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Abstract

Online mirror descent (OMD) is a fundamental algorithmic paradigm that underlies many algo-
rithms in optimization, machine learning and sequential decision-making. The OMD iterates are
defined as solutions to optimization subproblems which, oftentimes, can be solved only approxi-
mately, leading to an inexact version of the algorithm. Nonetheless, existing OMD analyses typ-
ically assume an idealized error free setting, thereby limiting our understanding of performance
guarantees that should be expected in practice. In this work we initiate a systematic study into
inexact OMD, and uncover an intricate relation between regularizer smoothness and robustness to
approximation errors. When the regularizer is uniformly smooth, we establish a tight bound on the
excess regret due to errors. Then, for barrier regularizers over the simplex and its subsets, we iden-
tify a sharp separation: negative entropy requires exponentially small errors to avoid linear regret,
whereas log-barrier and Tsallis regularizers remain robust even when the errors are only polyno-
mial. Finally, we show that when the losses are stochastic and the domain is the simplex, negative
entropy regains robustness—but this property does not extend to all subsets, where exponentially
small errors are again necessary to avoid suboptimal regret.

1. Introduction

Mirror Descent [7, 23] is a fundamental optimization paradigm that offers the flexibility to exploit
the (typically non-Euclidean) intrinsic geometry of the optimization problem. The online variant
(OMD; [15, 29]) is a generalization of the basic framework adapted to the more general online
learning setup [37], where the goal of the learner is to minimize her regret, defined is the cumulative
loss minus the loss of the best fixed decision in hindsight. Given a convex decision set X ¢ R<, an
initialization w; € K and learning rate > 0, the OMD steps = 1, ..., T follow the update rule:

wt+1 = arg minn<€ta w> + DR(w ” wl‘)’ (l)
weX

where ¢; is the loss at time ¢ and Dpg is the Bregman divergence associated with a regularizer
R: X — R chosen by the learner. Notable instances of OMD include online gradient descent [37]
and the well known multiplicative weights method [4, 12, 19], both of which are examples where
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the OMD update rule, namely the exact solution to the OMD subproblem Eq. (1), is given by a
closed form expression (when operating over suitable decision sets).

However, in many cases of interest, the OMD update rule does not admit a closed form solution,
and therefore demands employing an auxiliary iterative optimization procedure that only produces
approximate minimizers of the respective OMD subproblems. Notable examples include reinforce-
ment learning algorithms that optimize over occupancy measures, which form a polyhedral subset
of the simplex [17, 26, 35]; generic online convex optimization algorithms that rely on OMD up-
dates [1, 14, 16]; and algorithms defined over the simplex that use barrier regularization other than
negative entropy, such as in adversarial bandits [2, 36] and portfolio selection [21]. Somewhat
surprisingly, however, the existing literature lacks a systematic study of the effect these approxima-
tions have on the final regret guarantee, with prior art focusing on particular problem instances at
best [10, 11, 27, 32]. (Due to space constraints, discussion of additional related work is deferred to
Appendix A.)

In this work, we initiate a systematic study into the robustness of OMD to approximations, aimed
at understanding the interplay between regularization, quality of approximations, and regret. Our
results uncover a direct link between robustness of inexact OMD and smoothness properties of the
regularizer being used. For uniformly smooth regularizers, we establish that robustness to approxi-
mation errors is directly governed by the smoothness parameter. For the more prevalent non-smooth
regularizer case, we demonstrate that OMD with negative entropy regularization is prone to incur-
ring linear regret unless the approximation errors are made exponentially small in the number of
steps; and in contrast, that for other barrier regularizers such as the log-barrier and Tsallis entropy,
polynomially small errors suffice to obtain optimal regret. We then further investigate more care-
fully when non-robustness with the negative entropy arises. We show that when the losses are
stochastic (i.i.d.), negative entropy over the simplex becomes robust and polynomially small errors
are sufficient. On the other hand, we demonstrate this robustness may break even with i.i.d. losses
when optimizing over a subset of the simplex, where again, exponentially small errors are necessary
to avoid suboptimal regret.

Summary of contributions. In more detail, our contributions are summarized as follows.

* First, when the regularizer R is uniformly smooth over the domain & with smoothness param-
eter 3, we establish a tight ®(TD+/Be/n) bound on the excess regret due to g-approximation
errors, where D is the diameter of K with respect to the relevant norm. E.g., for the typical
setting 7 = ©(1/VT) this implies that errors should be as small as € = O(1/T?) so as to recover
optimal O (VT) regret.

* We then move on to consider common non-smooth regularizers, such as the negative Entropy,
Tsallis entropies, and the log-barrier, focusing on the simplex and its subsets as decision sets.
We observe a sharp dichotomy between the negative Entropy and other regularizers in terms
of robustness to approximations: on the one hand, for the negative Entropy we show that an
exponentially small error & = Q(ne~"T) could already lead to linear regret, even when the
domain is the simplex; and on the other hand, for Tsallis Entropies and the log-barrier over
the simplex or a subset thereof, we prove that a polynomially small error £ = O (1> /(T*d?))
suffices for maintaining the same order of regret.
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* Finally, we revisit the robustness to approximations with the negative Entropy in the stochas-
tic (i.i.d.) setting. Over the simplex and with = O(1/NT), we show that a polynomially small
error & = O(1/(dT?)) suffices for obtaining optimal regret with high probability, as opposed
to the exponentially small error required in the non-stochastic case. However, this robustness
does not extend more generally to proper subsets of the simplex: we construct a setting where
OMD with negative entropy exhibits an excess term of Q(7+/n/log(1/¢)) leading to Q(T%?)
regret for any step size unless & is exponentially small in 7.

At a conceptual level, our analysis reveals that compounding errors play a central role in OMD’s
robustness to inexact updates. Since the per time step subproblem directly depends on the previous
iterate, approximation errors propagate between rounds and lead to subtle optimization dynamics.
This should be contrasted with the closely related Follow-The-Regularized-Leader algorithm [28],
which re-optimizes against the cumulative loss at each round, and thus (at least in the linear case
with an oblivious adversary), each optimization round is independent of the previous ones.

In addition, our results for the smooth case (Theorems 2 and 3) provide a tight characterization that
is immediately applicable to a common technique where OMD is instantiated over a shrunk simplex
(or subset thereof), where coordinates are bounded away from zero. In this case, a uniform bound
for the smoothness parameter immediately follows as the regularizer domain becomes compact. In-
terestingly, our results for the non-smooth case reveal that while this technique may be necessary to
cope with fragility of negative entropy (Theorem 4), it is not necessary for other barrier regularizers
as they induce optimization dynamics where the iterates naturally stay bounded away from zero
(see Theorem 5 and the discussion that follows).

The rest of this extended abstract focuses on our results for the general adversarial setting; the pre-
sentation of the results for the stochastic setting is deferred to the appendix due to space constraints.
Finally, we note that while our study focuses on the linear setup, all our results for the adversarial
setting immediately carry to the general convex case via a standard reduction (e.g., [9]).

2. Preliminaries

We consider the standard online linear optimization setup, where at eachround t = 1,2, ..., T, the
learner selects a point w, from a convex decision set ¥ ¢ R, and then observes a loss vector
{; € [~1,1]¢. The performance of the learner is measured in terms of her regret with respect to a
fixed comparator point w € K, defined as follows:

T T
Regret(w) = Z(fta wy) — Z(fzy w).
t=1 t=1
We denote by w* € arg mingex ZIT: 1 (€1, w) the best fixed decision in hindsight.

Inexact Online Mirror Descent. We let R : X — R denote a differentiable regularizer which
we assume to be 1-strongly convex w.r.t. a norm || - ||. The Bregman divergence associated with R
is defined as:

Dr(wlw’) = R(w) = R(w') = (VR(w'), w —w’).
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We say that a sequence {w,}tT:1 is an e-approximate OMD trajectory if, for every t, w;,| approxi-
mately minimizes the round + OMD objective (see Eq. 1) ¢, (w) = n{;,w) + Dr(w || wy), up to &
additive error:

¢r(Wes1) < mi& ¢ (w) + €.

Regret bounds for OMD typically depend on the diameter of K with respect to the norm ||-||, given
by D = maxy, uex ||w— w’|].

Barrier Regularization. A particular focus of this work is on prototypical barrier regularizers,
used extensively in cases where ¥ is the probability simplex Ay == {p € R¢ : p' > 0, Zf:] p' =1}
(or a subset thereof).

Definition 1 (coordinate separable barrier regularizers). We say R: X — R is a coordinate
separable barrier! regularizer with parameter v > 1 (or simply a v-barrier) if there exists a twice-
differentiable function r: [0, 1] — R and ¢y, ¢, > 0 such that:

d
R(w) = Z”(wi), and 0—12/ >r"(x) > % forall x € (0, 1].
X X

i=1

These conditions ensure that the regularizer imposes a barrier-like growth as components of w ap-
proach zero, which plays a crucial role in controlling the optimization dynamics near the boundary
of the positive orthant. This class captures several widely used regularizers, including:

* Negative Entropy: r(x) = xlogx, for which v = 1;

* Tsallis Entropy: r(x) = xl—_);q forg € (0,1), where 1 < v < 2;
* Log-Barrier: r(x) = —logx, which corresponds to v = 2.

The parameter v will turn out to be directly associated with the robustness of OMD with v-barrier
regularization to approximation errors.

3. Overview of Results and Techniques

Smooth regularizers. We begin by establishing tight upper and lower bounds for approximate
OMD with smooth regularizers,” over an arbitrary convex domain X C R¢. Our first theorem
provides an upper bound that builds on the following key property of smooth functions: approximate
minimization implies that first-order optimality conditions hold up to an error proportional to the
square root of the sub-optimality times the smoothness parameter.

Theorem 2. Let K C R? be a convex set with diameter D, and let R: K — R be a [-smooth regu-
larizer over K. Then, for any loss sequence €y, . .., tr € [=1,1]9, the regret of any s-approximate
OMD trajectory compared to any w € X is bounded as:

1
Regret(w) = O(=Dgr(w,wy) + Ty +
n

TDVBs
=)

1. Strictly speaking, these are barriers for the positive orthant in R4,
2. A function R is said to be B-smooth with respect to a norm || - || if its gradient is B-Lipschitz; |VR(x) — VR(y)||« <
Bllx =yl for all x, y € K, where ||-||,. is the norm dual to ||-||.
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The proof follows the standard OMD analysis, replacing exact optimality with approximate optimal-
ity conditions. Indeed, for any 8-smooth convex objective f: X — R, if f(d)—argmin, 5 f(w) <
g, then one can show that (see Lemma 15):

KVf (@), w—w)| < Dy2pe. 2

Applying the above on ¢, for every ¢, and carrying the errors in the standard OMD analysis, gives
the claimed result.

We note that Theorem 2 provides sharper dependence on 8 compared to a similar result of [10]. This
bound is in fact tight, even in the simple case of OMD with Euclidean regularization and constant
losses, as shown next.

Theorem 3. Let 8, &, D > 0, and consider e-approximate OMD over K = [0, D] with the $-smooth
regularizer R(-) = gll : ||§. Then there exists a loss sequence, an g-approximate OMD trajectory
and w € K such that:

1 TD+/
Regret(w) = Q| —Dg(w,w;) +Tn + min{ BS, DT}).
n n

To see why this is true, consider the constant loss sequence £; = min {\/2ﬂ8 /n, 1} forall ¢t € [T],
and initialize the trajectory at w; = D /2. Then for every ¢, the loss is small enough so that w, itself
is an e-minimizer of ¢;; let w;, | be the exact minimizer of ¢;, then by direct computation:

¢ (wy, ) =n{l,w) — &= ¢ (wy) — &.

As aresult, the approximation error prevents any update from changing the iterate, so the trajectory
remains fixed at w; = w; for all . Consequently, the algorithm incurs the claimed regret. We note
that the underlying reason the above argument works is that for the Euclidean regularizer, in the
setting of Theorem 3, round ¢ approximate optimality conditions (Eq. 2) are in fact tight.

Barrier regularizers. We next consider barrier regularizers the smoothness of which is not bounded
uniformly over the domain . Indeed, the spectrum of the Hessian of any v-barrier (Definition 1)
is unbounded since r”/(x) — oo as x — 0. Interestingly, the robustness behavior of these barriers
varies dramatically with v: for negative entropy (v = 1), exponentially small errors are required,
whereas for log-barrier or Tsallis regularizers (v > 1), polynomially small errors suffice. We begin
with our lower bound for negative entropy given below.

Theorem 4. Let K = Ay, d = 2, and R be the negative entropy over K. Suppose that the approxi-
mation error satisfies € > 4ne~"""/3. Then there exists a sequence of losses €1, . . ., by € [0,1]¢ for
which there exists an g-approximate OMD trajectory that suffers regret Regret(w*) = Q(T).

The exponential dependence of & on the time horizon T is in fact tight: if & is exponentially small
in T, the standard regret guarantees are recovered (see Theorem 6 in Appendix B.1). The key idea
in the analysis of Theorem 4 is to exploit the fact that the effective smoothness of the regularizer—
informally, the exact smoothness parameter on a given region—diverges at a rate inversely pro-
portional to the iterate coordinates as they approach zero. Indeed, our construction is such that
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the coordinates of the iterate become as small as e~"7T (this follows from the closed form update
equations), and thus reach the region of the domain where the effective smoothness is exponentially
large. Then, when the errors are not exponentially small, the same mechanism as in the smooth-
regularizer lower bound applies: the iterate becomes stuck even under constant losses, leading to
linear regret.

We now turn our attention to v-barrier regularizers with v > 1. In this case, as it turns out, polyno-
mially small errors suffice to naturally keep the iterates bounded away from zero (by a polynomial
margin).

Theorem 5. Let X C Ay be a polytope that contains the uniform distribution and the OMD is
initialized there®, let R: X — R be a v-barrier regularizer (cf. Definition 1) with v > 1 and
1 Cz}(l6an+2c1(2d)"’1)_V/(V_l)

1 4
/T If e < " min {5, o , then for any loss sequence {1, . ..,{r €

[=1,1]9, the regret of any s-approximate OMD trajectory compared to any w € K is bounded as:

1
Regret(w) < —=Dg(w,w;) + O(nT).
n

The principle underlying the analysis of Theorem 5 is as follows. Consider for purposes of illus-
tration the one-dimensional interval [0, 1] with w; = 1. In this setting the OMD updates require no
projection and the iterate dynamics can be inspected more simply:

t—1

r(we) =" (w—1) =nb—y =1 (wi) = > s,
s=1
= L >-1-9g7 = w;’_l Z,%T.

Thus, the iterates can only shrink polynomially in 7', and as a result the effective smoothness grows
polynomially. This allows the use of approximate first-order optimality conditions in the standard
OMD analysis, and the regret may be bounded using the standard OMD proof. Note that this
comes in contrast to the negative entropy case (v = 1, Theorem 4) where a similar argument in this
simplified setting gives log(w;) > 0-nT = w, > e~""T. Finally, the simplified setting considered
above we did not account for the possibility that the errors themselves can pull the iterates closer
to the boundary. Evidently, the approximation errors may potentially drive the iterates toward zero
even when the exact dynamics would not, which further complicates the analysis.

Improved robustness with stochastic losses. Theorem 5 presented above follows in principle by
reducing to the smooth case; when the iterates remain bounded away from zero, the regularizer be-
haves as if it were smooth, and the same argument given for smooth regularizers applies. Theorem 4
builds on a similar idea but in the other direction; with negative entropy, the iterates may become
exponentially small and thus follows an exponential lower bound. Interestingly, with stochastic
losses we obtain a polynomial upper bound (Theorem 7) despite the fact that the iterates may be
exponentially close to zero, where the effective smoothness is exponentially large. To achieve this,
we show that the iterates may reach close to zero only when also approaching w*, and that closeness
to w* counteracts the large effective smoothness in that region. For more details on the stochastic
setting, see Appendix B.2.

3. This assumption serves mainly to fix a natural starting point for OMD; a similar bound should hold for any reasonable
initialization.
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Appendix A. Related Work

Mirror descent [7, 22] and the online convex optimization framework [37] have been central to the
study of machine learning and optimization in the last decades. There exist many excellent books
and surveys that provide thorough introductions to (online) mirror descent in its fundamental (i.e.,
exact, error free) form [6, 8, 15, 29]. Somewhat surprisingly, there hardly exist any works that study
inexact mirror descent in the general stochastic or online setup.

In the classical (offline) optimization setup where the objective function is smooth, mirror descent
coincides with a special case of the Bregman proximal gradient method (BPGM; [5, 20], see also
[31]). The BPGM is a generalization of the proximal gradient method [25] where a Bregman diver-
gence replaces the norm proximity regularizer, and the objective is required to satisfy the weaker
relative smoothness property [5]. The BPGM and mirror descent coincide when the non-smooth
part in the composite objective is the indicator function for the decision set. In contrast to online
or stochastic mirror descent in the general case, inexact versions of the BPGM (and thus offline
mirror descent in the smooth case have been subject to several recent works. The majority of these
study the Euclidean case (i.e., the proximal gradient method) with or without acceleration, e.g.,
[3, 27, 32, 34]. Some works study the online case [11] with the euclidean regularizer, and some
further generalize to the online BPGM but with smooth regularizers [10].

There is also a recent line of works that study the (offline) BPGM in its general form (i.e., without
making assumptions on the regularizer). These mostly focus on designing variants of the basic
method that incorporate some mechanism to cope with the proximal subproblem approximation
errors [18, 24, 30, 33]—which is to be contrasted with characterizing convergence in terms of the
ad-hoc approximation errors. As one example, the work of Kabbadj [18] establishes that the inexact
BPGM achieves the same rate of the exact version (aka NoLips; 5) as long as the approximation
errors are smaller than the Bregman distance to the previous iterate. More recently, Yang and
Toh [33] propose variants with several advantages at the expense of a somewhat more involved
subproblem optimization procedure.

Finally, the work of Guigues [13] is one of the only examples (to our best knowledge) of papers
that study an inexact version of stochastic mirror descent, albeit one that relates to a particular
(non-general) instantiation of the algorithm.

Appendix B. Additional main results

In this section, we present additional main results that were not included in the main text due to
space constraints.

B.1. Negative entropy upper bound

Theorem 6. Let K = Ay and R be the negative entropy over K. Assumen < 1/16 and T > 3,
ife < ée"ﬂvz min {174, T‘z}, then for any loss sequence €\, . .., tr € [—1,1]%, the regret of any
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e-approximate OMD trajectory compared to any w € X is bounded as:

1
Regret(w) < —Dg(w, w;) + 0(nT),
n
The proof is deferred to Appendix G.

B.2. Improved robustness with stochastic losses

In the adversarial setting, we have seen that negative entropy requires exponentially small error to
avoid linear regret, even on the simplex. Surprisingly, this fragility does not persist for stochastic
losses over the full simplex. For i.i.d. stochastic losses, polynomially small approximation errors
suffice to guarantee standard regret bounds with high probability.

Theorem 7. Let K = Ay and R be the negative entropy over K. For any 6 > 0, suppose that w

is uniform, T > 256, n = % and g < #. Then with probability > 1 — & over the choice
of an i.i.d. loss sequence €y, ..., tr € [—1, 114, the regret of any s-approximate OMD trajectory

compared to any w € X is bounded as:
Regret(w) < 0(\/T10g(d))

However, this robustness does not extend to general domains. The geometry of the feasible set can
reintroduce sensitivity: even with the same regularizer and similarly well-behaved stochastic losses,
restricting the domain to a polytope subset of the simplex can cause suboptimal regret unless the
approximation error is exponentially small.

Theorem 8. Consider approximate OMD with the negative Entropy regularizer and stochastic
losses. Then, there exists a polytope K C Ay and a distribution of losses such that for any € > 0,
there exists an g-approximate trajectory and w € K such that:

3 DR(U), wl) n
E[Regret(w)] = Q(T " T\/log(%)

One can see that any approximation error that is merely polynomial in 7" leads to a regret lower
bound of Q(T?/3), even under an optimally tuned learning rate—far above the optimal O (VT)
benchmark.

Detailed proofs of the theorems in this section are provided in Appendices G and 1.

Appendix C. General Lemmas and definitions

Definition 9. We call y = ({wt}szl, {ft}thl , R, 1) an exact OMD trajectory if for every ¢ € [T]:

Wes1 = argmingep, n{l, w) + Dr(w;—1, w)

12
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Definition 10. We call y = ({w;}_, {¢,},, R, n) an e-approximate OMD trajectory with some

t=1° t=1°
e > Oif for every ¢ € [T] wy4; is an e-minimizer of n{¢;, w) + Dr(w;—1, w).

Definition 11. Our assumptions about the regularizers are:
 There is a function r : [0,1] — R such that R is coordinate-separated with f; = r for all
i €[d]
* r’” is decreasing polynomially in [0,1] and "' (w) > i for allw € [0, 1].

Definition 12. We say that a function F : W — R (W C R9) is coordinate-separated if there are
functions fi, f2, ..., fg such that F(w) = X; fi(w;) for all w € W .

Definition 13. Let F : % — R be a coordinate-separated function. Let w', w? € W, we say 8 € R
is the effective smoothness of F w.r.t wy, w, if for every i € [d] such that wl.1 * wl2 anda € [wil, wiz] ,

we have f"(a) < B.

Lemma 14. Let F : W — R be a coordinate-separated function and Let x1,xy € W. If B is the
effective smoothness of F w.r.t x1,x, we have for any wy, w; € [x1,x2]:

B
2
Proof. The first inequality is directly from Taylor’s theorem. The second is because generally
112 < 111l "

F(wn) = ) = (VF(un), vy = uz) < 5wy~ w1 < 2y~ wal}

Lemma 15. Let ||-|| be any norm, and let f : W — R, and let ®,w € W where © is an e-minimizer
of f. Assume that for all x,y € [w, W] it holds that:

F) = £ = V0, y =) < Sy =P,
Then, we have:
(Vf(B), w— D) > — max {||w N 28}

2
Additionally, let D = maXyy yex ||[w —w”|| and assume & < %. We have:

(VF(@), w—id) > -D~2Be

We note that this holds for coordinate-separated function with effective smoothness 3 (with £, or £,
norm, see Lemma 14) or any general B-smooth function.

Proof. From the assumptions of the Lemma, for any y € [0, 1]:
F+y(w=b)) < () +yVf(@)(w=d)+ y2§||w - o]
1
Vi@)(w-d) > ;(f(u? +y(w-d)) - f(d)) - y'gllw -

e B .
> —(— +y 5w - WIIZ)
0% 2
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Notice that if 2& > ||[w — ©||+/2B¢e, we have & > gllw — % thus for y = 1:
V(@) (w— ) > —(g . '§||w _ w||2) > _2¢

_V2e <1

lw—a]

Else, for y = TBloal

V@) (w—b) = |lw - dlly2Be

2
Ife < %, we have:

& 2e < D\2Be
= (Vf(d), w—-w) > -D+2Be

|
Lemma 16. If for some a, b, c > 0 we have ax*> — bx — ¢ < 0, then x < Q +4/%
Proof. Assume x = % + \/E we have:
axz—bx—c:%2+2b\/?+c———b\/j—c— \/7>0
The minimum point of the parabola is at x = %, so it only increases for x > Z + \/5 . [ ]

Lemma 17. Let y = ({wt}t " A =1» R, 1) be an s-approximate trajectory above the simplex with
n<g L and coordinate-separable regularizer. Let h = min {r”(wt) r”(le)} Then foranyi € [d]:

|w; z+1| <5 h +\/;

Proof. Fix i € [d]. We will prove for w 4 S < w!. The proof for the other direction is identical.

Letiy,...,i, be an arbitrary set of coordinates that satisfies the following. For S = {iy,...,im-1},
i’ :=i,, it holds that:

Vie(Sui) wl, >w 3)
Z wt+1 - w; < wﬁ - w§+1 “)
JjeS
Z wt+1 - wt = ; - w§+1 )
je(Sui’)
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Namely, S U i’ is a set of coordinates that were increased in this step. The total increase of all the
coordinates in S is less than the decreased in 7, but with the increase of i’ it is more than the decrease
of i. Such coordinates exist since the difference that the ith coordinate was moved downward there
must be a set of coordinates that upward to keep that sum of coordinate 1.

Denote @ such that:

. R |
VieS§S o =uw,
~i
w =w,

~i Jjoo_

w _wt+1+ Z wt+l Wi

je(Sui)
j

~j_
o.w w —le

From Equation (4) we have that & < w'_ . From Equation (5) we have that & > w! .

W is a probability since all of its coordinates are > 0 and:

Sawi= >+ D>, @ +a”

Jjeld] Je(Sui) JE(Su{i,i’})

_ J ) ) J

- Z wy + Z Wiy Z Wi — W
Je(Sui) Je(Su{i,i’}) Je(Sui)

_ J

- Z Wi
Jjeld]

=1

Since for all j € S we have @/ = w, we have:

> D], d)) =0< 3 Dy (w],w,)
JjeS JjeS

From Taylor inequality and the definition of A:
D, (', w) =0
o ho. _
Dr(w;’ w;+1) 2 E(w;H - w;)Z

o .. h )
Dr(w;$w;+]) Z Dr(wl’ wll‘) + E(w;+] - w;)z

. i i i’ i i
Since w; < @' < w;,, wehave D,(w;,d") < D,(w; ,wm).

: ~j _ Jo~i\ — JoJ
Since &/ = wy, |, we have ¥ je(su(i.i'}) D, (w;,w) = ¥ jesuiiiy) Dr(wy, le).

Summing all we have:

h
Dgr(ws, wr41) = Dr(wy, @) > E(w;+1 - w;)z

15



THE HIDDEN COST OF APPROXIMATION IN ONLINE MIRROR DESCENT

From the definition of w; we have || — w41 || = 2(wf - w!). Thus, from Holder:

i i
1 w,|

(e, w1 — W) > —2n|w

Since w,41 is an e-minimizer of the OMD objective:

& > n{t;, wrs1 — W) + Dr(wy, ws1) — DR(wy, )

i

= E(w;H - w;)Z - 277|wt+1 - wél

From Lemma 16 we get:

4
|w§—w§+1|< 777"‘\/%

Lemma 18. Lety = ({wt}thl, {ft}thl, R,n) be an e-approximate trajectory above the simplex with

n < 161C| and v-barrier regularizer. Lett € [T] and i € [d] be such that € < (fgc)lv

1
-1 = W
. 1 .
L 1
Wi 2 Ewt

Sﬁ‘
v

, then:

Proof. We will prove for w;'_] but the same proof goes for ¢ + 1. The interesting case is obviously

i

i . . .
,_1 < Wy, SO continuing assuming that.

w

We have:

. . . C C C
min {rll(w;),rll(w;_l)} > 1 1 1

£

max {ufw_ ) (W]

From Lemma 17:

Sincen < 1/16¢;:
demqut <

T4

From the assumption on & and the fact that " (w!) > wi:

D (G
Clew; < 1t6 zzt

Placing Equations (7) and (8) in Equation (6) gives the desired results.

16
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Lemma 19 (Three-points identity). For every differentiable function R:

Vx,y.z2: (VR(z) = VR(y)) - (y —x) = Dr(x,2) = Dr(x,y) — Dr(y,2)

Proof.
Dg(x,z) = Dr(x,y) = Dr(y,2) = R(x) = R(2) - VR(z) - (x - 2)
—R(x) +R(y) + VR(y) - (x — y)
—R(y) +R(2) + VR(2) - (y — 2)
= (VR(z) = VR(y)) - (y — %)
]
Lemma 20 (OMD Helper).
1 n 2
U - (wy — wey1) — EDR(le, wy) < zllfz”*
Proof. From the strong convexity of R:
1 2
=DR(wit1, wr) 2 =|[weer — we|
1 2n
By Holder:
b - (wr —wey1) < lwe — wear [ |14
1
< 5l = wa P+ 1161
We used the fact that ab < %az + %bz for every a, b > 0. [

Appendix D. Smooth Regularizer

Theorem 21 (Restatement of Theorem 2). Ler y = ({w,}thl, {é’t}thl, R,n) be an e-approximate
trajectory above a convex set such that R is 3-smooth, and let D be the diameter of the domain.
Assume & < D?/2, then for any w € K :

1 TD+
Regret(w) < 0(—DR(IU, wy) +Tn+ —’88
n n

Proof. From the strong convexity of R we have that § > 1, which means that from the assumptions
g < D?$3/2. Then, from Lemma 15, for every ¢:

(Mt + VR(we1) = VR(wy), w* — we1) > —DV2pe
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From here it is straightforward standard OMD arguments:

b - (Wit —w*) < (VR(wpe1) = VR(wy)) - (w* — wee1) + D2Pe
= Dr(w", w;) — DR(W", wy+1) — DRr(wes1, wy) + D2fBe

Summing for all ¢t € [T]:

T

1 TD+/2Be
Db (Wi —w') < DR(w wy) - EZDR(le,wt) +—
=1

t=1

From Lemma 20:

1 TD+/
Regret(w®) < 0(—DR(w*, wy) +Tn+ —ﬁg)
n n

Theorem 22 (Restatement of Theorem 3). For every 3, €, there is an OMD e-approximate trajec-
tory y = ({wt}tT 15 {K,}tT 1» R, 1) above a convex set with diameter D with R being [3-smooth and
constant losses (€; = € for some € for all t € [T]) that achieves a regret of

ol 25 or)

Proof. Consider the domain [0, D], w; = %. The regularizer is R(w) = ng. The loss is £ =
min{ Ve 1}

n

We will now show by induction that w, = w; for all ¢ is a valid e-approximate trajectory. This
TD+Be
n

trajectory suffers a loss of G)(min ( , DT)), which means a same regret comparing to w* = 0.

Assume true for r — 1, we will prove for ¢.

We start by finding the optimal w; (the optimal solution for ¢,) by differentiating and comparing to
0:

nt +p(w; —w;-1) =0

= w; =w_ _ I,

B

Placing it in the objective function:

2
nlw; + §<w’* h wt—l)z = Tlf(wt—l - %5) + g(w;—l - (wz—l - 25))

B
2{2 252
= ptw,_ - T+
B 2B
22
€
=nt .
=nNtwr-1 28
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202
Which means that the difference in the objective function between w; and w;_; is %.

From the definition of ¢:

V2
{ < pe
n
252
— ﬁ <eg
2B
‘Which means that w;_; is an e-minimizer. [ |

Appendix E. Balance

All the lemmas in this section assumes v-barrier regularizer.

E.1. General

Definition 23. Assume X is a polytope defined in standard form {w eRY: Aw=bA(w; >0,Vie [d])}.
For every v € ker(A), denote the balance of an OMD trajectory w.r.t v:

Bl;/(tl’IZ) = <VR(LU[1) - VR(wlz)’ U>

Additionally, if for every v € ker(A) such that ||v|| < 1 and 71,7, we have B, (71,12) < k, we say the
trajectory is k balanced.

Lemma 24.
B!, (t1,12) + B}, (12,13) = B}, (11, 13)
Proof.
(VR(wy,) — VR(wy,), v) + (VR(ws,) — VR(wy,), v) = (VR(wy,) — VR(wy,), v)
|

Lemma 25. Assume X is a polytope. For some differentiable function f : X — R, let w* be the
minimizer of f such that for all i € [d], (w*)' > 0. For every w € K we have:

(Vf(*), w-w") =0

Proof. Denote v = w — w*. Since min; &' > 0, and v € ker(A) where A is the matrix of the polytope
K, there is an « such that both w* + v € H and w — av € Ay.

Since w* is a minimizer, from first order optimality conditions:

(VF(d), w*+av—w*) >0
(Vf(d), w*—av—w*) >0

19
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Which means that:
(Vf@),v) 20
(Vf(@), -v) 20
Which is our desired results. [ ]

Lemma 26. Let y = ({wt}thl, {ft}szl, R, n) be an exact OMD trajectory. For every v € ker(A) and
times t,t:

Bv(tl’tZ) = n<€l‘]:t29 U>

Proof. Fix some t’ € [t1,]. There is some small « such that both w,, + @v and w,» — v is in the
polytope . From Lemma 25 (w;', > 0 since the regularizer is undefined in 0):

<€t,—1 + VR(wt/) - VR(wt/_l), U> = O

Summing for all ¢’ € [¢1, t;] gives the desired results. [ |

Lemma 27. Let y = ({w,}thl,{f, T 'Ry and $ = ({w,}thl,{{’,}thl,R,n) be an exact OMD

t=1°
trajectory and e-approximate OMD trajectory.

Let0 <t <ty <T,v € ker(A) such that ||v|| = 1 and let y > 0 be such that for every t; <t < 1y,
foralli € [d] such that v # 0, ' > . We also assume that & < /2. we have:

(6X >
By (1,12) < B)(11,12) + (12 — 11) I

Proof. We will prove it using induction for ¢ € [#}, #;]. The base ¢ = ¢, is trivial.

Assume true for ¢ — 1, namely:

CrE
BY(t,t = 1) < By (1,1 =)+ (t = 1-1)) ﬁ

From the assumptions of the lemma we have @, + yv € K. Additionally, the effective smoothness
is 2. From Lemma 15, since i, is an e-minimizer of ¢,:

Yy
(nt; + VR(d;) — VR(;_1), Yv) > —max {»,.//1 ﬁ;—ig, 28}

Since € < ¢y /2 and from the definition of barrier regularizer:

2ch€ 2co€
‘”\/ Z Z‘”\/ v

= \2cr&y
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Which means:

. N 2che
€ + VR(dy,) — VR(dy—1), Yv) > — wzv
Dividing by ¢ > 0:
2cr8
\ g S @l 0) = By =10
:B;(t—l,t)—B;(t—l,t) (Lemma 26)
Adding the induction assumption:
2co€ (612
B;(rl,t— 1) +B;(t— L) <B)(t,t—1)+By(t—1,1) + W+ (t—-1-1) F
Cr &
= By(n,1) < By(t1,0) + (1 —11) "
The last is from Lemma 24. [

E.2. Simplex subset

The lemmas in this section assumes that the polytope is a subset of the simplex. That is, for every
w such that Aw = b, ||w||; = 1. Additionally, the primal norm is assumed to be L; norm.

Lemma 28. Let v be a vector in the kernel of A. The sum of the elements of v is 0.

Proof. Denote w = w; + mv. It is in the polytope - all the elements of MU are smaller then
1/d and thus the all the elements of w greater than 0, and since v is in the kernel of A we have:

1
Aw = Aw; + Adllvllmv =Aw; =b
Thus, we have ||w|| = 1. Since also |Jw]|| = 1:
1 4 R
P e v :;w —;}w] =1-1=0

Lemma?29. Lery = {w,}L,, {&:},, R, n) be a k-balanced OMD trajectory withw, = (1/d,1/d, ...1/d)

t=1° t=1>
and coordinate-separated regularizer. For everyt € [T],i € [d]:

—r'(w') < max {4kd — ' (1/d),-r'(1/2d)}

21
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Proof. Since w is uniform and Lemma 28, for every v € ker(A):

d
(VR(wy), vy =r'(1/d) D v' =0

i=1

Letv = w; — w, € ker(A). Notice that since ||w;||; = ||wi]l; = 1, from triangle inequality ||v|| < 2.
From Lemma 26:

2k = (—~VR(wy), v)

d . .
-
i=1
d . . d . o
- S - 3 Gl
i:v'>0 i <0

Denote:

From Lemma 28:
d
E : i_
- UV =a
i <0

If v* < 0 it means that w} > w! = 1/d, thus:

d d
= D) ' > = (1/d) > v > (1/d)e
itv'<0 it <0

We used the fact that from the convexity of r, ’ is monotonically increasing (as r”’ > 0).

Denote i = arg min; ¢ 4] wy, we have:

d
2k —ar’ (1/d) > —r' (wh)v' - Z r (wh)o'
iivi>0,i#0
T T d .
> —r'(w;)v' —r'(1/d) Z v
08 >0,i#

=~ (wh' = ' (1/d)(a = v)

Subtracting from both sides:

2k — ' (1/d)’ > —r' (w)o'

22
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If o < 1/2d we have wf > 1/2d. Since r’ is monotonically increasing, this means that for all
i € [d] ¥’ (w!) > r'(1/2d) which concludes the proof. Else, dividing by v’ > 1/2d:

(') < 4kd —r'(1/d)

E.3. Simplex

Definition 30. We denote the balance of an OMD trajectory above the simplex y = ({w; }thl Al zT:I ,R, 1)
w.r.t to a coordinate i and 0 < ¢; < tp, < T to be:

Bl (t1,12) =" (w) = r' (wh) + 7' (w),) — ' (w],)
We say that an OMD trajectory is k-balanced if, for every O < #; < t, < T and coordinate i:
B;(tl, h) <k
One can notice that it is a private case for the general polytope definition.

Lemma 31. Let y = ({wt}thl, {ft}thl, R, n) be an approximate OMD trajectory. Fix t1,t, € [T]
and i € [d] such that B.,(1,,15) < k. Then:

- . k/c o ok

1. Ifw;, > wy, then e /“w;z > wy

2. Ifw§2 < w}l then wfz < e‘k/c'wﬁ1
Proof. We will prove the first statement and the second follows in just the same way.
Assume by contradiction that ekwg < wil Since w}, > w}, we have r’(w}) > r’(w}), which
means:

k > Bg, (t1,12)
= r’(wﬁf) — r'(wg) + r’(wiz) — r’(wﬁl)

> 1/ (wh) =7’ (w))

mw{: 144
= r(w)dw
J w;';
reteru,
> r" (w)dw " (w) > 0)
J w;';
kjcy "
re lwt2 1
> | —dw
J w;; w
=cq (log (ek/clwiz) —log (wiz))
=k
Which is a contradiction k > k. []

23
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Lemma 32. Ler vy = ({w;}__,{¢;}L_,R,n) and $ = ({@:}_,, {€;}_,, R, n) be an optimal OMD

t=1> t=1> t=1> t=1>
trajectory and e-approximate OMD trajectory.

Let0 < t; <t <T,i€ [d] and y > 0 be such that for every t; <t < tp, O > wanduﬁf > . We
also assume that € < W [2. we have:

By (11,12) < Bl (t1,12) + (12 = )N ()&

Proof. It is direct consequence of Lemma 27 for the case of v; = e;+ — ¢; (e; is the jth element of
the standard basis). [ |

Appendix F. Lower bounds for negative entropy

Lemma 33. Let vy = ({w,}szl, {f,}thl,R,n) be an e-approximate trajectory with d = 2 and v-
4_7]
ci

i

T)V < &, then for any

barrier regularizer. If for some coordinate i there is T € [T such that =L (w

possible losses for t > 1, having wi = w'. makes a valid error trajectory.
Proof. We’ll prove by induction. Assume true for wi, we’ll prove for wf +1°

Denote 0,41 such that:
W41 = arg min ¢, (w)
w€A2

From Lemma 17 with € = 0 we get:

i ] < s < S d) <
Thus:
(Cr, Wey1 —wy) < &
Since by definition D g (w;, wy) < DR (W41, wy), we get:
P(wy) < ¢(Wr41) + €
Which means that w; is an e-minimizer, as needed. [ |

1
7
an instance above the simplex with a-balanced losses that the regret achieved is Q(T — 2a).

Lemma 34. Assume for some @ > T /2, = log (4%) < a with negative entropy regularizer, there is

Proof. We construct an instance with d = 2 and (1, 0) losses for the first 7 = % log (4'7 ) and then

&
(0, 1). Since T < T/2 we have that the optimal coordinate is 1. We have:

&

<e M =—
4n

1
Wr

From Lemma 33, it is a valid error trajectory if for every t > 7, w! < ﬁ < % Thus, the regret for

those steps is Q(7T —7). Adding the first T steps we get a regret bound of Q(T-27) > Q(T-2@). =
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We add another lower bound that shows an instance in which the optimal point in the optimal
trajectory doesn’t get close to O but still there is a linear regret.

2
Theorem 35. Assume & > jl?iv and v-barrier regularizer. There is a set of constant losses for which
there is an g-approximate OMD trajectory that achieves a regret of Q(T).

Proof. The losses are ¢¢ = 0and ¢! = 1 fori € [d—1] for all . We will show that having w; = w for
all ¢ € [T] is a valid e-approximate OMD trajectory. Since w is the uniform distribution, the total
lossis T — 5. The optimal point is w* = (0, ...,0, 1), namely having 1 only in the dth coordinate,
which gives a total loss of 0. Since 7" — 5 = Q(T) even for d = 2, this seals the proof.

We will now prove by induction that if w; = w;, w; is an g-approximate minimizer for ¢,;. Denote:
lI)t+1 = arg min ¢z(w)
welAy

From Lemma 17 with € = 0 we get:

wi — | dn__ 4n _e
t t+1 r”(wfl) - Cld" - n
Since w? = 1/d:
1 e
~d
W/ < E + E
Summing for all coordinates:
d-1 & 41 .
_ — S Dt = f , D
d N = W11 (lr, Wey1)

Since (¢;, wy) = % we have: We have:

mt;, Wip1) = (b, w1) — €

Since by definition Dg (wy, w;) < DR (W41, wy), We get:

¢ (wy) < ¢y (Wr11) +&

which means that w, = w; is an e-minimizer, as needed. [ ]

Theorem 36. Consider the following instance with negative entropy regularizer for some k < g—g.
For the first % steps, the loss is (0, 1). Then, for the next % steps, the loss is (1,0). Then, for the

rest (> 3L) of the steps, the loss is (0, 1). There is an error OMD trajectory with & = 4ne~*/? that
has a regret Q(T).
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2

Proof. After v = % steps we have w7

every 3t >t > 1, w; = w.

< ﬁ. From Lemma 33, it is a valid error trajectory if for

(1 1
2>2)
That is because this is what would have happen if those last 7 steps where after 7 (as the sum of
losses for both coordinates is 7), and since we didn’t move at all in 7 < ¢ < 37 it is the same.

On the steps between 37 and 47 we have a loss of (1, 0). Since w3, = w,, we have that wy, =

On the steps between 47 and 57 we assume no errors. Coordinate 1 does the same trajectory that
coordinate 2 did in the beginning, so we have w! < 4—‘2.

From Lemma 33, it is a valid error trajectory if forevery T > ¢ > 57, w; = ws, < ﬁ. Since this are
3T /4 steps, we have a regret of O(T).

For summary:

11
w; ==, =
'Tl202
e ¢
~1- 2, =
o ( 4n’4n)
I PR
w3r = 477’ 477
(11
w4T - 27 2
£ ,_*£
Wse ~|—,1—-—
S5t 4]7’ 477
e e
~l 1=
o (4n’ 4n)
|
Appendix G. Proof of Theorems 6 and 7
Lemma 37. Let wy, w, € (0, 1] such that w; < wy, then D, (0,w) < D, (0, w,)
Proof. Denote f(x) = D, (0,x). We have:
f(x) =r(0) —r(x) +r'(x)x
ffx)==rx)+r"@)x+r'(x)=r"(x)x>0
Which means that f is increasing in (0, 1]. [

Lemma 38. Let y = ({li),}thl, {f,}thl, R,n) be an g-approximate OMD trajectory with n < le and

coordinate separable R with r'' (w) = 1/w”. For everyi € [d] and t € [T] such that € < %)
we have:

(Vg () < 0(2"n)
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Proof. Since ¢! < 1 we have n€! < 5, which means that we only need to prove:
r' (@) - r'(lf);_l) <0(2"n)

Since r’ is monotonically increasing it is trivial if @} < ;'_1, continuing assuming ! > Lb;_l. We

have & < n?/r” () < 1/(16r" (1)), so from Lemma 18:

i L,
;> Ewi
Al 1

& —— > —
(@) ()~

v_.r 144
o 2 (0 )>r(wt1

From Lemma 17:
4n e

177 (M + 17 (N
r' (iby) r' (iy)

AT

N
Wy —W;_y <

Which implies:

2 2
< n

I’"(lf);)

V)
IA
&3

&€ __m

r (@) T (@)

N el S5
@)

From mean value theorem and monotonicity of »”:
r'(ﬁ)f) - r’(wi_l) < |1I); - uA); | IP,"”}, ¥ (w)
we{dy. iy}
| N(wt W)

)2vru At )

I ~
< (@ -t
l
W~

A
B

5 .
< 2 _ovpr ()
r’ ()

Lemma 39. Let X = Ay and y = ({w,}t 15 {f,}t 1R, m) withn < 116’ coordinate separable R with
r" (w) = 1/w” and uniform initialization ¥, = (1/d .. l/d) be an &- approxzmate OMD trajectory

such that there is & > 0 such that for every t € [T], wt > & Ife < W its regret w.r.t
any w € X is bounded by:

1
Regret(w) < —Dgr(w, ;) + O (2"Tn)
n
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Proof. Let &’ = min {g,f}, and let S; = {i #i*: D> f’} fort > 2.

In every step ¢ we set @, to be:

Wi = ! igS,i#i"
=i _ i
w, —I—Zwt

i¢S;

Since the changes between @; and @, are only in coordinates with value greater then &’, the effective
smoothness is upper bounded by "/ (¢’) (since r” (w) = 1/w” for all w € (0, 1]). To use Lemma 15,
we need to show that & < D?r”/(£’)/2 where D is the diameter w.r.t to L norm. Indeed, we have
that r”(w') > 1 forall w € Ay and i € [d] and D = 2. By our assumptions it holds that & < 1,
hence & < D?r”’(¢£’)/2. Thus, from Lemma 15 on ¢,:

(€1 + VR(;) = VR(d;_1), @y — ) = —24/2r" (&) = =21,

Which means:
(nf;'*_l +VR(i,) - VR(wt_l)i*)(w;'* — &)
+ > (ni_y + VR(d)" = VR(t;-1)") (0 — B
€Sy

> —2n°. 9)

Notice that since &' < % we have that 345, @ < n which means 1 — u?f < 7. Additionally, from
Lemma 38 we have that Vg (i) < 0(2"757). We have:

(775;*—1 +VR(i,)" - VR(wt—l)i*)(wi* - 1) =-0(2"1%)

Thus, Equation (9) can be written as:

(nf;'*_l +VR(,) - VR(uv,,l)"*)u — @)+
(nf;'*_l + VR(d,) - VR(wt_l)i*)(w;'* — )+
> (t_y + VR(dy)" = VR(t—1)") (0 — b}

ieS
> -7
=
(nf;‘*_l +VR(i,) - VR(uv,_])f*)(l —a)+ > (nl_, + VR()' = VR(d,_1)) (0 - ) > 0 (2" )

ieS
nC_ (B = 1)+ >0 (B -0) <
i€eS
(VR(uvt)i* - VR(wt_l)i*)u — i)+ > (VR(d,) = VR(iy-1)) (0 — i) + O(2"n?)

ieS
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From Lemma 19:

6 (& —1)+n > € (@ -0) < D,(1,d_)) = D (1)) = D, (@}, d;_))

€Sy

+ > Dp(0,8,_)) = D, (0,8}) — D (d}, ¥}

€Sy

+0(2"7%)

Fix some coordinate i # i*, and let (s1,11), (52,%2), ... (s, t,) be all enter and exit times for i to S;.
Namely, forevery j € [n] ands; <t <t;,i € S;,andi ¢ S; otherwise. Hence,

n
> D(0,8_)) - D,(0,d;) = > D, (0, @) = Dr(0,2)),

t:i€S; Jj=1
where the equality follows by telescoping the terms. Since s; is enter time for coordinate i, we
have thati ¢ S sj—1s which means that zi)’s . < &’. On the other hand, i € S,j, which means that
. J
12); > & > w _,- Thus, by Lemma 37 we get that D, (0,ds,-1) < D,(0,d;,) which we apply on
the RHS of the prev10us display to obtain:
> D0, )) = D(0,8) < D,(0, )

t:ieS;

We now argue that for every i € [d], i € S,, which means that s; = 2. Assume by contradiction that
12)5 < zi)ll (and thus l’”(lf)é) > r"(zi)‘i), from Lemma 17:

T] E
P(17d) T\ 7 (d)

AT AL

<, !
~d 16r""(n/d)r"” (1/d)

< 1 N 1
T 4d  4d
= b > 1/2d
Thus:
> Dr(0,d;_)) = Dy (0,df) < D, (0, )
t:ieS;
Thus:

Zn -D+n > 204

ie[d]\i* t:ieS;

M=~
O

T
<D,(L,d]) = > D, (i .0+ >, Dr(0,d}) = > D(df,d)_,) +0(2"Tn?)

=2 ie[d]\i*

T
= Dr(w*, i) = >, Dr(idy, h—1) + 02" Tn?) (10)
=2
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Additionally, since if i ¢ S; we have #! < & < g, we can say:

> Do b @p-0)<Ty (1)

ie[d]\i* tiigS;

Combining Equations (10) and (11) (recall that w* has 1 in i* and O in other coordinates):

T T T
Sl @ - D+n D) D6 (@ —0) < Dr(w*, 1) — > Dr(idy, th—1) + 0(2"Tn?)
=2

ic[d)\i* 1=2 =2

T T
= > (nl-1, i —w") < Dr(w*,d1) = > Dr(y, 1) + O(2"Tn?)
P =

T T

N o 1 . 1 o

= D> by, W —w') < EDR(w , 1) 3 > Dr(y, —1) + O (2" Tn)
=2 =2

From Lemma 20:
1
Regret(w®) < —=Dg(w", 1) + O(2"Tn)
n

Lemma 40. Let y = ({wt}t 1,{€t}t »R.n) and y = ({wt}t 1,{€t}t R, 7]) be OMD trajectory
and OMD error trajectory, and assume T > 4, vy is k-balanced and € < W
M s

Then, for every t € [T], ¥l >

_1
dek+1"

Proof. We will prove by induction on ¢. Since &' = % the base case holds.

1
Assume the statement is true for # — 1 and we prove for 7.

Ifa w, > it " for some s <t then the claim follows from the inductive assumption. If for every i # i*
w; < Cll we have that @} > d and the claim follows trivially. Proceeding, we consider the case that
for every s < t, @ < &’ and there is some i € [d] such that & > 1.

Since T > 3 we have from the Lemma’s assumptions and the induction assumptions that ¢ <

1 1
< : :
B (1/deF ) = Tormal )" From Lemma 18:

A
e
From this and the inductive assumptlon we have that for all s € [1,¢], @ ‘Y 2 50, —L . (We now want
to improve this statement to &} > W')
Fix i to be the coordinate for which ' > %. We’ll show that for every s € [1,7], @) > ﬁ.

Assume by contradiction that s is the last time &) < ﬁ. Again, since T > 3 we have ¢ <
1/16r” (@', ,), thus from Lemma 18:
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1

2 57mr- From Lemma 32 and our assumption on &

Which means that for every s’ € [s,1], u?i
(see Definition 30 for the definition of B’):

. . / 1
B;A/(S,t) < B;,(S,[) +T4[r (W)g <k+1

(we used r”’ because in our case, that ¢y = ¢, = 1, it is the same).

Recall that &' < i, from Lemma 31:

BL (s,1) A

by <e vV kel

<e

i
s

Which is a contradiction to uA); > 5. Now we can continue assuming that for all s € [1,¢], uA); >

1
B.(1,1) < B! (1,1) + T+ [r"” ! <k+1
77( 1) 7( 1) r 2dek+1 €

deF+T”
From Lemma 27:
Now, from Lemma 31 (recall that zi); > 5 = u?i):

AN

NN w1
W = Tt = kel
which completes the inductive step and the proof. |

Lemma 41. Let K = Ay be the simplex, let {ft}tT: | be an a-balanced loss sequence, and let R(w) =
Zflzl w; log w; be the negative entropy regularizer. Assumen < 1/16 and T > 3, if the approximation

error satisfies
1

€<
dmax {6e7%,1/n}
then the regret of any e-approximate OMD trajectory is bounded as

min {174, 1/T2},

1
Regret(w) < —=Dg(w,w;) + O(Ty).
n

. . . . 1 _ 1

Proof. From Lemma 26 the optimal trajectory is an-balanced. Since € < T6dean 12 = 77(1/16deam )12
AlF 1

from Lemma 40 for every ¢ € [T], &} > et

' 3 — +1 —
77 (min {n/d,1/de® )}’ hence from Lemma 39 with ¢ = 1/de®* and v = 1

we get the desired results. [

We also have that ¢ <

Implications for the main theorems.

Proof of Theorem 6: Any adversarial sequence over the simplex is 7'/2-balanced: if one coordinate
exceeds the best by more than 7'/2, it must actually be the best. Applying Lemma 41 with @ = T/2
gives the desired upper bound. [ |
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Proof of Theorem 7: For i.i.d. losses, Hoeffding’s inequality and union bounds implies that with
probability at least 1 — &, the balance is at most @ = O (/T log(dT?/6)), which means that na <
log (dT?/6). Plugging this into Lemma 41 together with the fact that Dg (w, wy) < log(d) for all w
yields the stochastic upper bound. [ |

Appendix H. Proof of Theorem 5

Lemma 42. For every v-barrier regularizer rand 1 > w, > wy > 0 we have:

C C
P (w) =1 (wy) = — - —
wy W,

Proof.

w2

P (w2) — ' (w1) = j P (w)dw

wy |
[
w) wY
_c c1
w}’_l w%’_]
]
. 1/(v=1)
Lemma 43. Denote = ( m) . In the assumptions of Theorem 5, for every t,i:

wh >y

v
Proof. One can see that the assumptions of the theorem are that & < * min {C2, 1 }(%) . We will

)
now prove by induction that for every t € [T], w! > .
Notice that < ﬁ ande < Y < (u])’é‘c}l) , which means that from Lemma 18, we know for start
that w! > y /2. This means that for every ¢’ € [1,], w! > /2. One can see that & < ¢/ /4 which
means that we can use Lemma 27 with /2. Since the balance of an exact trajectory is always
bounded by 5T, for every normalized v € ker(A):

2V
By(1,t) <Tn+T CQSJ

<2nT

From Lemma 29 and the induction assumption, for every i € [d] and ¢’ < t:

r'(1/2d) - ' (w') < 8nTd
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If w! < 1/2d we can use Lemma 42:

C1

wf)”

1/(v-1)
= wlj, > ‘1 = )70
YA\ 8yTd + ¢1(2d)v !

- < 8nTd +c1(2d)”"!

Else, i.e if w! > 1/2d, we have:

wi > 1/2d

1 1/v-1
()

1/v-1
Cl(2d)v 1)

\2

1/v-1
(817Td +c1(2d)~ 1)
¥

Which ends the induction step. [

Proof of Theorem 5: Since the polytope is a subset of the simplex, the diameter is bounded by
2. From Lemma 43, the effective smoothness of the trajectory is bounded by B8 = ¢»/¢”. By the
assumption about & we have & < n*/B. From Lemma 15, for every ¢:

16, + VR(wi41) = VR(w,), w” = wia1) > ~2y2f6 = O(7)

From here it is straightforward standard OMD arguments:
G- (wiar = 0') < (TR(wpa) = VR(w) - (' = weer) + 01
= Dr(w", w) = D(w’,wis1) = Dr(wiar, wy) + (1)

Summing for all 7 € [T7]:

T T
126 (it = ') < Dp(w',w1) = 3 Dr(wrr,w) +O(n7)
=1

t=1

Mw

(wrat — ) < 1DR<w o) - LS D, wn) +O(T)

t=1

From Lemma 20:

Regret(w®) < 0(%DR(U)*, wy) + @(TIT))
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Appendix I. Proof of Theorem 8

I.1. Polytope definition

The polytope is defined as {w eRY:Aw=bA(w; >0,Vie [d])} for A, b defined below. Denote

m = 16log (%), we have d = 5m + 2. Additionally, we for assume for convenience that m >
12810g(2T) and & < 4n (obviously proof that works for small & works for bigger).

The matrix A has 4m + 1 rows. The first 4m rows are, for every i € [m]:

A = emyi + €mri — 2€3m4i

Apti = €mai — €2mai

Admsi = € +3emyi + eamyi

A3mti = €4mei — €5m+1

The last row is:

Admel = €5me1 + €5m42

And:
41
b=A)> —e¢;
2
Namely, b is defined such that the point (%, %, cees é) is in the polytope. Denote this point as wy,

the OMD will always start from here.

Denote the following set of m + 1 vectors, {vi};"“:

Vi =3e; — em+i — €2m+i — €3m+i Vi € [m]

m Sm+1
Umel = D €i+esmiz— D €
i=1 i=4dm+1

Lemma 44. {0;}™"*! is a basis for ker(A).

Proof. One can notice that A is already in echelon form, so it is full ranked, which means that
dim ker(A) = m + 1. Additionally, Every vector of v has a non-zero coordinate that’s zeroed in all
other vectors of v, so v is linear independent, which means that we only need to show that each of
the vectors indeed nulls A.

For every i € [1,m], v; has common non-zero coordinates only with A;, A,+i, A2imtis Azmei- One
can easily see that it nulls them. As for v, it has common non-zero coordinates with A; for every
i € [2m+ 1,4m + 1], which again can be seen easily to nullify. [ ]

Lemma 45. The polytope is a subspace of the simplex
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Proof. To be inside the simplex all points of the polytope should satisfy two conditions - all co-
ordinates greater than O and the sum of coordinates should be 1. The first is by definition in this

polytope.

Let w be some point in the polytope. Since Aw = b and Aw; = b, w—w, € ker(A). From Lemma 44,
we can write:

w:w1+Zaivi
i

For some a; € R.

All the vectors in v has the sum of their coordinates 0. Thus, the sum of coordinates of w is the same
as wi, concluding the proof. [

L.2. General settings and hardness event

Since we want to prove a lower bound of the form T /ﬁ = @(T g), and there’s a known

lower bound for 77, we can assume d < %

The losses for the first m coordinates is constant 0, for the [m+1, 4m] coordinates it’s constant 1, for
the [4m + 1, 5m] coordinates it’s gaussian with mean 0 and variance 1, for the 5m + 1th coordinate
it is guassian with mean 4/nd < 1 and variance 1 and for the 5m + 2th coordinate it’s constant 0.

Denote 7 = % We define the hardness event E to be the following events:

Sm+1

> e, <0
i=4m+1
Sm+1
M od<Z vielr]
i=4m+1 16
Lemma 46.
Pr(E) = Q(1)

Proof. Denote G = 32! ¢ Since G is a sum of gaussian random variables, it is also a gaussian

i=dm+1
random variable, denote its mean with u and variance o->. Simple calculation shows that y =
VdnTt =2 % ando? =t(m+1) = 2(m_n+1) Since m = ©(d), we have that u = ©(0). Itis a general

attribute of a gaussian that in such case the probability of having G < 0is O(1).
Fix t € [T]. Using Hoeffding inequality we have that w.p %:
Sm+1

ST 40 < m; L log (21)

i=4m+1
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Since log(27) < {35:

Sm+1
m
> 4) < —
i=4m+1 16
Union bound on all ¢ € [T] concludes the proof. [

For every t € [T] we know that w; — w; € ker(A). From Lemma 44, it can be written as a linear
combination of v. Denote the coefficients as @, namely:

m+1

w; = wp + Z av;
i=1

L.3. Analysis

P ] 5
Lemma 47. For every i € [m], w7 > 55

Proof. Assume by contradiction that w’. > %. One can notice that the (m +i,2m +i,3m +1i) are

only in v; with the same coefficient, which means that w"* = w?"*+ = wm+,

Notice that n{¢.;, v;) = =3nt = =9. From Lemma 26:

—9 = (VR(w;) — VR(w;), v;)

=3log (w—l]) + log (w;nﬂ) + log (w%mﬂ) + log (wzmﬂi)
wf,- w;n+l w%mﬂ w?mﬂ

1 wm+i
> 3log (5) +3log (w,}m)

e -3>log (—) +log (dw*)

Which means that a; > %. Additionally, @41 > —é, since else it violates es,,,4» > 0. We have:

wT=E+3a/,-+a/m+,- >

2d

Lemma 48. Assume E and optimal trajectory, we have o™ < —é +em/8

Proof. We’ll first show that o*! < 0. Assume the opposite by contradiction. This means that
wh < w’i foralli € [4m +1,5m + 1] and w2 > w?””z. Together with Lemma 47 this means that
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in the positive elements of v,,,4; we have w’ > w’i and in the negative elements we have w’. < w’i.
This means that (VR(w;) — VR(w;), vm+1) < 0. From E we have ({.;, v;,+1) = 0, which is a
contradiction to Lemma 26.

We continue assuming o”*! < 0. Notice that /! > —é to satisfy the constraint w3™*? > 0, so for
every i € [4m + 1,5m + 1], we have w’. < 5. From E and Lemma 26:

T = 2d°
Sm+l
i
0<- >
i=4m+1
m Sm+1
_ i Sm+2 i
_Z€:T+€ZT - Z f:T
i=1 i=4m+1
= <€ZT9 Um+1>

From Lemma 26:

0 < (VR(wy) — VR(wy), Um+1)

= log || +log| L+— |- log [
; g(wl) g(w_5rm+2) Z g( i

T

. 7 w[ wi
Since w’. < ﬁ, we have w—l‘ > 2. From Lemma 47, we have w—,‘ < 2.5. Thus:
T

T

wg_m+2

w5m+2
mlog(2.5)—(m+1)10g(2)+10g( 1 )zo

Since m > 8, (m + 1) log(2) < mlog(2.2). Thus:

m+2

w5m+2
mlog(2.5/2.2) +log [ — >0
Wz

—s w'5rm+2 < em/S

Sm+2

>m+2 can only be altered with @’™*!, this concludes the proof. [ ]

Since w

Lemma 49. For some t € [T], assume a/:"_*ll < —é + e "8 and E. There is an e-approximate step
for which /™! < -1 4+ e=m/8,

1

Proof. First we show that for the optimal step, a/**! < -5+ e~m/16

If ! < cxtmf]l the proof concludes from the assumption. Continuing assuming the opposite. This

means that for every i € [4m + 1,5m + 1], w! < w;'_l.

Additionally, we’ll show that for every i € [1,m], wg > w;'_l. Assume otherwise for some i, since

a{"” > a/:'f“ll it means that o < @, _,, which means that for every j € {m +i,2m +i,3m +i} we

have w! > wlj_l. This means that (VR(w;_1) — VR(w;), v;) = 0, which contradicts Lemma 26 (as

(¢;, v;) has a constant value of —1).
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From the second part of £ and Lemma 26:

m
16 - 77<€z, Um+1>
= (VR(wr-1) = VR(wy), vme1)

m wt w5m+2 S5m+l
:Zlog( t_.l)+log( ) Z log(
- w

i=4m+1

— w5m+2 < wt5m]+2 m/16

< e—m/l6

Smce the 5m + 2th coordinate is controlled only by v,,+1, this concludes the fact that a/m” <
—L +e7m/16 = —1 4+ & which means that o/"*! < ™! +&.

Next we argue that in the optimal step, for every i € [1,m], a! > a/ Assume otherwise for some
i. This means that for every j € {m +i,2m +i,3m + i} we have w{ > w |- Additionally, it means
that w! < wt_l +e&.

From Lemma 26:

=3n =n{t;, vi)
= (VR(w;-1) = VR(w;), v;)

i m+i 2m+i
=3 log (w’;I ) +log (winﬂ.) +log (%) +log
Wy W1 W1

—_
g | &
AnOS] AN
L33
ol [
~————

w; —&
> 3log -
Wy
e e
- 7]>10g( Z)Z_Z
e>4n

Which contradicts our assumption that & < 47.

By now we showed that if the tth step is optimal, we have o*! < o/"*! < a;"_ﬂl + £ and for all

-1 = =
i €[m ]otha/tl

We next argue that if we keep the same a! for all i € [m] but change a*! to be equal to a;"*ll, this
will be an g-approximate step.

First we notice that all w, is now closer to w,_;, which means that the bregman divergence only
shrinks from that change. Indeed, coordinates [4m + 1,5m + 2] are only getting closer from the
change, coordinates [m + 1,4m] doesn’t change (the change in v,,+; doesn’t affect them). Finally,
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i

i _1» Which means that those coordinates also

since for all i € [m], o > ai_l, we still have w} > w
got closer.

The proof concludes from the fact that from the second part of E, the first term in the objective can

only be changed in &= < &.

Theorem 50. There is an e-approximate trajectory that get a regret of:

_n
log (%)

Proof. From Lemmas 48 and 49 we get that there is an g-approximate trajectory such that for every
t> 1, o™ < -1 4+e7mB <0, which means that w)™*' > 1. The total expected loss of this

QT

coordinate is T+/dn, which means that this trajectory suffers a loss of Q(T log'ﬁ)

Now we only need to show that there is a point in the polytope that gets zero loss. Indeed, one can

see that if @' = % foralli € [1,m+ 1], the point w = w; + X; @'v; has all coordinates with non-zero
loss ([m + 1,4m], 5m + 1) to be zeroed. [
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