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Abstract
In order to test if a treatment is perceptibly different from a placebo in a randomized experiment
with covariates, classical nonparametric tests based on ranks of observations/residuals have been
employed (eg: by Rosenbaum), with finite-sample valid inference enabled via permutations. This
paper proposes a different principle on which to base inference: if — with access to all covariates
and outcomes, but without access to any treatment assignments — one can form a ranking of the
subjects that is sufficiently nonrandom (eg: mostly treated followed by mostly control), then we
can confidently conclude that there must be a treatment effect. Based on a more nuanced, quantifi-
able, version of this principle, we design an interactive test called i-bet: the analyst forms a single
permutation of the subjects one element at a time, and at each step the analyst bets toy money on
whether that subject was actually treated or not, and learns the truth immediately after. The wealth
process forms a real-valued measure of evidence against the global causal null, and we may reject
the null at level α if the wealth ever crosses 1/α. Apart from providing a fresh “game-theoretic”
principle on which to base the causal conclusion, the i-bet has other statistical and computational
benefits, for example (A) allowing a human to adaptively design the test statistic based on increas-
ing amounts of data being revealed (along with any working causal models and prior knowledge),
and (B) not requiring permutation resampling, instead noting that under the null, the wealth forms
a nonnegative martingale, and the type-1 error control of the aforementioned decision rule follows
from a tight inequality by Ville. Further, if the null is not rejected, new subjects can later be added
and the test can be simply continued, without any corrections (unlike with permutation p-values).
Numerical experiments demonstrate good power under various heterogeneous treatment effects.
We first describe i-bet test for two-sample comparisons with unpaired data, and then adapt it to
paired data, multi-sample comparison, and sequential settings; these may be viewed as interactive
martingale variants of the Wilcoxon, Kruskal-Wallis, and Friedman tests.
Keywords: Covariate-Adjusted Wilcoxon; Interactive Rank Tests; Randomized Experiments.

1. Introduction

The problem of testing whether a treatment has any effect in a randomized experiment without para-
metric assumptions is frequently encountered in biology, medical research, and social sciences (see,
for example, Olive et al. (2009); Aguilera et al. (2017); Rastinehad et al. (2019)). A classical non-
parametric method is the Wilcoxon test, and there have been several proposed extensions that adjust
for covariates, in order to better detect the treatment effect. For example, suppose we want to eval-
uate a medication by comparing the blood pressure (outcome) of subjects who take the medication
(treatment) with that of subjects who do not (control). The blood pressure could be affected by the
subject’s gender, age, etc.—accounting for these would help increase power, especially when the
medication only affects a subpopulation. In this paper, we use a novel “game-theoretic” principle of
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guessing and betting on the treatment assignments using all data except the truth assignments, and
conclude there is an effect if most guesses are correct. Our proposed test is “interactive” — it allows
an analyst to look at (progressively revealed) data and adaptively explore arbitrary working models
for making the bets — which improves power especially under heterogeneous treatment effects.

1.1. Problem setup

Consider a sample with n subjects. Let the outcome of subject i be Yi, the covariates be Xi, and the
treatment assignments be indicators Ai for i ∈ [n] ≡ {1, 2, . . . , n}. The null hypothesis of interest
is that there is no difference between treated and control outcomes conditional on the covariates 1:

H0 : (Yi | Ai = 1, Xi)
d
= (Yi | Ai = 0, Xi) for all i ∈ [n]. (1)

Rejecting the above null means that there exist some subjects who respond differently when treated
or not. We do not further identify which subject respond differently. Testing the above global null
may appear in an exploratory analysis to see whether the treatment has any effect on any person, or
as a building block within a closed testing procedure. For our interactive algorithm that we propose
later to succeed in rejecting the global null, it must indeed implicitly learn which part of the covariate
space exhibits this difference between treatment and placebo, and if the global null is rejected, one
may use this information to design follow-up studies or analyses focused on other goals.

This paper deals with classic randomized experiments, and in particular we assume that

(i) (random assignment) the treatment assignments are independent and randomized:

P(Ai = 1 | Xi) = µi ≡ µi(Xi) ∈ (0, 1), where µi is known for all i ∈ [n];

(ii) (no interference) the outcome of any subject Yi1 depends only on their assignment Ai1 and
does not depend on the assignment Ai2 for any i1 6= i2 ∈ [n].

Note that the above considers the case where the probabilities of receiving treatment {µi(Xi)}ni=1

are known (but the total number of treated subjects is not fixed). The methods are easily extended to
the case where the number of treatments is fixed:

∑n
i=1Ai = m, and they are assigned to a random

subset of subjects (see Remark 5).
To enable us to effectively adjust for covariates, we use the following “working model”:

Yi = ∆(Xi)Ai + f(Xi) + Ui, (2)

where ∆(Xi) is the treatment effect, f(Xi) as the control outcome, and Ui is zero mean ‘noise’
(unexplained variance). When working with such a model, we effectively want to detect if ∆(Xi) is
nonzero. Importantly, model (2) only exists on the analyst’s computer, and it need not be correctly
specified or accurately reflect reality in order for the tests in this paper to be valid (but the more
ill-specified or inaccurate the model is, the more test power may be hurt).

1. An alternative, equivalent description is that each subject i has potential control outcome Y Ci , potential treated
outcome Y Ti , and the treatment indicator Ai for i ∈ [n] ≡ {1, 2, . . . , n}. The observed outcome is Yi = Y Ci (1 −
Ai) + Y Ti Ai under the standard causal assumption of consistency (Yi = Y Ti when Ai = 1 and Yi = Y Ci when
Ai = 0). In this setting, the potential treated outcome Y Ti corresponds to Yi|Ai = 1.
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1.2. Rosenbaum’s covariance-adjusted Wilcoxon test

Recall that the Wilcoxon rank-sum test (also referred to as the Mann–Whitney U-test) calculates

W ori =
n∑
i=1

(2Ai − 1) rank (Yi) ,

where rank(Zi) is the rank of Zi amongst {Zi}ni=1. When the treatment effect is large, the sub-
jects receiving treatment (Ai = 1) tend to have larger outcomes, and hence W ori would be large.
Rank-based statistics have been explored in many directions: see Lehmann and D’Abrera (1975)
for a review. Recent work focuses on how to incorporate covariate information to improve power.
Zhang et al. (2012) develop an optimal statistic to detect constant treatment effect; in multi-sample
comparison, Ding and Keele (2018) numerically compare rank statistics of outcomes or residuals
from linear models; Rosenblum and Van Der Laan (2009) and Vermeulen et al. (2015) focus on
related testing problems for conditional average effect and marginal effect; Rosenbaum (2010) and
Howard and Pimentel (2020) use generalizations of rank tests for sensitivity analysis in observa-
tional studies. Here, we focus on improving power under heterogeneous treatment effects.

Rosenbaum (2002) proposed the covariance-adjusted Wilcoxon test that considers the residuals
of regressing the outcome Yi on covariates Xi (without assignment Ai). Specifically, denote the
residual for subject i as Ri:

Ri ≡ Ri(Yi, Xi) := Yi − Ŷ (Xi), (3)

where Ŷ (Xi) the prediction of Yi using Xi via any modeling and Ri can be viewed as an approxi-
mation of the treatment effect after accounting for heterogeneous control outcome. The covariance-
adjusted Wilcoxon test replaces the outcomes with the residuals:

WCovAdj =

n∑
i=1

(2Ai − 1) rank (Ri) , (4)

abbreviated as CovAdj Wilcoxon test in the rest of the paper. The rejection rule is based on permuta-
tion. Note that under the null, the assignment Ai is independent of other data information {Yi, Xi}.
The permutation test estimates the null distribution of W by permuting the treatment assignments
{Ai}ni=1, described as follows:

Input: Outcomes, treatment assignments, and covariates {Yi, Ai, Xi}ni=1, target Type-I error rate
α;
Procedure: 1. Calculate W using the observed data {Yi, Ai, Xi}ni=1;
2. Let W 1 = W and for b = 2, . . . , B, generate a random permutation of the treatment assignments
(Ab1, . . . , A

b
n); and calculate W b using the permuted data {Yi, Abi , Xi}ni=1;

3. Let W (j) be the j-th largest order statistic. Reject the null if W > W (bα·Bc).
Algorithm 1: Framework for the permutation test

The signed-rank test offers a general formula to construct permutation tests with various forms
of test statistics W for two-sample comparison, which we discuss in Appendix G.
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1.3. Interactively constructing a ranking, and betting on it

In contrast to one-step tests such as CovAdj Wilcoxon test, we propose a multi-step test that pro-
gressively guesses and bet on the treatment assignments. The intuitive idea is that if based on all
covariates and outcomes, a human analyst can guess most treatment assignments correctly, then the
treatment must have an effect and we can reject the null. Several advantages of taking the above
betting perspective include: (a) the flexibility for the analyst to use combine (partial) data, prior
knowledge, and arbitrary modeling for guessing and betting on the treatment assignments; (b) the
bets are used to construct a sequence of test statistics and form a multi-step protocol, during which
the analyst can monitor the current algorithm’s performance and is allowed to make adjustments to
their working model at any step; (c) the constructed test statistics form a nonnegative martingale,
and the type-I error control follows from a martingale property (detailed later), avoiding the high
computation cost in data permutation for the rejection rule. Despite allowing human interaction
in (a) and (b), the proposed test always maintains valid type I error control without assuming any
working model specified by the analyst to be correct.

Our proposed test by betting can be viewed as separating the information used for betting and
interactive algorithm design and that for testing, via “masking and unmasking” (Figure 1). Masking
means we hide the information of treatment assignments {Ai}ni=1 from the analyst. Unmasking
refers to the process of revealing the masked assignments one at a time to the analyst. Consider a
simple case where the treatment is assigned to each subject independently with 1/2 probability. The
test considers the cumulative products

Mt =
t∏

j=1

[
1 + wj · (Aπj − 1/2)

]
, (5)

where {πj}nj=1 denotes an ordering interactively decided by the analyst, and wj ∈ [−2, 2] is a
user-defined bet on the treatment assignment, both of which can be based on all the revealed in-
formation {Yi, Xi}ni=1 and the true treatment assignments of all previous subjects in the ordering
Aπ1 , . . . , Aπj−1 . Regardless of the specific choices of the ordering and binary estimations and
weights, wj · (2Âπj − 1) is independent of Aπj under the null (but not under the alternative);
and thus, the process (Mt) is a nonnegative martingale under the null. We reject the null as soon
as Mt ≥ 1/α for some t ∈ [n] (see the precise description of our procedure in Algorithm 2 of
Section 2). Type-1 error control is guaranteed by Ville’s (often attributed to Doob) maximal in-
equality (Ville, 1939), which states that with probability 1−α, a nonnegative martingale with initial
value one (which Mt is, under the null) will never exceed 1/α:

Pr
H0

(∃t ≥ 1 : Mt ≥ 1/α) ≤ α. (6)

For a self-contained proof of this fact, see (Howard et al., 2020). Ville’s inequality holds with
equality for continuous path martingales (only possible in continuous time) and in discrete time, the
only looseness is due to “overshoot” and is typically negligible (Howard et al., 2020), meaning that
the inequality almost holds with equality, which is important so that the test is not too conservative.

Remark 1 There is nothing special about the use of 1/2 above, and one can simply use µ if there is
some other probability of random assignment. Further, if subject i was randomized with probability
µi ≡ µ(Xi) possibly depending on its covariates, or in some kind of stratified manner, then we can
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simply use that µi in (5) instead of 1/2, retaining the required martingale property; we return to
this formally later. (In this case, the range of the bet wj must be adjusted to [−1/(1 − µi), 1/µi]
to ensure nonnegativity.) It appears that in the last case, the exchangeability amongst subjects has
been destroyed and so the permutation test in Algorithm 1 does not directly apply — this can be
addressed using a recent sophisticated concept called weighted exchangeability that has utility in
other settings (Tibshirani et al., 2019), but this leads us far astray; our point is simply that our
procedure retains its simplicity under more complex randomization schemes.

Remark 2 Though we do not necessarily recommend viewing i-bet in this way, it is possible to view
our interactive test as a computational shortcut for the permutation framework. In short, whenever
the test statistic is a nonnegative martingale (by design), permutations can be avoided. To elaborate,
one could imagine calibrating the test statistic W = max1,...,nMt using algorithm 1. What Ville’s
inequality implies is that the α-upper quantile of the permutation null distribution for W (obtained
by permuting the data and construct {W b}Bb=1, with B = n! for example), will be at most 1/α.

The above test retains validity amidst significant flexibility. For example, the analyst could em-
ploy any probabilistic working model or predictive machine-learning algorithm to guess the treat-
ment assignments Âi ∈ {0, 1}, perhaps along with an associated level of confidence such as a
posterior probability or a score νi ∈ [0, 1], for each subject i that have not yet been included in the
ordering. Then, at step t of the algorithm, the next subject in the ordering πt could be the one where
the analyst is most confident, and wt could equal 2(2Ât − 1) ∈ {−2, 2} or 2(2νt − 1) ∈ [−2, 2].

Intuitively, our algorithm tests whether there exist any non-nulls by examining whether we
can succeed at guessing the treatment assignments better than random chance, and this is reflected
by our ability to form “smart, nonrandom” bets that cause Mt to grow faster than a martingale,
and cross 1/α as soon as possible. When all subjects are nulls and we have that the treatment
assignments are independent of the outcomes and covariates, we cannot distinguish subjects who
are treated or not based on the outcomes and covariates, and no algorithm can result in Mt losing
this martingale property (and thus having controlled growth). In contrast, if the null is false, we
hope that our algorithm will be able to correctly guess the assignments, especially for subjects we
are most confident about (ordered upfront), so that the cumulative products (Mt)

n
t=1 grow large.

Interaction enters in the process of unmasking. Intuitively, to construct large Mt and reject the
null, the analyst should guess whether a subject receives treatment while the assignments {Ai}ni=1

are hidden. She can guess the treatment assignments using the revealed data information {Yi, Xi}ni=1

and {Aπj}t−1
j=1 (for the t-th iteration), and any prior knowledge, and she is free to use any algorithms

or models. Even if the model chosen initially is inaccurate because of masking, the interactive test
progressively reveals the assignments (of the first t − 1 subjects at step t) to the analyst, so that
she can improve her understanding of the data and update the model or heuristic for estimating the
treatment assignments at any step.

We call our proposed procedure the i-bet test. Our contribution is to provide a “game-theoretic”
principle for the causal hypothesis testing problem, and demonstrate a new class of interactive multi-
step algorithms that, by masking some of the data and progressively revealing it to the scientist, can
combine the strengths of (automated) statistical modeling and (human-guided) scientific knowledge,
in order to reject the global null while not suffering from any p-hacking or data-dredging concerns
despite a great deal of flexibility provided to the scientist.

Directly related work. The game-theoretic principles of testing by betting stems from the books
by Shafer and Vovk (2019, 2005) as elucidated in a recent paper by Shafer (2020). Recently, these
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{Yi, Xi}ni=1

Prior information

Select the t-th subject
and bet on its treatment
assignment

Obtain Mt Reject
Initialize
t = 1

If Mt > 1/α

If Mt ≤ 1/α

Reveal Aπt and update working model
(t← t+ 1)

Figure 1: Schematics of the i-bet test. At each step, a human analyst can freely explore and update
models to guide the selection of the t-th subject and its bet (as the red box shows).

ideas have been successfully applied to election auditing (Waudby-Smith et al., 2021), and for con-
structing concentration bounds (Waudby-Smith and Ramdas, 2020). Our work connects the betting
perspective with the causal null hypothesis, introducing the various advantages as outlined in the
abstract. The advantage of optional continuation of experiments (equivalently, optional stopping)
has been highlighted in particular by Grünwald et al. (2019) and Howard et al. (2021).

The idea of interactive testing was recently proposed by Lei and Fithian (2018) and Lei et al.
(2020), in the context of multiple testing problems to control FDR (the false discovery rate), fol-
lowed by several works for other error metrics in multiple testing. Our interactive test for two-
sample comparison relates most with the work of controlling the global type-I error (Duan et al.,
2020), where the individual null hypothesis is zero effect for each subject, and the global null cor-
responds to the null of no treatment effect as null hypothesis (1). Previous development of the
interactive tests typically focuses on generic multiple testing problems, which operate directly on
multiple p-values; in other words, the units of inference were p-values (for different hypotheses)
rather than data points (to test a single hypothesis). Here, interactive testing is directly applied to
the observed data, expanding the potential of interactive tests.

For the related problem of two-sample testing, Lhéritier and Cazals (2018) developed the same
idea of constructing the test statistics as a nonnegative martingale. One can view our paper as an
extension of their work to causal inference settings, developing the core idea further along method-
ological, theoretical and practical fronts (for example, extending to sampling without replacement
in order to handle different types of randomization beyond independent Bernoulli assignment). We
emphasize the flexibility allowed to a human analyst to utilize arbitrary contextual knowledge prior
to and during the test, with or without the aid of probabilistic modeling. We also develop some
extensions in Appendix E. Other related work on testing weaker null hypotheses is in Appendix F.

Outline. The rest of the paper is organized as follows. In Section 2, we describe the i-bet test in
detail, followed by numerical experiments to demonstrate its advantage over standard methods in
Section 3. Section 4 concludes the paper with a discussion on the potential of interactive rank tests.
Extensions to various settings, such as paired data, are deferred to Appendix E.

2. An interactive rank test with covariates (i-bet)

To account for covariates through a flexible algorithm that involves human interaction, we propose
the i-bet test. In short, the analyst decides the ordering of subjects {πj}nj=1 and the bets {wj}nj=1
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progressively: at step t, she selects the t-th subject from the to-be-ordered subjects [n]\{πj}t−1
j=1

and decides the bet wt, based on an increasing amount of data information starting from the assign-
ments {Ai}ni=1 masked and then gradually revealed. Note that the bet can be unreliable, and in turn
hurt the power, at the first few steps if all the assignments are masked. Thus, we reveal the complete
data for a random subset of subjects at t = 0, denoted as set I0 (10% of all subjects for example).
At each iteration, we select subject πt and expand the set It = It−1 ∪ {πt} whose complete data is
then revealed.

Mathematically, the data information available to the analyst at the end of step t is denoted by
the filtration:

Ft = σ ({Yi, Xi}ni=1 ∪ {Ai}i∈It) . (7)

The choice of πt and wt are predictable (measurable) with respect to Ft−1, while the analyst is
allowed to explore and choose arbitrary models or heuristics to form the ordering and get the bets.
After each iteration of selecting πt ∈ [n]\It−1 and choosing wt ∈ [− 1

1−µπt
, 1
µπt

], the test calculates

Mt =
t∏

j=1

[
1 + wj · (Aπj − µπj )

]
, (8)

and the iteration stops once Mt reaches the boundary 1/α, or all the subjects in [n]\I0 are ordered.
We summarize the i-bet test in Algorithm 2.

Input: Outcomes, assignments, covariates {Yi, Ai, Xi}ni=1, target type-I error α, holdout ratio γ;
Procedure: 1. Random select a set I0 ∈ [n] with size γ · n;
for t = 1, · · · , |[n]\I0| do

2. Using Ft−1, pick any πt ∈ [n]\It−1 and obtain an arbitrary bet wt ∈ [− 1
1−µπt

, 1
µπt

];
3. Reveal Aπt and update It and Ft;
if
∏t
j=1

[
1 + wj · (Aπj − µπj )

]
> 1/α then

Reject the null and stop;
end

Algorithm 2: Framework for the interactive rank test (i-bet test)

2.1. Important remarks

Remark 3 We defined the problem as testing the global null (1) of no treatment effect at a prede-
fined level α. Instead, we could ask the test to output a p-value for the global null, or even better, to
output an anytime-valid p-value, which is a sequence of p-values {pt}nt=1 such that for an arbitrary
stopping time τ , pτ is also a valid p-value (its distribution is stochastically larger than uniform if the
null is true). Luckily, this is easy: pt = infs≤t 1/Ms fits the bill, once again due to Ville’s inequality.
Further, being a nonnegative martingale, the optional stopping theorem implies that the wealth pro-
cess at any stopping time has expectation at most one under the null; this makes the wealth process
an e-process (Ramdas et al., 2021; Grünwald et al., 2019; Shafer, 2020). The relationship between
these objects is detailed in Ramdas et al. (2020).

Remark 4 The anytime-validity discussed above implies that the experiment can be extended to a
larger size if the smaller size did not provide sufficient evidence (meaning the wealth did not exceed
1/α), as discussed in Grünwald et al. (2019) and Howard et al. (2020). It is indeed a remarkable
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property that if the null cannot be rejected using the current dataset, we can just continue exper-
imentation: randomly assign l more people to treatment and control, reveal their covariates and
outcomes, and continue the betting on the new l subjects starting with the wealth Mn, extending the
original ranking as if we had all l + n subjects from the start. This optional continuation does not
require adjustment for multiple testing before or after collecting new samples, because the wealth
continues to be a nonnegative martingale under the null, the p-value is anytime-valid, and the prob-
ability the wealth ever exceeds 1/α is at most α. In game-theoretic terms, no amount of betting can
make us significantly rich in a fair game (characterized by the martingale property under the null)
— even if we first chose to play n rounds, and then later added l more rounds.

Remark 5 The i-bet test can be extended to a completely randomized experiment, where the num-
ber of treatments is fixed and known as m at the beginning, and m subjects are randomly chosen to
be treated. In such a case, the revealed information additionally has the sum of treatment assign-
ments

Ft = σ

(
{Yi, Xi}ni=1 ∪ {Ai}i∈It ∪ {

n∑
i=1

Ai}

)
.

We would then construct the nonnegative martingale as Mt =
∏t
j=1

[
1 + wj · (Aπj − µj)

]
, where

wt ∈ [− 1
1−µt ,

1
µt

] and µt =
(
m−

∑
i∈It−1

Ai

)
/(n−|It−1|) is the expected treatment assignment

given the revealed information in Ft−1.

Remark 6 Despite high flexibility in choosing the weight wt and the order πt, good choices can
increase power. The choice of the ordering πt affects the test power, when taken together with the
choice of weight wt. So let us first note that a desirable weight wt should ideally have the same sign
as Aπt; this would allow Mt to increase to sooner reach the rejection threshold 1/α. Therefore,
we recommend practitioners to order upfront the subjects for which they (or the algorithm acting
on their behalf) are most confident about their treatment assignment. As an example, we provide an
automatic approach to choose weight wt and order πt in Section 2.2.

Theorem 7 As long as an analyst explores and updates working models at any step t using only the
information inFt, the i-bet test controls type-I error for null hypothesis (1) under assumptions (i),(ii)
of randomized experiments. In fact, the error control holds conditionally on {Xi, Yi}ni=1.

Although more information is revealed to the analyst after each step, the error control is valid,
because under the null, the increment Aπt for testing is independent of the revealed information:

E (Aπt | Ft−1) = µπt . (9)

The complete proof is in Appendix A.
The i-bet allows the analyst to incorporate covariates and various types of domain knowledge

for ordering and choosing weights. However, manually picking πt at every step could be tedious.
The analyst can instead design an automated algorithm for choosing πt and wt, such as the example
we provide in the next section, and still keeps the flexibility to modify it at any step.
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2.2. A concrete, automated, instantiation of i-bet

We can infer the treatment assignments by exploring various models to fit the (partial) data. An
example is to model the outcome as a mixture of the distributions for treatment and control groups:

Yi ∼

{
N(µ1

i , 1), when Ai = 1

N(µ0
i , 1), when Ai = 0

with µji = θj(Xi) for j = 0, 1, (10)

where θj could be linear functions of the covariates and their second-order interaction terms. The
masked treatment assignments can be viewed as missing values, and by the EM algorithm (details
in Appendix B), we get an estimated posterior probability of receiving the treatment for each sub-
ject. The estimated probability of receiving treatment, denoted as q̂i, provides an estimation of the
assignment and an approach to select πt. Recall that we hope to order upfront the subject whose es-
timated assignment we are most confident, which can be measured by |q̂i − 0.5|, so we could select
πt = arg maxi∈[n]\{πj}t−1

j=1
{|q̂i − 0.5|}. For the chosen subject, we bet on the treatment assignment

by wj = 0.8(2Âπj − 1), where the estimated assignment Âπj := 1{q̂πj > 0.5} is a function
of the estimated probability of receiving treatment. We summarize this automated procedure in
Algorithm 3.

Input: Outcomes, assignments, covariates {Yi, Ai, Xi}ni=1, target type-I error α, holdout ratio γ;
Procedure: 1. Random select a set I0 ∈ [n] with size γ · n;
for t = 1, · · · , |[n]\I0| do

2. Estimate q̂i for subjects in [n]\It−1;
3. Choose πt = arg maxi∈[n]\It−1

{|q̂i − 0.5|};
4. Reveal Aπt and update It and Ft;
if
∏t
j=1

[
1 + 0.8(21{q̂πj > 0.5} − 1) · (Aπj − 1/2)

]
> 1/α then

Reject the null and stop;
end

Algorithm 3: An automated implementation of the i-bet test

By design, wj · (Aπj −1/2) is +0.4 if the estimated assignment is consistent with the truth; and
−0.4 otherwise 2. Ideally, when the null is false, we could guess most assignments correctly and
order them upfront, leading to a larger Mt that could exceed the boundary 1/α.

As the test proceeds and more actual assignments get revealed for interaction, we refit the above
model and update the estimation of posterior probabilities for every bn5 c steps (say). Keep in mind
that the validity of the error control does not require model (10) to be correct. The analyst can choose
other models such as logistic regression for θj if the revealed data or prior knowledge suggests so.

3. Numerical experiments

Though the primary contribution of our paper is the construction and derivation of a conceptually
interesting test (or framework, since there is significant flexibility left to the analyst) for the global
causal null, we attempt below to convince the reader that the flexibility afforded by our interactive
setup suffices to deliver high power. We view the simulations with i-bet as a thought experiment:
the reader must imagine that we perhaps chose a poor model for all methods at the start. Using a

2. We could design bets wj such that wj · (Aπj −1/2) has larger contrast (e.g. ±1), but over-betting would hurt power.
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poor (uninformative or barely better than chance) model, our bet wj would possibly have a random
sign for early subjects, and our wealth may fluctuate up and down, rather than increase reasonably
steadily. The multi-step i-bet test can have higher power than other single-shot tests because, in the
midst of this testing, the analyst can observe the poor start, explore and evaluate various models
using the complete data for completed bets and the masked-assignment data for every other point,
and try to find a better model (details in the paragraph of “Illustration of adaptive modeling”).

Simulation setup. To evaluate the performance of the automated algorithm, we simulate 500
subjects (n = 500). Suppose each subject is recorded with two binary attributes (e.g., female/male
and senior/junior) and one continuous attribute (e.g., body weight), all of which are denoted as
a vector Xi = (Xi(1), Xi(2), Xi(3)) ∈ {0, 1}2 × R. Among n subjects, the binary attributes are
marginally balanced, and the subpopulation with Xi(1) = 1 and Xi(2) = 1 is of size n0 (see
Table 1), where we set n0 = 30. The continuous attribute is independent of the binary ones and
follows the distribution of a standard Gaussian.

Table 1: Size of the subpopulation in terms of two binary attributes.
Xi(1) = 0 Xi(1) = 1 Totals

Xi(2) = 0 n0 n/2− n0 n/2

Xi(2) = 1 n/2− n0 n0 n/2

Totals n/2 n/2 n

The outcomes are simulated as a function of the covariates Xi and the treatment assignment Ai
following the generating model (2), where we vary the functions for the treatment effect ∆ and the
control outcome f to evaluate the performance of the i-bet test. Recall that earlier, we used model (2)
as a working model, which is not required to be correctly specified. Here, we generate data from
such a model in simulation to provide various types of underlying truth for a clear evaluation of the
considered methods3.

Alternative tests for comparison. In addition to the CovAdj Wilcoxon test, we compare the i-
bet test with a semi-parametric test derived from the literature of estimating conditional average
treatment effect (CATE), which we refer to as the linear-CATE-test. Here, the nonparametric test-
ing problem is transformed into testing a parameter, potentially considering a less stringent null.
Specifically, null hypothesis (1) implies that

if E(Yi | Ai = 1, Xi)− E(Yi | Ai = 0, Xi) = XT
i ψ
∗, then ψ∗ = 0. (11)

Assume that the outcome difference is a linear function of covariates Xi, the method for CATE
provides an asymptotic confidence interval for ψ∗, and the null is rejected if the confidence interval
does not include zero (see Appendix C for an explicit form of the test). Note that the test has
valid error control even if the outcome difference is not linearly correlated with Xi, in which case,
however, the power would be low.

The presented methods (the CovAdj Wilcoxon test, the linear-CATE-test, and the automated
algorithm of the i-bet test) all involve some working model of the outcomes, but the extent of
flexibility varies. The linear-CATE-test requires us to specify the parametric model before looking

3. R code to reproduce all plots in the paper is available in https://github.com/duanby/interactive-rank. When imple-
menting algorithm 3, we choose the holdout ratio γ = 0.1 by default.
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at the data; the CovAdj Wilcoxon test allows model exploration given partial data {Yi, Xi}ni=1

before testing; and the i-bet test further permits the analyst to interactively change the model as the
test proceeds and more assignments Ai become available for modeling.

Test performances when the default model is a good fit. Consider outcomes from the generating
model (2) with the treatment effect ∆ and the control outcome f specified as:

∆(Xi) = S∆[Xi(1) ·Xi(2) +Xi(3)],

f(Xi) = 5[Xi(1) +Xi(2) +Xi(3)],

(12)

(13)

where S∆ encodes the signal strength of the effect. Intuitively, all subjects have some Gaussian-
distributed effect correlated with X(3) and the subjects with X(1) = 1 and X(2) = 1 additionally
have a constant positive effect. In such a setting, all the methods with their working models specified
as linear functions should fit the data well.

Figure 2: Power of the i-bet test compared with the standard tests when varying the scale of the
treatment effect, which is defined in (12). The linear model used in all the tests is a good
fit for the underlying truth, and the linear-CATE-test (21) has higher power. In plots of
this section, the power is averaged over 500 repetitions (estimated by the proportion of
repeated experiments where the null gets rejected), and the error bar is omitted because
its length is usually less than 0.02.

For two-sided heterogeneous treatment effects, the CovAdj Wilcoxon test has low power be-
cause the positive effects cancel out with the negative effects in the sum statistics (4), while the
linear-CATE-test and the i-bet test can accumulate the effect of both signs. The linear-CATE-test
has higher power as it targets the specific alternative of nonzero parameters in the linear model (11),
although the i-bet test also achieves reasonable power in Figure 2. Note that the three methods we
compare (CovAdj Wilcoxon test, linear-CATE, i-bet test) all have valid type-I error control for the
same global null H0, while these methods implicitly target alternatives in different directions. Re-
call that we do not make any assumptions on the distribution of non-nulls — that is, if some people
do respond to treatment, no assumption is made on how they respond — or how informative the
covariates are. It is well known that in such nonparametric settings, there is no universally most
powerful test; for example, Janssen (2000) discusses this phenomenon when testing goodness of fit.
We demonstrate next that i-bet could have higher power when the initial working model may be
incorrect, among other situations.
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Illustrations of adaptive modeling. One advantage of the interactive test is that it allows explo-
ration and adaptation of the working model using the revealed data. Here, we present an example
where model (10) might not fit the data well; the reader must imagine that we do not suspect this
at the start, so we begin by utilizing it anyway. However, suppose the poor guidance provided by
the incorrect model results in the algorithm making mistakes guessing the assignments at the first
few steps itself (even though we are ordering them from most to least confident!). By a mistake, we
mean that our bet wj had the wrong sign, and we lose some wealth. The multi-step i-bet test can
have higher power than other single-shot tests because, in the midst of this testing, the analyst can
observe the poor start, explore and evaluate various models, and find a reasonably good fit using
all the available revealed data. (Practitioners using the one-shot methods may change their model
and thus their test statistic after observing its performance on the full data, for example whether it
rejects or not, but this technically invalidates their type-I error guarantee.)

(a) Eg: diagnose a mis-
fit via QQ-plot for the
original linear model
before testing.

(b) Eg: diagnose a mis-
fit via Cook’s distance
for the original linear
model before testing.

(c) Power under skewed con-
trol outcome (14).

Figure 3: Before ordering and testing, the analyst is allowed to explore and examine different working
models using the revealed data {Yi, Xi}ni=1. In the example with skewed control outcome, the
QQ-plot and Cook’s distance of the regular linear regression suggest outliers in the outcomes.
The analyst can instead choose the robust linear regression, and the power is higher than that
using the default model. For fair comparison, the CovAdj Wilcoxon test (4) is also implemented
with robust linear regression.

Suppose the control outcome is nonlinearly correlated with the attributes by specifying function
f in the generating model (2) as

f(Xi) = 2 exp{−2Xi(3)}1(Xi(3) < −2), (14)

where the distribution of potential control outcomes is skewed (treatment effect ∆ is the same as
before in (12)). When we fit the default working model (10) with linear functions (along with a
few revealed treatment assignments), the QQ-plot and Cook’s distance indicate a poor fit because
of possible outliers in the outcomes (Figures 3(a) and 3(b)). An easy fix is to use robust linear
regression (Huber, 2004), which leads to significant power improvement compared with the default
algorithm (see Figure 3(c)). (In practice, we recommend using robust regression from the very
beginning anyway since it keeps good power when the working model is correct while it improves

12
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power when the control outcome has a skewed distribution. The robust regression is also observed
to improve power under heavy-tailed noise (see Appendix D.1). However, for the purpose of this
illustrative example, presume that we switch to it after observing a few early mistakes.) Another
example of model exploration considers treatment effect as a quadratic function of the covariates,
and a robust regression with the quadratic term can perform better (see Appendix D.2).

Real-data application to the effect of screening ASB on reduction of low birth weight. We use
the data in Gehani et al. (2021), which investigates whether antenatal screening of asymptomatic
bacteriuria (ASB) can reduce low birth weight. The study collected 240 participants and randomly
selected 120 of them into the treated group (and the rest in the control group). The treated group
additionally screened for ASB with a novel rapid test; and the control group did not receive such
a test. The outcome Yi is the birth weight. The covariates Xi include trimester at the time of
enrolment, gestation age, and the number of previous pregnancies. We use a robust linear model in
the i-bet test, as recommended in Figure 3. The final wealth Mn after betting for all participants is
1015 (see the path of log-wealth in Appendix D.3), and the p-value is 10−16 (it is the inverse of the
maximum wealth, not final wealth). As a comparison, the original paper evaluates the effect by a
binary indicator for low birth weight, and they also detect statistically significant difference between
treated and control group.

To summarize, the i-bet test has valid error control without any parametric assumption on the
outcomes and allows exploration of working models so that the algorithm can adapt to different
underlying data distributions. In practice, the working model can also be changed in the middle
of the testing procedure, for example, if it fits the data worse as more treatment assignments get
revealed. The flexibility of interactive data-dependent model design with the freedom of adjustment
on the fly makes the i-bet test with parametric working models practical and promising.

4. Summary

For randomized trials, we have proposed the i-bet test, which takes the perspective of betting and
incorporates the recent idea of allowing human interaction via the procedure of “masking” and
“unmasking”. The interactive tests encourage the analyst to explore various working models before
and during the testing procedure, so that the test can integrate the observed data information with
prior knowledge of various types and even a human’s subjective belief in a highly flexible manner.

Due to space, we have only discussed in depth the setting of two-sample comparisons with un-
paired data, and our test can be extended to various problem settings: two/multi-sample comparison
with/without block structure, and a dynamic setting with subjects or mini-batches of subjects arrive
sequentially (see Appendix E). The current i-bet test can have unstable results when implemented
on real datasets with binary outcomes. As a future direction, we hope to polish the models for
deciding the ordering πt and bet wt in related settings, such as with binary outcomes, or with the
proportion of treated subjects being small.

We remark that no test, interactive or otherwise, can be run twice from scratch (with a tweak
made the second time to boost power) after the entire data has been examined; this amounts to
p-hacking. Our interactive tests—that can be continued with additional experimentation—are one
step towards enabling experts (scientists and statisticians) to work together with statistical models
and machine learning algorithms in order to discover scientific insights with rigorous guarantees.
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Appendix A. Proof of Theorem 7

Proof We argue that the product {Mt}|[n]\I0|
t=1 is a nonnegative martingale with respect to the fil-

tration {Ft−1}|[n]\I0|
t=1 . First, the product Mt is measurable with respect to Ft−1, because Mt =∏t

j=1

[
1 + wj · (Aπj − µπj )

]
, where the t-th selected subject πt and its betwt are allFt−1-measurable.

Second, we show that E(Mt | Ft−1) = Mt−1. Note that Mt−1 is fixed given Ft−1, so E(Mt |
Ft−1) = Mt−1 · E [1 + wt · (Aπt − µπt) | Ft−1], and E(Mt | Ft−1) = Mt−1 holds when E(wt ·
(Aπt − µπt) | Ft−1) = 0, which is implied when

E(Aπt | Ft−1, wt, πt) = µπt . (15)

The above can be verified because

E(Aπt | Ft−1, wt, πt)
(a)
= E(Aπt | Ft−1, πt)

=

n∑
j=1

E(Aj | Ft−1, πt = j)1(πt = j | Ft−1, πt)
(b)
=

n∑
j=1

E(Aj | Ft−1)1(πt = j | Ft−1, πt)

(c)
=

n∑
j=1

E(Aj | Xj)1(πt = j | Ft−1, πt) =

n∑
j=1

µj1(πt = j | Ft−1, πt) = µπt ,

where (a) holds because wt is Ft−1-measurable, and (b) is because πt is Ft−1-measurable, and
(c) stems from the fact that Aj is independent of all the outcomes and other treatment assignments
and covariates under the global null. Also, the fact that Aπj ∈ {0, 1} and wj ∈ [−2, 2] ensures Mt

to be nonnegative at any time t. Thus, we conclude that {Mt}|[n]\I0|
t=1 is a nonnegative martingale.

The error control follows by Ville’s inequality (6).

Appendix B. Estimation of the posterior probability of receiving treatment

Under working model (10), we view the treatment assignments of to-be-ordered subjects as hidden
variables and apply the EM algorithm. At step t, the hidden variables are Ai for subjects i /∈
{πj}t−1

i=1. And the rest of the complete data {Yi, Ai, Xi}ni=1 is the observed data, denoted by σ-field
Ft−1 as defined in (7). In the working model (10), the log-likelihood of {Yi, Ai, Xi}ni=1 is

l ({Yi, Ai, Xi}ni=1) =
∑
i∈[n]

[Ai log φ (Yi − θ1(Xi)) + (1−Ai) log φ (Yi − θ0(Xi)) + g(Xi)] ,

where φ(·) is the density of standard Gaussian and g(·) denotes the density of the covariates. In the
E-step, we update the hidden variable Ai for i /∈ {πj}t−1

i=1 as

Anew
i = E(Ai | Ft−1) =

φ (Yi − θ1(Xi))

φ (Yi − θ1(Xi)) + φ (Yi − θ0(Xi))
.

In the M-step, we update the (parametric) functions θ0 and θ1 as

θnew
0 = arg max l ({Yi, Ai, Xi}) = arg min

∑
i∈[n]

(1−Ai)(Yi − θ0(Xi))
2,

θnew
1 = arg max l ({Yi, Ai, Xi}) = arg min

∑
i∈[n]

Ai(Yi − θ1(Xi))
2,
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which are least square regressions with weights. The posterior probability of receiving treatment is
estimated as E(Ai | Ft−1) for i /∈ {πj}t−1

i=1.

Appendix C. The linear-CATE-test

We first describe the general framework of CATE without specifying the working model (see
Vansteelandt and Joffe (2014) for a review). Suppose ψ∗ is a vector of parameters, and a pre-
defined function h satisfies h(ψ∗, x) = 0 if ψ∗ = 0, for which a standard choice is a linear function
of the covariates, h(ψ∗, x) = xTψ∗. One first posits that the difference in conditional expectations
satisfies

E(Yi | Xi, Ai = 1)− E(Yi | Xi, Ai = 0) = h(ψ∗, Xi). (16)

Thus, a valid test for null hypothesis (1) can be developed by testing ψ∗ = 0. Note that the test is
model-free (regardless of the correctness of h) since ψ∗ = 0 is implied by null hypothesis (1) for
any function h specified as above. The inference on ψ∗ uses an observation that for any function g
of the covariates and the assignment, we have

E{[g(Xi, Ai)− E(g(Xi, Ai) | Xi)] · [Yi − E(Yi | Xi, Ai)]} = 0, (17)

where E(Yi | Xi, Ai) = Ai · h(ψ∗, Xi) + E(Yi | Xi, Ai = 0) because of (16). To estimate ψ∗,
we need to specify functions h and g, and estimate E(g(Xi, Ai) | Xi) and E(Yi | Xi, Ai = 0).
Notice that in a randomized experiment, E(g(Xi, Ai) | Xi) is known given g, which guarantees
that equation (17) holds regardless of whether E(Yi | Xi, Ai = 0) is correctly specified (double
robustness). In the following, we choose functions h, g and estimate E(Yi | Xi, Ai = 0) without
being concerned about the validity of equation (17). After getting an estimator of ψ∗, we present
the test for ψ∗ = 0 in the end.

For fair comparison with the i-bet test that uses linear model by default, we set h to be a linear
function of the covariates and their second-order interaction terms. LetX ′i be the vector of covariates
Xi and the interaction terms, then h = (X ′i)

Tψ∗. In such as case, a good choice of function g
is X ′i · Ai (Vansteelandt and Joffe, 2014). Because other methods in our comparison use linear
models by default, we estimate E(Yi | Xi, Ai = 0) by a linear model of X ′i, denoted as (X ′i)

T β̂

(note that β̂ can be learned by regressing Yi on Xi without involving Ai since under the null,
E(Yi | Xi, Ai = 0) = E(Yi | Xi, Ai = 1) = E(Yi | Xi)). With the above choices, equation (17)
can be written as

E

(Ai − 1/2)(Yi − (X ′i)
T β̂)X ′i︸ ︷︷ ︸

bi

 = E

(X ′Ti Ai(Ai − 1/2)X ′i
)︸ ︷︷ ︸

Bi

ψ∗

 , (18)

which is denoted as E(bi) = E(Bi)ψ
∗ for simplicity. Let Pnb be the sample average of {bi}ni=1 and

PnB be the sample average of {Bi}ni=1. A consistent estimator of ψ∗ is

ψ̂ = (PnB)−1 Pnb

=

 1

n

n∑
j=1

X ′Tj Aj(Aj − 1/2)X ′j

−1(
1

n

n∑
i=1

(Ai − 1/2)(Yi − (X ′i)
T β̂)X ′i

)
.

(19)
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The test statistic is proposed based on ψ∗ and its variance estimator. Notice that the asymptotic
variance of ψ̂ is B−1Var(b)(B−1)T conditional on {Xi, Ai}ni=1, for which a consistent estimator is

V̂ar(ψ) = (PnB)−1 V̂ar(b)
[
(PnB)−1

]T
, (20)

where V̂ar(b) denotes the sample covariance of {bi}ni=1. Thus, the test statistic is proposed as

S = ψ̂T [V̂ar(ψ)]−1ψ̂ = (Pnb)T [V̂ar(b)]−1(Pnb).

The limiting distribution of S under the null is χ2
p where p is the dimension of X ′i, because E[bi] =

E(Bi)ψ
∗ = 0 under the null. The linear-CATE-test rejects the null if

(Pnb)T [V̂ar(b)]−1(Pnb) > χ2
p(1− α), (21)

where bi is defined in (18); and Pn and V̂ar denotes sample average and sample covariance matrix;
and χ2

p(1− α) is the 1− α quantile of a chi-squared distribution with p degrees of freedom.

Appendix D. Experiments for the i-bet test

D.1. Heavy-tailed noise

In the automated algorithm of i-bet test, we recommend using the robust regression because it is
less sensitive to skewed control outcomes, as shown by Figure 3(c). Here, we show that the robust
regression also makes the i-bet test more robust to heavy-tailed noise (see Figure 4).

Figure 4: Power of the i-bet test using regular linear regression and robust linear regression compared with
standard methods. The outcome simulates from (2), where the function of treatment effect ∆ and
the function of control outcome f are linear as defined in (12) and (13). Instead of Gaussian noise
in Section 3, the noise Ui is now Cauchy distributed. The i-bet test with robust linear regression
has higher power than that using regular linear regression under heavy-tailed noise. For a fair
comparison, the CovAdj Wilcoxon test is also implemented with robust linear regression.

20



INTERACTIVE RANK TESTING BY BETTING

D.2. Quadratic treatment effect

Another example of adaptive modeling considers the treatment effect as a quadratic function of the
covariates, by specifying the function ∆ in the generating model (2) as

∆(Xi) = S∆

[
3

5

(
X2
i (3)− 1

)]
. (22)

The control outcome is linearly correlated with the attributes as defined in (13). We observe that with
the robust linear regression, the residuals have a nonlinear trend (see Figure 5(a)), indicating that
the linear functions of covariates might not be accurate. If we add a quadratic term of X2

i (3) in the
robust regression, the trend in residuals is less obvious, and the model fits better (see Figure 5(b)).
As a result, the power is higher than the test using robust linear regression (see Figure 5(c)).

(a) Residual plot when
using the robust linear
regression.

(b) Residual plot when
applying regression
with a quadratic term.

(c) Power when the treatment
effect is a nonlinear func-
tion of the covariates.

Figure 5: A second illustration of model exploration when the treatment effect is nonlinearly correlated with
the attributes. The residuals show a quadratic pattern when using robust linear regression, and this
trend is weakened by adding a quadratic term in the regression, suggesting the latter is a better
modeling choice; this type of exploration using only {Yi, Xi} is permitted without violating error
control, and can be repeated as {Ai} are revealed one by one. The power can be improved using
the adjusted (quadratic) model because the i-bet test permits the analyst to explore models. For a
fair comparison, the CovAdj Wilcoxon test is also implemented with a quadratic term.

D.3. Wealth path in the real-data application

In the real-data application in Section 3, we report the final wealth after betting for all participants
as 1015. Here we show the path of log-wealth log(Mt) for each iteration t in Figure 6. The increase
in wealth comes from correct guesses of the masked treatment assignments based on the outcomes
and covariates (and the treatment assignments of the revealed subjects). We cumulate large wealth
because most of the treatment assignments can be guessed correctly, indicating the treatment has an
effect. The p-value is the inverse of the maximum wealth, which equals 10−16.
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Figure 6: Path of the log of wealth against time, where an increase in the wealth indicates a correct
guess of the treatment assignment. The wealth first fluctuates because our prediction of
the masked treatment assignments is based on a few subjects with revealed assignments.
Then, the wealth steadily increases because most assignments can be well-predicted. The
wealth fluctuates at the end possibly because the remaining subjects do not have treatment
effect, and hence we cannot guess their treatment assignments with high confidence.

Appendix E. Extensions of i-bet to various other experimental settings

E.1. Two-sample comparison with paired data

Suppose there are n pairs of subjects. Let the outcomes of subjects in the i-th pair be Yij , the
treatment assignments be indicators Aij , the covariates be vector Xij for j = 1, 2 and i ∈ [n]. The
null hypothesis of interest is that there is no difference between treatment and control outcomes
conditional on covariates:

(Yij | Aij = 1, Xij)
d
= (Yij | Aij = 0, Xij) for all j = 1, 2 and i ∈ [n]. (23)

Consider a simple case of randomized experiments where

(i) the treatment assignments are independent across pairs, and randomized within each pair:

P(Ai1 = 1, Ai2 = 0) = P(Ai1 = 0, Ai2 = 1) = 1/2, for all i ∈ [n];

(ii) the outcome of one subject Yi1,j1 is independent of the treatment assignment of another sub-
ject Ai2,j2 for any (i1, j1) 6= (i2, j2) ∈ [n]× [2].

Under the null, observe that

P(Ai1 −Ai2 = 1 | Yi1, Yi2, Xi1, Xi2) = 1/2 for all i ∈ [n], (24)

which implies the independence between Ai1 −Ai2 and all outcomes and covariates. We can com-
press the paired data to an “unpaired” form, by treating the difference of paired assignments (after
rescaling) Ãi := (Ai1 −Ai2 + 1) /2 as the pseudo treatment assignment, and the difference in the
paired outcomes Ỹi := Yi1 − Yi2 as the pseudo outcome, and the union of the covariates as the
pseudo covariates X̃i := {Xi1, Xi2}. In such a way, algorithm 2 can be applied with pseudo data
{Ỹi, Ãi, X̃i}ni=1, and guarantee valid error control for paired data. Meanwhile, under the alternative
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with positive (negative) effect, the outcome difference Ỹi is positively (negatively) correlated with
the (rescaled) assignment difference Ãi, so our proposed tests can have nontrivial power. For exam-
ple, in the i-bet test, the outcome difference Ỹi can be used along with the union of covariates X̃i

to gather pairs with positive Ãi, as described in Algorithm 2 once we replace the input data with
{Ỹi, Ãi, X̃i}ni=1.

Interestingly, we can derive another set of corresponding tests for the paired data from a different
perspective. Rosenbaum (2002) and Howard and Pimentel (2020) consider the treatment-minus-
control difference of the outcome, denoted as Di := (Ai1 − Ai2)(Yi1 − Yi2). Observe that under
the null,

P(sign(Di) = 1 | |Di|, Xi1, Xi2) = 1/2 for all i ∈ [n], (25)

because (Ai1 − Ai2) has equal probability to be positive or negative as in (24). Note that here, we
assume the outcomes are continuous to avoid nonzero probability of sign(Di) = 0. Under the al-
ternative, the treatment-minus-control difference Di can bias to positive (or negative) value. There-
fore, all the discussed methods can be applied to the data {|Di|, sign(Di), X̃i}ni=1 where sign(Di)
is viewed as the pseudo treatment assignment (if rescaled), and |Di| as the pseudo outcome.

E.2. Multi-sample comparison without block structure

In multi-sample comparison, the case where subjects are not matched is often referred to as data
without block structure, for which a classical test is the Kruskal-Wallis test (Kruskal and Wallis,
1952). We call the interactive test in this setting the i-Kruskal-Wallis test. Follow the notation of
two-sample comparison with unpaired data in the previous section, where the treatment assignment
Ai now takes values in [k] ≡ {1, . . . , k} for k-sample comparison. The null hypothesis asserts that
there is no difference between outcomes of any two treatments conditional on covariates:

(Yi | Ai = a1, Xi)
d
= (Yi | Ai = a2, Xi) for all i ∈ [n] and a1, a2 ∈ [k]. (26)

Consider a simple case with a randomized experiment, where we assume that

(i) the treatment assignments are independent and randomized

P(Ai = a | Xi) = 1/k for all i ∈ [n] and a ∈ [k];

(ii) the outcome of one subject Yi1 is independent of the assignment of another Ai2 for any i1 6=
i2 ∈ [n].

Before introducing the interactive test, we first briefly describe the classical Kruskal-Wallis test.

The Kruskal-Wallis test The Kruskal-Wallis test considers the ranks of all observations. For
subjects with treatment a, let the sample size be Na =

∑n
i=1 1(Ai = a) and the average rank be

RK(a) = 1
Na

∑n
i=1 rank(Yi)1(Ai = a). Denote the overall averaged rank asRK = 1

n

∑n
i=1 rank(Yi).

The test statistic is

H = (n− 1)

∑k
a=1Na

(
RK(a)−RK

)2

∑n
i=1

(
rank(Yi)−RK

)2 , (27)

which measures the relative variation across blocks and is expected to be large under the alternative.
Thus, the Kruskal-Wallis test rejects the null if H is larger than a threshold. The threshold is
obtained from the null distribution ofH , which can be derived if the sample size is small; otherwise,
it is approximated by a chi-squared distribution.
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An interactive Kruskal-Wallis test The interactive test for multi-sample comparison is similar
to the case of two-sample comparison. Both cases have the critical property that under the null, Ai
is independent of {Yi, Xi} with a known distribution. A difference from comparing two samples
is that under the alternative, the association between the outcome Yi and the treatment Ai can have
various patterns depending on the underlying truth. Here, we consider an example of the i-Kruskal-
Wallis test that targets a specific type of alternative.

Given three treatments (k = 3), suppose we wish to target the alternative of increasing out-
comes:

(Yi | Ai = 1, Xi) � (Yi | Ai = 2, Xi) � (Yi | Ai = 3, Xi), (28)

where Y 1 � Y 2 means that Y 1 is stochastically smaller than Y 2. The i-Kruskal-Wallis test can
then use {Yi, Xi} to bet on whether Ai is larger than its expected value µi = E(Ai | Xi) = 2. The
complete procedure follows Algorithm 2 with µi = 2 for all i ∈ [n] and wt ∈ [−1, 1]. Under the
null, Mt is a nonnegative martingale regardless of the bets and the error control is guaranteed.

E.3. Multi-sample comparison with block structure

Suppose we want to compare k treatments with n blocks of data; a “block” is a group of k subjects
each of whom receives a different treatment (each treatment is assigned to exactly one subject). A
classical test is the Friedman test (Friedman, 1937), and we call the interactive test as the i-Friedman
test. For block i ∈ [n] and subject j ∈ [k], denote the outcome as Yij , the treatment assignment
as Aij , and the covariates as Xij . The null hypothesis states that there is no difference between the
outcome of any two treatments conditional on covariates:

(Yij | Aij = a1, Xij)
d
= (Yij | Aij = a2, Xij) for all j ∈ [k] and i ∈ [n] and a1, a2 ∈ [k]; (29)

Consider a simple case of the randomized experiments where

(i) the treatment assignment Aij takes value 1, . . . , k such that (a) {Ai1, . . . , Aik} is equally
likely to be any permutation of {1, . . . , k}, and (b) the treatment assignments are independent
across blocks;

(ii) the outcome of one subject Yi1,j1 is independent of the assignment of another subject Ai2,j2
for any (i1, j1) 6= (i2, j2) ∈ [n]× [k].

The Friedman test The Friedman test considers the ranks within each block {Yi1, . . . , Yik},
denoted as rank(Yij). Let the rank of the subjects with treatment a averaged over n blocks be
RK(a) = 1

n

∑n
i=1

∑k
j=1 rank(Yij)1 (Aij = a), and its expected value under the null is 1+k

2 . Un-
der the alternative, the outcomes for one of the treatment could be larger (or smaller) than those for
other treatments and the averaged rank would be higher (or lower). The Friedman test computes:

F =

k∑
a=1

(
RK(a)− 1 + k

2

)2

,

and reject the null if F is larger than a threshold obtained by the null distribution of F , which is
approximated by a chi-square when n or k is large.
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An interactive Friedman test The interactive test for multi-sample comparison with block struc-
ture integrates the data within each block, similar to the case of paired sample for two-sample
comparison. Consider the vector of treatment assignments within each block i ordered by the out-
comes, denoted as Ai =

(
Ai,(1), . . . , Ai,(k)

)
, where Yi,(1) ≥ . . . ≥ Yi,(k). Because the assignments

are independent of the outcomes under the null, we claim that

P(Ai = a | {Yij , Xij}kj=1) = 1/k! for all a ∈ permute([k]) and i ∈ [n], (30)

where permute([k]) denotes the set of all possible permutations of [k]. Under the alternative, the
conditional distribution of Ai can bias to a certain ordering depending on the underlying truth.

As an example to compare three treatments (k = 3), suppose we wish to detect the following
alternative:

(Yij | Aij = 1, Xij) � (Yij | Aij = 2, Xij) � (Yij | Aij = 3, Xij), (31)

in which case Ai are more likely to be (1, 2, 3). To develop an interactive test, we encode the vector
of assignments by a scalar (pseudo assignment Ãi) such that it takes larger value when Ai is more
“similar” to the ideal permutation (1, 2, 3). Specifically, the similarity (distance) between Ai and
(1, 2, 3) can be measured by the number of exchange operations needed to convert Ai to (1, 2, 3).
We define Ãi as:

Ãi =



1, if Ai = (1, 2, 3),

1, if Ai = (2, 1, 3),

1, if Ai = (1, 3, 2),

− 1, if Ai = (3, 1, 2),

− 1, if Ai = (2, 3, 1),

− 1, if Ai = (3, 2, 1),

(32)

(33)

(34)

(35)

(36)

(37)

where the ordered assignments (33) and (34) need one exchange operation to be converted to
(1, 2, 3); (35) and (36) need two; and (37) is the opposite of the ideal permutation, which needs
three exchange operations. This design of Ãi takes binary values, but it can also take different val-
ues for each ordering of Ai. We present the above definition because it has a simple form and leads
to relatively high power for a broad range of alternatives in simple simulations.

With the above transformation from a vector of assignments to a scalar Ãi for each block i, we
can view the blocks as individuals in the interactive test. That is, we use the pseudo assignment Ãi
for testing while ordering the blocks using the revealed data {Yij , Xij}i=n,j=ki=1,j=1 and the actual assign-

ments {Aij}kj=1 once block i is ordered. In other words, let the pseudo assignment Ãi be defined
in (32)-(37), the pseudo outcome be the union within each block, Ỹi = {Yij}kj=1, and same for the
pseudo covariates X̃i = {Xij}kj=1. The i-Friedman test follows Algorithm 2 with the input data
replaced by {Ỹi, Ãi, X̃i}ni=1 and µi by 0 for all i ∈ [n].

E.4. Sample comparison in dynamic settings

We have proposed interactive tests for two/multi-sample comparison with unpaired/paired data, all
of which are in the batch setting where the sample size is fixed before testing. Nonetheless, in many
applications, one hopes to monitor the null of zero treatment effect as more subjects are collected,
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so that the experiment can stop once there is enough evidence to reject the null. In this section,
we consider a sequential setting where an unknown and potentially infinite number of subjects (or
pairs) arrive sequentially in a stream and introduce the sequential interactive tests.

As a demonstration, we propose the seq-bet test for a two-sample comparison with unpaired
data. Because the subjects arrive one by one, it is hard to order them on the fly, and we instead
propose to filter the subjects to be cumulated in the product Mt. At time t + 1 when a new subject
arrives, the analyst can interactively decide whether to include At+1 in current Mt. Denote the
decision by an indicator It+1, and the product is

Mt =
t∏
i=1

[1 + Ii · wi · (Ai − µi)] . (38)

The available information to decide It+1 and weight wt+1 includes the complete data information
of the first t subjects and the revealed data of the (t+ 1)-th subject, denoted by the filtration:

Gt = σ
(
{Yi, Ai, Xi, Ii}ti=1 ∪ {Yt+1, Xt+1}

)
, (39)

where the complete data {Yi, Ai, Xi}ti=1 can be used for modeling and guide the decision of It+1.
Under the null, we have

P(At = 1 | Gt−1, It = 1) = µt, (40)

so the productMt+1 is a martingale. Also, the martingale is nonnegative with bets in the range wi ∈
[− 1

1−µi ,
1
µi

]. Thus, with the same argument as in Appendix A for the batch setting, Algorithm E.4
has valid error control as it stops and rejects the null when Mt reaches the boundary 1/α.

Input: First sample {Y1, A1, X1}, target type-I error rate α;
Procedure: for t = 1, 2, . . . , do

1. Using Gt−1 to decide It, that is whether to include the t-th subject;
2. Reveal At and update Ft;
if
∏t
i=1 [1 + Ii · wi · (Ai − µi)] > 1/α then

reject the null and stop;
else

Collect the (t+ 1)-th sample {Yt+1, At+1, Xt+1}
end

end
Algorithm 4: Framework of the sequential bet test (seq-bet)

In practice, to get a reasonably good model for our filtering process, we can first collect 50
subjects (say) and reveal their complete data {Yi, Ai, Xi} for modeling and then apply the seq-bet
test from the 51-th subject. Note that Algorithm E.4 also applies to the sequential setting with paired
data or multi-sample comparison when we replace the input data by pseudo sample {Ỹt, Ãt, X̃t}
defined in previous sections.

Appendix F. Related work on weak null hypotheses

There are many works that focus on a less strict null hypothesis H ′0 than our global null H0 in (1),
which of course has pros and cons. These related methods would continue valid for the global null
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hypothesis of our interest, but they could have lower power especially when H ′0 is true and H0 is
not true. Our strong global null is still sometimes of scientific interest, for example when certain
quantiles of the distribution may be different under two different treatments (without the means
differing), or one may be interested in the heavy-tailed case when the means may not even exist.
We elaborate on the related work as follows.

While several works study treatment with multiple levels, for simplicity we describe them in
the case with two levels (treated or not) in our discussion below. Akritas et al. (2000) assess the
treatment effect by comparing the outcome CDF of treated and control group, denoted as F Tx (y)
and FCx (y) where x is the given covariate value. Let G(x) be a prespecified distribution for the
covariate or its empirical distribution. The null hypothesis concerns marginal CDF after averaging
over the covariate:

H ′0 :

∫
F Tx (y)dG(x) =

∫
FCx (y)dG(x), (41)

which is implied by the global nullH0 in our discussion. Fan and Zhang (2017) also study the above
null hypothesis (41), and propose an alternative test statistic to incorporate covariates. Wang and
Akritas (2006) consider several extensions in the type of null hypothesis and suggest the possibility
of testing whether the conditional outcome CDF given the covariates is identical:

H ′0 : F Tx (y) = FCx (y) for every x and y, (42)

which is equivalent to the global null H0 in our discussion, but no explicit test is provided for this
null hypothesis. Similar null hypotheses are discussed in the work of Edgar Brunner (such as Akri-
tas et al. (1997); Bathke and Brunner (2003)), which focus on factorial design and develop tests for
the effect of one factor conditional on the level of the other factors. Thus, their methods can be used
to test our global null H0 when the covariate takes a finite number of values. Hettmansperger and
McKean (2010) focus on testing the global null H0 when the treatment effect is a linear function
of the covariates, and discusses inference such as confidence intervals of the involved parameters.
Along a different line of work, Thas et al. (2012) considers outcome Y and covariates Z (which
include the treatment assignment A and other covariates X in our context) and let two instances
(Y,Z) and (Y ∗, Z∗) be independently distributed. The outcomes Y and Y ∗ are compared by esti-
mating the probabilistic index P(Y > Y ∗ | Z,Z∗) + 1

2P(Y = Y ∗ | Z,Z∗). Their results imply a
test for the null hypothesis of the probabilistic index being 1/2, which can be used in our context:

H ′0 :P(Y > Y ∗ | A = 1, A∗ = 0, X = X∗ = x)

+ 1
2P(Y = Y ∗ | A = 1, A∗ = 0, X = X∗ = x) = 1/2 for all x,

which is true when our global null H0 is true; hence, their method is valid for our problem of
interest.

Aside from different target null hypotheses, several features distinguish our proposed algorithms
from most existing work: (a) previous methods often commit to a single fixed procedure, while
the i-bet test we propose can employ arbitrary working models, and the working model can be
changed by a human analyst at any iteration to improve power; (b) most other methods mentioned
above guarantee type-I error asymptotically, whereas our interactive methods have exact type-I
error control (without any parametric or model assumptions on the outcomes); (c) we demonstrate
through numerical experiments that the advantage of our proposed methods is more evident when a
treatment effect exists only for a few subjects, whereas the above methods do not specifically focus
on such sparse effects.
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Appendix G. Options for adjusting Wilcoxon’s signed-rank test for covariates

The Wilcoxon signed-rank test is a simple and efficient nonparametric test with a known null distri-
bution. Of course, rank-based statistics have been explored in many directions: see Lehmann and
D’Abrera (1975) for a review of classical methods. Recent work focuses on how to incorporate
covariate information to improve power. Zhang et al. (2012) develop an optimal statistic to detect
constant treatment effect; in multi-sample comparison, Ding and Keele (2018) numerically compare
rank statistics of outcomes or residuals from linear models; Rosenblum and Van Der Laan (2009)
and Vermeulen et al. (2015) focus on related testing problems for conditional average effect and
marginal effect; Rosenbaum (2010) and Howard and Pimentel (2020) use generalizations of rank
tests for sensitivity analysis in observational studies. Here, we introduce variants of the signed-rank
test for two-sample comparison in a randomized trial, which can improve the power of Rosenbaum’s
CovAdj Wilcoxon test under heterogeneous treatment effect.

The signed-rank test offers a general formula to construct tests for two-sample comparison. We
note that the signed-rank test is perhaps more frequently used for paired data; but it can also be
applied to unpaired data because the error control is also based on a decoupling between the sign
and the rank. For each subject i ∈ [n], let Ei be any statistic that is larger when subject i has
treatment effect. We compute

W =

n∑
i=1

sign(Ei)rank(|Ei|), (43)

and the null is rejected whenW is large. As an example, Rosenbaum (2002) proposed the covariance-
adjusted signed-rank test by specifying Ei as

E
R(X)
i := (2Ai − 1)Ri, (44)

where recall Ri is the residual of regressing Yi on Xi without using Ai as a predictor. (The
covariance-adjusted signed-rank test is slightly different from the covariance-adjusted Wilcoxon
rank-sum test (4), but they had similar power in most of our experiments.) The null distribution of
W depends on Ei, but one can use a permutation test that is valid for any choice of Ei, as described
in Algorithm 1. Ideally, statistic Ei should be designed to take a larger value when subject i has a
larger treatment effect. In the following, we discuss the question of whether the original choice of
Ei = E

R(X)
i can be improved, and which choice of Ei should we prefer given different types of

treatment effect.

G.1. Existing statistics and their drawbacks

Aside from Rosenbaum’s design of Ei as ER(X)
i , we can find several other alternatives to detect

treatment effects in the causal inference literature. For example, one can construct a confidence
interval for the ATE, which implies a test for zero ATE. However, the null of zero ATE is not the
focus of this paper, as we are interested in the null of zero effect for any subpopulation. Lin (2013)
suggests modeling Yi by a linear function of Ai and Xi (recently extended in a preprint by Guo and
Basse (2021) to other parametric models), and construct the estimator for ATE as an average over
subjects:

1

n

n∑
i=1

(2Ai − 1)(Yi − Ŷ (Xi; 1−Ai)),
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where Ŷ (·; ·) denotes a fitted outcome using Xi, Ai and Ŷ (Xi; 1−Ai) predicts using the false
assignment.

This estimator provides a design of Ei that calculates the residual of predicting Yi using covari-
ates Xi and the false assignment 1−Ai as follows:

E
R(X,1−A)
i := (2Ai − 1)(Yi − Ŷ (Xi; 1−Ai)), (45)

where Ŷ (Xi; 1−Ai) can be the prediction via any black-box algorithm, such as a random forest.
There is also a rich literature on doubly-robust methods (see, for example, Robinson (1988);

Robins et al. (1994); Cao et al. (2009); Chernozhukov et al. (2018)) to estimate ATE when the
probability of receiving treatment varies with Xi. In a randomized experiment, the estimator boils
down to

1

n

n∑
i=1

(2Ai − 1)(Yi − Ŷ (Xi; 1)/2− Ŷ (Xi; 0)/2),

which suggests a design of Ei as (2Ai − 1)(Yi − Ŷ (Xi; 1)/2− Ŷ (Xi; 0)/2). This design leads to
similar power as ER(X,1−A)

i in most experiments and hence is omitted from this paper.
To examine the performance of tests using the statisticsER(X)

i andER(X,1−A)
i , we simulate out-

comes from the generating model (2) where the function for treatment effect ∆ and that for control
outcome f are constructed with different features (e.g., dense/sparse effect and bell-shaped/skewed
control outcome):

∆(Xi) = S∆ [1− | sin(3Xi(3))|] (dense and weak effect);
∆(Xi) = S∆ [2 exp{Xi(3)}1 (Xi(3) > 1.5)] (sparse and strong effect);
f(Xi) = 5[Xi(1) +Xi(2) +Xi(3)] (bell-shaped control outcome);
f(Xi) = 2 exp{−2Xi(3)}1(Xi(3) < −2) (skewed control outcome).

(46)

(47)

(48)

(49)

The dense (sparse) effect is set to be weak (strong) since otherwise, all methods have power near
one (zero).

We intentionally let the treatment effect and control outcome be nonlinear functions of the co-
variates because our discussion focuses on methods using nonparametric working models. In the
rest of this paper, we employ random forests (with default parameters in the R package randomForest)
as our working model since it usually generates good predictions for various data distributions
(Breiman, 2001).

Although both methods have high power under a well-behaved distribution where the treatment
effect is dense, the control outcome is bell-shaped, and the noise is standard Gaussian (solid lines
in Figure 7(a)), they show different weak points when the effect is harder to detect—the test us-
ing ER(X)

i tends to have lower power when the treatment effect is sparse (Figure 7(b)); and the test
using ER(X,1−A)

i tends to be less robust when the control outcome is skewed (Figure 7(c)). When
the noise is heavy-tailed, both tests have lower power as expected, but the one using ER(X,1−A)

i ap-
pears to be more sensitive (Figure 7(a)). Broadly, the aforementioned pros and cons may be traced
to two characteristics in the design of Ei:

(i) the prediction model that uses both Xi and Ai as in ER(X,1−A)
i accounts for heterogeneous

treatment effect (by the interaction terms between Xi and Ai), leading to high power for
sparse effects;
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(a) Power when the treat-
ment effect is dense
and the control out-
come is bell-shaped,
and the noise varies as
Gaussian and Cauchy
(heavy-tailed).

(b) Power when the treat-
ment effect is sparse,
the control outcome is
bell-shaped, and the
noise is Gaussian.

(c) Power when the treat-
ment effect is dense,
the control outcome is
skewed, and the noise
is Gaussian.

Figure 7: Power of the Wilcoxon test (43) using ER(X)
i and ER(X,1−A)

i as the scale of treatment effect S∆

increases under different types of treatment effect, control outcome and noise. The test when using
E

R(X,1−A)
i tends to be more sensitive to heavy-tailed noise or skewed control outcome; and the

test with ER(X)
i can have lower power when the treatment effect is sparse. Here and henceforth,

we use 200 permutations, and the experiment is repeated 500 times.

(ii) the residuals in ER(X)
i only uses Xi as predictors so that it effectively reduces the outcome

variation that is not caused by the treatment, making the test robust under skewed control
outcome.

Next, we propose other designs of Ei that combine the advantages of the above two character-
istics.

G.2. Improve robustness under skewed control outcome by predicting residuals Ri

Because residuals Ri can downsize the noise caused by skewed control outcome, we propose to
measure the treatment effect via a prediction on Ri. That is, we compute the statistic Ei by two
steps of prediction:

(i) obtain residuals Ri by predicting Yi using Xi (without Ai);

(ii) fit a prediction model for Ri using Xi and Ai, denoted as R̂(·, ·);

(iii) get Ei from the prediction error of Ri using covariates Xi and the false assignment 1−Ai:

E
R−R̂(X,1−A)
i := (2Ai − 1)(Ri − R̂(Xi, 1−Ai)). (50)

Notice that ER−R̂(X,1−A)
i has a similar form as ER(X,1−A)

i , where {Ri}ni=1 can be viewed as “de-
noised” outcomes: a large Yi could stem from skewness in the control outcome, but a large Ri is
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more likely to indicate large treatment effect, and hence achieves higher robustness to skewed con-

trol outcome. Numerical experiments coincide with our intuition: the power of using ER−R̂(X,1−A)
i

improves from that using ER(X,1−A)
i when the control outcome is skewed (see Figure 8).

(a) Power when the treat-
ment effect is dense
and weak.

(b) Power when the treat-
ment effect is sparse
and strong.

Figure 8: Power of Wilcoxon test (43) usingER(X,1−A)
i andER−R̂(X,1−A)

i as the treatment effect increases
under skewed control outcome. The latter has higher power for both dense and sparse effects.

G.3. Improve robustness under heavy-tailed noise using difference in the prediction error

Treating residuals Ri as the pseudo outcomes is useful to account for variation in the control out-
come, but Ri can still contain much irrelevant variation, such as when the random noise Ui in
model (2) is Cauchy. Under heavy-tailed noise, the prediction model R̂(·, ·) in ER−R̂(X,1−A)

i could

be inaccurate; and a large prediction error of using the false assignment as in ER−R̂(X,1−A)
i could

result from heavy-tailed noise, while it is supposed to be evidence of large treatment effect.
So how to remove the large prediction error caused by poor modeling? We propose to consider

the difference between the prediction error of using the false assignment |R̂(Xi, 1− Ai)−R(Xi)|
and that using the true assignment |R̂(Xi, Ai)−R(Xi)|:

E
|R̂(X,1−A)−R|−|R̂(X,A)−R|
i := |R̂(Xi, 1−Ai)−R(Xi)| − |R̂(Xi, Ai)−R(Xi)|. (51)

Intuitively, when the prediction model R̂(·, ·) is a good fit, the prediction error using true as-
signment |R̂(Xi, Ai) − R(Xi)| should be close to zero, and the proposed statistic is similar to

E
R−R̂(X,1−A)
i . The advantage shows when the modeling is poor, such as under heavy-tailed noise.

Here, the prediction error is large using either true or false assignment, so taking their differ-

ence as in E|R̂(X,1−A)−R|−|R̂(X,A)−R|
i can help rule out the variation caused by noise, letting the

variation from treatment effect stand out. In the experiment with sparse effect (47), the test us-

ing E|R̂(X,1−A)−R|−|R̂(X,A)−R|
i has similar power as that using ER−R̂(X,1−A)

i when data is well-
distributed (see Figure 9(a)), while it can achieve higher power under Cauchy noise or skewed
control outcome (see Figure 9(b) and 9(c)), consistent with our intuition.
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(a) Sparse effect under
Gaussian noise and
bell-shaped control
outcome.

(b) Sparse effect under
Cauchy noise and
bell-shaped control
outcome.

(c) Sparse effect under
Gaussian noise and
skewed control out-
come.

Figure 9: The power of Wilcoxon test (43) using three statistics: E
R(X)
i , E

R−R̂(X,1−A)
i , and

E
|R̂(X,1−A)−R|−|R̂(X,A)−R|
i under sparse treatment effect, with the noise varies as Gaussian and

Cauchy, and the control outcome varies as a bell-shaped or skewed distribution. The test using

E
|R̂(X,1−A)−R|−|R̂(X,A)−R|
i tends to have higher power especially under heavy-tailed noise or

skewed control outcome.

(a) Dense effect under
Gaussian noise and
bell-shaped control
outcome.

(b) Dense effect under
Cauchy noise and
bell-shaped control
outcome.

(c) Dense effect under
Gaussian noise and
skewed control out-
come.

Figure 10: The power of Wilcoxon test (43) using three statistics: E
R(X)
i , E

R−R̂(X,1−A)
i , and

E
|R̂(X,1−A)−R|−|R̂(X,A)−R|
i under dense and weak treatment effect, when the noise varies as

Gaussian and Cauchy, and the control outcome varies as a bell-shaped or skewed distribution.
Rosenbaum’s Wilcoxon test using ER(X)

i can be more robust to heavy-tailed noise or skewed
control outcome.

Remark 8 Note that E|R̂(X,1−A)−R|−|R̂(X,A)−R|
i leads to high power when we want to detect a

sparse and strong effect. However, when the effect is dense and weak as in model (46), Rosenbaum’s
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Wilcoxon test usingER(X)
i is more robust to peculiar noise or control outcomes (see Figure 10). It is

because E|R̂(X,1−A)−R|−|R̂(X,A)−R|
i uses a prediction model for Ri, which can be less informative

for weak effect, especially when the noise is large. In practice, one may have some anticipation
on the population properties of the treatment effect (density or strength), and choose the statistic
accordingly. We summarize our recommendations under different settings in flowchart (56).

G.4. On one-sided versus two-sided effects

The statistic of difference in the prediction error leads to high power for two-sided effects. A

major distinction between E|R̂(X,1−A)−R|−|R̂(X,A)−R|
i and the statistics discussed previously is that

it takes large value for both positive and negative effects. It is because the difference in the prediction
error of using opposite assignments is large as long as the assignment is a significant predictor for the

outcome, regardless of the direction of effect. Therefore, the test using E|R̂(X,1−A)−R|−|R̂(X,A)−R|
i

can cumulate effects of both signs while they cancel out in other statistics, leading to high power
even when the average effect is close to zero. As some examples, we construct the following treat-
ment effect:

∆(Xi) = S∆ [exp{Xi(3)}1 (Xi(3) > 2)−Xi(1)/2]

(Sparse strong positive effect and dense weak negative effect);
∆(Xi) = S∆

[
X3
i (3)1(|Xi(3)| > 1)

]
(Sparse strong effect of both signs);

∆(Xi) = S∆

[
2

5
sin(3Xi(3))

]
(Dense weak effect of both signs).

(52)

(53)

(54)

In all examples, only the test using E|R̂(X,1−A)−R|−|R̂(X,A)−R|
i has nontrivial power (see the

first row in Figure 11). Such sensitivity may or may not be desirable depending on the problem
context. For example, we would hope to reject the null when the positive effect is strong for a
subpopulation as in (52). However, one might want to treat a weak effect in both directions (54) as

noise and leave the null unrejected. Next, we propose a modification of E|R̂(X,1−A)−R|−|R̂(X,A)−R|
i

with such behavior.

Targeting one-sided effects. To differentiate between positive and negative effects, we modify

the statistic E|R̂(X,1−A)−R|−|R̂(X,A)−R|
i by incorporating a sign that indicates the direction of the

treatment effect. Consider the sign of two other statistics that approximate the treatment effect:

S1
i := 1{ER−R̂(X,1−A)

i ≥ 0} ≡ 1{(2Ai − 1)(Ri − R̂(Xi, 1−Ai)) ≥ 0},

S2
i := 1{(2Ai − 1)(R̂(Xi, Ai)− R̂(Xi, 1−Ai)) ≥ 0}, and combine them to get

Si := 1{S1
i > 0 or S2

i > 0}.

We then define

E
S·(|R̂(X,1−A)−R|−|R̂(X,A)−R|)
i := (2Si − 1) · E|R̂(X,1−A)−R|−|R̂(X,A)−R|

i , (55)
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which is large when the treatment effect is large and positive. We tried using only S1
i or S2

i for the
sign, but the combined one is more robust in experiments. The essential idea is to construct Si using
some statistics that have a consistent sign with the treatment effect, while keeping the advantage of

E
|R̂(X,1−A)−R|−|R̂(X,A)−R|
i under skewed control outcome and heavy-tailed noise.

As desired, the test using ES·(|R̂(X,1−A)−R|−|R̂(X,A)−R|)
i is less sensitive to weak effect of both

signs (Figure 11(c)) and keeps high power for sparse strong positive effect (Figure 11(d)). Note
that the signed statistic is more sensitive to noise because the signs are generated from less robust
statistics (Figures 11(e), 11(f )). Nonetheless, among statistics that are insensitive to two-sided

effect, ES·(|R̂(X,1−A)−R|−|R̂(X,A)−R|)
i leads to high power for sparse effect, irrespective of whether

the control outcome and the noise are well-distributed or have outliers.

(a) Power for sparse
strong positive and
dense weak negative
effects.

(b) Power for sparse
strong effect of both
signs.

(c) Power for dense weak
effect of both signs.

(d) Power for sparse
strong positive effect
under well-distributed
control outcome and
noise.

(e) Power for sparse
strong positive effect
under skewed control
outcome.

(f ) Power for sparse
strong positive effect
under Cauchy noise.

Figure 11: Power of Wilcoxon test (43) using four statistics: E
R(X)
i , E

R−R̂(X,1−A)
i ,

E
|R̂(X,1−A)−R|−|R̂(X,A)−R|
i and E

S·(|R̂(X,1−A)−R|−|R̂(X,A)−R|)
i . In the first row where

the treatment effect can be positive or negative, only the test using E|R̂(X,1−A)−R|−|R̂(X,A)−R|
i

has nontrivial power. In the second row, the treatment effect is sparse and positive, and the

control outcome and noise vary. The test using ES·(|R̂(X,1−A)−R|−|R̂(X,A)−R|)
i can have high

power without being too sensitive to the weak effect in both directions (see subplot 11(c)).
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G.5. Summarizing the observations made in this section

In this section, we proposed several variants of Rosenbaum’s covariate-adjusted Wilcoxon as fol-
lows:

(i) Instead of predicting the outcomes, using the prediction model R̂(·, ·) for residuals Ri can
improve power under skewed control outcome. This is because the residuals Ri, which are
themselves obtained by regressing Yi only on Xi (without Ai), can remove much variation
caused by the control outcome, and in turn highlight the treatment effect (see Appendix G.2).

(ii) The evidence of treatment effect can be measured by the prediction error using the false as-
signment, but a large prediction error could also be a result of a poorly fit model, such as when
the noise is heavy-tailed. In contrast, the difference in the prediction error of using true and
false assignments can eliminate most of the prediction error that is irrelevant to the treatment,
including that from poorly fit models, and thus improve the power (see Appendix G.3).

(iii) The difference in prediction error detects both positive and negative effects with no distinc-
tion, so it can arguably be too sensitive (if there is such a thing) to a weak effect in both direc-
tions. If one wishes to target one-sided effects while maintaining the robustness achieved by
“difference in prediction error”, we propose to multiply it with an estimated sign of the effect
(see Appendix G.4).

In summary, we recommend choosing one out of the three test statistics discussed in this section—

E
R(X)
i , E

|R̂(X,1−A)−R|−|R̂(X,A)−R|
i , and ES·(|R̂(X,1−A)−R|−|R̂(X,A)−R|)

i —depending on one’s prior
belief of the population properties of treatment effect (if one exists), as shown below:

Nonzero effect


Effect of both signs→ E

|R̂(X,1−A)−R|−|R̂(X,A)−R|
i

Positive effect

{
Sparse and strong effect→ E

S·(|R̂(X,1−A)−R|−|R̂(X,A)−R|)
i

Dense and weak effect→ E
R(X)
i

(56)

Note that the i-bet test is not included here because its performance depends on the interaction and
progressive updates to the initial working model made by the analyst based on revealed data. The
flexibility makes the i-bet test a potentially more robust and promising method compared with the
aforementioned methods that also use a parametric (or semiparametric) working model.
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