
the brain. Psychological review, 65(6):386–408, 1958.

Jascha Sohl-Dickstein, Peter B. Battaglino, and Michael R. DeWeese. New method for parameter
estimation in probabilistic models: Minimum probability flow. Phys. Rev. Lett., 107:220601,
Nov 2011. doi: 10.1103/PhysRevLett.107.220601. URL https://link.aps.org/doi/
10.1103/PhysRevLett.107.220601.

Daniel Soudry, Elad Hoffer, and Nathan Srebro. The implicit bias of gradient descent on separable data.
In International Conference on Learning Representations, 2018. URL https://openreview.
net/forum?id=r1q7n9gAb.

Amos J Storkey. Increasing the capacity of a Hopfield network without sacrificing functionality. In
International Conference on Artificial Neural Networks, pp. 451–456. Springer, 1997.

Amos J Storkey. Truncated Newton method for training recurrent neural networks. In Proceedings of
the International Joint Conference on Neural Networks (IJCNN), volume 2, pp. 115–120. IEEE,
1999.

Amos J Storkey and Randall Valabregue. A novel training algorithm for Hopfield networks. In
Proceedings of the International Joint Conference on Neural Networks, volume 3, pp. 1116–1121.
IEEE, 1999.

Pavel Tolmachev and Jonathan H. Manton. New insights on learning rules for Hopfield networks:
Memory and objective function minimisation. In 2020 International Joint Conference on Neural
Networks (IJCNN), pp. 1–8, 2020.

M. V. Tsodyks and M. V. Feigel’man. The enhanced storage capacity in neural networks with low
activity level. Europhysics Letters, 6(2):101–105, May 1988. doi: 10.1209/0295-5075/6/2/002.

Bernard Widrow and Marcian E. Hoff. Adaptive switching circuits. In 1960 IRE WESCON Convention
Record, Part 4, pp. 96–104, New York, 1960. Institute of Radio Engineers.

David J Willshaw, Oliver P Buneman, and HC Longuet-Higgins. Non-holographic associative
memory. Nature, 222(5197):960–962, 1969.

12

http://www.jstor.org/stable/2244912
http://www.jstor.org/stable/2244912
https://link.aps.org/doi/10.1103/PhysRevLett.107.220601
https://link.aps.org/doi/10.1103/PhysRevLett.107.220601
https://openreview.net/forum?id=r1q7n9gAb
https://openreview.net/forum?id=r1q7n9gAb

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

APPENDIX A BACKGROUND

A.1 ENERGY GAP FOR BINARY VECTORS A HAMMING DISTANCE ONE APART

As discussed in Section 2, memorization is equivalent of a point is equivalent to ensuring an energy
gap between it and its neighbors. Recall we define x(j) ∈ {0, 1}n as the vector that differs from
x ∈ {0, 1}n only at the jth location, and z(x) = [x, 1] ∈ Rn+1.

Lemma A.1. E(x(j);θ)− E(x;θ) = yj(x)⟨z(x),θj⟩.

Proof. By definition x
(j)
l ̸= xl iff l = j. In addition, x(j)

j − xj = 1 − 2xj and, if r ̸= l, then

xlxr ̸= x
(j)
l x

(j)
r iff either l = j and r ̸= j, or l ̸= j and r = j. Furthermore, recall W is symmetric

and Wjj = 0 for all j ∈ [n]. As a result,

E(x(j);θ)− E(x;θ) =
1

2

∑
l,r∈[n]

Wrl(x
(j)
r x

(j)
l − xrxl) +

n∑
l=1

bl(x
(j)
l − xl)

=
1

2

∑
r∈[n],r ̸=j

Wrj(x
(j)
r x

(j)
j − xrxj) +

1

2

∑
l∈[n],l ̸=j

Wjl(x
(j)
j x

(j)
l − xjxl) + bj(1− 2xj)

=
∑

l∈[n],l ̸=j

Wjl(x
(j)
j x

(j)
l − xjxl) + bj(1− 2xj)

=
∑

l∈[n],l ̸=j

Wjl(x
(j)
j − xj)xl + bj(1− 2xj)

= (1− 2xj)

∑
l∈[n]

Wjlxl + bj


= yj(x)⟨z(x),θj⟩.

as claimed.

A.2 LEARNING ALGORITHMS FOR HOPFIELD NETWORKS

We briefly describe several classical learning rules Hertz et al. (1991) that can be applied to find
parameters in Hopfield networks. These methods typically trade off between biological plausibility
and performance. We remark that this list is far from exhaustive; see Tolmachev & Manton (2020)
for a recent summary.

• Outer-Product Rule (Hebb, 1949; Nakano, 1972; Amari, 1972; Hopfield, 1982). In the
attractor neural network case Hopfield (1982), this Hebbian rule constructs weights as
the normalized sum of training pattern outer products. This rule is simple, biologically
motivated, and local in nature, but it is often observed to suffer from spurious attractors,
shallow basins of attraction, and overall limited capacity.

• Perceptron Rule (Rosenblatt, 1958). The difference between the desired response – that the
network dynamics should fix a training sample – and the actual linear-threshold response of
a neuron gives a learning signal to update parameters.

• Delta (Hoff & Widrow, 1960; Rescorla, 1972). The delta rule, also called the Mean Squared
Error (MSE) or Least Mean Square (LMS) rule, considers a relaxation and follows a
gradient to minimize the squared error between the linear output activations of neurons and
the training pattern to memorize.

• Projection Rule (Personnaz et al., 1985; 1986). The weight matrix is obtained by projecting
onto the span of the training data and then zeroing the diagonal entries.

• Storkey Rule (Storkey, 1997; Storkey & Valabregue, 1999). A modification of the Hebbian
update that reduces interference between patterns by accounting for previously stored ones.
This rule achieves higher storage capacity than Hebbian learning and reduces spurious
minima.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A.3 ENCODING SIMPLE, UNDIRECTED GRAPHS AS BINARY VECTORS

First we recap some of our notation. Let Gv denote the the set of all simple, undirected graphs
on v ∈ N vertices. Recall two graphs G = (V,E), G′ = (V ′, E′) are isomorphic, which we
denote G ∼= G′, if there exists a bijection ϕ : V → V ′ such that (ϕ(ν1), ϕ(ν2)) ∈ E′ if and only
if (ν1, ν2) ∈ E. We refer to such a ϕ as an isomorphism between G and G′. Furthermore, ϕ is
a permutation when V = V ′: in our setting we consider V = V ′ = [v] and therefore we shall
discuss only permutations moving forward. The isomorphism class of a graph G ∈ Gv is defined
as I(G) := {G′ ∈ Gv : G′ ∼= G}. An automorphism of a graph G = (V,E) is a permutation
ϕ : V → V such that (ν1, ν2) ∈ E implies (ϕ(ν1), ϕ(ν2)) ∈ E. In short, while an isomorphism
preserves the vertex adjacency structure of a graph an automorphism preserves not just the vertex
adjacency structure but also the vertex labels. Recall that Φn ⊂ Pn refers to the set of edge
permutation matrices induced by permutations of the vertices, see Definition 2.
Lemma A.2. Φn is a subgroup of Pn.

Proof. Clearly this is equivalent to showing that ΠΦ
n is a subgroup of Πn. It is easy to check that

I ∈ ΠΦ
n , πϕ ∈ ΠΦ

n implies π−1
ϕ ∈ ΠΦ

n and πϕ, πϕ′ ∈ ΠΦ
n implies πϕ ◦ πϕ′ ∈ ΠΦ

n , therefore ΠΦ
n is a

subgroup of Πn.

The following lemmas establish a straightforward equivalence between isomorphism classes of
graphs and certain orbits of binary vectors. First, Lemma A.3 shows that if two graphs G,G′ ∈ Gv

are isomorphic then there is a vertex induced edge permutation which maps between their edge
representations.
Lemma A.3. Suppose G = ([v], E), G′ = ([v], E′) ∈ Gv and x = Erep(G), x′ = Erep(G′). Then
G ∼= G′ iff there exists a P ∈ Φn such that Px = x′.

Proof. Assume G ∼= G′. Then there exists a permutation ϕ : [v] → [v] such that (ν1, ν2) ∈ E
implies (ϕ(ν1), ϕ(ν2)) ∈ E′. Let πϕ : [n] → [n] be the edge permutation induced by ϕ and
P ∈ Φn the corresponding permutation matrix. By construction xj = x′

πϕ(j)
for all j ∈ [n],

equivalently, if P ∈ Φn is the permutation matrix associated with πϕ then Px = x′. Now suppose
there exists a P ∈ Φn such that Px = x′. Then there exists a vertex permutation ϕ : [v] → [v]
which induces an edge permutation πϕ : [n] → [n] such that xj = x′

πϕ(j)
. By construction, if

j = Ind((ν1, ν2)) then this implies πϕ(j) = Ind((ϕ(ν1), ϕ(ν2))). Therefore, by the definition of
Erep we have ϕ(ν1), ϕ(ν2)) ∈ E′ iff (ν1, ν2) ∈ E. Therefore ϕ is an isomorphism between G and
G′ and G ∼= G′.

Building on Lemma A.3, the following lemma characterizes the isomorphism class of a graph in
terms of the orbit of its edge representation under vertex induced edge permutations.
Lemma A.4. For any G ∈ Gv we have Erep(I(G)) = Orb(Erep(G),Φn).

Proof. Let x = Erep(G), then

Orb(Erep(G),Φn) = {Px : P ∈ Φn}.
Suppose Erep(I(G)) ̸⊂ Orb(Erep(G),Φn). Then there exists a G′ ∈ I(G) such that x′ :=
Erep(G′) ̸∈ Orb(Erep(G),Φn). Therefore there does not exist a P ∈ Φn such that Px = x′.
However, G ∼= G′ which implies a contradiction by Lemma A.3, therefore Erep(I(G)) ⊂
Orb(Erep(G),Φn). Now suppose Orb(Erep(G),Φn) ̸⊂ Erep(I(G)), then there exists a x′ ∈
Orb(Erep(G),Φn) such that G′ = E−1

rep(x
′) ̸∈ I(G). However, as x′ ∈ Orb(Erep(G),Φn) then

there exists a P ∈ Φn such that Px = x′, but using Lemma A.3 this implies G ∼= G′ which is a
contradiction. Therefore Orb(Erep(G),Φn) ⊂ Erep(I(G)). Combining these two observations we
conclude that Erep(I(G)) = Orb(Erep(G),Φn).

Lemma A.5. Qn is a subgroup of Pn.

Proof. Trivially it suffices to show that ΠQ
n is a subgroup of Πn. It is easy to check that I ∈ ΠQ

n ,
π ∈ ΠQ

n implies π−1 ∈ ΠQ
n and π, π′ ∈ ΠQ

n implies π ◦ π′ ∈ ΠQ
n . Therefore ΠQ

n is a subgroup of
Πn.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

The following lemma states that the vertex induced edge permutations form a subgroup of the
edge adjacency preserving subgroup of permutations. As a result, the edge representations of the
isomorphism class of a graph are a subset of the orbit of the edge representation of the graph in
question under edge adjacency preserving permutations.
Lemma A.6. Φn is a subgroup of Qn and Erep(I(G)) ⊂ Orb(Erep(G),Qn).

Proof. Trivially it suffices to show that Πϕ
n is a subgroup of ΠQ

n , we proceed to show that any
vertex induced permutation is an edge adjacency preserving permutation. Consider two edge in-
dices i, j ∈ [n] and let ν1, ν2, ν3, ν4 ∈ [v] be distinct. Suppose i ∼ j, then without loss of gen-
erality let Ind−1(i) = (ν1, ν2) and Ind−1(j) = (ν2, ν3). Then Ind−1(πϕ(i)) = (ϕ(ν1), ϕ(ν2))

and Ind−1(πϕ(j)) = (ϕ(ν2), ϕ(ν3)), therefore i ∼ j implies πϕ(i) ∼ πϕ(j). Suppose now
i ≁ j, if i = j then trivially πϕ(i) = πϕ(j) and therefore i = j implies πϕ(i) ≁ πϕ(i). Oth-
erwise, and again without loss of generality, let Ind−1(i) = (ν1, ν2) and Ind−1(j) = (ν3, ν4).
Then Ind−1(πϕ(i)) = (ϕ(ν1), ϕ(ν2)) and Ind−1(πϕ(j)) = (ϕ(ν3), ϕ(ν4)), as ϕ is bijection
then this implies πϕ(i) ≁ πϕ(j). As a result, πϕ(i) ∼ πϕ(i) if and only if i ∼ j. Fi-
nally as Φn is a group and it is a subset of Qn the it must be a subgroup of Qn. As a result
Orb(Erep(G),Φn) ⊂ Orb(Erep(G),Qn)

A.4 BOUNDED REPRESENTATIONS

In order to establish the connection between Hopfield networks and SVMs discussed in Section 3,
we identified and defined a certain feature map for the inputs to the underlying linear classification
problem. Recall there exists a matrix V ∈ {0, 1, 1/

√
2}n(n+1)×q such that for any θ ∈ Θ there

exists a a ∈ Rp, ω = [
√
2a, b] such that θ = V ω. Recall also that we define Vj ∈ {0, 1, 1/

√
2}n as

the matrix which satisfies θj = Vjω, where θj = [wj , bj] ∈ Rn+1. In addition, for any x ∈ {0, 1}
then we let z(x) = [x, 1] ∈ Rn+1, uj(x) = V T

j z(x) for all j ∈ [n] and ū(x) = 1
n

∑n
j=1 uj(x).

The following lemma bounds the norm of these representations.
Lemma A.7. For any x ∈ {0, 1}n then

∥ū(x)∥2 ≤ ∥uj(x)∥2 =
1

2
(∥x∥0 − xj) + 1

for all j ∈ [n].

Proof. Let δn(j) ∈ {0, 1}n denote the one hot vector such that supp(δn(j)) = j. In addition, let
ϕj : [q] → [n] denote the injective mapping between the indices of a and their respective positions
in wj , and let Bj ∈ {0, 1}n×p be the associated matrix which copies the elements of a into their
positions in θj . Therefore, we can write

θj =

[
wj

bj

]
=

[1√
2
Bj 0n×n

01×n δn(j)
T

] [√
2a
b

]
= Vjω.

By definition

uj(x) = V T
j z(x) =

[
1√
2
BT

j 0n×1

0n×n δn(j)

] [
x
1

]
=

[
1√
2
BT

j x

δn(j)

]
,

therefore

∥uj(x)∥2 =
1

2
xTBjB

T
j x+ 1.

Recall Wjj = 0 and each other element of wj corresponds to exactly one element of a, therefore Bj

has one nonzero per row other than the jth row, which we let be zero. Moreover, by the injectivity of
ϕj then Bj has at most one nonzero per column. As a result,

BjB
T
j = In − eje

T
j .

This implies
xTBjB

T
j x = xT

(
In − eje

T
j

)
x = ∥x∥0 − xj

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

for all j ∈ [n]. As

∥ū(x)∥ = ∥ 1
n

n∑
j=1

uj(x)∥ ≤ 1

n

n∑
j=1

∥uj(x)∥ ≤ ∥uj(x), ∥

then

∥ū(x)∥2 ≤ ∥uj(x)∥2 =
1

2
(∥x∥0 − xj) + 1

for all j ∈ [n] as claimed.

A.5 EUCLIDEAN DISTANCE BOUNDS BETWEEN NORMALIZED VECTORS

Here we recall some basic bounds pertaining to normalized vectors.

Lemma A.8. Define f(x) = x
∥x∥2 for all x ∈ Rq . Suppose without loss of generality that x,y ∈ Rq

and ∥y∥ ≥ ∥x∥ > 0, then

∥f(x)− f(y)∥ ≤ 3∥x− y∥
∥x∥2

.

Proof. First observe

f(x)− f(y) =
x

∥x∥2
− y

∥y∥2

=
x

∥x∥2
− y

∥y∥2
+

y

∥x∥2
− y

∥x∥2

=
x− y

∥x∥2
+

y(∥y∥2 − ∥x∥2)
∥x∥2∥y∥2

.

Taking the norm on both sides and applying the triangle inequality we have

∥f(x)− f(y)∥ =
∥x− y∥
∥x∥2

+
∥y∥(|∥y∥2 − ∥x∥2|)

∥x∥2∥y∥2
.

By assumption ∥y∥ ≥ ∥x∥, therefore

|∥y∥2 − ∥x∥2| = |⟨y − x,y + x⟩| ≤ ∥y − x∥∥y + x∥ ≤ ∥y − x∥(∥y∥+ ∥x∥) ≤ 2∥y∥∥y − x∥.

This implies

∥f(x)− f(y)∥ ≤ ∥x− y∥
∥x∥2

+
2∥y∥2∥y − x∥
∥x∥2∥y∥2

=
3∥x− y∥
∥x∥2

as claimed.

A.6 HOEFFDING’S INEQUALITY IN HILBERT SPACE

Lemma 4.6 rests on the application of the following concentration bound for sums of independent,
mean zero, bounded random vectors. We remark that this is a specialization of more general results
for martingales in 2-smooth Banach spaces.

Lemma A.9. [Specialization of (Pinelis, 1994, Thm. 3.5) For i ∈ [N] and R ∈ R>0, let xi ∈ Rq be
independent, mean zero random vectors which satisfy ∥xi∥ ≤ R almost surely. Let SN =

∑N
i=1 xi,

then for t ∈ R≥0 we have

P(∥SN∥ ≥ t) ≤ exp

(
− t2

2NR2

)
.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

APPENDIX B PROOFS OF RESULTS

B.1 PROOF OF THEOREM 3.2

Theorem 3.2. Let D ⊂ {0, 1}n be a set which can be strictly memorized and assume ∥x∥0 ≤
m ∈ N≥1 for all x ∈ D. Let D be a probability distribution on D, and consider a random sample
SN = (xi)i∈[N], where xi ∼ D are mutually i.i.d. Let ω̂ = HSVM(SN), ω∗ = HSVM(D),
ω(0) ∈ Rq be arbitrary and ω(t) be generated for all t ∈ N≥1 as per (8), δ, ϵ ∈ (0, 1) and assume
x ∼ D is sampled independent of SN . If N ≳ ϵ−2n∥ω∗∥2m log(1/δ) then

P(H(x;V ω̂) ̸= x) ≤ ϵ and P(H(x;V ω(t)) ̸= x) = O

(√
m∥ω∗∥
log(t)

)
+ ϵ

hold with probability at least 1− δ over the sample SN .

Proof. For any t ∈ R define the margin loss ϕ : R → R as

ϕ(z) =


0, 1 ≤ t,

1− t, 0 ≤ t ≤ 1,

1, t ≤ 0,

and note trivially for all t ∈ R that 1(t ≤ 0) ≤ ϕ(t). We note on occasion we overload this notation
and apply ϕ to vectors by applying it elementwise. Observe for any x ∈ Rn and ω ∈ Rq with
θ = V ω, that

1(H(x;θ) ̸= x) ≤ 1
(
∃j ∈ [n] : uj(x)

Tω ≤ 0
)
= 1

(
min
j∈[n]

uj(x)
Tω ≤ 0

)
≤ ϕ(min

j∈[n]
uj(x)

Tω) = max
j∈[n]

ϕ(uj(x)
Tω).

For any z ∈ Rn, let ℓ(z) = maxj∈[n] ϕ(zj). Using the fact that ϕ is 1-Lipschitz, for any z, z′ ∈ Rn

we have

|ℓ(z)− ℓ(z′)| ≤ |max
j∈[n]

(
ϕ(zj)− ϕ(z′j)

)
| = ∥ϕ(z)− ϕ(z′)∥∞ ≤ ∥z − z′∥∞ ≤ ∥z − z′∥2.

Therefore ℓ is 1-Lipschitz with respect to the Euclidean norm. Let U(x) ∈ Rn×q denote the matrix
whose jth row is uj(x)

T ∈ R1×q for all j ∈ [n]. Furthermore, for some Λ ∈ R>0, define

H = {x 7→ U(x)ω : ω ∈ Rq, , ∥ω∥ ≤ Λ}

and let
GΛ = {x 7→ (ℓ ◦ b)(x) : h ∈ HΛ}.

Note by construction that g ∈ GΛ implies g : Rn → [0, 1]. We now compute the empirical
Rademacher complexity of GΛ on a sample SN = (xi)i∈[N], to this end let σ ∈ {±1}n and
ϵ ∈ {±}N×n be a random vector and matrix respectively whose entries are mutually i.i.d. and
distributed uniformly on {±1}. As ℓ is 1-Lipschitz in the ℓ2 norm, then applying a vector contraction
inequality (Maurer, 2016, Corollary 1) we have

R̃S(GΛ) = Eσ

[
sup
b∈HΛ

1

N

N∑
i=1

σi(ℓ ◦ b)(xi)

]

≤
√
2Eϵ

 sup
ω∈Rq

1

N

N∑
i=1

n∑
j=1

ϵijuj(xi)
Tω


≤

√
2Eϵ

 sup
ω∈Rq

⟨ω,
1

N

N∑
i=1

n∑
j=1

ϵijuj(xi)⟩


≤

√
2Λ

N
Eϵ

∥∥∥∥∥∥
N∑
i=1

n∑
j=1

ϵijuj(xi)

∥∥∥∥∥∥
 .

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Let Z =
∑N

i=1

∑n
j=1 ϵijuj(xi), as t 7→

√
t is concave then EZ [

√
∥Z∥2] ≤

√
EZ [∥Z∥2] by

Jensen’s inequality. As a result

Eϵ

∥∥∥∥∥∥
N∑
i=1

n∑
j=1

ϵijuj(xi)

∥∥∥∥∥∥
 ≤

√√√√√Eϵ

〈 N∑
i=1

n∑
j=1

ϵijuj(xi),

N∑
l=1

n∑
k=1

ϵlkuk(xl)

〉
=

√√√√ N∑
i=1

n∑
j=1

N∑
l=1

n∑
k=1

Eϵ[ϵijϵlk]uj(xi)Tuk(xl).

The Rademacher random variables are mutually i.i.d., therefore

Eϵ[ϵijϵlk] =

{
1, (i = l) ∧ (j = k),

0, otherwise.

Recall also from Lemma A.7 that for any i ∈ [N] and for all j ∈ [n]

∥uj(xi)∥2 =
1

2
(∥xi∥0 − xij) + 1.

Under the assumption ∥xi∥0 ≤ m for all i ∈ [N], then

R̃S(GΛ) ≤
√
2Λ

N
Eϵ

∥∥∥∥∥∥
N∑
i=1

n∑
j=1

ϵijuj(xi)

∥∥∥∥∥∥


≤
√
2Λ

N

√√√√ N∑
i=1

n∑
j=1

∥uj(xi)∥2

≤ Λ

N

√√√√ N∑
i=1

n∑
j=1

(∥xi∥0 − xij + 2)

≤ Λ

√
n(m+ 2)

N
.

Let δ ∈ R>0. Applying a Rademacher complexity bound, e.g., (Mohri et al., 2018, Thm 3.3), then
with probability at least 1− δ over the random sample SN

E[g(x)] ≤ 1

N

N∑
i=1

g(xi) + 2R̃S(GΛ) + 3

√
log(2/δ)

2N

≤ 1

N

N∑
i=1

g(xi) + 2Λ

√
n(m+ 2)

N
+ 3

√
log(2/δ)

2N

for all g ∈ GΛ. In what follows let Λ = ∥ω∗∥. Then, with probability at least 1− δ over the random
sample SN , for any ω ∈ Rq such that ∥ω∥ ≤ ∥ω∗∥ we have

P(H(x;V ω) ̸= x) ≤ 1

N

N∑
i=1

ϕ(min
j∈[n]

uj(xi)
Tω)) + 2

√
∥ω∗∥2n(m+ 2)

N
+ 3

√
log(2/δ)

2N
(10)

First we consider ω̂: for any sample SN trivially set(SN) ⊆ D, therefore ω∗ ∈ Fω(SN).
As a result, with probability one ∥ω̂∥ ≤ ∥ω∗∥. Conditioning on this event, observe also that
minj∈[n] uj(xi)

T ω̂ ≥ 1 for i ∈ [N]. As a result, with probability at least 1− δ over SN we have

P(H(x;V ω̂) = x) ≤
√

4∥ω∗∥2n(m+ 2)

N
+

√
9 log(2/δ)

2N
.

As (a + b)2 ≤ 2(a2 + b2) for a, b ∈ R and assuming m ≥ 1, then for any ϵ ∈ R>0, if N ≳
ϵ−2n∥ω∗∥2m log(1/δ)

Px(H(x; θ̂) ̸= x) ≤ ϵ

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

with probability at least 1− δ over the sample SN .

We now turn our attention to ω(t): recall for any a ∈ R>0 as E(x; aθ) = aE(x;θ) then

a(E(x(j);θ)− E(x;θ)) ≥ 0 ⇐⇒ E(x(j); aθ)− E(x; aθ) ≥ 0.

Indeed, this implies the set of memories in a Hopfield network is invariant under positive re-scalings
of the parameters. As a consequence, for any distribution D on {0, 1}n, a ∈ R>0 and θ ∈ Ω, if
x ∼ D we have

P(H(x;θ) ̸= x) = P(H(x; aθ) ̸= x).

Therefore, if we define
ω̄(t) = ∥ω∗∥

∥ω(t)∥ω(t)

it follows that
P(H(x;V ω(t)) ̸= x) = P(H(x;V ω̄(t)) ̸= x).

From (Soudry et al., 2018, Theorem 5),∥∥∥∥ ω̄(t)

∥ω∗∥
− ω∗

∥ω∗∥

∥∥∥∥ =

∥∥∥∥ ω(t)

∥ω(t)∥
− ω∗

∥ω∗∥

∥∥∥∥ = O

(
log(log(t))

log(t)

)
which trivially implies

∥ω̄(t)− ω∗∥ = O

(
∥ω∗∥ log(log(t))

log(t)

)
.

As a result, for all i ∈ [N] we have

min
j∈[n]

uj(x)
T ω̄(t) = min

j∈[n]

(
uj(x)

Tω∗ + uj(x)
T (ω̄(t)− ω∗)

)
≥ 1−max

j∈[n]
∥uj(xi)∥∥ω̄(t)− ω∗∥

≥ 1−O

(√
m∥ω∗∥ log(log(t))

log(t)

)
,

where the final inequality follows from Lemma A.7 and the assumption m ≥ 2. By the definition of
ϕ it follows that

ϕ(min
j∈[n]

uj(x)
T ω̄(t)) = O

(√
m∥ω∗∥ log(log(t))

log(t)

)
for all i ∈ [N]. Using (10), then, with probability at least 1− δ over SN we have

P(H(x;V ω(t)) = x) ≤ O

(√
m∥ω∗∥ log(log(t))

log(t)

)
+

√
4∥ω∗∥2nm

N
+

√
9 log(2/δ)

N
.

Using the inequality log(log(t)) ≤ 1
2 log(t) for all t > 1, then if N ≳ ϵ−2n∥ω∗∥2m log(1/δ)

P(H(x;V ω(t)) ̸= x) = O

(√
m∥ω∗∥
log(t)

)
+ ϵ.

with probability at least 1− δ over the sample SN

B.2 PROPERTIES OF INVARIANT PARAMETERS

B.2.1 ENERGY BOUNDS FOR INVARIANT PARAMETERS ACROSS ORBITS

The following result states, in the context of invariant parameters, that energy bound differences for a
point in an orbit extend to the entire orbit.

Lemma 4.1. Let x0 ∈ {0, 1}n and θ ∈ Ψ(Γn). For δ ∈ R, if E(x
(j)
0 ;θ)−E(x0;θ) ≥ 1− δ for all

j ∈ [n], then for all x ∈ Orb(x0,Γn) it follows that E(x(j);θ)− E(x;θ) ≥ 1− δ for all j ∈ [n].

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Proof. As θ ∈ Ψ(Γn), recall the intertwining relation (9), for x ∈ {0, 1}n and Q ∈ Γn then

E(Qx;θ) = E(x;Qθ) = E(x;θ).

As for any x ∈ Orb(x0,Γn) there exists a Q ∈ Γn, corresponding to a permutation π ∈ ΠQ
n , such

that x0 = Qx, this implies

1− δ ≤ E(x
(j)
0 ;θ)− E(x0;θ) = E((Qx)(j);θ)− E(Qx;θ) = E(xπ(j);θ)− E(x;θ).

As π is a bijection then for all j ∈ [n] this implies

E(x(j);θ)− E(x;θ) ≥ 1− δ

as claimed.

B.2.2 CHARACTERIZING THE INVARIANT SET FOR EDGE ADJACENCY PRESERVING
PERMUTATIONS

The following lemma identifies the invariant parameters with respect to the set of edge adjacency
preserving permutations as a particular rank three subspace.

Lemma 4.2. Let F : R3 → Θ denote the linear map defined as follows: if (W , b) = F (β) then
for all i, j ∈ [n] we have wij = 0 if i = j, wij = β1 if i ∼ j, wij = β2 if i ≁ j and bj = β3. Then
Ψ(Qn) = F (R3) where F (R3) denotes the image of F .

Proof. First we show that F (R3) ⊆ Ψ(Qn). Suppose θ ∈ F (R3), then there exists β ∈ R3 such
that θ = F (β). Let Q ∈ Qn and π ∈ ΠQ

n be the corresponding permutation. Then bi = bπ(i) = β3

for all i ∈ [n] and as a result QT b = b. Furthermore, if i, j ∈ [n] then π(i) ∼ π(j) if and only
if i ∼ j. Therefore if i ∼ j then Wij = β1 = Wπ(i)π(j). Otherwise, if i ≁ j then either i = j,
which implies Wjj = 0 = Wπ(j)π(j), or i ̸= j and then Wij = β2 = Wπ(i)π(j). As a result it
follows that QTWQ = W , this implies Qθ = θ and so θ ∈ Ψ(Qn). We therefore conclude that
F (R3) ⊆ Ψ(Qn).

Now assume θ ∈ Ψ(Qn), to prove there exists a β3 ∈ R such that bi = β3 for all i ∈ [n] it suffices
to show bi = bj for all i, j ∈ [n]. Similarly, to show there exist β1, β2 ∈ R as per the statement of
the lemma, it suffices to show wij = wab whenever either of the following hold: i) i ∼ j and a ∼ b
or ii) i ≁ j and a ≁ b. It therefore suffices to prove the following two statements.

1. For any i, j ∈ [n] there exists a π ∈ ΠQ
n such that π(i) = j. Note, as θ ∈ Ψ(Qn) this

implies bi = bπ(i) = bj .

2. For any i, j, a, b ∈ [n] satisfying i ∼ j and a ∼ b, or i ≁ j and a ≁ b, there exists a
π ∈ ΠQ

n such that π(i) = a and π(j) = b. Note, and again as θ ∈ Ψ(Qn), this implies
wij = wπ(i)π(j) = wab.

In all that follows, for l ∈ [8] let νl ∈ [v]. To prove the first statement, let i, j ∈ [n] and suppose
i = Ind({ν1, ν2}) and j = Ind({ν3, ν4}). Consider the permutation π ∈ ΠΦ

n ⊆ ΠQ
n which swaps

the indices of the unordered vertex pairs involving ν1 with the corresponding pair involving ν3,
likewise for ν2 and ν4, and is identity otherwise. To be clear, this is the permutation satisfying for
t ∈ [2] the identities π(Ind({νt, ν})) = Ind({νt+2, ν}) and π(Ind({νt+2, ν})) = Ind({νt, ν}) for
all ν ∈ [v]\{νt, νt+2}, and π(Ind−1({ν, ν′})) = Ind−1({ν, ν′}) for all ν, ν′ ∈ [v]\{ν1, ...ν4}. Note
if i ∼ j then we can without loss of generality assume ν2 = ν4 and this permutation reduces to
swapping a single pair and treating the rest with identity. By construction this permutation preserves
adjacency, moreover π(i) = j. As a result, for all i, j ∈ [n] there exists a π ∈ ΠQ

n such that
bi = bπ(i) = bj .

To prove the second statement, let i, j, a, b ∈ [n] and suppose i = Ind({ν1, ν2}), j = Ind({ν3, ν4}),
a = Ind({ν5, ν6}) and j = Ind({ν7, ν8}). Now consider the permutation π ∈ ΠΦ

n ⊆ ΠQ
n which

swaps the indices of the unordered vertex pairs involving ν1 with those of ν5, ν2 with those of ν6, ν3
with those of ν7, ν4 with those of ν8 and acts as identity on the indices of all other edges. To be clear,
this is the permutation satisfying for t ∈ [4] the identities π(Ind−1({νt, ν})) = Ind−1({νt+4, ν})

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

and π(Ind−1({νt+4, ν})) = Ind−1({νt, ν}) for all ν ∈ [v]\{νt, νt+4}, and π(Ind−1({ν, ν′})) =
Ind−1({ν, ν′}) for all ν, ν′ ∈ [v]\{ν1, ...ν8}. By construction this permutation preserves adjacency
and π(i) = a, π(j) = b. Moreover as π ∈ ΠQ

n then i ∼ j implies a ∼ b and i ≁ j implies a ≁ b. As
a result wij = wab for all i, j, a, b ∈ [n] if either i ∼ j and a ∼ b or i ≁ j and a ≁ b.

With both statements proved we conclude Ψ(Qn) ⊆ F (R3). Finally, as Ψ(Qn) ⊆ F (R3) and
F (R3) ⊆ Ψ(Qn), then Ψ(Qn) = F (R3) as claimed.

The next lemma states that parameters invariant to edge adjacency preserving permutations can
memorize any binary vector. In combination with Lemma 4.1 this implies any graph isomorphism
class is strictly memorizable.

Lemma 4.3. For m ∈ [0, n], let β = [2, 2, 1 − 2m] ∈ R3 and θ = F (β). Then E(x(j);θ) −
E(x;θ) ≥ 1 for all j ∈ [n] and for all x ∈ {0, 1}n satisfying ∥x∥0 = m.

Proof. Let x ∈ {0, 1}n satisfy |supp(x)| = m ∈ [0, n]. Recall from Lemma A.1 that for any j ∈ [n]

E(x(j);θ)− E(x;θ) = yj(x)⟨z(x),θj⟩,
where yj(x) = 1− 2xj , z(x) = [x, 1] and θj = [wj , 1]. Furthermore,

⟨z(x),θj⟩ = xTwj + β3

=

n∑
l=1

1(l ∈ supp(x) ∧ l ̸= j)wjl + β3

= β1

n∑
l=1

1(l ∈ supp(x) ∧ l ∼ j) + β2

n∑
l=1

1(l ∈ supp(x) ∧ l ≁ j ∧ j ̸= l) + β3.

Let cj(x) =
∑n

l=1 1(l ∈ supp(x) ∧ l ∼ j) denote the number of edges of the graph adjacent to the
jth edge. Then as

m =

n∑
l=1

1(l ∈ supp(x) ∧ j ̸= l) +

n∑
l=1

1(l ∈ supp(x) ∧ j = l)

=

n∑
l=1

1(l ∈ supp(x) ∧ l ∼ j ∧ j ̸= l) +

n∑
l=1

1(l ∈ supp(x) ∧ l ≁ j ∧ j ̸= l) + 1(j ∈ supp(x))

=

n∑
l=1

1(l ∈ supp(x) ∧ l ∼ j) +

n∑
l=1

1(l ∈ supp(x) ∧ l ≁ j ∧ j ̸= l) + xj ,

it follows that
n∑

l=1

1(l ∈ supp(x) ∧ l ≁ j ∧ j ̸= l) = m− cj(x)− xj .

As a result, the condition that must be satisfied for all j ∈ [n] is

yj(x)⟨z(x),θj⟩ = (1− 2xj) (cj(x)(β1 − β2) + β2(m− xj) + β3) ≥ 1.

If β1 = β2 then the left-hand side simplifies to an expression which depends only on the sparsity of
the representation of the graph. Under this assumption, it suffices to find a β2, β3 ∈ R such that

(1− 2xj) (β2(m− xj) + β3) ≥ 1.

Let β3 = 1− β2m, if xj = 0 then

(1− 2xj) (β2(m− xj) + β3) = β2m+ β3 = 1

while if xj = 1 then
−(β2(m− 1) + β3) = 1− β2.

Therefore, with β1 = β2 = 2 and β3 = 1− 2m we have

E(x(j);θ)− E(x;θ) ≥ 1

for all j ∈ [n].

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

We now make a few remarks in regard to the the construction used in the previous lemma. First,
F (2, 2, 1−2m) memorizes x ∈ {0, 1}n iff ∥x∥0 = m. Indeed, the only if aspect can be demonstrated
as follows: if x′ satisfies ∥x′∥ = m+ δ for δ ∈ N≥0, the required inequalities become 2δ + 1 ≥ 1
for j ∈ supp(x′) and −2δ + 1 ≥ 1 for j /∈ supp(x′). These inequalities can only simultaneously
hold if δ = 0. Second

∥F (2, 2, 1− 2m)∥2 = 2v(v + 1) + (1− 2m)2,

therefore when the sparsity m is proportional to n then the norm scales like Θ(n).

B.3 CONSTRUCTING AN INVARIANT, SMALL NORM PARAMETER WHICH MEMORIZES
k-CLIQUES

Our goal in this section is to show that small norm parameters exist which can memorize specific
isomorphism classes. In particular, we consider the case of k-cliques: recall that a k-clique graph
has a fully connected subset of k vertices while the remaining v − k vertices are isolated. We denote
the set of representations of k-cliques on v vertices as Cv,k and trivially note |Cv,k| =

(
v
k

)
. Towards

constructing low-norm invariant parameters that strictly memorize all k-cliques, the following lemma
derives specific expressions for the energy difference derived in Lemma A.1. To state this result, for
x ∈ Cv,k let Clique(x) ⊂ [v] denote the subset of the vertices of the graph which are in the fully
connected subset.
Lemma B.1. Let β ∈ R3 and suppose θ = F (β) = V ω, for some ω ∈ Rq. For x ∈ Cv,k and any
j ∈ [n], define r = |Clique(x) ∩ Ind−1(j)| ∈ {0, 1, 2} as the number of vertices in the jth vertex
pair which are also in the clique of x. Then for any j ∈ [n]

uj(x)
Tω = yj(x)z(x)

Tθj =


β2

2 k2 + β2

2 k + β3, r = 0,
β2

2 k2 +
(
β1 − β2

2

)
k + (β2 + β3 − β1), r = 1,

−
(

β2

2 k2 +
(
2β1 − 3

2β1

)
k + (3β2 − 4β1 + β3)

)
, r = 2.

Proof. By definition

z(x)Tθj = wT
j x+ bj

=

n∑
l=1

wjl1(l ∈ supp(x)) + β3

= β1

n∑
l=1

1(l ∈ supp(x) ∧ l ∼ j) + β2

n∑
l=1

1(l ∈ supp(x) ∧ l ≁ j ∧ l ̸= j) + β3

Observe each j ∈ [n] can be placed in one of three distinct categories with respect to x: in particular,
either both, one or neither of the vertices of j are in the k-clique of the graph represented by x. Fixing
an arbitrary j ∈ [n], we denote these events in turn as Φr for r ∈ {0, 1, 2}, where

Φr(x) = {j ∈ [n] : |Ind−1(j) ∩ Clique(x)| = r}.
Note Φ2(x) = supp(x). If j ∈ Φ0(x) then neither of the vertices of j are in the clique of x, as a
result the jth edge cannot be adjacent to any edge in the clique. If j ∈ Φ1(x) then exactly one vertex
of j is in the clique, furthermore there are k − 1 other vertices in the clique this vertex is connected
to via an edge. Finally, if j ∈ Φ2(x) then both of its vertices are connected via edges to k − 2 other
vertices in the clique. As a result,

n∑
l=1

1(l ∈ supp(x) ∧ l ∼ j) =


0, j ∈ Φ0(x),

k − 1, j ∈ Φ1(x),

2(k − 2), j ∈ Φ2(x).

Moreover, as there are
(
k
2

)
edges in total in a k-clique, and as if l ∈ supp(x) then j = l can be true

only if j ∈ supp(x) ∈ Φ2(x), then

n∑
l=1

1(l ∈ supp(x) ∧ l ≁ j ∧ l = j) =


(
k
2

)
, j ∈ Φ0(x),(

k
2

)
− k + 1, j ∈ Φ1(x),(

k
2

)
− 2k + 3, j ∈ Φ2.(x).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

As a result: if j ∈ Φ0(x) then

z(x)Tθj =

(
β2

k(k + 1)

2
+ β3

)
=

β2

2
k2 +

β2

2
k + β3.

If j ∈ Φ1(x) then

z(x)Tθj = β1(k − 1) + β2
k2 − k + 2

2
+ β3 =

β2

2
k2 +

(
β1 −

β2

2

)
k + (β2 + β3 − β1).

Finally, if j ∈ Φ2(x) then

z(x)Tθj = β1(2k − 4) + β2
k2 − 3k + 6

2
+ β3 =

β2

2
k2 +

(
2β1 −

3

2
β1

)
k + (3β2 − 4β1 + β3) .

To conclude, observe yj(x) = (1− 2xij) = −1 iff j ∈ Φ2(x).

We now derive a simple bound on the norm of parameters which are invariant to edge adjacency
preserving permutations.

Lemma B.2. Let β ∈ R3 and θ = F (β3). Then

∥θ∥2 ≤ β2
2v

4 + 2β2
1v

3 + β2
3v

2.

Proof. For any fixed edge index r ∈ [n], note as each vertex of this edge is a member of v − 2 other
vertex pairs then

n∑
c=1

1(c ∼ r) = 2(v − 2)

Moreover, as there are
(
v
2

)
unordered vertex pairs in total

n∑
c=1

1(c ≁ r ∧ c ̸= r) =

(
v

2

)
− 2(v − 2)− 1 =

v2 − 3v + 6

2
.

Therefore, and also noting that n =
(
v
2

)
≤ v2, we have

∥θ∥2 = ∥W ∥2F + ∥b∥2

=

n∑
r=1

(
β2
1

n∑
c=1

1(c ∼ r) + β2
2

n∑
c=1

1(c ≁ r ∧ c ̸= r) + β2
3

)

= n

(
β2
12(v − 2) + β2

2

(
v2 − 3v + 6

2

)
+ β2

3

)
≤ n(β2

2v
2 + 2β2

1v + β2
3)

≤ β2
2v

4 + 2β2
1v

3 + β2
3v

2.

We now present a low norm construction for memorizing k-cliques: in particular, Lemma 4.4
illustrates that the k-clique graph isomorphism class can be memorized using a parameter whose
norm is O(

√
n). This is in contrast to the general construction used in the proof of Lemma 4.3 whose

norm grew as Θ(n).

Lemma 4.4. If β = [−5/k, 14/k2, 0] ∈ R3, θ = F (β), and k ≥ 5, then the following hold.

1. E(x(j);θ)− E(x;θ) ≥ 1 for all x ∈ Cv,k and j ∈ [n].

2. If k = cv for some constant c ∈ (0, 1], then there exists a constant C > 0 such that
∥θ∥2 ≤ Cv.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Proof. For the proof of the first statement, from Lemma B.1 there are three cases we need to check.
First, if j ∈ Φ0(x) then

yj(x)z(x)
Tθj =

β2

2
k2 +

β2

2
k + β3 = 7

(
1 +

1

k

)
≥ 1.

Second, if j ∈ Φ1(x) then

yj(x)z(x)
Tθj =

β2

2
k2 +

(
β1 −

β2

2

)
k + (β2 + β3 − β1)

= 2− 7

k
+

14

k2
+

5

k

≥ 2− 2

k
≥ 1.

Third and finally, if j ∈ Φ2(x) then

yj(x)z(x)
Tθj = −

(
β2

2
k2 +

(
2β1 −

3

2
β1

)
k + (3β2 − 4β1 + β3)

)
= −

(
−3− 21

k
+

42

k2
+

20

k

)
≥ 3− 42

k2

≥ 1.

For the proof the second statement, using Lemma B.2 we have

∥θ∥2 ≤ 14

k4
v4 + 2

25

k2
v3

≤ (14c−2)2 + (5c−1)2v

≤ 2(14c−2)2v

=: Cv.

B.3.1 INVARIANCE OF THE FULL ORBIT HSVM SOLUTION

The following lemma states a well known result that the average orbit action of a parameter is
invariant to the action of the underlying group.
Lemma B.3. Let θ = (W , b) ∈ Θ and Γn denote a subgroup of Pn. Then ProjΓn

(θ) =
1

|Γn|
∑

Q∈Γn
Qθ ∈ Ψ(Γn).

Proof. For typographical ease let θ′ = ProjΓn
(θ). Then

θ′ = (W ′, b′) :=
1

|Γn|
∑

Q∈Γn

Qθ =

 1

|Γn|
∑

Q∈Γn

QTWQ,
1

|Γn|
∑

Q∈Γn

QT b

 .

Given Γn is a subgroup, then for any Q′ ∈ Γn

Q′θ′ =
(
Q′TW ′Q′,Q′T b′

)
=

 1

|Γn|
∑

Q∈Γn

(QQ′)TW (QQ′),
1

|Γn|
∑

Q∈Γn

(QQ′)T b


=

 1

|Γn|
∑

Q∈Γn

QTWQ,
1

|Γn|
∑

Q∈Γn

QT b


= θ′,

therefore θ′ ∈ Ψ(Γn).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Using the previous lemma, we show that the full orbit HSVM solution lies in the invariant set.
Lemma 4.5. Let x0 ∈ {0, 1}n and Γn denote a subgroup of Pn and assume Orb(x0,Γn) can be
strictly memorized. If θ∗ = V ω∗ where ω∗ = HSVMΘ(Orb(x0,Γn)) then θ∗ ∈ Ψ(Γn).

Proof. We use a symmetrization argument. To this end, with θ∗ = (W ∗, b∗) let

θ = (W , b) :=
1

|Γn|
∑

Q∈Γn

Qθ∗ =

 1

|Γn|
∑

Q∈Γn

QTW ∗Q,
1

|Γn|
∑

Q∈Γn

QT b∗

 .

By Lemma B.3 we know that θ ∈ Ψ(Γn). By the definition of θ∗ we also have

E(x(j),θ∗)− E(x,θ∗) ≥ 1.

Therefore, using both the intertwining property (9) and Lemma A.1, for any x ∈ Orb(x0,Γn) and
j ∈ [n], and with z(x) = [x, 1], we have

E(x(j),θ)− E(x,θ) = (2xj − 1)z(x)Tθj

=
1

|Γn|
∑

Q∈Γn

(2xj − 1)z(x)TQθ∗
j

=
1

|Γn|
∑

Q∈Γn

E(x(j),Qθ∗)− E(x,Qθ∗)

=
1

|Γn|
∑

Q∈Γn

E(x(j),θ∗)− E(x,θ∗)

= E(x(j),θ∗)− E(x,θ∗)

≥ 1.

As a result, θ is a feasible point of the HSVM problem (7) defined on the full orbit dataset Orb(x0,Γn).
Therefore, by the definition of θ∗ it must follow that ∥θ∗∥ ≤ ∥θ∥. On the other hand, using the
triangle inequality and the fact that Q ∈ Γn is a permutation, we have

∥θ∥ = ∥ 1

|Γn|
∑

Q∈Γn

Qθ∗∥ ≤ 1

|Γn|
∑

Q∈Γn

∥Qθ∗∥ = ∥θ∗∥.

This implies 1
2∥θ

∗∥2 = 1
2∥θ∥

2, as this objective is 1-strongly convex this in turn implies θ∗ = θ ∈
Ψ(Γn).

B.4 APPROXIMATELY INVARIANT PARAMETERS

B.4.1 APPROXIMATE INVARIANCE IS SUFFICIENT FOR GENERALIZATION

The following lemma states a sufficient condition for strict memorization of an orbit dataset based
on proximity to the relevant invariant space. In particular, given a graph G ∈ Gv and letting
x0 = Erep(G), if ω∗ = HSVM(S), where S ⊂ Orb(x0,Φn), and ω∗ is sufficiently close to the
subspace Qn, then θ∗ = Eω∗ will strictly memorize all graphs isomorphic to G.

Lemma B.4. Let x0 ∈ {0, 1}n satisfy ∥x0∥ = m ∈ N≥2, θ = Eω ∈ Θn satisfy E(x
(j)
0 ;θ) −

E(x0;θ) ≥ 1 for all j ∈ [n], and θ′ = Eω′ ∈ Ψ(Γn) be such that ∥ω − ω′∥ ≤ 1
4
√
m

. Then

E(x(j);θ)− E(x;θ) ≥ 1
2 for all x ∈ Orb(x0,Γn) and j ∈ [n].

Proof. Inspecting Lemma A.7, if ∥x0∥ = m ∈ N≥2 then ∥uj(x)∥ ≤
√
m for all x ∈ Orb(x0,Γn)

and j ∈ [n]. By assumption uj(x0)
Tω ≥ 1 for all j ∈ [n], therefore

E(x
(j)
0 ;θ′)− E(x0;θ

′) = yj(x0)z(x0)
Tθ′

j

= uj(x0)
Tω′

= uj(x0)
Tω − uj(x0)

T (ω − ω′)

≥ 1− ∥uj(x0)∥∥ω − ω′∥
≥ 3

4

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

for all j ∈ [n]. As θ′ ∈ Ψ(Γn), then Lemma 4.1 implies for any x ∈ Orb(x0,Γn) that

E(x(j);θ′)− E(x;θ′) = uj(x)
Tω′ ≥ 3

4 .

Moreover, and using the same trick as before, we also observe for all x ∈ Orb(x0,Γn) that

E(x(j);θ)− E(x;θ) = yj(x)z(x)
Tθj

= uj(x)
Tω

= uj(x)
Tω′ − uj(x)

T (ω′ − ω)

≥ 3
4 − ∥uj(x)∥∥ω − ω′∥

≥ 1
2

for all j ∈ [n].

B.4.2 PROXIMITY OF AHSVM SOLUTION TO THE INVARIANT SET

Lemma B.5. Let S ⊂ {0, 1}n, µS = 1
|S|
∑

x∈S ū(x) and assume ω∗ = AHSVM(S) is feasible.
Then ω∗ = µS

∥µS∥2 .

Proof. Note by the feasibility assumption 1
|S|
∑

x∈S ū(x) ̸= 0q. Forming the Lagrangian with
Lagrange variable α we have

L(ω, α) =
1

2
∥ω∥2 + α

(
1− 1

|S|
∑
x∈S

⟨ū(x),ω⟩

)
.

Clearly this is a strongly convex objective with a unique minimizer ω∗. Zeroing the gradient with
respect to ω and rearranging gives the identity

ω∗ = α∗ 1

|S|
∑
x∈S

ū(x)

on the solution pair (ω∗, α∗). In addition, as there is only a single constraint and the problem is
feasible then the constraint must be active, meaning

1

|S|
∑
x∈S

⟨ū(x),ω∗⟩ = 1.

As a result
∥ω∗∥2 = α∗ 1

|S|
∑
x∈S

⟨ū(x),ω∗⟩ = α∗. (11)

Therefore
ω∗

∥ω∗∥2
=

1

|S|
∑
x∈S

ū(x) = µS .

As µS ̸= 0q then

∥µS∥2 =

∥∥∥∥ ω∗

∥ω∗∥2

∥∥∥∥2 =
1

∥ω∗∥2
,

giving
ω∗ =

µS

∥µS∥2

as claimed.

Similar to Lemma 4.5, we now show that the full orbit AHSVM solution lies on the relevant invariance
space.
Lemma B.6. Let x0 ∈ {0, 1}n, Γn denote a subgroup of Pn, and assume O = Orb(x0,Γn)
satisfies |O| = |Γn|. Let ω∗ = AHSVMΘ(Orb(x0,Γn)) be feasible and define θ∗ = V ω∗, then
θ∗ ∈ Ψ(Γn).

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Proof. Again we use a symmetrization argument. To this end, with θ∗ = (W ∗, b∗) let

θ = (W , b) :=
1

|Γn|
∑

Q∈Γn

Qθ∗ =

 1

|Γn|
∑

Q∈Γn

QTW ∗Q,
1

|Γn|
∑

Q∈Γn

QT b∗

 .

By Lemma B.3 we know that θ ∈ Ψ(Γn). Let x ∈ O and Q ∈ Γn be such that Qx = x0, and let π
denote the permutation associated with Q. As θ ∈ Ψ(Γn) then using the intertwining property (9)

ū(x)Tω =
1

n

n∑
j=1

E(x(j);θ)− E(x;θ)

=
1

n

n∑
j=1

E(Qx(j);θ)− E(Qx;θ)

=
1

n

n∑
j=1

E((Qx)(π(j));θ)− E(Qx;θ)

=
1

n

n∑
l=1

E(x
(l)
0 ;θ)− E(x0;θ)

= ū(x0)
Tω.

As the AHSVM problem is feasible and has a single constraint then 1
|O|
∑

x∈O ū(x)Tω∗ = 1.
Therefore

1

|O|
∑
x∈O

ū(x)Tω = ū(x0)
Tω

=
1

n

n∑
l=1

E(x
(l)
0 ;θ)− E(x0;θ)

=
1

n

n∑
l=1

E

x
(l)
0 ;

1

|Γn|
∑

Q∈Γn

Qθ∗

− E

x0;
1

|Γn|
∑

Q∈Γn

Qθ∗


=

1

|Γn|
∑

Q∈Γn

1

n

n∑
l=1

E(Qx
(l)
0 ;θ∗)− E(Qx0;θ

∗)

=
1

|O|
∑
x∈O

1

n

n∑
j=1

E(x(j);θ)− E(x;θ)

=
1

|O|
∑
x∈O

ū(x)Tω∗

= 1.

As a result, θ is a feasible point of the AHSVM problem defined on the full orbit dataset Orb(x0,Γn).
Therefore, by the definition of θ∗ it must follow that ∥θ∗∥ ≤ ∥θ∥. On the other hand, using the
triangle inequality and the fact that Q ∈ Γn is a permutation, we have

∥θ∥ = ∥ 1

|Γn|
∑

Q∈Γn

Qθ∗∥ ≤ 1

|Γn|
∑

Q∈Γn

∥Qθ∗∥ = ∥θ∗∥.

This implies 1
2∥θ

∗∥2 = 1
2∥θ∥

2, as this objective is 1-strongly convex this in turn implies θ∗ = θ ∈
Ψ(Γn).

The lemma below bounds the difference between the sample AHSVM solution and the population
AHSVM solution, leveraging only the boundedness of the data.
Lemma 4.6. Let O ⊆ {0, 1}n satisfy ∥x∥0 ≤ m ∈ N≥2 and assume ω∗ = HSVM(O) is feasible.
Consider a random sample S = (xi)

N
i=1 where xi ∼ U(O) are mutually i.i.d. and define ωO =

AHSVM(O) and ωS = AHSVM(S). For δ ∈ (0, 1] and ϵ ∈ R>0, if N ≳ ϵ−2∥ω∗∥2m log(1/δ)
then ∥ωS − ωO∥ ≤ ϵ with probability at least 1− δ.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Proof. Let µ = E[ū(x)] where x ∼ U(O), then µ = 1
|O|
∑

x∈O ū(x). In addition, let µ̂S =
1
|S|
∑

x∈S ū(x). Then using Lemma B.5 we have

ωO =
µ

∥µ∥2
, ωS =

µ̂S

∥µ̂S∥2
.

Taking norms this clearly also implies

∥µ∥ =
1

∥ωO∥
, ∥µ̂S∥ =

1

∥ωS∥
,

Observe by definition that ω∗ satisfies E(x(j);θ∗) − E(x;θ∗) = ⟨uj(x),ω
∗⟩ ≥ 1, therefore for

any S ⊆ O we have

1

|S|
∑
x∈S

⟨ū(x),ω∗⟩ = 1

n|S|
∑
x∈S

n∑
j=1

⟨uj(x),ω
∗⟩ ≥ 1.

As a result we have both ω∗ ∈ FA(S) and ω∗ ∈ FA(O), which in turn implies ∥ω∗∥ ≥ ∥ωS∥ and
∥ω∗∥ ≥ ∥ωO∥. Defining f(x) = x/∥x∥2 for any x ∈ Rq , then applying Lemma A.8 this gives

∥ωS − ωO∥ = ∥f(µ̂S)− f(µ)∥ ≤ ∥µ̂S − µ∥
min{∥ωO∥−2, ∥ωS∥−2}

≤ 3∥ω∗∥2∥µ̂S − µ∥.

Observe

∥µ̂S − µ∥ = ∥ 1

N

N∑
i=1

(ū(x)− µ)∥,

clearly ū(x)− µ is a centered random vector, moreover for any x ∈ {0, 1}

∥ū(x)− µ∥ ≤ ∥ū(x)∥+ ∥µ∥

= ∥ū(x)∥+

∥∥∥∥∥ 1

|O|
∑
x′∈O

ū(x′)

∥∥∥∥∥
≤ ∥ū(x)∥+ 1

|O|
∑
x′∈O

∥ū(x′)∥

≤ 2
√
m,

where the last inequality follows from Lemma A.7 and the assumption m ≥ 2. We now deploy
Lemma A.9, a specialization of (Pinelis, 1994, Th, 3.5). In particular, given some ϵ ∈ R≥0 and letting
SN =

∑N
i=1(ū(x)− µ) then

P (∥µ̂S − µ∥ ≥ ϵ) = P(∥SN∥ ≥ Nϵ) ≤ exp

(
−Nϵ2

4m

)
As a result, for δ ∈ (0, 1], if N ≥ m

4ϵ2 log(1/δ) then

∥ωS − ωO∥ ≤ 3∥ω∗∥ϵ

with probability at least 1− δ. To arrive at the claimed result we substitute ϵ for ϵ
3∥ω∗∥ .

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

APPENDIX C ADDITIONAL EXPERIMENTS AND PRELIMINARY RESULTS

C.1 FURTHER PARAMETER HEATMAPS

Figure 4 is an extension of Figure 3, and shows the weight matrices for MEF and Delta on clique and
Payley graph data. We observe that the Delta rule also returns solutions which approach the invariant
space as the sample size N increases.

Figure 4: Weights found by MEF and Delta on clique and Payley graph data while varying
N : networks where trained on samples from isomorphism class of 10-cliques and Payley graphs on
v = 20 vertices with sample size ranging from 10 to 600.

C.2 HIDDEN CLIQUE PROBLEM

An equivalent interpretation of robust exponential memory Hillar & Tran (2018) in Hopfield networks
is that of error-correcting codes Hillar et al. (2021). In particular, a network trained on sufficiently
many cliques will not only generalize its memorization abilities to all cliques but will also have
all cliques with non-trivial basins of attraction (e.g., 5% noise tolerance). For an example of this
robust generalization, see Fig. 5, which plots over sample count both the generalization and denoising
accuracy of HNs trained with MEF. These networks appear to learn to solve the Hidden Clique

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Problem in computer science Dekel et al. (2014) with only a polynomial number of samples. Proving
this observation rigorously will be the focus of future work.

C.3 CLIQUE GENERALIZATION IN DAMS

We conducted experiments testing generalization performance in DAMs when presented with increas-
ing numbers of cliques as training data. We used the architecture and algorithm described in Krotov
& Hopfield (2016) for polynomial degrees 4 and 6 in the energy function. The results in Fig. 6 show
that these networks have very different generalization behaviors depending on degree. In particular,
in our experiments, they are not able to store all cliques when the degree is 4, and when they do for
degree 6, it is when the training set contains nearly all cliques. Our preliminary investigations suggest
that DAMs have challenges generalizing in the setting of cliques, but much more work is needed to
understand their behavior.

C.4 THE HOPFIELD NETWORK NOT GRAPH ISOMORPHIC CHECK (HNNGIC)

Lemma 4.3 implies any isomorphism class of a graph can be stored in a Hopfield network. This
prompts investigation into the potential for using Hopfield networks to check for graph isomorphisms,

a)
200 400 600 800 1000 1200

Sample count (of 137846528820 total graphs)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Train Exact
Test Exact
Test Bit
Denoise Exact
Denoise Bit

b)
0 200 400 600 800 1000 1200

Sample count

0

5

10

15

20

Va
lu

es beta_1
beta_2
beta_3

Figure 5: Generalization solves the Hidden Clique Problem. a) Generalization and denoising
accuracy (exact / average bits) are plotted as a function of number of 20-clique samples (in 40-vertex
graphs; n = 780) for MEF-trained HNs. Accuracy for generalization was computed using 10000
novel graphs as Test set. Denoising accuracy was computed by corrupting 5% bits in these 10000
and evaluating correctness of the attractor when dynamics is initialized at the noisy patterns (5 trials,
standard deviation error bars). b) For each type of parameter (adjacent edges, non-adjacent, or
thresholds), we plot their average over number of training samples (normalized so that thresholds are
mean 1).

a)
0 200 400 600 800

Number training examples (924 total on 12-nodes)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
ct

 in
 m

ak
in

g
fix

ed
-p

oi
nt

s (
Ex

ac
t)

Train DAM (Deg 4)
Test DAM (Deg 4)
Train MEF
Test MEF

b)
0 200 400 600 800

Number training examples (924 total on 12-nodes)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
ct

 in
 m

ak
in

g
fix

ed
-p

oi
nt

s (
Ex

ac
t)

Train DAM (Deg 6)
Test DAM (Deg 6)
Train MEF
Test MEF

Figure 6: DAM models trained on cliques. We compare the generalization performance between
DAMs of different degrees a) 4 and b) 6, and MEF-trained HNs for the 6-clique problem on graphs
with v = 12 vertices. The Train (resp. Test) accuracy is the percentage of 6-clique training samples
(resp. all 6-cliques) that are neural network attractors. Averaged over four trials, with standard
deviation error bars.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

a fundamental and important problem in computer science. To this end we propose Algorithm 1,
which we refer to as the Hopfield Network Not Graph Isomorphic Check (HNNGIC). As the name
suggests, this algorithm provides a check if two graphs are not graph isomorphic, returning true in
certain cases when they are not graph isomorphic and unknown, otherwise.

Algorithm 1: Hopfield Network Not Graph Isomorphic Check (HNNGIC)
Input: two graphs x1,x2 ∈ {0, 1}n and computational budget B
Output: True or Unknown

Step 1: minimize L(F (β);x1) within computational budget B, return β∗ ∈ R3;
Step 2: if H(x1;F (β∗)) = x1 then

if H(x2;F (β∗)) ̸= x2 then
return True

end
else

return Unknown
end

The idea behind this algorithm is simple: given two graphs, we pick one, i.e., x1, arbitrarily at
random. We then attempt to train the Hopfield network by minimizing the energy flow defined on
this single graph, but restrict the parameters to lie on the edge adjacency invariant subspace Ψ(Qn).
If the resulting invariant parameters F (β∗) strictly memorize x1 then this implies every point in the
orbit of x1 under graph isomorphism is also strictly memorized. Therefore, if x2 is graph isomorphic
to x1, then it must be a fixed point. As a result, x2 and x1 cannot be graph isomorphic if x2 is not a
fixed point of an invariant Hopfield network which stores x1. Note, that if x2 is a fixed point, it does
not follow that x1 and x2 are isomorphic. Indeed, there may be other fixed points, i.e., “spurious
states", in the landscape, not related to the orbit of x1. Also note that Lemmas 4.3 and 4.1 imply that
there is always a 3-parameter network storing any graph; in particular, given enough computation, we
are guaranteed to find an approximation of β∗ that is sufficient to store x1.

Statement on the use of LLMs. Large language models (LLMs) were used to assist with literature
search, checking and refining the clarity of writing, high level ideation and planning as well as
organizing related work.

31

	Introduction
	Related work

	Preliminaries
	Implicit bias, minimum norm memorizers and generalization
	Storing isomorphism classes of graphs and invariance
	Encoding Simple, Undirected Graphs as Binary Vectors
	Experiments on graph data
	Invariant parameters

	Limitations and Future Work
	Background
	Energy gap for binary vectors a hamming distance one apart
	Learning algorithms for Hopfield Networks
	Encoding simple, undirected graphs as binary vectors
	Bounded representations
	Euclidean distance bounds between normalized vectors
	Hoeffding's inequality in Hilbert space

	Proofs of results
	Proof of Theorem 3.2
	Properties of invariant parameters
	Energy bounds for invariant parameters across orbits
	Characterizing the invariant set for edge adjacency preserving permutations

	Constructing an invariant, small norm parameter which memorizes k-cliques
	Invariance of the full orbit HSVM solution

	Approximately invariant parameters
	Approximate invariance is sufficient for generalization
	Proximity of AHSVM solution to the invariant set

	Additional Experiments and Preliminary Results
	Further parameter heatmaps
	Hidden Clique Problem
	Clique generalization in DAMs
	The Hopfield Network Not Graph Isomorphic Check (HNNGIC)

