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Abstract

Online mirror descent (OMD) is a fundamental algorithmic paradigm that underlies many algo-
rithms in optimization, machine learning and sequential decision-making. The OMD iterates are
defined as solutions to optimization subproblems which, oftentimes, can be solved only approxi-
mately, leading to an inexact version of the algorithm. Nonetheless, existing OMD analyses typ-
ically assume an idealized error free setting, thereby limiting our understanding of performance
guarantees that should be expected in practice. In this work we initiate a systematic study into
inexact OMD, and uncover an intricate relation between regularizer smoothness and robustness to
approximation errors. When the regularizer is uniformly smooth, we establish a tight bound on the
excess regret due to errors. Then, for barrier regularizers over the simplex and its subsets, we iden-
tify a sharp separation: negative entropy requires exponentially small errors to avoid linear regret,
whereas log-barrier and Tsallis regularizers remain robust even when the errors are only polyno-
mial. Finally, we show that when the losses are stochastic and the domain is the simplex, negative
entropy regains robustness—but this property does not extend to all subsets, where exponentially
small errors are again necessary to avoid suboptimal regret.

1. Introduction

Mirror Descent [7, 23] is a fundamental optimization paradigm that offers the flexibility to exploit
the (typically non-Euclidean) intrinsic geometry of the optimization problem. The online variant
(OMD; [15, 29]) is a generalization of the basic framework adapted to the more general online
learning setup [37], where the goal of the learner is to minimize her regret, defined is the cumulative
loss minus the loss of the best fixed decision in hindsight. Given a convex decision set K ⊂ ℝ𝑑 , an
initialization 𝑤1 ∈ K and learning rate 𝜂 > 0, the OMD steps 𝑡 = 1, . . . , 𝑇 follow the update rule:

𝑤𝑡+1 = arg min
𝑤∈K

𝜂⟨ℓ𝑡 , 𝑤⟩ + 𝐷𝑅 (𝑤 ∥ 𝑤𝑡 ), (1)

where ℓ𝑡 is the loss at time 𝑡 and 𝐷𝑅 is the Bregman divergence associated with a regularizer
𝑅 : K→ ℝ chosen by the learner. Notable instances of OMD include online gradient descent [37]
and the well known multiplicative weights method [4, 12, 19], both of which are examples where
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the OMD update rule, namely the exact solution to the OMD subproblem Eq. (1), is given by a
closed form expression (when operating over suitable decision sets).

However, in many cases of interest, the OMD update rule does not admit a closed form solution,
and therefore demands employing an auxiliary iterative optimization procedure that only produces
approximate minimizers of the respective OMD subproblems. Notable examples include reinforce-
ment learning algorithms that optimize over occupancy measures, which form a polyhedral subset
of the simplex [17, 26, 35]; generic online convex optimization algorithms that rely on OMD up-
dates [1, 14, 16]; and algorithms defined over the simplex that use barrier regularization other than
negative entropy, such as in adversarial bandits [2, 36] and portfolio selection [21]. Somewhat
surprisingly, however, the existing literature lacks a systematic study of the effect these approxima-
tions have on the final regret guarantee, with prior art focusing on particular problem instances at
best [10, 11, 27, 32]. (Due to space constraints, discussion of additional related work is deferred to
Appendix A.)

In this work, we initiate a systematic study into the robustness of OMD to approximations, aimed
at understanding the interplay between regularization, quality of approximations, and regret. Our
results uncover a direct link between robustness of inexact OMD and smoothness properties of the
regularizer being used. For uniformly smooth regularizers, we establish that robustness to approxi-
mation errors is directly governed by the smoothness parameter. For the more prevalent non-smooth
regularizer case, we demonstrate that OMD with negative entropy regularization is prone to incur-
ring linear regret unless the approximation errors are made exponentially small in the number of
steps; and in contrast, that for other barrier regularizers such as the log-barrier and Tsallis entropy,
polynomially small errors suffice to obtain optimal regret. We then further investigate more care-
fully when non-robustness with the negative entropy arises. We show that when the losses are
stochastic (i.i.d.), negative entropy over the simplex becomes robust and polynomially small errors
are sufficient. On the other hand, we demonstrate this robustness may break even with i.i.d. losses
when optimizing over a subset of the simplex, where again, exponentially small errors are necessary
to avoid suboptimal regret.

Summary of contributions. In more detail, our contributions are summarized as follows.

• First, when the regularizer 𝑅 is uniformly smooth over the domain Kwith smoothness param-
eter 𝛽, we establish a tight Θ(𝑇𝐷

√
𝛽𝜀/𝜂) bound on the excess regret due to 𝜀-approximation

errors, where 𝐷 is the diameter of K with respect to the relevant norm. E.g., for the typical
setting 𝜂 = Θ(1/

√
𝑇) this implies that errors should be as small as 𝜀 = 𝑂 (1/𝑇2) so as to recover

optimal 𝑂 (
√
𝑇) regret.

• We then move on to consider common non-smooth regularizers, such as the negative Entropy,
Tsallis entropies, and the log-barrier, focusing on the simplex and its subsets as decision sets.
We observe a sharp dichotomy between the negative Entropy and other regularizers in terms
of robustness to approximations: on the one hand, for the negative Entropy we show that an
exponentially small error 𝜀 = Ω(𝜂𝑒−𝜂𝑇 ) could already lead to linear regret, even when the
domain is the simplex; and on the other hand, for Tsallis Entropies and the log-barrier over
the simplex or a subset thereof, we prove that a polynomially small error 𝜀 = 𝑂 (𝜂3/(𝑇2𝑑2))
suffices for maintaining the same order of regret.
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• Finally, we revisit the robustness to approximations with the negative Entropy in the stochas-
tic (i.i.d.) setting. Over the simplex and with 𝜂 = 𝑂 (1/

√
𝑇), we show that a polynomially small

error 𝜀 = 𝑂 (1/(𝑑𝑇2)) suffices for obtaining optimal regret with high probability, as opposed
to the exponentially small error required in the non-stochastic case. However, this robustness
does not extend more generally to proper subsets of the simplex: we construct a setting where
OMD with negative entropy exhibits an excess term of Ω(𝑇

√︁
𝜂/log(1/𝜀)) leading to Ω̃(𝑇2/3)

regret for any step size unless 𝜀 is exponentially small in 𝑇 .

At a conceptual level, our analysis reveals that compounding errors play a central role in OMD’s
robustness to inexact updates. Since the per time step subproblem directly depends on the previous
iterate, approximation errors propagate between rounds and lead to subtle optimization dynamics.
This should be contrasted with the closely related Follow-The-Regularized-Leader algorithm [28],
which re-optimizes against the cumulative loss at each round, and thus (at least in the linear case
with an oblivious adversary), each optimization round is independent of the previous ones.

In addition, our results for the smooth case (Theorems 2 and 3) provide a tight characterization that
is immediately applicable to a common technique where OMD is instantiated over a shrunk simplex
(or subset thereof), where coordinates are bounded away from zero. In this case, a uniform bound
for the smoothness parameter immediately follows as the regularizer domain becomes compact. In-
terestingly, our results for the non-smooth case reveal that while this technique may be necessary to
cope with fragility of negative entropy (Theorem 4), it is not necessary for other barrier regularizers
as they induce optimization dynamics where the iterates naturally stay bounded away from zero
(see Theorem 5 and the discussion that follows).

The rest of this extended abstract focuses on our results for the general adversarial setting; the pre-
sentation of the results for the stochastic setting is deferred to the appendix due to space constraints.
Finally, we note that while our study focuses on the linear setup, all our results for the adversarial
setting immediately carry to the general convex case via a standard reduction (e.g., [9]).

2. Preliminaries

We consider the standard online linear optimization setup, where at each round 𝑡 = 1, 2, . . . , 𝑇 , the
learner selects a point 𝑤𝑡 from a convex decision set K ⊂ ℝ𝑑 , and then observes a loss vector
ℓ𝑡 ∈ [−1, 1]𝑑 . The performance of the learner is measured in terms of her regret with respect to a
fixed comparator point 𝑤 ∈ K, defined as follows:

Regret(𝑤) =
𝑇∑︁
𝑡=1

⟨ℓ𝑡 , 𝑤𝑡⟩ −
𝑇∑︁
𝑡=1

⟨ℓ𝑡 , 𝑤⟩.

We denote by 𝑤∗ ∈ arg min𝑤∈K
∑𝑇

𝑡=1⟨ℓ𝑡 , 𝑤⟩ the best fixed decision in hindsight.

Inexact Online Mirror Descent. We let 𝑅 : K → ℝ denote a differentiable regularizer which
we assume to be 1-strongly convex w.r.t. a norm ∥ · ∥. The Bregman divergence associated with 𝑅

is defined as:
𝐷𝑅 (𝑤 ∥ 𝑤′) = 𝑅(𝑤) − 𝑅(𝑤′) − ⟨∇𝑅(𝑤′), 𝑤 − 𝑤′⟩.

3



THE HIDDEN COST OF APPROXIMATION IN ONLINE MIRROR DESCENT

We say that a sequence {𝑤𝑡 }𝑇𝑡=1 is an 𝜀-approximate OMD trajectory if, for every 𝑡, 𝑤𝑡+1 approxi-
mately minimizes the round 𝑡 OMD objective (see Eq. 1) 𝜙𝑡 (𝑤) := 𝜂⟨ℓ𝑡 , 𝑤⟩ + 𝐷𝑅 (𝑤 ∥ 𝑤𝑡 ), up to 𝜀

additive error:
𝜙𝑡 (𝑤𝑡+1) ≤ min

𝑤∈K
𝜙𝑡 (𝑤) + 𝜀.

Regret bounds for OMD typically depend on the diameter of Kwith respect to the norm ∥·∥, given
by 𝐷 = max𝑤,𝑤′∈K ∥𝑤 − 𝑤′∥.

Barrier Regularization. A particular focus of this work is on prototypical barrier regularizers,
used extensively in cases where K is the probability simplex Δ𝑑 := {𝑝 ∈ ℝ𝑑 : 𝑝𝑖 ≥ 0,∑𝑑

𝑖=1 𝑝
𝑖 = 1}

(or a subset thereof).

Definition 1 (coordinate separable barrier regularizers). We say 𝑅 : K → ℝ is a coordinate
separable barrier1 regularizer with parameter 𝜈 ≥ 1 (or simply a 𝜈-barrier) if there exists a twice-
differentiable function 𝑟 : [0, 1] → ℝ and 𝑐1, 𝑐2 > 0 such that:

𝑅(𝑤) =
𝑑∑︁
𝑖=1

𝑟 (𝑤𝑖), and
𝑐2
𝑥𝜈

≥ 𝑟 ′′(𝑥) ≥ 𝑐1
𝑥𝜈

for all 𝑥 ∈ (0, 1] .

These conditions ensure that the regularizer imposes a barrier-like growth as components of 𝑤 ap-
proach zero, which plays a crucial role in controlling the optimization dynamics near the boundary
of the positive orthant. This class captures several widely used regularizers, including:

• Negative Entropy: 𝑟 (𝑥) = 𝑥 log 𝑥, for which 𝜈 = 1;
• Tsallis Entropy: 𝑟 (𝑥) = 𝑥−𝑥𝑞

1−𝑞 for 𝑞 ∈ (0, 1), where 1 < 𝜈 < 2;
• Log-Barrier: 𝑟 (𝑥) = − log 𝑥, which corresponds to 𝜈 = 2.

The parameter 𝜈 will turn out to be directly associated with the robustness of OMD with 𝜈-barrier
regularization to approximation errors.

3. Overview of Results and Techniques

Smooth regularizers. We begin by establishing tight upper and lower bounds for approximate
OMD with smooth regularizers,2 over an arbitrary convex domain K ⊆ ℝ𝑑 . Our first theorem
provides an upper bound that builds on the following key property of smooth functions: approximate
minimization implies that first-order optimality conditions hold up to an error proportional to the
square root of the sub-optimality times the smoothness parameter.

Theorem 2. Let K ⊆ ℝ𝑑 be a convex set with diameter 𝐷, and let 𝑅 : K→ ℝ be a 𝛽-smooth regu-
larizer over K. Then, for any loss sequence ℓ1, . . . , ℓ𝑇 ∈ [−1, 1]𝑑 , the regret of any 𝜀-approximate
OMD trajectory compared to any 𝑤 ∈ K is bounded as:

Regret(𝑤) = 𝑂

(
1
𝜂
𝐷𝑅 (𝑤, 𝑤1) + 𝑇𝜂 + 𝑇𝐷

√
𝛽𝜀

𝜂

)
.

1. Strictly speaking, these are barriers for the positive orthant in ℝ𝑑 .
2. A function 𝑅 is said to be 𝛽-smooth with respect to a norm ∥ · ∥ if its gradient is 𝛽-Lipschitz; ∥∇𝑅(𝑥) − ∇𝑅(𝑦)∥∗ ≤

𝛽∥𝑥 − 𝑦∥ for all 𝑥, 𝑦 ∈ K, where ∥·∥∗ is the norm dual to ∥·∥.
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The proof follows the standard OMD analysis, replacing exact optimality with approximate optimal-
ity conditions. Indeed, for any 𝛽-smooth convex objective 𝑓 : K→ ℝ, if 𝑓 (𝑤̂)−arg min𝑤∈K 𝑓 (𝑤) ≤
𝜀, then one can show that (see Lemma 15):

|⟨∇ 𝑓 (𝑤̂), 𝑤 − 𝑤̂⟩| ≤ 𝐷
√︁

2𝛽𝜀. (2)

Applying the above on 𝜙𝑡 for every 𝑡, and carrying the errors in the standard OMD analysis, gives
the claimed result.

We note that Theorem 2 provides sharper dependence on 𝛽 compared to a similar result of [10]. This
bound is in fact tight, even in the simple case of OMD with Euclidean regularization and constant
losses, as shown next.

Theorem 3. Let 𝛽, 𝜀, 𝐷 > 0, and consider 𝜀-approximate OMD over K= [0, 𝐷] with the 𝛽-smooth
regularizer 𝑅(·) =

𝛽

2 ∥ · ∥
2
2. Then there exists a loss sequence, an 𝜀-approximate OMD trajectory

and 𝑤 ∈ K such that:

Regret(𝑤) = Ω

(
1
𝜂
𝐷𝑅 (𝑤, 𝑤1) + 𝑇𝜂 + min

{
𝑇𝐷

√
𝛽𝜀

𝜂
, 𝐷𝑇

})
.

To see why this is true, consider the constant loss sequence ℓ𝑡 = min
{√︁

2𝛽𝜀/𝜂, 1
}

for all 𝑡 ∈ [𝑇],
and initialize the trajectory at 𝑤1 = 𝐷/2. Then for every 𝑡, the loss is small enough so that 𝑤𝑡 itself
is an 𝜀-minimizer of 𝜙𝑡 ; let 𝑤∗

𝑡+1 be the exact minimizer of 𝜙𝑡 , then by direct computation:

𝜙𝑡 (𝑤∗
𝑡+1) = 𝜂 ⟨ℓ𝑡 , 𝑤𝑡⟩ − 𝜀 = 𝜙𝑡 (𝑤𝑡 ) − 𝜀.

As a result, the approximation error prevents any update from changing the iterate, so the trajectory
remains fixed at 𝑤𝑡 = 𝑤1 for all 𝑡. Consequently, the algorithm incurs the claimed regret. We note
that the underlying reason the above argument works is that for the Euclidean regularizer, in the
setting of Theorem 3, round 𝑡 approximate optimality conditions (Eq. 2) are in fact tight.

Barrier regularizers. We next consider barrier regularizers the smoothness of which is not bounded
uniformly over the domain K. Indeed, the spectrum of the Hessian of any 𝜈-barrier (Definition 1)
is unbounded since 𝑟 ′′(𝑥) → ∞ as 𝑥 → 0. Interestingly, the robustness behavior of these barriers
varies dramatically with 𝜈: for negative entropy (𝜈 = 1), exponentially small errors are required,
whereas for log-barrier or Tsallis regularizers (𝜈 > 1), polynomially small errors suffice. We begin
with our lower bound for negative entropy given below.

Theorem 4. Let K = Δ𝑑 , 𝑑 = 2, and 𝑅 be the negative entropy over K. Suppose that the approxi-
mation error satisfies 𝜀 ≥ 4𝜂𝑒−𝜂𝑇/3. Then there exists a sequence of losses ℓ1, . . . , ℓ𝑇 ∈ [0, 1]𝑑 for
which there exists an 𝜀-approximate OMD trajectory that suffers regret Regret(𝑤∗) = Ω(𝑇).

The exponential dependence of 𝜀 on the time horizon 𝑇 is in fact tight: if 𝜀 is exponentially small
in 𝜂𝑇 , the standard regret guarantees are recovered (see Theorem 6 in Appendix B.1). The key idea
in the analysis of Theorem 4 is to exploit the fact that the effective smoothness of the regularizer—
informally, the exact smoothness parameter on a given region—diverges at a rate inversely pro-
portional to the iterate coordinates as they approach zero. Indeed, our construction is such that
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the coordinates of the iterate become as small as 𝑒−𝜂𝑇 (this follows from the closed form update
equations), and thus reach the region of the domain where the effective smoothness is exponentially
large. Then, when the errors are not exponentially small, the same mechanism as in the smooth-
regularizer lower bound applies: the iterate becomes stuck even under constant losses, leading to
linear regret.

We now turn our attention to 𝜈-barrier regularizers with 𝜈 > 1. In this case, as it turns out, polyno-
mially small errors suffice to naturally keep the iterates bounded away from zero (by a polynomial
margin).

Theorem 5. Let K ⊆ Δ𝑑 be a polytope that contains the uniform distribution and the OMD is
initialized there3, let 𝑅 : K → ℝ be a 𝜈-barrier regularizer (cf. Definition 1) with 𝜈 > 1 and

𝜂 ≤ 1
16𝑐1

. If 𝜀 ≤ 𝜂4 min
{

1
𝑐2
, 𝑐2

} (
16𝜂𝑇𝑑+2𝑐1 (2𝑑)𝜈−1

𝑐1

)−𝜈/(𝜈−1)
, then for any loss sequence ℓ1, . . . , ℓ𝑇 ∈

[−1, 1]𝑑 , the regret of any 𝜀-approximate OMD trajectory compared to any 𝑤 ∈ K is bounded as:

Regret(𝑤) ≤ 1
𝜂
𝐷𝑅 (𝑤, 𝑤1) +𝑂 (𝜂𝑇).

The principle underlying the analysis of Theorem 5 is as follows. Consider for purposes of illus-
tration the one-dimensional interval [0, 1] with 𝑤1 = 1. In this setting the OMD updates require no
projection and the iterate dynamics can be inspected more simply:

𝑟 ′(𝑤𝑡 ) = 𝑟 ′(𝑤𝑡−1) − 𝜂ℓ𝑡−1 = 𝑟 ′(𝑤1) − 𝜂
𝑡−1∑︁
𝑠=1

ℓ𝑠,

=⇒ − 1
𝑤𝜈−1
𝑡

≥ −1 − 𝜂𝑇 =⇒ 𝑤𝜈−1
𝑡 ≥ 1

𝜂𝑇
.

Thus, the iterates can only shrink polynomially in 𝑇 , and as a result the effective smoothness grows
polynomially. This allows the use of approximate first-order optimality conditions in the standard
OMD analysis, and the regret may be bounded using the standard OMD proof. Note that this
comes in contrast to the negative entropy case (𝜈 = 1, Theorem 4) where a similar argument in this
simplified setting gives log(𝑤𝑡 ) ≥ 0−𝜂𝑇 =⇒ 𝑤𝑡 ≥ 𝑒−𝜂𝑇 . Finally, the simplified setting considered
above we did not account for the possibility that the errors themselves can pull the iterates closer
to the boundary. Evidently, the approximation errors may potentially drive the iterates toward zero
even when the exact dynamics would not, which further complicates the analysis.

Improved robustness with stochastic losses. Theorem 5 presented above follows in principle by
reducing to the smooth case; when the iterates remain bounded away from zero, the regularizer be-
haves as if it were smooth, and the same argument given for smooth regularizers applies. Theorem 4
builds on a similar idea but in the other direction; with negative entropy, the iterates may become
exponentially small and thus follows an exponential lower bound. Interestingly, with stochastic
losses we obtain a polynomial upper bound (Theorem 7) despite the fact that the iterates may be
exponentially close to zero, where the effective smoothness is exponentially large. To achieve this,
we show that the iterates may reach close to zero only when also approaching 𝑤∗, and that closeness
to 𝑤∗ counteracts the large effective smoothness in that region. For more details on the stochastic
setting, see Appendix B.2.

3. This assumption serves mainly to fix a natural starting point for OMD; a similar bound should hold for any reasonable
initialization.
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and Aarti Singh, editors, Proceedings of the 37th International Conference on Machine Learn-
ing, volume 119 of Proceedings of Machine Learning Research, pages 4860–4869. PMLR,
13–18 Jul 2020.

[18] S Kabbadj. Inexact version of bregman proximal gradient algorithm. In Abstract and Applied
Analysis, volume 2020, page 1963980. Wiley Online Library, 2020.

[19] Nick Littlestone and Manfred K Warmuth. The weighted majority algorithm. Information and
computation, 108(2):212–261, 1994.

[20] Haihao Lu, Robert M Freund, and Yurii Nesterov. Relatively smooth convex optimization by
first-order methods, and applications. SIAM Journal on Optimization, 28(1):333–354, 2018.

[21] Haipeng Luo, Chen-Yu Wei, and Kai Zheng. Efficient online portfolio with logarithmic regret.
Advances in neural information processing systems, 31, 2018.
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Appendix A. Related Work

Mirror descent [7, 22] and the online convex optimization framework [37] have been central to the
study of machine learning and optimization in the last decades. There exist many excellent books
and surveys that provide thorough introductions to (online) mirror descent in its fundamental (i.e.,
exact, error free) form [6, 8, 15, 29]. Somewhat surprisingly, there hardly exist any works that study
inexact mirror descent in the general stochastic or online setup.

In the classical (offline) optimization setup where the objective function is smooth, mirror descent
coincides with a special case of the Bregman proximal gradient method (BPGM; [5, 20], see also
[31]). The BPGM is a generalization of the proximal gradient method [25] where a Bregman diver-
gence replaces the norm proximity regularizer, and the objective is required to satisfy the weaker
relative smoothness property [5]. The BPGM and mirror descent coincide when the non-smooth
part in the composite objective is the indicator function for the decision set. In contrast to online
or stochastic mirror descent in the general case, inexact versions of the BPGM (and thus offline
mirror descent in the smooth case have been subject to several recent works. The majority of these
study the Euclidean case (i.e., the proximal gradient method) with or without acceleration, e.g.,
[3, 27, 32, 34]. Some works study the online case [11] with the euclidean regularizer, and some
further generalize to the online BPGM but with smooth regularizers [10].

There is also a recent line of works that study the (offline) BPGM in its general form (i.e., without
making assumptions on the regularizer). These mostly focus on designing variants of the basic
method that incorporate some mechanism to cope with the proximal subproblem approximation
errors [18, 24, 30, 33]—which is to be contrasted with characterizing convergence in terms of the
ad-hoc approximation errors. As one example, the work of Kabbadj [18] establishes that the inexact
BPGM achieves the same rate of the exact version (aka NoLips; 5) as long as the approximation
errors are smaller than the Bregman distance to the previous iterate. More recently, Yang and
Toh [33] propose variants with several advantages at the expense of a somewhat more involved
subproblem optimization procedure.

Finally, the work of Guigues [13] is one of the only examples (to our best knowledge) of papers
that study an inexact version of stochastic mirror descent, albeit one that relates to a particular
(non-general) instantiation of the algorithm.

Appendix B. Additional main results

In this section, we present additional main results that were not included in the main text due to
space constraints.

B.1. Negative entropy upper bound

Theorem 6. Let K = Δ𝑑 and 𝑅 be the negative entropy over K. Assume 𝜂 ≤ 1/16 and 𝑇 ≥ 3,
if 𝜀 ≤ 1

6𝑑 𝑒
−𝜂𝑇/2 min

{
𝜂4, 𝑇−2}, then for any loss sequence ℓ1, . . . , ℓ𝑇 ∈ [−1, 1]𝑑 , the regret of any
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𝜀-approximate OMD trajectory compared to any 𝑤 ∈ K is bounded as:

Regret(𝑤) ≤ 1
𝜂
𝐷𝑅 (𝑤, 𝑤1) +𝑂 (𝜂𝑇),

The proof is deferred to Appendix G.

B.2. Improved robustness with stochastic losses

In the adversarial setting, we have seen that negative entropy requires exponentially small error to
avoid linear regret, even on the simplex. Surprisingly, this fragility does not persist for stochastic
losses over the full simplex. For i.i.d. stochastic losses, polynomially small approximation errors
suffice to guarantee standard regret bounds with high probability.

Theorem 7. Let K = Δ𝑑 and 𝑅 be the negative entropy over K. For any 𝛿 > 0, suppose that 𝑤1

is uniform, 𝑇 ≥ 256, 𝜂 =

√︃
log(𝑑)

𝑇
and 𝜀 ≤ 𝛿

6𝑑2𝑇4 . Then with probability ≥ 1 − 𝛿 over the choice
of an i.i.d. loss sequence ℓ1, . . . , ℓ𝑇 ∈ [−1, 1]𝑑 , the regret of any 𝜀-approximate OMD trajectory
compared to any 𝑤 ∈ K is bounded as:

Regret(𝑤) ≤ 𝑂

(√︁
𝑇 log(𝑑)

)
However, this robustness does not extend to general domains. The geometry of the feasible set can
reintroduce sensitivity: even with the same regularizer and similarly well-behaved stochastic losses,
restricting the domain to a polytope subset of the simplex can cause suboptimal regret unless the
approximation error is exponentially small.

Theorem 8. Consider approximate OMD with the negative Entropy regularizer and stochastic
losses. Then, there exists a polytope K ⊆ Δ𝑑 and a distribution of losses such that for any 𝜀 > 0,
there exists an 𝜀-approximate trajectory and 𝑤 ∈ K such that:

𝔼[Regret(𝑤)] = Ω

(
𝐷𝑅 (𝑤, 𝑤1)

𝜂
+ 𝑇

√︂
𝜂

log (1/𝜀)

)
One can see that any approximation error that is merely polynomial in 𝑇 leads to a regret lower
bound of Ω̃(𝑇2/3), even under an optimally tuned learning rate—far above the optimal 𝑂 (

√
𝑇)

benchmark.

Detailed proofs of the theorems in this section are provided in Appendices G and I.

Appendix C. General Lemmas and definitions

Definition 9. We call 𝛾 = ({𝑤𝑡 }𝑇𝑡=1, {ℓ𝑡 }
𝑇
𝑡=1, 𝑅, 𝜂) an exact OMD trajectory if for every 𝑡 ∈ [𝑇]:

𝑤𝑡+1 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑤∈Δ𝑑
𝜂⟨ℓ𝑡 , 𝑤⟩ + 𝐷𝑅 (𝑤𝑡−1, 𝑤)

12



THE HIDDEN COST OF APPROXIMATION IN ONLINE MIRROR DESCENT

Definition 10. We call 𝛾 = ({𝑤𝑡 }𝑇𝑡=1, {ℓ𝑡 }
𝑇
𝑡=1, 𝑅, 𝜂) an 𝜀-approximate OMD trajectory with some

𝜀 > 0 if for every 𝑡 ∈ [𝑇] 𝑤𝑡+1 is an 𝜀-minimizer of 𝜂⟨ℓ𝑡 , 𝑤⟩ + 𝐷𝑅 (𝑤𝑡−1, 𝑤).

Definition 11. Our assumptions about the regularizers are:

• There is a function 𝑟 : [0, 1] → ℝ such that 𝑅 is coordinate-separated with 𝑓𝑖 = 𝑟 for all
𝑖 ∈ [𝑑]

• 𝑟 ′′ is decreasing polynomially in [0,1] and 𝑟 ′′(𝑤) ≥ 1
𝑤

for all 𝑤 ∈ [0, 1].

Definition 12. We say that a function 𝐹 : W→ ℝ (W ⊆ ℝ𝑑) is coordinate-separated if there are
functions 𝑓1, 𝑓2, . . . , 𝑓𝑑 such that 𝐹 (𝑤) = ∑

𝑖 𝑓𝑖 (𝑤𝑖) for all 𝑤 ∈ W.

Definition 13. Let 𝐹 : W→ ℝ be a coordinate-separated function. Let 𝑤1, 𝑤2 ∈ W, we say 𝛽 ∈ ℝ

is the effective smoothness of 𝐹 w.r.t 𝑤1, 𝑤2 if for every 𝑖 ∈ [𝑑] such that 𝑤1
𝑖
≠ 𝑤2

𝑖
and 𝛼 ∈ [𝑤1

𝑖
, 𝑤2

𝑖
],

we have 𝑓 ′′
𝑖
(𝛼) ≤ 𝛽.

Lemma 14. Let 𝐹 : W→ ℝ be a coordinate-separated function and Let 𝑥1, 𝑥2 ∈ W. If 𝛽 is the
effective smoothness of 𝐹 w.r.t 𝑥1, 𝑥2 we have for any 𝑤1, 𝑤2 ∈ [𝑥1, 𝑥2]:

𝐹 (𝑤1) − 𝐹 (𝑤2) − ⟨∇𝐹 (𝑤2), 𝑤1 − 𝑤2⟩ ≤
𝛽

2
∥𝑤1 − 𝑤2∥2

2 ≤ 𝛽

2
∥𝑤1 − 𝑤2∥2

1

Proof. The first inequality is directly from Taylor’s theorem. The second is because generally
∥·∥2 ≤ ∥·∥1. ■

Lemma 15. Let ∥·∥ be any norm, and let 𝑓 : W→ ℝ, and let 𝑤̂, 𝑤 ∈ Wwhere 𝑤̂ is an 𝜀-minimizer
of 𝑓 . Assume that for all 𝑥, 𝑦 ∈ [𝑤, 𝑤̂] it holds that:

𝑓 (𝑦) − 𝑓 (𝑥) − ⟨∇ 𝑓 (𝑥), 𝑦 − 𝑥⟩ ≤ 𝛽

2
∥𝑦 − 𝑥∥2.

Then, we have:

⟨∇ 𝑓 (𝑤̂), 𝑤 − 𝑤̂⟩ ≥ −max
{
∥𝑤 − 𝑤̂∥

√︁
2𝛽𝜀, 2𝜀

}
Additionally, let 𝐷 = max𝑤′ ,𝑤′′∈K ∥𝑤′ − 𝑤′′∥ and assume 𝜀 ≤ 𝐷2𝛽

2 . We have:

⟨∇ 𝑓 (𝑤̂), 𝑤 − 𝑤̂⟩ ≥ −𝐷
√︁

2𝛽𝜀

We note that this holds for coordinate-separated function with effective smoothness 𝛽 (with ℓ1 or ℓ2
norm, see Lemma 14) or any general 𝛽-smooth function.

Proof. From the assumptions of the Lemma, for any 𝛾 ∈ [0, 1]:

𝑓 (𝑤̂ + 𝛾(𝑤 − 𝑤̂)) ≤ 𝑓 (𝑤̂) + 𝛾∇ 𝑓 (𝑤̂) (𝑤 − 𝑤̂) + 𝛾2 𝛽

2
∥𝑤 − 𝑤̂∥2

∇ 𝑓 (𝑤̂) (𝑤 − 𝑤̂) ≥ 1
𝛾
( 𝑓 (𝑤̂ + 𝛾(𝑤 − 𝑤̂)) − 𝑓 (𝑤̂)) − 𝛾

𝛽

2
∥𝑤 − 𝑤̂∥2

≥ −
(
𝜀

𝛾
+ 𝛾

𝛽

2
∥𝑤 − 𝑤̂∥2

)
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Notice that if 2𝜀 ≥ ∥𝑤 − 𝑤̂∥
√︁

2𝛽𝜀, we have 𝜀 ≥ 𝛽

2 ∥𝑤 − 𝑤̂∥2 thus for 𝛾 = 1:

∇ 𝑓 (𝑤̂) (𝑤 − 𝑤̂) ≥ −
(
𝜀 + 𝛽

2
∥𝑤 − 𝑤̂∥2

)
≥ −2𝜀

Else, for 𝛾 =
√

2𝜀√
𝛽 ∥𝑤−𝑤̂∥ ≤ 1:

∇ 𝑓 (𝑤̂) (𝑤 − 𝑤̂) ≥ ∥𝑤 − 𝑤̂∥
√︁

2𝛽𝜀

If 𝜀 ≤ 𝐷2𝛽
2 , we have:

√
𝜀 ≤ 𝐷

√
𝛽

√
2

=
𝐷

√︁
2𝛽

2
⇔ 2𝜀 ≤ 𝐷

√︁
2𝛽𝜀

⇒ ⟨∇ 𝑓 (𝑤̂), 𝑤 − 𝑤̂⟩ ≥ −𝐷
√︁

2𝛽𝜀

■

Lemma 16. If for some 𝑎, 𝑏, 𝑐 > 0 we have 𝑎𝑥2 − 𝑏𝑥 − 𝑐 ≤ 0, then 𝑥 < 𝑏
𝑎
+

√︁
𝑐
𝑎

Proof. Assume 𝑥 = 𝑏
𝑎
+

√︁
𝑐
𝑎

, we have:

𝑎𝑥2 − 𝑏𝑥 − 𝑐 =
𝑏2

𝑎
+ 2𝑏

√︂
𝑐

𝑎
+ 𝑐 − 𝑏2

𝑎
− 𝑏

√︂
𝑐

𝑎
− 𝑐 = 𝑏

√︂
𝑐

𝑎
> 0

The minimum point of the parabola is at 𝑥 = 𝑏
2𝑎 , so it only increases for 𝑥 > 𝑏

𝑎
+

√︁
𝑐
𝑎

. ■

Lemma 17. Let 𝛾 = ({𝑤𝑡 }𝑇𝑡=1, {ℓ𝑡 }
𝑇
𝑡=1, 𝑅, 𝜂) be an 𝜀-approximate trajectory above the simplex with

𝜂 ≤ 1
4 and coordinate-separable regularizer. Let ℎ = min

{
𝑟 ′′(𝑤𝑖

𝑡 ), 𝑟 ′′(𝑤𝑖
𝑡+1)

}
. Then for any 𝑖 ∈ [𝑑]:��𝑤𝑖

𝑡 − 𝑤𝑖
𝑡+1

�� < 4𝜂
ℎ

+
√︂

𝜀

ℎ

Proof. Fix 𝑖 ∈ [𝑑]. We will prove for 𝑤𝑖
𝑡+1 ≤ 𝑤𝑖

𝑡 . The proof for the other direction is identical.

Let 𝑖1, . . . , 𝑖𝑚 be an arbitrary set of coordinates that satisfies the following. For 𝑆 := {𝑖1, . . . , 𝑖𝑚−1},
𝑖′ := 𝑖𝑚 it holds that:

∀ 𝑗 ∈ (𝑆 ∪ 𝑖′) 𝑤
𝑗

𝑡+1 ≥ 𝑤
𝑗
𝑡 (3)∑︁

𝑗∈𝑆
𝑤

𝑗

𝑡+1 − 𝑤
𝑗
𝑡 < 𝑤𝑖

𝑡 − 𝑤𝑖
𝑡+1 (4)∑︁

𝑗∈ (𝑆∪𝑖′ )
𝑤

𝑗

𝑡+1 − 𝑤
𝑗
𝑡 ≥ 𝑤𝑖

𝑡 − 𝑤𝑖
𝑡+1 (5)
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Namely, 𝑆 ∪ 𝑖′ is a set of coordinates that were increased in this step. The total increase of all the
coordinates in 𝑆 is less than the decreased in 𝑖, but with the increase of 𝑖′ it is more than the decrease
of 𝑖. Such coordinates exist since the difference that the 𝑖th coordinate was moved downward there
must be a set of coordinates that upward to keep that sum of coordinate 1.

Denote 𝑤̃ such that:

∀ 𝑗 ∈ 𝑆 𝑤̃ 𝑗 = 𝑤
𝑗
𝑡

𝑤̃𝑖 = 𝑤𝑖
𝑡

𝑤̃𝑖′ = 𝑤𝑖′

𝑡+1 +
∑︁

𝑗∈ (𝑆∪𝑖)
𝑤

𝑗

𝑡+1 − 𝑤
𝑗
𝑡

o.w 𝑤̃ 𝑗 = 𝑤
𝑗

𝑡+1

From Equation (4) we have that 𝑤̃𝑖′ < 𝑤𝑖′

𝑡+1. From Equation (5) we have that 𝑤̃𝑖′ ≥ 𝑤𝑖′
𝑡 .

𝑤̃ is a probability since all of its coordinates are ≥ 0 and:∑︁
𝑗∈[𝑑 ]

𝑤̃ 𝑗 =
∑︁

𝑗∈ (𝑆∪𝑖)
𝑤̃ 𝑗 +

∑︁
𝑗∉(𝑆∪{𝑖,𝑖′ })

𝑤̃ 𝑗 + 𝑤̃𝑖′

=
∑︁

𝑗∈ (𝑆∪𝑖)
𝑤

𝑗
𝑡 +

∑︁
𝑗∉(𝑆∪{𝑖,𝑖′ })

𝑤
𝑗

𝑡+1

∑︁
𝑗∈ (𝑆∪𝑖)

𝑤
𝑗

𝑡+1 − 𝑤
𝑗
𝑡

=
∑︁
𝑗∈[𝑑 ]

𝑤
𝑗

𝑡+1

= 1

Since for all 𝑗 ∈ 𝑆 we have 𝑤̃ 𝑗 = 𝑤
𝑗
𝑡 , we have:∑︁

𝑗∈𝑆
𝐷𝑟 (𝑤 𝑗

𝑡 , 𝑤̃
𝑗) = 0 ≤

∑︁
𝑗∈𝑆

𝐷𝑟 (𝑤 𝑗
𝑡 , 𝑤

𝑗

𝑡+1)

From Taylor inequality and the definition of ℎ:

𝐷𝑟 (𝑤̃𝑖 , 𝑤𝑖
𝑡 ) = 0

𝐷𝑟 (𝑤𝑖
𝑡 , 𝑤

𝑖
𝑡+1) ≥

ℎ

2
(𝑤𝑖

𝑡+1 − 𝑤𝑖
𝑡 )2

𝐷𝑟 (𝑤𝑖
𝑡 , 𝑤

𝑖
𝑡+1) ≥ 𝐷𝑟 (𝑤̃𝑖 , 𝑤𝑖

𝑡 ) +
ℎ

2
(𝑤𝑖

𝑡+1 − 𝑤𝑖
𝑡 )2

Since 𝑤𝑖′
𝑡 ≤ 𝑤̃𝑖′ < 𝑤𝑖′

𝑡+1 we have 𝐷𝑟 (𝑤𝑖′
𝑡 , 𝑤̃

𝑖′) < 𝐷𝑟 (𝑤𝑖′
𝑡 , 𝑤

𝑖′

𝑡+1).

Since 𝑤̃ 𝑗 = 𝑤
𝑗

𝑡+1, we have
∑

𝑗∉(𝑆∪{𝑖,𝑖′ }) 𝐷𝑟 (𝑤 𝑗
𝑡 , 𝑤̃

𝑗) = ∑
𝑗∉(𝑆∪{𝑖,𝑖′ }) 𝐷𝑟 (𝑤 𝑗

𝑡 , 𝑤
𝑗

𝑡+1).

Summing all we have:

𝐷𝑅 (𝑤𝑡 , 𝑤𝑡+1) − 𝐷𝑅 (𝑤𝑡 , 𝑤̃) ≥
ℎ

2
(𝑤𝑖

𝑡+1 − 𝑤𝑖
𝑡 )2
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From the definition of 𝑤̃𝑖 we have ∥𝑤̃ − 𝑤𝑡+1∥ = 2(𝑤𝑖
𝑡+1 − 𝑤𝑖

𝑡 ). Thus, from Holder:

𝜂⟨ℓ𝑡 , 𝑤𝑡+1 − 𝑤̃⟩ ≥ −2𝜂
��𝑤𝑖

𝑡+1 − 𝑤𝑖
𝑡

��
Since 𝑤𝑡+1 is an 𝜀-minimizer of the OMD objective:

𝜀 ≥ 𝜂⟨ℓ𝑡 , 𝑤𝑡+1 − 𝑤̃⟩ + 𝐷𝑅 (𝑤𝑡 , 𝑤𝑡+1) − 𝐷𝑅 (𝑤𝑡 , 𝑤̃)

≥ ℎ

2
(𝑤𝑖

𝑡+1 − 𝑤𝑖
𝑡 )2 − 2𝜂

��𝑤𝑖
𝑡+1 − 𝑤𝑖

𝑡

��
From Lemma 16 we get: ��𝑤𝑖

𝑡 − 𝑤𝑖
𝑡+1

�� < 4𝜂
ℎ

+
√︂

𝜀

ℎ

■

Lemma 18. Let 𝛾 = ({𝑤𝑡 }𝑇𝑡=1, {ℓ𝑡 }
𝑇
𝑡=1, 𝑅, 𝜂) be an 𝜀-approximate trajectory above the simplex with

𝜂 ≤ 1
16𝑐1

and 𝜈-barrier regularizer. Let 𝑡 ∈ [𝑇] and 𝑖 ∈ [𝑑] be such that 𝜀 ≤ (𝑤𝑖
𝑡 )𝜈

16𝑐1
, then:

𝑤𝑖
𝑡−1 ≥ 1

2
𝑤𝑖
𝑡

𝑤𝑖
𝑡+1 ≥ 1

2
𝑤𝑖
𝑡

Proof. We will prove for 𝑤𝑖
𝑡−1 but the same proof goes for 𝑡 + 1. The interesting case is obviously

𝑤𝑖
𝑡−1 < 𝑤𝑖

𝑡 , so continuing assuming that.

We have:

min
{
𝑟 ′′(𝑤𝑖

𝑡 ), 𝑟 ′′(𝑤𝑖
𝑡−1)

}
≥ 𝑐1

max
{
𝑤𝑖
𝑡 , 𝑤

𝑖
𝑡−1

}𝜈 =
𝑐1

(𝑤𝑖
𝑡 )𝜈

≥ 𝑐1

𝑤𝑖
𝑡

From Lemma 17:

𝑤𝑖
𝑡−1 ≥ 𝑤𝑖

𝑡 − 4𝑐1𝜂𝑤
𝑖
𝑡 −

√︃
𝑐1𝜀𝑤

𝑖
𝑡 (6)

Since 𝜂 ≤ 1/16𝑐1:

4𝑐1𝜂𝑤
𝑖
𝑡 ≤

𝑤𝑖
𝑡

4
(7)

From the assumption on 𝜀 and the fact that 𝑟 ′′(𝑤𝑖
𝑡 ) ≥ 𝑤𝑖

𝑡 :√︃
𝑐1𝜀𝑤

𝑖
𝑡 ≤

√︄
(𝑤𝑖

𝑡 )2

16
=
𝑤𝑖
𝑡

4
(8)

Placing Equations (7) and (8) in Equation (6) gives the desired results. ■

16
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Lemma 19 (Three-points identity). For every differentiable function 𝑅:

∀ 𝑥, 𝑦, 𝑧 :
(
∇𝑅(𝑧) − ∇𝑅(𝑦)

)
· (𝑦 − 𝑥) = 𝐷𝑅 (𝑥, 𝑧) − 𝐷𝑅 (𝑥, 𝑦) − 𝐷𝑅 (𝑦, 𝑧)

Proof.

𝐷𝑅 (𝑥, 𝑧) − 𝐷𝑅 (𝑥, 𝑦) − 𝐷𝑅 (𝑦, 𝑧) = 𝑅(𝑥) − 𝑅(𝑧) − ∇𝑅(𝑧) · (𝑥 − 𝑧)
− 𝑅(𝑥) + 𝑅(𝑦) + ∇𝑅(𝑦) · (𝑥 − 𝑦)
− 𝑅(𝑦) + 𝑅(𝑧) + ∇𝑅(𝑧) · (𝑦 − 𝑧)
=

(
∇𝑅(𝑧) − ∇𝑅(𝑦)

)
· (𝑦 − 𝑥)

■

Lemma 20 (OMD Helper).

ℓ𝑡 · (𝑤𝑡 − 𝑤𝑡+1) −
1
𝜂
𝐷𝑅 (𝑤𝑡+1, 𝑤𝑡 ) ≤

𝜂

2
∥ℓ𝑡 ∥2

∗

Proof. From the strong convexity of 𝑅:

1
𝜂
𝐷𝑅 (𝑤𝑡+1, 𝑤𝑡 ) ≥

1
2𝜂

∥𝑤𝑡+1 − 𝑤𝑡 ∥2

By Holder:

ℓ𝑡 · (𝑤𝑡 − 𝑤𝑡+1) ≤ ∥𝑤𝑡 − 𝑤𝑡+1∥ ∥ℓ𝑡 ∥∗

≤ 1
2𝜂

∥𝑤𝑡 − 𝑤𝑡+1∥2 + 𝜂

2
∥ℓ𝑡 ∥2

∗

We used the fact that 𝑎𝑏 ≤ 1
2𝑎

2 + 1
2𝑏

2 for every 𝑎, 𝑏 ≥ 0. ■

Appendix D. Smooth Regularizer

Theorem 21 (Restatement of Theorem 2). Let 𝛾 = ({𝑤𝑡 }𝑇𝑡=1, {ℓ𝑡 }
𝑇
𝑡=1, 𝑅, 𝜂) be an 𝜀-approximate

trajectory above a convex set such that 𝑅 is 𝛽-smooth, and let 𝐷 be the diameter of the domain.
Assume 𝜀 ≤ 𝐷2/2, then for any 𝑤 ∈ K:

Regret(𝑤) ≤ 𝑂

(
1
𝜂
𝐷𝑅 (𝑤, 𝑤1) + 𝑇𝜂 + 𝑇𝐷

√
𝛽𝜀

𝜂

)
Proof. From the strong convexity of 𝑅 we have that 𝛽 ≥ 1, which means that from the assumptions
𝜀 ≤ 𝐷2𝛽/2. Then, from Lemma 15, for every 𝑡:

⟨𝜂ℓ𝑡 + ∇𝑅(𝑤𝑡+1) − ∇𝑅(𝑤𝑡 ), 𝑤∗ − 𝑤𝑡+1⟩ ≥ −𝐷
√︁

2𝛽𝜀

17
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From here it is straightforward standard OMD arguments:

𝜂ℓ𝑡 · (𝑤𝑡+1 − 𝑤∗) ≤ (∇𝑅(𝑤𝑡+1) − ∇𝑅(𝑤𝑡 )) · (𝑤∗ − 𝑤𝑡+1) + 𝐷
√︁

2𝛽𝜀

= 𝐷𝑅 (𝑤∗, 𝑤𝑡 ) − 𝐷𝑅 (𝑤∗, 𝑤𝑡+1) − 𝐷𝑅 (𝑤𝑡+1, 𝑤𝑡 ) + 𝐷
√︁

2𝛽𝜀

Summing for all 𝑡 ∈ [𝑇]:

𝑇∑︁
𝑡=1

ℓ𝑡 · (𝑤𝑡+1 − 𝑤∗) ≤ 1
𝜂
𝐷𝑅 (𝑤∗, 𝑤1) −

1
𝜂

𝑇∑︁
𝑡=1

𝐷𝑅 (𝑤𝑡+1, 𝑤𝑡 ) +
𝑇𝐷

√︁
2𝛽𝜀

𝜂

From Lemma 20:

Regret(𝑤∗) ≤ 𝑂

(
1
𝜂
𝐷𝑅 (𝑤∗, 𝑤1) + 𝑇𝜂 + 𝑇𝐷

√
𝛽𝜀

𝜂

)
■

Theorem 22 (Restatement of Theorem 3). For every 𝛽, 𝜀, there is an OMD 𝜀-approximate trajec-
tory 𝛾 = ({𝑤𝑡 }𝑇𝑡=1, {ℓ𝑡 }

𝑇
𝑡=1, 𝑅, 𝜂) above a convex set with diameter 𝐷 with 𝑅 being 𝛽-smooth and

constant losses (ℓ𝑡 = ℓ for some ℓ for all 𝑡 ∈ [𝑇]) that achieves a regret of

Ω

(
min

(
𝑇𝐷

√
𝛽𝜀

𝜂
, 𝐷𝑇

))
Proof. Consider the domain [0, 𝐷], 𝑤1 = 𝐷

2 . The regularizer is 𝑅(𝑤) =
𝛽

2 𝑤
2. The loss is ℓ =

min
{√

2𝛽𝜀
𝜂

, 1
}
.

We will now show by induction that 𝑤𝑡 = 𝑤1 for all 𝑡 is a valid 𝜀-approximate trajectory. This
trajectory suffers a loss of Θ

(
min

(
𝑇𝐷

√
𝛽𝜀

𝜂
, 𝐷𝑇

))
, which means a same regret comparing to 𝑤∗ = 0.

Assume true for 𝑡 − 1, we will prove for 𝑡.

We start by finding the optimal 𝑤∗
𝑡 (the optimal solution for 𝜙𝑡 ) by differentiating and comparing to

0:

𝜂ℓ + 𝛽(𝑤∗
𝑡 − 𝑤𝑡−1) = 0

⇐⇒ 𝑤∗
𝑡 = 𝑤𝑡−1 −

𝜂

𝛽
ℓ

Placing it in the objective function:

𝜂ℓ𝑤∗
𝑡 +

𝛽

2
(
𝑤∗
𝑡 − 𝑤𝑡−1

)2
= 𝜂ℓ

(
𝑤𝑡−1 −

𝜂

𝛽
ℓ

)
+ 𝛽

2

(
𝑤𝑡−1 −

(
𝑤𝑡−1 −

𝜂

𝛽
ℓ

))2

= 𝜂ℓ𝑤𝑡−1 −
𝜂2ℓ2

𝛽
+ 𝜂2ℓ2

2𝛽

= 𝜂ℓ𝑤𝑡−1 −
𝜂2ℓ2

2𝛽

18
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Which means that the difference in the objective function between 𝑤∗
𝑡 and 𝑤𝑡−1 is 𝜂2ℓ2

2𝛽 .

From the definition of ℓ:

ℓ ≤
√︁

2𝛽𝜀
𝜂

⇐⇒ 𝜂2ℓ2

2𝛽
≤ 𝜀

Which means that 𝑤𝑡−1 is an 𝜀-minimizer. ■

Appendix E. Balance

All the lemmas in this section assumes 𝜈-barrier regularizer.

E.1. General

Definition 23. Assume Kis a polytope defined in standard form
{
𝑤 ∈ ℝ𝑑 : 𝐴𝑤 = 𝑏 ∧ (𝑤𝑖 ≥ 0, ∀𝑖 ∈ [𝑑])

}
.

For every 𝑣 ∈ ker(𝐴), denote the balance of an OMD trajectory w.r.t 𝑣:

𝐵𝑣
𝛾 (𝑡1, 𝑡2) = ⟨∇𝑅(𝑤𝑡1) − ∇𝑅(𝑤𝑡2), 𝑣⟩

Additionally, if for every 𝑣 ∈ ker(𝐴) such that ∥𝑣∥ ≤ 1 and 𝑡1, 𝑡2 we have 𝐵𝑣
𝛾 (𝑡1, 𝑡2) ≤ 𝑘 , we say the

trajectory is 𝑘 balanced.

Lemma 24.

𝐵𝑖
𝛾 (𝑡1, 𝑡2) + 𝐵𝑖

𝛾 (𝑡2, 𝑡3) = 𝐵𝑖
𝛾 (𝑡1, 𝑡3)

Proof.

⟨∇𝑅(𝑤𝑡1) − ∇𝑅(𝑤𝑡2), 𝑣⟩ + ⟨∇𝑅(𝑤𝑡2) − ∇𝑅(𝑤𝑡3), 𝑣⟩ = ⟨∇𝑅(𝑤𝑡1) − ∇𝑅(𝑤𝑡3), 𝑣⟩

■

Lemma 25. Assume K is a polytope. For some differentiable function 𝑓 : K → ℝ, let 𝑤∗ be the
minimizer of 𝑓 such that for all 𝑖 ∈ [𝑑], (𝑤∗)𝑖 > 0 . For every 𝑤 ∈ Kwe have:

⟨∇ 𝑓 (𝑤∗), 𝑤 − 𝑤∗⟩ = 0

Proof. Denote 𝑣 = 𝑤−𝑤∗. Since 𝑚𝑖𝑛𝑖 𝑤̂𝑖 > 0, and 𝑣 ∈ ker(𝐴) where 𝐴 is the matrix of the polytope
K, there is an 𝛼 such that both 𝑤∗ + 𝛼𝑣 ∈ K and 𝑤 − 𝛼𝑣 ∈ Δ𝑑 .

Since 𝑤∗ is a minimizer, from first order optimality conditions:

⟨∇ 𝑓 (𝑤̂), 𝑤∗ + 𝛼𝑣 − 𝑤∗⟩ ≥ 0
⟨∇ 𝑓 (𝑤̂), 𝑤∗ − 𝛼𝑣 − 𝑤∗⟩ ≥ 0

19
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Which means that:

⟨∇ 𝑓 (𝑤̂), 𝑣⟩ ≥ 0
⟨∇ 𝑓 (𝑤̂), −𝑣⟩ ≥ 0

Which is our desired results. ■

Lemma 26. Let 𝛾 = ({𝑤𝑡 }𝑇𝑡=1, {ℓ𝑡 }
𝑇
𝑡=1, 𝑅, 𝜂) be an exact OMD trajectory. For every 𝑣 ∈ ker(𝐴) and

times 𝑡1, 𝑡2:

𝐵𝑣 (𝑡1, 𝑡2) = 𝜂⟨ℓ𝑡1:𝑡2 , 𝑣⟩

Proof. Fix some 𝑡′ ∈ [𝑡1, 𝑡2]. There is some small 𝛼 such that both 𝑤𝑡 ′ + 𝛼𝑣 and 𝑤𝑡 ′ − 𝛼𝑣 is in the
polytope . From Lemma 25 (𝑤𝑖

𝑡 ′ > 0 since the regularizer is undefined in 0):

⟨ℓ𝑡 ′−1 + ∇𝑅(𝑤𝑡 ′) − ∇𝑅(𝑤𝑡 ′−1), 𝑣⟩ = 0

Summing for all 𝑡′ ∈ [𝑡1, 𝑡2] gives the desired results. ■

Lemma 27. Let 𝛾 = ({𝑤𝑡 }𝑇𝑡=1, {ℓ𝑡 }
𝑇
𝑡=1, 𝑅, 𝜂) and 𝛾̂ = ({𝑤̂𝑡 }𝑇𝑡=1, {ℓ𝑡 }

𝑇
𝑡=1, 𝑅, 𝜂) be an exact OMD

trajectory and 𝜀-approximate OMD trajectory.

Let 0 ≤ 𝑡1 ≤ 𝑡2 ≤ 𝑇 , 𝑣 ∈ ker(𝐴) such that ∥𝑣∥ = 1 and let 𝜓 > 0 be such that for every 𝑡1 ≤ 𝑡 ≤ 𝑡2,
for all 𝑖 ∈ [𝑑] such that 𝑣𝑖 ≠ 0, 𝑤̂𝑖

𝑡 ≥ 𝜓. We also assume that 𝜀 ≤ 𝜓/2. we have:

𝐵𝑣
𝛾̂ (𝑡1, 𝑡2) ≤ 𝐵𝑣

𝛾 (𝑡1, 𝑡2) + (𝑡2 − 𝑡1)
√︂

𝑐2𝜀

𝜓𝜈

Proof. We will prove it using induction for 𝑡 ∈ [𝑡1, 𝑡2]. The base 𝑡 = 𝑡1 is trivial.

Assume true for 𝑡 − 1, namely:

𝐵𝑣
𝛾̂ (𝑡1, 𝑡 − 1) ≤ 𝐵𝑣

𝛾 (𝑡1, 𝑡 − 1) + (𝑡 − 1 − 𝑡1)
√︂

𝑐2𝜀

𝜓𝜈

From the assumptions of the lemma we have 𝑤̂𝑡 + 𝜓𝑣 ∈ K. Additionally, the effective smoothness
is 𝑐2

𝜓𝜈 . From Lemma 15, since 𝑤̂𝑡 is an 𝜀-minimizer of 𝜙𝑡 :

⟨𝜂ℓ𝑡 + ∇𝑅(𝑤̂𝑡 ) − ∇𝑅(𝑤̂𝑡−1), 𝜓𝑣⟩ ≥ −max

{
𝜓

√︄
2𝑐2𝜀

𝜓𝜈
, 2𝜀

}
Since 𝜀 ≤ 𝑐2𝜓/2 and from the definition of barrier regularizer:

𝜓

√︄
2𝑐2𝜀

𝜓𝜈
≥ 𝜓

√︄
2𝑐2𝜀

𝜓

=
√︁

2𝑐2𝜀𝜓

≥ 2𝜀
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Which means:

⟨𝜂ℓ𝑡 + ∇𝑅(𝑤̂𝑡 ) − ∇𝑅(𝑤̂𝑡−1), 𝜓𝑣⟩ ≥ −𝜓

√︄
2𝑐2𝜀

𝜓𝜈

Dividing by 𝜓 > 0:

−

√︄
2𝑐2𝜀

𝜓𝜈
≤ ⟨𝜂ℓ𝑡 , 𝑣⟩ − 𝐵𝑣

𝛾̂ (𝑡 − 1, 𝑡)

= 𝐵𝑣
𝛾 (𝑡 − 1, 𝑡) − 𝐵𝑣

𝛾̂ (𝑡 − 1, 𝑡) (Lemma 26)

Adding the induction assumption:

𝐵𝑣
𝛾̂ (𝑡1, 𝑡 − 1) + 𝐵𝑣

𝛾̂ (𝑡 − 1, 𝑡) ≤ 𝐵𝑣
𝛾 (𝑡1, 𝑡 − 1) + 𝐵𝑣

𝛾 (𝑡 − 1, 𝑡) +

√︄
2𝑐2𝜀

𝜓𝜈
+ (𝑡 − 1 − 𝑡1)

√︂
𝑐2𝜀

𝜓𝜈

=⇒ 𝐵𝑣
𝛾̂ (𝑡1, 𝑡) ≤ 𝐵𝑣

𝛾 (𝑡1, 𝑡) + (𝑡 − 𝑡1)
√︂

𝑐2𝜀

𝜓𝜈

The last is from Lemma 24. ■

E.2. Simplex subset

The lemmas in this section assumes that the polytope is a subset of the simplex. That is, for every
𝑤 such that 𝐴𝑤 = 𝑏, ∥𝑤∥1 = 1. Additionally, the primal norm is assumed to be 𝐿1 norm.

Lemma 28. Let 𝑣 be a vector in the kernel of 𝐴. The sum of the elements of 𝑣 is 0.

Proof. Denote 𝑤 = 𝑤1 + 1
𝑑 ∥𝑣∥∞ 𝑣. It is in the polytope - all the elements of 1

𝑑 ∥𝑣∥∞ 𝑣 are smaller then
1/𝑑 and thus the all the elements of 𝑤 greater than 0, and since 𝑣 is in the kernel of 𝐴 we have:

𝐴𝑤 = 𝐴𝑤1 + 𝐴
1

𝑑∥𝑣∥∞
𝑣 = 𝐴𝑤1 = 𝑏

Thus, we have ∥𝑤∥ = 1. Since also ∥𝑤1∥ = 1:

1
𝑑∥𝑣∥∞

𝑑∑︁
𝑖=1

𝑣𝑖 =
𝑑∑︁
𝑖=1

𝑤𝑖 −
𝑑∑︁
𝑖=1

𝑤𝑖
1 = 1 − 1 = 0

■

Lemma 29. Let 𝛾 = ({𝑤𝑡 }𝑇𝑡=1, {ℓ𝑡 }
𝑇
𝑡=1, 𝑅, 𝜂) be a 𝑘-balanced OMD trajectory with 𝑤1 = (1/𝑑, 1/𝑑, . . . 1/𝑑)

and coordinate-separated regularizer. For every 𝑡 ∈ [𝑇], 𝑖 ∈ [𝑑]:

−𝑟 ′(𝑤𝑖
𝑡 ) ≤ max {4𝑘𝑑 − 𝑟 ′(1/𝑑),−𝑟 ′(1/2𝑑)}
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Proof. Since 𝑤1 is uniform and Lemma 28, for every 𝑣 ∈ ker(𝐴):

⟨∇𝑅(𝑤1), 𝑣⟩ = 𝑟 ′(1/𝑑)
𝑑∑︁
𝑖=1

𝑣𝑖 = 0

Let 𝑣 = 𝑤1 − 𝑤𝑡 ∈ ker(𝐴). Notice that since ∥𝑤𝑡 ∥1 = ∥𝑤1∥1 = 1, from triangle inequality ∥𝑣∥ ≤ 2.
From Lemma 26:

2𝑘 ≥ ⟨−∇𝑅(𝑤𝑡 ), 𝑣⟩

= −
𝑑∑︁
𝑖=1

𝑟 ′(𝑤𝑖
𝑡 )𝑣𝑖

= −
𝑑∑︁

𝑖:𝑣𝑖>0
𝑟 ′(𝑤𝑖

𝑡 )𝑣𝑖 −
𝑑∑︁

𝑖:𝑣𝑖≤0
𝑟 ′(𝑤𝑖

𝑡 )𝑣𝑖

Denote:

𝑑∑︁
𝑖:𝑣𝑖>0

𝑣𝑖 = 𝛼

From Lemma 28:

−
𝑑∑︁

𝑖:𝑣𝑖≤0
𝑣𝑖 = 𝛼

If 𝑣𝑖 ≤ 0 it means that 𝑤𝑖
𝑡 ≥ 𝑤𝑖

1 = 1/𝑑, thus:

−
𝑑∑︁

𝑖:𝑣𝑖≤0
𝑟 ′(𝑤𝑖

𝑡 )𝑣𝑖 ≥ −𝑟 ′(1/𝑑)
𝑑∑︁

𝑖:𝑣𝑖≤0
𝑣𝑖 ≥ 𝑟 ′(1/𝑑)𝛼

We used the fact that from the convexity of 𝑟 , 𝑟 ′ is monotonically increasing (as 𝑟 ′′ ≥ 0).

Denote 𝑖 = arg min𝑖∈[𝑑 ] 𝑤𝑖
𝑡 , we have:

2𝑘 − 𝛼𝑟 ′(1/𝑑) ≥ −𝑟 ′(𝑤𝑖
𝑡 )𝑣𝑖 −

𝑑∑︁
𝑖:𝑣𝑖>0,𝑖≠𝑖

𝑟 ′(𝑤𝑖
𝑡 )𝑣𝑖

≥ −𝑟 ′(𝑤𝑖
𝑡 )𝑣𝑖 − 𝑟 ′(1/𝑑)

𝑑∑︁
𝑖:𝑣𝑖>0,𝑖≠𝑖

𝑣𝑖

= −𝑟 ′(𝑤𝑖
𝑡 )𝑣𝑖 − 𝑟 ′(1/𝑑) (𝛼 − 𝑣𝑖)

Subtracting from both sides:

2𝑘 − 𝑟 ′(1/𝑑)𝑣𝑖 ≥ −𝑟 ′(𝑤𝑖
𝑡 )𝑣𝑖

22



THE HIDDEN COST OF APPROXIMATION IN ONLINE MIRROR DESCENT

If 𝑣𝑖 ≤ 1/2𝑑 we have 𝑤𝑖
𝑡 ≥ 1/2𝑑. Since 𝑟 ′ is monotonically increasing, this means that for all

𝑖 ∈ [𝑑] 𝑟 ′(𝑤𝑖
𝑡 ) ≥ 𝑟 ′(1/2𝑑) which concludes the proof. Else, dividing by 𝑣𝑖 ≥ 1/2𝑑:

−𝑟 ′(𝑤𝑖
𝑡 ) ≤ 4𝑘𝑑 − 𝑟 ′(1/𝑑)

■

E.3. Simplex

Definition 30. We denote the balance of an OMD trajectory above the simplex 𝛾 = ({𝑤𝑡 }𝑇𝑡=1, {ℓ𝑡 }
𝑇
𝑡=1, 𝑅, 𝜂)

w.r.t to a coordinate 𝑖 and 0 ≤ 𝑡1 ≤ 𝑡2 ≤ 𝑇 to be:

𝐵𝑖
𝛾 (𝑡1, 𝑡2) = 𝑟 ′(𝑤𝑖∗

𝑡1 ) − 𝑟 ′(𝑤𝑖∗
𝑡2 ) + 𝑟 ′(𝑤𝑖

𝑡2) − 𝑟 ′(𝑤𝑖
𝑡1)

We say that an OMD trajectory is 𝑘-balanced if, for every 0 ≤ 𝑡1 ≤ 𝑡2 ≤ 𝑇 and coordinate 𝑖:

𝐵𝑖
𝛾 (𝑡1, 𝑡2) ≤ 𝑘

One can notice that it is a private case for the general polytope definition.

Lemma 31. Let 𝛾 = ({𝑤𝑡 }𝑇𝑡=1, {ℓ𝑡 }
𝑇
𝑡=1, 𝑅, 𝜂) be an approximate OMD trajectory. Fix 𝑡1, 𝑡2 ∈ [𝑇]

and 𝑖 ∈ [𝑑] such that 𝐵𝑖
𝛾 (𝑡1, 𝑡2) ≤ 𝑘 . Then:

1. If 𝑤𝑖
𝑡2
≥ 𝑤𝑖

𝑡1
then 𝑒𝑘/𝑐1𝑤𝑖∗

𝑡2
≥ 𝑤𝑖∗

𝑡1

2. If 𝑤𝑖∗
𝑡2
≤ 𝑤𝑖∗

𝑡1
then 𝑤𝑖

𝑡2
≤ 𝑒𝑘/𝑐1𝑤𝑖

𝑡1

Proof. We will prove the first statement and the second follows in just the same way.

Assume by contradiction that 𝑒𝑘𝑤𝑖∗
𝑡2

< 𝑤𝑖∗
𝑡1

. Since 𝑤𝑖
𝑡2

≥ 𝑤𝑖
𝑡2

we have 𝑟 ′(𝑤𝑖
𝑡2
) ≥ 𝑟 ′(𝑤𝑖

𝑡1
), which

means:

𝑘 ≥ 𝐵𝑖
𝛾 (𝑡1, 𝑡2)

= 𝑟 ′(𝑤𝑖∗
𝑡1 ) − 𝑟 ′(𝑤𝑖∗

𝑡2 ) + 𝑟 ′(𝑤𝑖
𝑡2) − 𝑟 ′(𝑤𝑖

𝑡1)
≥ 𝑟 ′(𝑤𝑖∗

𝑡1 ) − 𝑟 ′(𝑤𝑖∗
𝑡2 )

=

∫ 𝑤𝑖∗
𝑡1

𝑤𝑖∗
𝑡2

𝑟 ′′(𝑤)𝑑𝑤

>

∫ 𝑒𝑘/𝑐1𝑤𝑖∗
𝑡2

𝑤𝑖∗
𝑡2

𝑟 ′′(𝑤)𝑑𝑤 (𝑟 ′′(𝑤) > 0)

≥
∫ 𝑒𝑘/𝑐1𝑤𝑖∗

𝑡2

𝑤𝑖∗
𝑡2

𝑐1
𝑤
𝑑𝑤

= 𝑐1

(
log

(
𝑒𝑘/𝑐1𝑤𝑖∗

𝑡2

)
− log

(
𝑤𝑖∗
𝑡2

))
= 𝑘

Which is a contradiction 𝑘 > 𝑘 . ■
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Lemma 32. Let 𝛾 = ({𝑤𝑡 }𝑇𝑡=1, {ℓ𝑡 }
𝑇
𝑡=1, 𝑅, 𝜂) and 𝛾̂ = ({𝑤̂𝑡 }𝑇𝑡=1, {ℓ𝑡 }

𝑇
𝑡=1, 𝑅, 𝜂) be an optimal OMD

trajectory and 𝜀-approximate OMD trajectory.

Let 0 ≤ 𝑡1 ≤ 𝑡2 ≤ 𝑇 , 𝑖 ∈ [𝑑] and 𝜓 > 0 be such that for every 𝑡1 ≤ 𝑡 ≤ 𝑡2, 𝑤̂𝑖
𝑡 ≥ 𝜓 and 𝑤̂𝑖∗

𝑡 ≥ 𝜓. We
also assume that 𝜀 ≤ 𝜓/2. we have:

𝐵𝑖
𝛾̂ (𝑡1, 𝑡2) ≤ 𝐵𝑖

𝛾 (𝑡1, 𝑡2) + (𝑡2 − 𝑡1)
√︁
𝑟 ′′(𝜓)𝜀

Proof. It is direct consequence of Lemma 27 for the case of 𝑣𝑖 = 𝑒𝑖∗ − 𝑒𝑖 (𝑒 𝑗 is the 𝑗 th element of
the standard basis). ■

Appendix F. Lower bounds for negative entropy

Lemma 33. Let 𝛾 = ({𝑤𝑡 }𝑇𝑡=1, {ℓ𝑡 }
𝑇
𝑡=1, 𝑅, 𝜂) be an 𝜀-approximate trajectory with 𝑑 = 2 and 𝜈-

barrier regularizer. If for some coordinate 𝑖 there is 𝜏 ∈ [𝑇] such that 4𝜂
𝑐1

(
𝑤𝑖
𝜏

)𝜈 ≤ 𝜀, then for any
possible losses for 𝑡 ≥ 𝜏, having 𝑤𝑖

𝑡 = 𝑤𝑖
𝜏 makes a valid error trajectory.

Proof. We’ll prove by induction. Assume true for 𝑤𝑖
𝑡 , we’ll prove for 𝑤𝑖

𝑡+1.

Denote 𝑤̃𝑡+1 such that:

𝑤̃𝑡+1 = 𝑎𝑟𝑔 min
𝑤∈Δ2

𝜙𝑡 (𝑤)

From Lemma 17 with 𝜀 = 0 we get:��𝑤𝑖
𝑡 − 𝑤̃𝑖

𝑡+1
�� ≤ 4𝜂

𝑟 ′′(𝑤𝑖
𝑡 )

≤ 4𝜂
𝑐1

(
𝑤𝑖
𝑡

)𝜈 ≤ 𝜀

Thus:

⟨ℓ𝑡 , 𝑤̃𝑡+1 − 𝑤𝑡⟩ ≤ 𝜀

Since by definition 𝐷𝑅 (𝑤𝑡 , 𝑤𝑡 ) ≤ 𝐷𝑅 (𝑤̃𝑡+1, 𝑤𝑡 ), we get:

𝜙(𝑤𝑡 ) ≤ 𝜙(𝑤̃𝑡+1) + 𝜀

Which means that 𝑤𝑡 is an 𝜀-minimizer, as needed. ■

Lemma 34. Assume for some 𝛼 ≥ 𝑇/2, 1
𝜂

log
(

4𝜂
𝜀

)
≤ 𝛼 with negative entropy regularizer, there is

an instance above the simplex with 𝛼-balanced losses that the regret achieved is Ω(𝑇 − 2𝛼).

Proof. We construct an instance with 𝑑 = 2 and (1, 0) losses for the first 𝜏 = 1
𝜂

log
(

4𝜂
𝜀

)
and then

(0, 1). Since 𝜏 < 𝑇/2 we have that the optimal coordinate is 1. We have:

𝑤1
𝜏 ≤ 𝑒−𝜂𝜏 =

𝜀

4𝜂

From Lemma 33, it is a valid error trajectory if for every 𝑡 ≥ 𝜏, 𝑤1
𝑡 ≤ 𝜀

4𝜂 ≤ 1
2 . Thus, the regret for

those steps is Ω(𝑇−𝜏). Adding the first 𝜏 steps we get a regret bound of Ω(𝑇−2𝜏) ≥ Ω(𝑇−2𝛼). ■
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We add another lower bound that shows an instance in which the optimal point in the optimal
trajectory doesn’t get close to 0 but still there is a linear regret.

Theorem 35. Assume 𝜀 ≥ 4𝜂2

𝑐1𝑑𝜈 and 𝜈-barrier regularizer. There is a set of constant losses for which
there is an 𝜀-approximate OMD trajectory that achieves a regret of Ω(𝑇).

Proof. The losses are ℓ𝑑𝑡 = 0 and ℓ𝑖𝑡 = 1 for 𝑖 ∈ [𝑑−1] for all 𝑡. We will show that having 𝑤𝑡 = 𝑤1 for
all 𝑡 ∈ [𝑇] is a valid 𝜀-approximate OMD trajectory. Since 𝑤1 is the uniform distribution, the total
loss is 𝑇 − 𝑇

𝑑
. The optimal point is 𝑤∗ = (0, . . . , 0, 1), namely having 1 only in the 𝑑th coordinate,

which gives a total loss of 0. Since 𝑇 − 𝑇
𝑑
= Ω(𝑇) even for 𝑑 = 2, this seals the proof.

We will now prove by induction that if 𝑤𝑡 = 𝑤1, 𝑤1 is an 𝜀-approximate minimizer for 𝜙𝑡 . Denote:

𝑤̃𝑡+1 = arg min
𝑤∈Δ𝑑

𝜙𝑡 (𝑤)

From Lemma 17 with 𝜀 = 0 we get:��𝑤𝑑
𝑡 − 𝑤̃𝑑

𝑡+1
�� ≤ 4𝜂

𝑟 ′′(𝑤𝑑
𝑡 )

≤ 4𝜂
𝑐1𝑑𝜈

≤ 𝜀

𝜂

Since 𝑤𝑑
𝑡 = 1/𝑑:

𝑤̃𝑑
𝑡+1 ≤ 1

𝑑
+ 𝜀

𝜂

Summing for all coordinates:

𝑑 − 1
𝑑

− 𝜀

𝜂
≤

𝑑−1∑︁
𝑖=1

𝑤̃𝑖
𝑡+1 = ⟨ℓ𝑡 , 𝑤̃𝑡+1⟩

Since ⟨ℓ𝑡 , 𝑤1⟩ = 𝑑−1
𝑑

we have: We have:

⟨𝜂ℓ𝑡 , 𝑤̃𝑡+1⟩ ≥ ⟨𝜂ℓ𝑡 , 𝑤1⟩ − 𝜀

Since by definition 𝐷𝑅 (𝑤𝑡 , 𝑤𝑡 ) ≤ 𝐷𝑅 (𝑤̃𝑡+1, 𝑤𝑡 ), we get:

𝜙𝑡 (𝑤𝑡 ) ≤ 𝜙𝑡 (𝑤̃𝑡+1) + 𝜀

which means that 𝑤𝑡 = 𝑤1 is an 𝜀-minimizer, as needed. ■

Theorem 36. Consider the following instance with negative entropy regularizer for some 𝑘 ≤ 𝑇𝜂

20 .
For the first 3𝑘

2𝜂 steps, the loss is (0, 1). Then, for the next 𝑘
𝜂

steps, the loss is (1, 0). Then, for the
rest (≥ 3𝑇

4 ) of the steps, the loss is (0, 1). There is an error OMD trajectory with 𝜀 = 4𝜂𝑒−𝑘/2 that
has a regret Ω(𝑇).
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Proof. After 𝜏 = 𝑘
2𝜂 steps we have 𝑤2

𝜏 ≤ 𝜀
4𝜂 . From Lemma 33, it is a valid error trajectory if for

every 3𝜏 ≥ 𝑡 ≥ 𝜏, 𝑤𝑡 = 𝑤𝜏 .

On the steps between 3𝜏 and 4𝜏 we have a loss of (1, 0). Since 𝑤3𝜏 = 𝑤𝜏 , we have that 𝑤4𝜏 =

(
1
2 ,

1
2

)
.

That is because this is what would have happen if those last 𝜏 steps where after 𝜏 (as the sum of
losses for both coordinates is 𝜏), and since we didn’t move at all in 𝜏 ≤ 𝑡 ≤ 3𝜏 it is the same.

On the steps between 4𝜏 and 5𝜏 we assume no errors. Coordinate 1 does the same trajectory that
coordinate 2 did in the beginning, so we have 𝑤1

𝜏 ≤ 𝜀
4𝜂 .

From Lemma 33, it is a valid error trajectory if for every 𝑇 ≥ 𝑡 ≥ 5𝜏, 𝑤𝑡 = 𝑤5𝜏 ≤ 𝜀
4𝜂 . Since this are

3𝑇/4 steps, we have a regret of Θ(𝑇).

For summary:

𝑤1 =

(
1
2
,

1
2

)
𝑤𝜏 ≈

(
1 − 𝜀

4𝜂
,
𝜀

4𝜂

)
𝑤3𝜏 ≈

(
1 − 𝜀

4𝜂
,
𝜀

4𝜂

)
𝑤4𝜏 =

(
1
2
,

1
2

)
𝑤5𝜏 ≈

(
𝜀

4𝜂
, 1 − 𝜀

4𝜂

)
𝑤𝑇 ≈

(
𝜀

4𝜂
, 1 − 𝜀

4𝜂

)
■

Appendix G. Proof of Theorems 6 and 7

Lemma 37. Let 𝑤1, 𝑤2 ∈ (0, 1] such that 𝑤1 ≤ 𝑤2, then 𝐷𝑟 (0, 𝑤1) ≤ 𝐷𝑟 (0, 𝑤2)

Proof. Denote 𝑓 (𝑥) = 𝐷𝑟 (0, 𝑥). We have:

𝑓 (𝑥) = 𝑟 (0) − 𝑟 (𝑥) + 𝑟 ′(𝑥)𝑥
𝑓 ′(𝑥) = −𝑟 ′(𝑥) + 𝑟 ′′(𝑥)𝑥 + 𝑟 ′(𝑥) = 𝑟 ′′(𝑥)𝑥 ≥ 0

Which means that 𝑓 is increasing in (0, 1]. ■

Lemma 38. Let 𝛾̂ = ({𝑤̂𝑡 }𝑇𝑡=1, {ℓ𝑡 }
𝑇
𝑡=1, 𝑅, 𝜂) be an 𝜀-approximate OMD trajectory with 𝜂 ≤ 1

4 and

coordinate separable 𝑅 with 𝑟 ′′(𝑤) = 1/𝑤𝜈 . For every 𝑖 ∈ [𝑑] and 𝑡 ∈ [𝑇] such that 𝜀 ≤ 𝜂2

𝑟 ′′ (𝑤̂𝑡 ) )
we have:

(∇𝜙𝑡 (𝑤̂𝑖
𝑡 )) ≤ 𝑂 (2𝜈𝜂)
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Proof. Since ℓ𝑖𝑡 ≤ 1 we have 𝜂ℓ𝑖𝑡 ≤ 𝜂, which means that we only need to prove:

𝑟 ′(𝑤̂𝑖
𝑡 ) − 𝑟 ′(𝑤̂𝑖

𝑡−1) ≤ 𝑂 (2𝜈𝜂)

Since 𝑟 ′ is monotonically increasing it is trivial if 𝑤̂𝑖
𝑡 ≤ 𝑤̂𝑖

𝑡−1, continuing assuming 𝑤̂𝑖
𝑡 > 𝑤̂𝑖

𝑡−1. We
have 𝜀 ≤ 𝜂2/𝑟 ′′(𝑤̂𝑖

𝑡 ) ≤ 1/(16𝑟 ′′(𝑤̂𝑖
𝑡 )), so from Lemma 18:

𝑤̂𝑖
𝑡−1 ≥ 1

2
𝑤̂𝑖
𝑡

⇔ 2𝜈

(𝑤̂𝑖
𝑡 )𝜈

≥ 1
(𝑤̂𝑖

𝑡−1)𝜈

⇔ 2𝜈𝑟 ′′(𝑤̂𝑖
𝑡 ) ≥ 𝑟 ′′(𝑤̂𝑖

𝑡−1)

From Lemma 17:

𝑤̂𝑖
𝑡 − 𝑤̂𝑖

𝑡−1 ≤ 4𝜂
𝑟 ′′(𝑤̂𝑖

𝑡 )
+

√︂
𝜀

𝑟 ′′(𝑤̂𝑖
𝑡 )

Which implies:

𝜀 ≤ 𝜂2

𝑤̂𝑖
𝑡

≤ 𝜂2

𝑟 ′′(𝑤̂𝑖
𝑡 )

⇒
√︂

𝜀

𝑟 ′′(𝑤̂𝑖
𝑡 )

≤ 𝜂

𝑟 ′′(𝑤̂𝑖
𝑡 )

⇒ 𝑤̂𝑖
𝑡 − 𝑤̂𝑖

𝑡−1 ≤ 5𝜂
𝑟 ′′(𝑤̂𝑖

𝑡 )

From mean value theorem and monotonicity of 𝑟 ′′:

𝑟 ′(𝑤̂𝑖
𝑡 ) − 𝑟 ′(𝑤̂𝑖

𝑡−1) ≤
��𝑤̂𝑖

𝑡 − 𝑤̂𝑖
𝑡−1

�� max
𝑤∈{𝑤̂𝑖

𝑡 ,𝑤̂
𝑖
𝑡−1}

𝑟 ′′(𝑤)

≤
(
𝑤̂𝑖
𝑡 − 𝑤̂𝑖

𝑡−1
)
𝑟 ′′(𝑤̂𝑖

𝑡−1)
≤

(
𝑤̂𝑖
𝑡 − 𝑤̂𝑖

𝑡−1
)
2𝜈𝑟 ′′(𝑤̂𝑖∗

𝑡 )

≤ 5𝜂
𝑟 ′′(𝑤̂𝑖

𝑡 )
2𝜈𝑟 ′′(𝑤̂𝑖

𝑡 )

≤ 5 · 2𝜈𝜂

= 𝑂 (2𝜈𝜂)

■

Lemma 39. Let K= Δ𝑑 and 𝛾̂ = ({𝑤̂𝑡 }𝑇𝑡=1, {ℓ𝑡 }
𝑇
𝑡=1, 𝑅, 𝜂) with 𝜂 ≤ 1

16 , coordinate separable 𝑅 with
𝑟 ′′(𝑤) = 1/𝑤𝜈 and uniform initialization 𝑤̂1 = (1/𝑑 . . . 1/𝑑) be an 𝜀-approximate OMD trajectory
such that there is 𝜉 > 0 such that for every 𝑡 ∈ [𝑇], 𝑤̂𝑖∗

𝑡 ≥ 𝜉. If 𝜀 ≤ 𝜂4

𝑟 ′′(min { 𝜂

𝑑
, 𝜉}) , its regret w.r.t

any 𝑤 ∈ K is bounded by:

Regret(𝑤) ≤ 1
𝜂
𝐷𝑅 (𝑤, 𝑤̂1) +𝑂 (2𝜈𝑇𝜂)

27



THE HIDDEN COST OF APPROXIMATION IN ONLINE MIRROR DESCENT

Proof. Let 𝜉′ = min
{
𝜂

𝑑
, 𝜉

}
, and let 𝑆𝑡 =

{
𝑖 ≠ 𝑖∗ : 𝑤̂𝑖

𝑡 ≥ 𝜉′
}

for 𝑡 ≥ 2.

In every step 𝑡 we set 𝑤̃𝑡 to be:

𝑤̃𝑖
𝑡 = 𝑤̂𝑖

𝑡 𝑖 ∉ 𝑆𝑡 , 𝑖 ≠ 𝑖∗

𝑤̃𝑖
𝑡 = 0 𝑖 ∈ 𝑆𝑡

𝑤̃𝑖∗
𝑡 = 1 −

∑︁
𝑖∉𝑆𝑡

𝑤̂𝑖
𝑡

Since the changes between 𝑤̂𝑡 and 𝑤̃𝑡 are only in coordinates with value greater then 𝜉′, the effective
smoothness is upper bounded by 𝑟 ′′(𝜉′) (since 𝑟 ′′(𝑤) = 1/𝑤𝜈 for all 𝑤 ∈ (0, 1]). To use Lemma 15,
we need to show that 𝜀 ≤ 𝐷2𝑟 ′′(𝜉′)/2 where 𝐷 is the diameter w.r.t to 𝐿1 norm. Indeed, we have
that 𝑟 ′′(𝑤𝑖) ≥ 1 for all 𝑤 ∈ Δ𝑑 and 𝑖 ∈ [𝑑] and 𝐷 = 2. By our assumptions it holds that 𝜀 ≤ 1,
hence 𝜀 ≤ 𝐷2𝑟 ′′(𝜉′)/2. Thus, from Lemma 15 on 𝜙𝑡 :

⟨𝜂ℓ𝑡−1 + ∇𝑅(𝑤̂𝑡 ) − ∇𝑅(𝑤̂𝑡−1), 𝑤̃𝑡 − 𝑤̂𝑡⟩ ≥ −2
√︁

2𝑟 ′′(𝜉′)𝜀 ≥ −2𝜂2.

Which means: (
𝜂ℓ𝑖

∗

𝑡−1 + ∇𝑅(𝑤̂𝑡 )𝑖
∗ − ∇𝑅(𝑤̂𝑡−1)𝑖

∗
)
(𝑤̃𝑖∗

𝑡 − 𝑤̂𝑖∗
𝑡 )

+
∑︁
𝑖∈𝑆𝑡

(
𝜂ℓ𝑖𝑡−1 + ∇𝑅(𝑤̂𝑡 )𝑖 − ∇𝑅(𝑤̂𝑡−1)𝑖

)
(0 − 𝑤̂𝑖

𝑡 )

≥ −2𝜂2. (9)

Notice that since 𝜉′ ≤ 𝜂

𝑑
we have that

∑
𝑖∉𝑆𝑡 𝑤̂

𝑖
𝑡 ≤ 𝜂 which means 1 − 𝑤̃𝑖∗

𝑡 ≤ 𝜂. Additionally, from
Lemma 38 we have that ∇𝜙(𝑤̂𝑖∗

𝑡 ) ≤ 𝑂 (2𝜈𝜂). We have:(
𝜂ℓ𝑖

∗

𝑡−1 + ∇𝑅(𝑤̂𝑡 )𝑖
∗ − ∇𝑅(𝑤̂𝑡−1)𝑖

∗
) (
𝑤̃𝑖∗
𝑡 − 1

)
= −𝑂 (2𝜈𝜂2)

Thus, Equation (9) can be written as:(
𝜂ℓ𝑖

∗

𝑡−1 + ∇𝑅(𝑤̂𝑡 )𝑖
∗ − ∇𝑅(𝑤̂𝑡−1)𝑖

∗
)
(1 − 𝑤̂𝑖∗

𝑡 )+(
𝜂ℓ𝑖

∗

𝑡−1 + ∇𝑅(𝑤̂𝑡 )𝑖
∗ − ∇𝑅(𝑤̂𝑡−1)𝑖

∗
)
(𝑤̃𝑖∗

𝑡 − 1)+∑︁
𝑖∈𝑆

(
𝜂ℓ𝑖𝑡−1 + ∇𝑅(𝑤̂𝑡 )𝑖 − ∇𝑅(𝑤̂𝑡−1)𝑖

)
(0 − 𝑤̂𝑖

𝑡 )

≥ −𝜂2

⇒(
𝜂ℓ𝑖

∗

𝑡−1 + ∇𝑅(𝑤̂𝑡 )𝑖
∗ − ∇𝑅(𝑤̂𝑡−1)𝑖

∗
)
(1 − 𝑤̂𝑖∗

𝑡 ) +
∑︁
𝑖∈𝑆

(
𝜂ℓ𝑖𝑡−1 + ∇𝑅(𝑤̂𝑡 )𝑖 − ∇𝑅(𝑤̂𝑡−1)𝑖

)
(0 − 𝑤̂𝑖

𝑡 ) ≥ −𝑂 (2𝜈𝜂2)

𝜂ℓ𝑖
∗

𝑡−1(𝑤̂
𝑖∗
𝑡 − 1) + 𝜂

∑︁
𝑖∈𝑆

ℓ𝑖𝑡−1(𝑤̂
𝑖
𝑡 − 0) ≤(

∇𝑅(𝑤̂𝑡 )𝑖
∗ − ∇𝑅(𝑤̂𝑡−1)𝑖

∗
)
(1 − 𝑤̂𝑖∗

𝑡 ) +
∑︁
𝑖∈𝑆

(
∇𝑅(𝑤̂𝑡 )𝑖 − ∇𝑅(𝑤̂𝑡−1)𝑖

)
(0 − 𝑤̂𝑖

𝑡 ) +𝑂 (2𝜈𝜂2)
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From Lemma 19:

𝜂ℓ𝑖
∗

𝑡−1(𝑤̂
𝑖∗
𝑡 − 1) + 𝜂

∑︁
𝑖∈𝑆𝑡

ℓ𝑖𝑡−1(𝑤̂
𝑖
𝑡 − 0) ≤ 𝐷𝑟 (1, 𝑤̂𝑖∗

𝑡−1) − 𝐷𝑟 (1, 𝑤̂𝑖∗
𝑡 ) − 𝐷𝑟 (𝑤̂𝑖∗

𝑡 , 𝑤̂
𝑖∗

𝑡−1)

+
∑︁
𝑖∈𝑆𝑡

𝐷𝑟 (0, 𝑤̂𝑖
𝑡−1) − 𝐷𝑟 (0, 𝑤̂𝑖

𝑡 ) − 𝐷𝑟 (𝑤̂𝑖
𝑡 , 𝑤̂

𝑖
𝑡−1)

+𝑂 (2𝜈𝜂2)

Fix some coordinate 𝑖 ≠ 𝑖∗, and let (𝑠1, 𝑡1), (𝑠2, 𝑡2), . . . (𝑠𝑛, 𝑡𝑛) be all enter and exit times for 𝑖 to 𝑆𝑡 .
Namely, for every 𝑗 ∈ [𝑛] and 𝑠 𝑗 ≤ 𝑡 ≤ 𝑡 𝑗 , 𝑖 ∈ 𝑆𝑡 , and 𝑖 ∉ 𝑆𝑡 otherwise. Hence,∑︁

𝑡:𝑖∈𝑆𝑡
𝐷𝑟 (0, 𝑤̂𝑖

𝑡−1) − 𝐷𝑟 (0, 𝑤̂𝑖
𝑡 ) =

𝑛∑︁
𝑗=1

𝐷𝑟 (0, 𝑤̂𝑖
𝑠 𝑗−1) − 𝐷𝑟 (0, 𝑤̂𝑖

𝑡 𝑗
),

where the equality follows by telescoping the terms. Since 𝑠 𝑗 is enter time for coordinate 𝑖, we
have that 𝑖 ∉ 𝑆𝑠 𝑗−1, which means that 𝑤̂𝑖

𝑠 𝑗−1 < 𝜉′. On the other hand, 𝑖 ∈ 𝑆𝑡 𝑗 , which means that
𝑤̂𝑖
𝑡 𝑗
≥ 𝜉′ > 𝑤̂𝑖

𝑠 𝑗−1. Thus, by Lemma 37 we get that 𝐷𝑟 (0, 𝑤̂𝑠 𝑗−1) ≤ 𝐷𝑟 (0, 𝑤̂𝑡 𝑗 ) which we apply on
the RHS of the previous display to obtain:∑︁

𝑡:𝑖∈𝑆𝑡
𝐷𝑟 (0, 𝑤̂𝑖

𝑡−1) − 𝐷𝑟 (0, 𝑤̂𝑖
𝑡 ) ≤ 𝐷𝑟 (0, 𝑤̂𝑖

𝑠1−1)

We now argue that for every 𝑖 ∈ [𝑑], 𝑖 ∈ 𝑆2, which means that 𝑠1 = 2. Assume by contradiction that
𝑤̂𝑖

2 < 𝑤̂𝑖
1 (and thus 𝑟 ′′(𝑤̂𝑖

2) > 𝑟 ′′(𝑤̂𝑖
1), from Lemma 17:

𝑤̂𝑖
2 − 𝑤̂𝑖

1 ≤ 𝜂

𝑟 ′′(1/𝑑) +
√︂

𝜀

𝑟 ′′(1/𝑑)

≤ 𝜂

𝑑
+

√︄
1

16𝑟 ′′(𝜂/𝑑)𝑟 ′′(1/𝑑)

≤ 1
4𝑑

+ 1
4𝑑

⇒ 𝑤̂𝑖
2 ≥ 1/2𝑑

Thus: ∑︁
𝑡:𝑖∈𝑆𝑡

𝐷𝑟 (0, 𝑤̂𝑖
𝑡−1) − 𝐷𝑟 (0, 𝑤̂𝑖

𝑡 ) ≤ 𝐷𝑟 (0, 𝑤̂𝑖
1)

Thus:
𝑇∑︁
𝑡=2

𝜂ℓ𝑖
∗

𝑡−1(𝑤̂
𝑖∗
𝑡 − 1) + 𝜂

∑︁
𝑖∈[𝑑 ]\𝑖∗

∑︁
𝑡:𝑖∈𝑆𝑡

ℓ𝑖𝑡−1(𝑤̂
𝑖
𝑡 − 0)

≤ 𝐷𝑟 (1, 𝑤̂𝑖∗

1 ) −
𝑇∑︁
𝑡=2

𝐷𝑟 (𝑤̂𝑖∗
𝑡 , 𝑤̂

𝑖∗

𝑡−1) +
∑︁

𝑖∈[𝑑 ]\𝑖∗
𝐷𝑟 (0, 𝑤̂𝑖

1) −
𝑇∑︁
𝑡=2

𝐷𝑟 (𝑤̂𝑖
𝑡 , 𝑤̂

𝑖
𝑡−1) +𝑂 (2𝜈𝑇𝜂2)

= 𝐷𝑅 (𝑤∗, 𝑤̂1) −
𝑇∑︁
𝑡=2

𝐷𝑅 (𝑤̂𝑡 , 𝑤̂𝑡−1) +𝑂 (2𝜈𝑇𝜂2) (10)
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Additionally, since if 𝑖 ∉ 𝑆𝑡 we have 𝑤̂𝑖
𝑡 ≤ 𝜉′ ≤ 𝜂

𝑑
, we can say:∑︁

𝑖∈[𝑑 ]\𝑖∗

∑︁
𝑡:𝑖∉𝑆𝑡

ℓ𝑖𝑡−1(𝑤̂
𝑖
𝑡 − 0) ≤ 𝑇𝜂 (11)

Combining Equations (10) and (11) (recall that 𝑤∗ has 1 in 𝑖∗ and 0 in other coordinates):
𝑇∑︁
𝑡=2

𝜂ℓ𝑖
∗

𝑡−1(𝑤̂
𝑖∗
𝑡 − 1) + 𝜂

∑︁
𝑖∈[𝑑 ]\𝑖∗

𝑇∑︁
𝑡=2

ℓ𝑖𝑡−1(𝑤̂
𝑖
𝑡 − 0) ≤ 𝐷𝑅 (𝑤∗, 𝑤̂1) −

𝑇∑︁
𝑡=2

𝐷𝑅 (𝑤̂𝑡 , 𝑤̂𝑡−1) +𝑂 (2𝜈𝑇𝜂2)

⇐⇒
𝑇∑︁
𝑡=2

⟨𝜂ℓ𝑡−1, 𝑤̂𝑡 − 𝑤∗⟩ ≤ 𝐷𝑅 (𝑤∗, 𝑤̂1) −
𝑇∑︁
𝑡=2

𝐷𝑅 (𝑤̂𝑡 , 𝑤̂𝑡−1) +𝑂 (2𝜈𝑇𝜂2)

⇐⇒
𝑇∑︁
𝑡=2

⟨ℓ𝑡−1, 𝑤̂𝑡 − 𝑤∗⟩ ≤ 1
𝜂
𝐷𝑅 (𝑤∗, 𝑤̂1) −

1
𝜂

𝑇∑︁
𝑡=2

𝐷𝑅 (𝑤̂𝑡 , 𝑤̂𝑡−1) +𝑂 (2𝜈𝑇𝜂)

From Lemma 20:

Regret(𝑤∗) ≤ 1
𝜂
𝐷𝑅 (𝑤∗, 𝑤̂1) +𝑂 (2𝜈𝑇𝜂)

■

Lemma 40. Let 𝛾 = ({𝑤𝑡 }𝑇𝑡=1, {ℓ𝑡 }
𝑇
𝑡=1, 𝑅, 𝜂) and 𝛾̂ = ({𝑤̂𝑡 }𝑇𝑡=1, {ℓ𝑡 }

𝑇
𝑡=1, 𝑅, 𝜂) be OMD trajectory

and OMD error trajectory, and assume 𝑇 ≥ 4, 𝛾 is 𝑘-balanced and 𝜀 ≤ 1
𝑟 ′′

(
1

2𝑑𝑒𝑘+1

)
𝑇2

.

Then, for every 𝑡 ∈ [𝑇], 𝑤̂𝑖∗
𝑡 ≥ 1

𝑑𝑒𝑘+1 .

Proof. We will prove by induction on 𝑡. Since 𝑤̂𝑖
1 = 1

𝑑
the base case holds.

Assume the statement is true for 𝑡 − 1 and we prove for 𝑡.

If 𝑤̂𝑖∗
𝑡 ≥ 𝑤̂𝑖∗

𝑠 for some 𝑠 < 𝑡 then the claim follows from the inductive assumption. If for every 𝑖 ≠ 𝑖∗,
𝑤̂𝑖
𝑡 ≤ 1

𝑑
we have that 𝑤̂𝑖∗

𝑡 ≥ 1
𝑑

and the claim follows trivially. Proceeding, we consider the case that
for every 𝑠 < 𝑡, 𝑤̂𝑖∗

𝑡 < 𝑤̂𝑖∗
𝑠 and there is some 𝑖 ∈ [𝑑] such that 𝑤̂𝑖

𝑡 >
1
𝑑

.

Since 𝑇 ≥ 3 we have from the Lemma’s assumptions and the induction assumptions that 𝜀 ≤
1

18𝑟 ′′ (1/𝑑𝑒𝑘+1 ) ≤ 1
16𝑟 ′′ (𝑤̂𝑖

𝑡−1 )
. From Lemma 18:

𝑤̂𝑖∗
𝑡 ≥

𝑤̂𝑖∗

𝑡−1
2

From this and the inductive assumption we have that for all 𝑠 ∈ [1, 𝑡], 𝑤̂𝑖∗
𝑠 ≥ 1

2𝑑𝑒𝑘+1 . (We now want
to improve this statement to 𝑤̂𝑖∗

𝑡 ≥ 1
𝑑𝑒𝑘+1 .)

Fix 𝑖 to be the coordinate for which 𝑤̂𝑖
𝑡 > 1

𝑑
. We’ll show that for every 𝑠 ∈ [1, 𝑡], 𝑤̂𝑖

𝑠 > 1
𝑑𝑒𝑘+1 .

Assume by contradiction that 𝑠 is the last time 𝑤̂𝑖
𝑠 ≤ 1

𝑑𝑒𝑘+1 . Again, since 𝑇 ≥ 3 we have 𝜀 ≤
1/16𝑟 ′′(𝑤̂𝑖

𝑠+1), thus from Lemma 18:

𝑤̂𝑖
𝑠 ≥

1
2
𝑤𝑖
𝑠+1 >

1
2𝑑𝑒𝑘+1
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Which means that for every 𝑠′ ∈ [𝑠, 𝑡], 𝑤̂𝑖
𝑠′ ≥ 1

2𝑑𝑒𝑘+1 . From Lemma 32 and our assumption on 𝜀

(see Definition 30 for the definition of 𝐵𝑖):

𝐵𝑖
𝛾̂ (𝑠, 𝑡) ≤ 𝐵𝑖

𝛾 (𝑠, 𝑡) + 𝑇

√︄
𝑟 ′′

(
1

2𝑑𝑒𝑘+1

)
𝜀 ≤ 𝑘 + 1

(we used 𝑟 ′′ because in our case, that 𝑐1 = 𝑐2 = 1, it is the same).

Recall that 𝑤̂𝑖∗
𝑡 < 𝑤̂𝑖∗

𝑠 , from Lemma 31:

𝑤̂𝑖
𝑡 ≤ 𝑒

𝐵𝑖
𝛾̂
(𝑠,𝑡 )

𝑤̂𝑖
𝑠 ≤ 𝑒𝑘+1𝑤̂𝑖

𝑠 ≤ 𝑒𝑘+1 1
𝑑𝑒𝑘+1 =

1
𝑑

Which is a contradiction to 𝑤̂𝑖
𝑡 > 1

𝑑
. Now we can continue assuming that for all 𝑠 ∈ [1, 𝑡], 𝑤̂𝑖

𝑠 >
1

𝑑𝑒𝑘+1 .

From Lemma 27:

𝐵𝑖
𝛾̂ (1, 𝑡) ≤ 𝐵𝑖

𝛾 (1, 𝑡) + 𝑇

√︄
𝑟 ′′

(
1

2𝑑𝑒𝑘+1

)
𝜀 ≤ 𝑘 + 1

Now, from Lemma 31 (recall that 𝑤̂𝑖
𝑡 >

1
𝑑
= 𝑤̂𝑖

1):

𝑤̂𝑖∗
𝑡 ≥

𝑤̂𝑖∗

1
𝑒𝑘+1 =

1
𝑑𝑒𝑘+1 ,

which completes the inductive step and the proof. ■

Lemma 41. Let K= Δ𝑑 be the simplex, let {ℓ𝑡 }𝑇𝑡=1 be an 𝛼-balanced loss sequence, and let 𝑅(𝑤) =∑𝑑
𝑖=1 𝑤𝑖 log𝑤𝑖 be the negative entropy regularizer. Assume 𝜂 ≤ 1/16 and𝑇 ≥ 3, if the approximation

error satisfies

𝜀 ≤ 1
𝑑 max {6𝑒𝜂𝛼, 1/𝜂} min

{
𝜂4, 1/𝑇2},

then the regret of any 𝜀-approximate OMD trajectory is bounded as

Regret(𝑤) ≤ 1
𝜂
𝐷𝑅 (𝑤, 𝑤1) +𝑂 (𝑇𝜂).

Proof. From Lemma 26 the optimal trajectory is 𝛼𝜂-balanced. Since 𝜀 ≤ 1
16𝑑𝑒𝛼𝜂+1𝑇2 = 1

𝑟 ′′ (1/16𝑑𝑒𝛼𝜂+1 )𝑇2 ,

from Lemma 40 for every 𝑡 ∈ [𝑇], 𝑤̂𝑖∗
𝑡 ≥ 1

𝑑𝑒𝛼𝜂+1 .

We also have that 𝜀 ≤ 𝜂4

𝑟 ′′ (min {𝜂/𝑑,1/𝑑𝑒𝛼𝜂+1 )} , hence from Lemma 39 with 𝜉 = 1/𝑑𝑒𝛼𝜂+1 and 𝜈 = 1
we get the desired results. ■

Implications for the main theorems.

Proof of Theorem 6: Any adversarial sequence over the simplex is 𝑇/2-balanced: if one coordinate
exceeds the best by more than 𝑇/2, it must actually be the best. Applying Lemma 41 with 𝛼 = 𝑇/2
gives the desired upper bound.
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Proof of Theorem 7: For i.i.d. losses, Hoeffding’s inequality and union bounds implies that with
probability at least 1 − 𝛿, the balance is at most 𝛼 = 𝑂 (

√︁
𝑇 log(𝑑𝑇2/𝛿)), which means that 𝜂𝛼 ≤

log
(
𝑑𝑇2/𝛿

)
. Plugging this into Lemma 41 together with the fact that 𝐷𝑅 (𝑤, 𝑤1) ≤ log(𝑑) for all 𝑤

yields the stochastic upper bound.

Appendix H. Proof of Theorem 5

Lemma 42. For every 𝜈-barrier regularizer 𝑟and 1 ≥ 𝑤2 ≥ 𝑤1 ≥ 0 we have:

𝑟 ′(𝑤2) − 𝑟 ′(𝑤1) =
𝑐1

𝑤𝜈−1
1

− 𝑐1

𝑤𝜈−1
2

Proof.

𝑟 ′(𝑤2) − 𝑟 ′(𝑤1) =
∫ 𝑤2

𝑤1

𝑟 ′′(𝑤)𝑑𝑤

≥
∫ 𝑤2

𝑤1

𝑐1
𝑤𝜈

𝑑𝑤

=
𝑐1

𝑤𝜈−1
1

− 𝑐1

𝑤𝜈−1
2

■

Lemma 43. Denote 𝜓 =

(
𝑐1

8𝜂𝑇𝑑+𝑐1 (2𝑑)𝜈−1

)1/(𝜈−1)
. In the assumptions of Theorem 5, for every 𝑡, 𝑖:

𝑤𝑖
𝑡 ≥ 𝜓

Proof. One can see that the assumptions of the theorem are that 𝜀 ≤ 𝜂4 min
{
𝑐2,

1
𝑐2

} (
𝜓

2

)𝜈
. We will

now prove by induction that for every 𝑡 ∈ [𝑇], 𝑤𝑖
𝑡 ≥ 𝜓.

Notice that 𝜂 ≤ 1
16𝑐1

and 𝜀 ≤ 𝜂𝜓𝜈 ≤ (𝑤𝑖
𝑡−1 )

𝜈

16𝑐1
, which means that from Lemma 18, we know for start

that 𝑤𝑖
𝑡 ≥ 𝜓/2. This means that for every 𝑡′ ∈ [1, 𝑡], 𝑤𝑖

𝑡 ≥ 𝜓/2. One can see that 𝜀 ≤ 𝑐2𝜓/4 which
means that we can use Lemma 27 with 𝜓/2. Since the balance of an exact trajectory is always
bounded by 𝜂𝑇 , for every normalized 𝑣 ∈ ker(𝐴):

𝐵𝑣
𝛾 (1, 𝑡) ≤ 𝑇𝜂 + 𝑇

√︄
𝑐2𝜀

2
𝜓

𝜈

≤ 2𝜂𝑇

From Lemma 29 and the induction assumption, for every 𝑖 ∈ [𝑑] and 𝑡′ ≤ 𝑡:

𝑟 ′(1/2𝑑) − 𝑟 ′(𝑤𝑖
𝑡 ) ≤ 8𝜂𝑇𝑑
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If 𝑤𝑖
𝑡 ≤ 1/2𝑑 we can use Lemma 42:

𝑐1(
𝑤𝑡 ′
𝑖

)𝜈−1 ≤ 8𝜂𝑇𝑑 + 𝑐1(2𝑑)𝜈−1

⇒ 𝑤𝑡 ′
𝑖 ≥

(
𝑐1

8𝜂𝑇𝑑 + 𝑐1(2𝑑)𝜈−1

)1/(𝜈−1)
= 𝜓

Else, i.e if 𝑤𝑖
𝑡 ≥ 1/2𝑑, we have:

𝑤𝑖
𝑡 ≥ 1/2𝑑

=

(
1

(2𝑑)𝜈−1

)1/𝜈−1

=

(
𝑐1

𝑐1(2𝑑)𝜈−1

)1/𝜈−1

≥
(

𝑐1

8𝜂𝑇𝑑 + 𝑐1(2𝑑)𝜈−1

)1/𝜈−1

= 𝜓

Which ends the induction step. ■

Proof of Theorem 5: Since the polytope is a subset of the simplex, the diameter is bounded by
2. From Lemma 43, the effective smoothness of the trajectory is bounded by 𝛽 := 𝑐2/𝜓𝜈 . By the
assumption about 𝜀 we have 𝜀 ≤ 𝜂4/𝛽. From Lemma 15, for every 𝑡:

⟨𝜂ℓ𝑡 + ∇𝑅(𝑤𝑡+1) − ∇𝑅(𝑤𝑡 ), 𝑤∗ − 𝑤𝑡+1⟩ ≥ −2
√︁

2𝛽𝜀 = Θ

(
𝜂2

)
From here it is straightforward standard OMD arguments:

𝜂ℓ𝑡 · (𝑤𝑡+1 − 𝑤∗) ≤ (∇𝑅(𝑤𝑡+1) − ∇𝑅(𝑤𝑡 )) · (𝑤∗ − 𝑤𝑡+1) + Θ

(
𝜂2

)
= 𝐷𝑅 (𝑤∗, 𝑤𝑡 ) − 𝐷𝑅 (𝑤∗, 𝑤𝑡+1) − 𝐷𝑅 (𝑤𝑡+1, 𝑤𝑡 ) + Θ

(
𝜂2

)
Summing for all 𝑡 ∈ [𝑇]:

𝜂
𝑇∑︁
𝑡=1

ℓ𝑡 · (𝑤𝑡+1 − 𝑤∗) ≤ 𝐷𝑅 (𝑤∗, 𝑤1) −
𝑇∑︁
𝑡=1

𝐷𝑅 (𝑤𝑡+1, 𝑤𝑡 ) + Θ

(
𝜂2𝑇

)
=⇒

𝑇∑︁
𝑡=1

ℓ𝑡 · (𝑤𝑡+1 − 𝑤∗) ≤ 1
𝜂
𝐷𝑅 (𝑤∗, 𝑤1) −

1
𝜂

𝑇∑︁
𝑡=1

𝐷𝑅 (𝑤𝑡+1, 𝑤𝑡 ) + Θ(𝜂𝑇)

From Lemma 20:

Regret(𝑤∗) ≤ 𝑂

(
1
𝜂
𝐷𝑅 (𝑤∗, 𝑤1) + Θ(𝜂𝑇)

)
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Appendix I. Proof of Theorem 8

I.1. Polytope definition

The polytope is defined as
{
𝑤 ∈ ℝ𝑑 : 𝐴𝑤 = 𝑏 ∧ (𝑤𝑖 ≥ 0, ∀𝑖 ∈ [𝑑])

}
for 𝐴, 𝑏 defined below. Denote

𝑚 = 16 log
(

1
𝜀

)
, we have 𝑑 = 5𝑚 + 2. Additionally, we for assume for convenience that 𝑚 ≥

128 log(2𝑇) and 𝜀 < 4𝜂 (obviously proof that works for small 𝜀 works for bigger).

The matrix 𝐴 has 4𝑚 + 1 rows. The first 4𝑚 rows are, for every 𝑖 ∈ [𝑚]:

𝐴𝑖 = 𝑒𝑚+𝑖 + 𝑒2𝑚+𝑖 − 2𝑒3𝑚+𝑖

𝐴𝑚+𝑖 = 𝑒𝑚+𝑖 − 𝑒2𝑚+𝑖

𝐴2𝑚+𝑖 = 𝑒𝑖 + 3𝑒𝑚+𝑖 + 𝑒4𝑚+𝑖

𝐴3𝑚+𝑖 = 𝑒4𝑚+𝑖 − 𝑒5𝑚+1

The last row is:

𝐴4𝑚+1 = 𝑒5𝑚+1 + 𝑒5𝑚+2

And:

𝑏 = 𝐴
𝑑∑︁
𝑖=1

1
𝑑
𝑒𝑖

Namely, 𝑏 is defined such that the point
(

1
𝑑
, 1
𝑑
, . . . , 1

𝑑

)
is in the polytope. Denote this point as 𝑤1,

the OMD will always start from here.

Denote the following set of 𝑚 + 1 vectors, {𝑣𝑖}𝑚+1
𝑖 :

𝑣𝑖 = 3𝑒𝑖 − 𝑒𝑚+𝑖 − 𝑒2𝑚+𝑖 − 𝑒3𝑚+𝑖 ∀𝑖 ∈ [𝑚]

𝑣𝑚+1 =
𝑚∑︁
𝑖=1

𝑒𝑖 + 𝑒5𝑚+2 −
5𝑚+1∑︁
𝑖=4𝑚+1

𝑒𝑖

Lemma 44. {𝑣𝑖}𝑚+1
𝑖=1 is a basis for ker(𝐴).

Proof. One can notice that 𝐴 is already in echelon form, so it is full ranked, which means that
𝑑𝑖𝑚 ker(𝐴) = 𝑚 + 1. Additionally, Every vector of 𝑣 has a non-zero coordinate that’s zeroed in all
other vectors of 𝑣, so 𝑣 is linear independent, which means that we only need to show that each of
the vectors indeed nulls 𝐴.

For every 𝑖 ∈ [1, 𝑚], 𝑣𝑖 has common non-zero coordinates only with 𝐴𝑖 , 𝐴𝑚+𝑖 , 𝐴2𝑚+𝑖 , 𝐴3𝑚+𝑖 . One
can easily see that it nulls them. As for 𝑣𝑚+1, it has common non-zero coordinates with 𝐴𝑖 for every
𝑖 ∈ [2𝑚 + 1, 4𝑚 + 1], which again can be seen easily to nullify. ■

Lemma 45. The polytope is a subspace of the simplex
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Proof. To be inside the simplex all points of the polytope should satisfy two conditions - all co-
ordinates greater than 0 and the sum of coordinates should be 1. The first is by definition in this
polytope.

Let 𝑤 be some point in the polytope. Since 𝐴𝑤 = 𝑏 and 𝐴𝑤1 = 𝑏, 𝑤−𝑤1 ∈ ker(𝐴). From Lemma 44,
we can write:

𝑤 = 𝑤1 +
∑︁
𝑖

𝛼𝑖𝑣𝑖

For some 𝛼𝑖 ∈ ℝ.

All the vectors in 𝑣 has the sum of their coordinates 0. Thus, the sum of coordinates of 𝑤 is the same
as 𝑤1, concluding the proof. ■

I.2. General settings and hardness event

Since we want to prove a lower bound of the form 𝑇
√︃

𝜂

log ( 1
𝜀 )

= Θ

(
𝑇

√︃
𝜂

𝑑

)
, and there’s a known

lower bound for 𝑇𝜂, we can assume 𝑑 ≤ 1
𝜂

.

The losses for the first 𝑚 coordinates is constant 0, for the [𝑚+1, 4𝑚] coordinates it’s constant 1, for
the [4𝑚 + 1, 5𝑚] coordinates it’s gaussian with mean 0 and variance 1, for the 5𝑚 + 1th coordinate
it is guassian with mean

√︁
𝜂𝑑 ≤ 1 and variance 1 and for the 5𝑚 + 2th coordinate it’s constant 0.

Denote 𝜏 = 3
𝜂

. We define the hardness event 𝐸 to be the following events:

5𝑚+1∑︁
𝑖=4𝑚+1

ℓ𝑖:𝜏 ≤ 0

5𝑚+1∑︁
𝑖=4𝑚+1

ℓ𝑖𝑡 ≤
𝑚

16
∀𝑡 ∈ [𝑇]

Lemma 46.

Pr (𝐸) = Ω(1)

Proof. Denote 𝐺 =
∑5𝑚+1

𝑖=4𝑚+1 ℓ
𝑖
:𝜏 . Since 𝐺 is a sum of gaussian random variables, it is also a gaussian

random variable, denote its mean with 𝜇 and variance 𝜎2. Simple calculation shows that 𝜇 =√︁
𝑑𝜂𝜏 = 2

√︃
𝑑
𝜂

and 𝜎2 = 𝜏(𝑚 +1) = 2(𝑚+1)
𝜂

. Since 𝑚 = Θ(𝑑), we have that 𝜇 = Θ(𝜎). It is a general
attribute of a gaussian that in such case the probability of having 𝐺 ≤ 0 is Θ(1).

Fix 𝑡 ∈ [𝑇]. Using Hoeffding inequality we have that w.p 1
2𝑇 :

5𝑚+1∑︁
𝑖=4𝑚+1

ℓ𝑡 (𝑖) ≤
√︂

𝑚 + 1
2

log (2𝑇)
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Since log(2𝑇) ≤ 𝑚
128 :

5𝑚+1∑︁
𝑖=4𝑚+1

ℓ𝑡 (𝑖) ≤
𝑚

16

Union bound on all 𝑡 ∈ [𝑇] concludes the proof. ■

For every 𝑡 ∈ [𝑇] we know that 𝑤𝑡 − 𝑤1 ∈ ker(𝐴). From Lemma 44, it can be written as a linear
combination of 𝑣. Denote the coefficients as 𝛼, namely:

𝑤𝑡 = 𝑤1 +
𝑚+1∑︁
𝑖=1

𝛼𝑖
𝑡𝑣𝑖

I.3. Analysis

Lemma 47. For every 𝑖 ∈ [𝑚], 𝑤𝑖
𝜏 ≥ 5

2𝑑

Proof. Assume by contradiction that 𝑤𝑖
𝜏 ≥ 3

𝑑
. One can notice that the (𝑚 + 𝑖, 2𝑚 + 𝑖, 3𝑚 + 𝑖) are

only in 𝑣𝑖 with the same coefficient, which means that 𝑤𝑚+𝑖
𝑡 = 𝑤2𝑚+𝑖

𝑡 = 𝑤𝑚+𝑖
𝑡 .

Notice that 𝜂⟨ℓ:𝜏 , 𝑣𝑖⟩ = −3𝜂𝜏 = −9. From Lemma 26:

−9 = ⟨∇𝑅(𝑤1) − ∇𝑅(𝑤𝑡 ), 𝑣𝑖⟩

= 3 log

(
𝑤𝑖

1
𝑤𝑖
𝜏

)
+ log

(
𝑤𝑚+𝑖
𝜏

𝑤𝑚+𝑖
1

)
+ log

(
𝑤2𝑚+𝑖
𝜏

𝑤2𝑚+𝑖
1

)
+ log

(
𝑤3𝑚+𝑖
𝜏

𝑤3𝑚+𝑖
1

)
≥ 3 log

(
1
3

)
+ 3 log

(
𝑤𝑚+𝑖
𝜏

𝑤𝑚+𝑖
1

)
⇐⇒ −3 ≥ log

(
1
3

)
+ log

(
𝑑𝑤𝑚+𝑖

𝜏

)
= log

(
𝑑𝑤𝑚+𝑖

𝜏

3

)
⇐⇒ 𝑤𝑚+𝑖

𝜏 ≤ 3
𝑒3𝑑

≤ 1
6𝑑

Which means that 𝛼𝑖 ≥ 5
6𝑑 . Additionally, 𝛼𝑚+1 ≥ − 1

𝑑
, since else it violates 𝑒5𝑚+2 ≥ 0. We have:

𝑤𝑖
𝜏 =

1
𝑑
+ 3𝛼𝑖 + 𝛼𝑚+𝑖 ≥

5
2𝑑

■

Lemma 48. Assume 𝐸 and optimal trajectory, we have 𝛼𝑚+1
𝜏 ≤ − 1

𝑑
+ 𝑒𝑚/8

Proof. We’ll first show that 𝛼𝑚+1
𝜏 ≤ 0. Assume the opposite by contradiction. This means that

𝑤𝑖
𝜏 ≤ 𝑤𝑖

1 for all 𝑖 ∈ [4𝑚 + 1, 5𝑚 + 1] and 𝑤5𝑚+2
𝜏 ≥ 𝑤5𝑚+2

1 . Together with Lemma 47 this means that

36



THE HIDDEN COST OF APPROXIMATION IN ONLINE MIRROR DESCENT

in the positive elements of 𝑣𝑚+1 we have 𝑤𝑖
𝜏 > 𝑤𝑖

1 and in the negative elements we have 𝑤𝑖
𝜏 < 𝑤𝑖

1.
This means that ⟨∇𝑅(𝑤1) − ∇𝑅(𝑤𝑡 ), 𝑣𝑚+1⟩ < 0. From 𝐸 we have ⟨ℓ:𝜏 , 𝑣𝑚+1⟩ ≥ 0, which is a
contradiction to Lemma 26.

We continue assuming 𝛼𝑚+1
𝜏 ≤ 0. Notice that 𝛼𝑚+1

𝜏 ≥ − 1
𝑑

to satisfy the constraint 𝑤5𝑚+2
𝜏 ≥ 0, so for

every 𝑖 ∈ [4𝑚 + 1, 5𝑚 + 1], we have 𝑤𝑖
𝜏 ≤ 1

2𝑑 . From 𝐸 and Lemma 26:

0 ≤ −
5𝑚+1∑︁
𝑖=4𝑚+1

ℓ𝑖:𝜏

=
𝑚∑︁
𝑖=1

ℓ𝑖:𝜏 + ℓ5𝑚+2
:𝜏 −

5𝑚+1∑︁
𝑖=4𝑚+1

ℓ𝑖:𝜏

= ⟨ℓ:𝜏 , 𝑣𝑚+1⟩

From Lemma 26:

0 ≤ ⟨∇𝑅(𝑤1) − ∇𝑅(𝑤𝑡 ), 𝑣𝑚+1⟩

=
𝑚∑︁
𝑖=1

log

(
𝑤𝑖

1
𝑤𝑖
𝜏

)
+ log

(
𝑤5𝑚+2

1

𝑤5𝑚+2
𝜏

)
−

5𝑚+1∑︁
𝑖=4𝑚+1

log

(
𝑤𝑖

1
𝑤𝑖
𝜏

)
Since 𝑤𝑖

𝜏 ≤ 1
2𝑑 , we have

𝑤𝑖
1

𝑤𝑖
𝜏
≥ 2. From Lemma 47, we have

𝑤𝑖
1

𝑤𝑖
𝜏
≤ 2.5. Thus:

𝑚 log(2.5) − (𝑚 + 1) log(2) + log

(
𝑤5𝑚+2

1

𝑤5𝑚+2
𝜏

)
≥ 0

Since 𝑚 ≥ 8, (𝑚 + 1) log(2) ≤ 𝑚 log(2.2). Thus:

𝑚 log(2.5/2.2) + log

(
𝑤5𝑚+2

1

𝑤5𝑚+2
𝜏

)
≥ 0

⇐⇒ 𝑤5𝑚+2
𝜏 ≤ 𝑒𝑚/8

Since 𝑤5𝑚+2
𝜏 can only be altered with 𝛼𝑚+1

𝜏 , this concludes the proof. ■

Lemma 49. For some 𝑡 ∈ [𝑇], assume 𝛼𝑚+1
𝑡−1 ≤ − 1

𝑑
+ 𝑒−𝑚/8 and 𝐸 . There is an 𝜀-approximate step

for which 𝛼𝑚+1
𝑡 ≤ − 1

𝑑
+ 𝑒−𝑚/8.

Proof. First we show that for the optimal step, 𝛼𝑚+1
𝑡 ≤ − 1

𝑑
+ 𝑒−𝑚/16

If 𝛼𝑚+1
𝑡 ≤ 𝛼𝑚+1

𝑡−1 the proof concludes from the assumption. Continuing assuming the opposite. This
means that for every 𝑖 ∈ [4𝑚 + 1, 5𝑚 + 1], 𝑤𝑖

𝑡 ≤ 𝑤𝑖
𝑡−1.

Additionally, we’ll show that for every 𝑖 ∈ [1, 𝑚], 𝑤𝑖
𝑡 ≥ 𝑤𝑖

𝑡−1. Assume otherwise for some 𝑖, since
𝛼𝑚+1
𝑡 ≥ 𝛼𝑚+1

𝑡−1 it means that 𝛼𝑖
𝑡 ≤ 𝛼𝑖

𝑡−1, which means that for every 𝑗 ∈ {𝑚 + 𝑖, 2𝑚 + 𝑖, 3𝑚 + 𝑖} we
have 𝑤

𝑗
𝑡 ≥ 𝑤

𝑗

𝑡−1. This means that ⟨∇𝑅(𝑤𝑡−1) − ∇𝑅(𝑤𝑡 ), 𝑣𝑖⟩ ≥ 0, which contradicts Lemma 26 (as
⟨ℓ𝑡 , 𝑣𝑖⟩ has a constant value of −1).
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From the second part of 𝐸 and Lemma 26:

− 𝑚

16
≤ 𝜂⟨ℓ𝑡 , 𝑣𝑚+1⟩

= ⟨∇𝑅(𝑤𝑡−1) − ∇𝑅(𝑤𝑡 ), 𝑣𝑚+1⟩

=
𝑚∑︁
𝑖=1

log

(
𝑤𝑖
𝑡−1

𝑤𝑖
𝑡

)
+ log

(
𝑤5𝑚+2
𝑡−1

𝑤5𝑚+2
𝑡

)
−

5𝑚+1∑︁
𝑖=4𝑚+1

log

(
𝑤𝑖
𝑡−1

𝑤𝑖
𝑡

)
≤ log

(
𝑤5𝑚+2
𝑡−1

𝑤5𝑚+2
𝑡

)
⇐⇒ 𝑤5𝑚+2

𝑡 ≤ 𝑤5𝑚+2
𝑡−1 𝑒𝑚/16

≤ 𝑒−𝑚/16

Since the 5𝑚 + 2th coordinate is controlled only by 𝑣𝑚+1, this concludes the fact that 𝛼𝑚+1
𝑡 ≤

− 1
𝑑
+ 𝑒−𝑚/16 = − 1

𝑑
+ 𝜀, which means that 𝛼𝑚+1

𝑡 ≤ 𝛼𝑚+1
𝑡−1 + 𝜀.

Next we argue that in the optimal step, for every 𝑖 ∈ [1, 𝑚], 𝛼𝑖
𝑡 ≥ 𝛼𝑖

𝑡−1. Assume otherwise for some
𝑖. This means that for every 𝑗 ∈ {𝑚 + 𝑖, 2𝑚 + 𝑖, 3𝑚 + 𝑖} we have 𝑤

𝑗
𝑡 ≥ 𝑤

𝑗

𝑡−1. Additionally, it means
that 𝑤𝑖

𝑡 ≤ 𝑤𝑖
𝑡−1 + 𝜀.

From Lemma 26:

−3𝜂 = 𝜂⟨ℓ𝑡 , 𝑣𝑖⟩
= ⟨∇𝑅(𝑤𝑡−1) − ∇𝑅(𝑤𝑡 ), 𝑣𝑖⟩

= 3 log

(
𝑤𝑖
𝑡−1

𝑤𝑖
𝑡

)
+ log

(
𝑤𝑚+𝑖
𝑡

𝑤𝑚+𝑖
𝑡−1

)
+ log

(
𝑤2𝑚+𝑖
𝑡

𝑤2𝑚+𝑖
𝑡−1

)
+ log

(
𝑤3𝑚+𝑖
𝑡

𝑤3𝑚+𝑖
𝑡−1

)
≥ 3 log

(
𝑤𝑖
𝑡−1

𝑤𝑖
𝑡

)
≥ 3 log

(
𝑤𝑖
𝑡 − 𝜀

𝑤𝑖
𝑡

)
=⇒ −𝜂 ≥ log

(
1 − 𝜀

4

)
≥ −𝜀

4
𝜀 ≥ 4𝜂

Which contradicts our assumption that 𝜀 < 4𝜂.

By now we showed that if the 𝑡th step is optimal, we have 𝛼𝑚+1
𝑡−1 ≤ 𝛼𝑚+1

𝑡 ≤ 𝛼𝑚+1
𝑡−1 + 𝜀 and for all

𝑖 ∈ [𝑚], 𝛼𝑖
𝑡 ≥ 𝛼𝑖

𝑡−1.

We next argue that if we keep the same 𝛼𝑖
𝑡 for all 𝑖 ∈ [𝑚] but change 𝛼𝑚+1

𝑡 to be equal to 𝛼𝑚+1
𝑡−1 , this

will be an 𝜀-approximate step.

First we notice that all 𝑤𝑡 is now closer to 𝑤𝑡−1, which means that the bregman divergence only
shrinks from that change. Indeed, coordinates [4𝑚 + 1, 5𝑚 + 2] are only getting closer from the
change, coordinates [𝑚 + 1, 4𝑚] doesn’t change (the change in 𝑣𝑚+1 doesn’t affect them). Finally,
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since for all 𝑖 ∈ [𝑚], 𝛼𝑖
𝑡 ≥ 𝛼𝑖

𝑡−1, we still have 𝑤𝑖
𝑡 ≥ 𝑤𝑖

𝑡−1, which means that those coordinates also
got closer.

The proof concludes from the fact that from the second part of 𝐸 , the first term in the objective can
only be changed in 𝑚𝜂𝜀

16 < 𝜀.

■

Theorem 50. There is an 𝜀-approximate trajectory that get a regret of:

Ω
©­­«𝑇

√√
𝜂

log
(

1
𝜀

) ª®®¬
Proof. From Lemmas 48 and 49 we get that there is an 𝜀-approximate trajectory such that for every
𝑡 ≥ 𝜏, 𝛼𝑚+1

𝑡 ≤ − 1
𝑑
+ 𝑒−𝑚/8 ≤ 0, which means that 𝑤5𝑚+1

𝑡 ≥ 1
𝑑

. The total expected loss of this

coordinate is 𝑇
√︁
𝑑𝜂, which means that this trajectory suffers a loss of Ω

(
𝑇
√︃

𝜂

log ( 1
𝜀 )

)
.

Now we only need to show that there is a point in the polytope that gets zero loss. Indeed, one can
see that if 𝛼𝑖 = 1

𝑑
for all 𝑖 ∈ [1, 𝑚 + 1], the point 𝑤 = 𝑤1 +

∑
𝑖 𝛼

𝑖𝑣𝑖 has all coordinates with non-zero
loss ([𝑚 + 1, 4𝑚], 5𝑚 + 1) to be zeroed. ■
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