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Abstract
Compound AI systems that combine multiple
LLM calls, such as Self-Refine and Multiagent-
Debate, are increasingly critical to AI advance-
ments. Perhaps surprisingly, we find empirically
that choosing different models for different mod-
ules has a substantial effect on these systems’ per-
formance. Thus, we ask a core question in com-
pound AI systems: for each LLM call or module
in the system, how should one decide which LLM
to use? As a first step, we formally show that the
model selection problem (MSP) is computation-
ally intractable. Next, we propose LLMSELEC-
TOR, a principled framework that learns LLMs’
strengths and weaknesses across different mod-
ules through an LLM evaluator and then performs
an efficient optimization to select which models to
use. Our theoretical analysis gives mathematical
conditions under which LLMSELECTOR only re-
quires LLM calls scaling linearly with the number
of modules and the number of LLMs to identify
the optimal model selection. Extensive exper-
iments across diverse tasks, including question
answering, constrained text generation, and code
execution, demonstrate that LLMSELECTOR con-
fers 4%-73% accuracy gains for popular com-
pound AI systems with general-purpose models
(e.g., GPT-4o and Claude 3.5 Sonnet), and 3%-
21% gains with frontier reasoning models (e.g.,
o3-mini and Gemini 2.0 Flash).

1. Introduction
Researchers and developers are increasingly leveraging
large language models (LLMs) by composing multiple LLM
calls in a compound AI system to tackle complex tasks (Du
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et al., 2024; Zhang et al., 2024b; Madaan et al., 2023; Deep-
Mind, 2023; Shinn et al., 2023; Renze & Guven, 2024;
Zaharia et al., 2024). For example, a common practice is to
use one LLM call to generate one initial answer, one LLM
call to give feedback, and one more call to refine the answer
based on the feedback, known as Self-Refine (Renze & Gu-
ven, 2024; Madaan et al., 2023; Ji et al., 2023). Another
example is Multiagent-Debate (Du et al., 2024; Liang et al.,
2024; Khan et al., 2024), where multiple LLM calls are
made to propose initial answers and then debate which ones
are correct. Compared to making a single model call, sig-
nificant improvements are possible because the compound
systems decompose challenging tasks into simpler sub-tasks,
and perform one LLM call for each sub-task.

Most existing work on compound systems focuses on op-
timizing prompts used in individual modules and/or mod-
ule interactions, while using the same LLM for all mod-
ules (Khattab et al., 2024; Yuksekgonul et al., 2024; Wu
et al., 2023; Chase et al., 2022). While this simplifies com-
pound system design, it also leaves important questions un-
addressed. In particular, does using different models across
modules improve a compound system’s performance? Per-
haps surprisingly, we find empirically that these choices
have a substantial effect on quality: different models are bet-
ter at different modules. Then how should one select which
model to use for each module? With the growing number
of LLM calls in compound systems and available LLMs,
automated model selection is critical to enhance generation
quality, simplify decision-making for users, and improve
accessibility for non-experts.

We take a first step by systematically studying model selec-
tion in static compound AI systems, i.e., those where the
number of modules, the sequencing of module calls, and
the mapping between modules and models are fixed. In this
context, we find that allocating different LLMs to different
modules leads to up to 100% higher performance than al-
locating the same LLM to all modules (Figure 1). As an
example, consider again the Self-Refine system (Madaan
et al., 2023) consisting of three modules: a generator, a
critic, and a refiner. LLM A may be better at providing
feedback but worse at generating and refining answers than
LLM B. In this case, allocating LLM A for the critic and
LLM B for the generator and refiner is better than allocating
either one to all modules.

1



LLMSELECTOR: Optimizing Model Selection for Compound AI Systems

85

39
20

64

0 0

82

41

16

65

5 0

90

62

20

61

0 0

87

39

16

60

27

0

81 77

21

66

0 0

94 87

27

70

100 99

LiveCodeBench CommonGenHard SimpleQA FEVER TableArithmetic TableBias
0%

20%
40%
60%
80%

100%

GPT-4o only GPT-4 Turbo only Claude 3.5 Sonnet only
Gemini 1.5 Pro only Llama 3.1 405B only LLMSELECTOR

Dataset

A
cc
ur
ac
y

Figure 1: LLMSELECTOR outperforms compound AI systems that always call the same LLM. Here we study three
compound systems, namely, Self-Refine (on LiveCodeBench and CommonGenHard), Multiagent-Debate (on SimpleQA
and FEVER), and Locate-Solve (on TableArithmetic and TableBias). LLMSELECTOR achieves 4%-73% accuracy gains
over allocating any model alone by allocating different models to different modules in these compound systems. The error
bars show the standard deviations across 5 independent runs.

Next, we formulate the model selection problem (MSP),
i.e., identifying the best model each module should use to
maximize the overall performance. MSP is challenging in
principle, as it is infeasible to exhaustively search the expo-
nentially large space of all model choices. More precisely,
there are |M ||V | choices, where |V | is the number of com-
ponents, and |M | is the number of models. We show that
choosing the models optimally involves solving a problem
that is NP-Hard.

However, in this paper we show that solving MSP is possi-
ble with much lower complexity, specifically, O(|M | · |V |).
This leverages two key insights we make that apply to many
cases: (i) the end-to-end performance can be monotonic in
per-module performance, i.e., if you replace the model of
a component with a better model, the end-to-end system’s
performance will improve, and (ii) per-module performance
can be estimated accurately by an LLM evaluator. This
motivates us to design LLMSELECTOR, a framework that
tackles MSP efficiently for any static system with provable
guarantees on performance optimality and linear computa-
tion complexity under mild assumptions. LLMSELECTOR
first learns the strengths and weaknesses of each model on
different modules via an LLM evaluator. Then it initializes
each module with the learned best model and iteratively
updates each module. This is applicable to any compound
system whose number of modules is fixed. Furthermore,
LLMSELECTOR incurs only limited overhead. We provide
the mathematical conditions under which LLMSELECTOR
finds the optimal solution for MSP with linear complexity,
i.e., uses a number of LLM calls that is linear in the number
of modules and models (Section 4).

We conduct systematic experiments on a diverse set of com-
pound AI systems using general-purpose LLMs (including
GPT-4o, Claude 3.5 Sonnet, and Gemini 1.5 Pro) and rea-
soning models (such as o3-mini, Claude 3.7 Sonnet, and

Gemini 2.0 Flash), for a range of tasks, such as question
answering, constrained text generation, and code execu-
tion. The performance gap among using different models
is as high as 100%. LLMSELECTOR achieves 4%-73%
performance gains compared to allocating the same LLM
to all modules using general-purpose models (Figure 1) and
3%-21% using reasoning models (Figure 3 in Section 5).
LLMSELECTOR also outperforms advanced techniques spe-
cializing in prompt optimization (Table 1 in Section 5). This
further highlights the importance of model selection for
compound AI systems. In short, our main contributions are:

• Model selection problem. We formulate the model se-
lection problem (MSP), an increasingly important but
under-explored problem. We have found empirically
that allocating different models to different modules
has large performance effects (up to 100%), and show
formally that optimizing MSP is NP-Hard.

• The LLMSELECTOR framework. To optimize MSP,
we propose LLMSELECTOR, a principled framework
that learns the strengths and weaknesses of each
model across different each modules via an LLM
evaluator, and then performs an efficient optimization
to select which modules to use. We give mathematical
conditions under which LLMSELECTOR finds the
optimal solution for MSP with linear complexity.

• LLMSELECTOR’s practical effectiveness. Through
extensive experiments on practical systems using
general-purpose LLMs (including GPT-4o and Claude
3.5 Sonnet) and reasoning models (such as o3-mini and
Claude 3.7 Sonnet), we have found that LLMSELEC-
TOR offers substantial performance gains (4%-73%)
over a range tasks including question answering, con-
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strained text generation, and code execuation.

2. Related Work
Compound AI system optimization. Prompt engineering
and module interaction design is a central topic of compound
AI system optimization. While existing work often relies
on manually tuning them (DeepMind, 2023; Shinn et al.,
2023; Zhou et al., 2024b; Pryzant et al., 2023; Fourney et al.,
2024; Zhao et al., 2024; Lu et al., 2023; Zhao et al., 2024),
recent work studies how to automate this process, such as
DSPy (Khattab et al., 2024), Textgrad (Yuksekgonul et al.,
2024), and Autogen (Wu et al., 2023; Zhang et al., 2024a).
On the other hand, our work focuses on model selection, a
third axis for compound system optimization, complemen-
tary to prompt optimization and module interaction design.

Model market utilization. Model market utilization stud-
ies how to use all available models for downstream tasks (Lu
et al., 2024; Ramı́rez et al., 2024; Miao et al., 2023). While
they mainly focus on single-stage tasks such as classifica-
tion (Chen et al., 2020; Huang et al., 2025) and question
answering (Chen et al., 2024b; Shekhar et al., 2024), we
study model utilization for compound AI systems requiring
multiple stages. This is a much more challenging problem
as the search space is much larger.

LLM-as-a-judge. LLMs are widely used for judging com-
plex generations, termed LLM-as-a-judge. Researchers
have extensively studied how LLM judges align with human
preference (Zheng et al., 2023; Shankar et al., 2024), how
to improve its quality (Kim et al., 2023), how to evaluate
it (Chiang et al., 2024; Chen et al., 2024a; Zeng et al., 2023),
as well as many other applications (Johri et al., 2025; Gu
et al., 2024; Zhou et al., 2024a). In this paper, we find a
novel use case of LLM-as-a-judge: evaluating module-wise
performance to accelerate model selection optimization.

3. Compound AI Systems
Static Compound AI systems. As defined by (Zaharia
et al., 2024), compound AI systems address AI tasks by
synthesizing multiple components that interact with each
other. Here, we denote a static compound AI system by a
directed acyclic graph G ≜ (V,E), where each node v ∈ V
denotes one module, and each directed edge e ≜ (u, v) ∈ E
indicates that the output from module u is sent to module
v as input. We also assume a final output module that
generates the final output with no output edge, and an input
module representing the input query with no input edge.

LLM modules. An LLM module is a module that utilizes
an LLM to process the inputs. It typically concatenates all
inputs as a text snippet (via some prompt template), obtains

an LLM’s response to this snippet, and sends the response
as output. Throughout this paper, all modules are LLM
modules to simplify notations.

Notations. Table 2 in Appendix A lists our notations. We
also use fi→k to indicate a function that is the same as
function f except that the value i is mapped to the value k.

4. The Model Selection Problem
This section presents how to model and optimize model
selection for static compound AI systems.

4.1. Problem Statement

Consider a static compound AI system G = (V,E) and a
set of LLMs M ≜ {1, 2, · · · , |M |} to use. Let F : V 7→M
denote all possible model allocations, each of which allo-
cates an LLM k ∈ M to a module v ∈ V . Given a task
distribution D, the performance of the compound AI system
using the model allocation f ∈ F is P(f) ≜ Ez∈D[p(f, z)].
Here, z denotes a task sampled from the data distribution,
and p(f, z) is the performance of the compound AI sys-
tem on the given task z using the allocation f . The model
selection problem is modeled as

max
f∈F

P(f) (1)

4.2. The assumptions

Problem 1 is challenging without any assumptions. As the
search space grows exponentially in the number of modules
|V |, we can actually show that Problem 1 is NP-Hard.

Lemma 4.1. Problem 1 is NP-Hard in |V |.

The proof is left to Appendix B. In the following, we list
our assumptions to enable tractable analysis.

Binary performance. For simplicity, we only consider
binary performance, i.e., p(f, z) ∈ {0, 1}.

Decomposition to per-module performance. In classic
computing systems such as a hardware stack, optimizing
individual components (such as CPU, GPU, and memory) of-
ten leads to better overall performance. Similarly, improving
individual modules’ quality should also lead to better overall
quality of a compound AI system. Here we assume that a
compound system’s performance is a monotone function of
individual modules’ performance. Formally, let pi(f, z) de-
note module vi’s performance on the task z using allocation
f . Then the end-to-end performance can be decomposed as
p(f, z) = h(p1(f, z), p2(f, z), · · · , pL(f, z)), where h(·)
is monotonically increasing.
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Figure 2: LLMSELECTOR Workflow. LLMSELECTOR takes as input a compound AI system, a pool of candidate LLMs, a
training dataset consisting of question-answer pairs, and a training budget. It uses an LLM evaluator to learn which models
perform best for each module, and then iteratively optimizes one module’s allocation at a time until the budget is reached or
no performance gain is possible. Finally, LLMSELECTOR returns an optimized model allocation.

Monotone module-wise performance. The module-wise
performance needs to satisfy certain properties to enable us
to analyze the interplay between individual modules and the
compound systems. In this paper, we focus on module-wise
performance pi with the following two conditions.

• pi is intra-monotone:pi(fi→k, z) ≥ pi(fi→k′ , z) =⇒
pi(f

′
i→k, z) ≥ pi(f

′
i→k′ , z). In simple terms, pi in-

duces a “ranking” for each module.

• pi is inter-monotone: pi(fi→k, z) >
pi(fi→k′ , z) =⇒ ∀j, pj(f ′

i→k, z) ≥ pj(f
′
i→k′ , z). In

other words, if module ith performance is higher by
replacing its allocated model from A to B, then this
should not hurt other modules’ performance.

4.3. The LLMSELECTOR framework

The above analysis motivates our design of LLMSELEC-
TOR, a principled framework for efficiently optimizing
model allocation in compound AI systems.

Figure 2 gives an overview of how LLMSELECTOR works.
It takes the compound AI system architecture G, the set of
LLM M , a training dataset DTr, and a training budget B
as input, and returns an optimized model allocation f̂ as
the output. LLMSELECTOR consists of two stages, namely,
quality learning and module-wise descent.

Quality learning. In the first stage, an allocation fa is
learned via an LLM evaluator, which estimates the ith mod-
ule performance for any given module i, task z and allo-
cation f , denoted by p̂i(f, z). Specifically, for a given z,
we start with some random allocation fz,0, and iteratively
update each module with the best module-wise performance

estimated by the LLM evaluator:

fz,i ← max
f :∃k,f=fz,i−1

i→k

p̂i(f, z),where i = 1, 2, · · · , |V |.

(2)
We take the majority vote as the learned allocation, i.e.,
fa ← mode({fz,|V |}z∈DTr).

Module-wise ascent. The learned allocation is not neces-
sarily optimal because the LLM evaluator can be noisy, and
thus we perform additional search based on the ground-truth
overall performance. Starting with the learned allocation
fa, we iteratively update each module by the model with
the best overall performance until budget is reached or no
more improvement is possible:

f i ← max
f :∃k,f=fi−1

i′→k

∑
z∈DTr

p(f, z), (3)

where f0 = fa, i′ = i (mod |V |). The details can be
found in Algorithm 1. The following result shows when
LLMSELECTOR can identify the optimal allocation, and
we leave the proof to Appendix B.
Theorem 4.2. Algorithm 1 always terminates. Suppose
Problem 1 has a unique solution, for each task z in DTr,
the optimal allocation is unique, and the LLM evaluator
p̂i = pi. Then for some constant c > 0, with probability at
least 1−O(exp(|V | ln |M |− c|DTr|)), Algorithm 1 returns
the optimal solution to Problem 1 for any B ≥ |M ||V |.

Theorem 4.2 reveals several properties of LLMSELECTOR.
First, LLMSELECTOR is guaranteed to converge. Second,
assuming that the LLM evaluator is perfect, a small training
set is sufficient to find the optimal model allocation. Indeed,
the training data size only needs to grow linearly with the
number of modules and log-linearly with the number of
models with high probability.
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Table 1: Performance of LLMSELECTOR and other approaches for optimizing compound AI systems. We focus on
three common systems (Self-Refine, Multiagent-Debate, and Locate-Solve) each of which is evaluated on two tasks.
The performance gain is the absolute improvement by LLMSELECTOR against the best of allocating any fixed (same)
model to all modules (with underlines). We also compare LLMSELECTOR with the MIPROv2 optimizer implemented
in DSPy (using GPT-4o as the LLM) with the default parameters. We also box the second-best result for each dataset.
Overall, LLMSELECTOR achieves 4%-73% accuracy gains over allocating any fixed model to all modules. Interestingly,
LLMSELECTOR also outperforms MIPROv2, which specializes in prompt optimization.

Method

Compound AI System

Self-Refine Multiagent-Debate Locate-Solve

LiveCodeBench CommonGenHard SimpleQA FEVER TableArith TableBias

GPT-4o 85% 39% 20% 64% 0% 0%
GPT-4 Turbo 82% 41% 16% 65% 5% 0%
GPT-4o mini 71% 9% 5% 62% 1% 0%
Claude 3.5 Sonnet 90% 62% 20% 61% 0% 0%
Claude 3.5 Haiku 46% 17% 8% 58% 1% 43%
Gemini 1.5 Pro 87% 39% 16% 60% 27% 0%
Gemini 1.5 Flash 80% 13% 5% 38% 8% 2%
Llama 3.1 405B 81% 77% 21% 66% 0% 0%
Llama 3.1 70B 63% 69% 12% 7% 0% 50%
Qwen 2.5 72B 80% 26% 5% 48% 1% 0%
DSPy MIPROv2 87% 71% 22% 68% 0% 0%
LLMSELECTOR 94% 87% 27% 70% 100% 100%

Gains 4% 10% 6% 4% 73% 56%

5. Preliminary Experiments
We compare the performance of LLMSELECTOR with
vanilla compound AI systems using real-world LLM models
in this section. Our goal is three-fold: (i) validating that
allocating different models to different modules can sub-
stantially improve compound AI systems’ performance, (ii)
measuring the performance gains enabled by LLMSELEC-
TOR qualitatively, and (iii) understanding when and why
compound systems optimized by LLMSELECTOR outper-
forms vanilla systems quantitatively.

Experiment setups. The main experiments are conducted
with |M | = 10 general-purpose LLMs, including GPT-4o,
GPT-4o mini, GPT-4-Turbo, Claude 3.5 Sonnet, Claude 3.5
Haiku, Gemini 1.5 Pro, Gemini 1.5 Flash, Llama 3.1 405B,
Llama 3.1 70B, and Qwen 2.5 72B, with temperature =
0.1 and maximum number of tokens = 1000 unless speci-
fied. We also conduct experiments with |M | = 3 reasoning
models, o3-mini, Claude 3.7 Sonnet, and Gemini 2.0 Flash.
We study three compound AI systems, namely, Self-Refine,
Multiagent-Debate, and Locate-Solve, on six diverse tasks,
including LiveCodeBench, CommonGenHard, SimpleQA,
FEVER, TableArithmetic, and TableBias. We use 50% of
each dataset for training and the other 50% for evaluation.
All experiments were run on a machine with 10 Intel 2.2
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Figure 3: LLMSELECTOR’s performance using frontier
reasoning models including o3-mini, Gemini 2.0 flash, and
Claude 3.7 Sonnet. The error bar is the standard devia-
tion over 5 runs. Overall, we have observed that LLMSE-
LECTOR consistently offers substantial (3% to 21%) perfor-
mance improvements compared to using any fixed reasoning
models. This further highlights the importance of model
selection in the era of reasoning models.

GHz cores, 192 GB RAM, and 3 TB disk with Ubuntu 20.04
LTS as the OS. More details can be found in Appendix C.1,
Appendix C.2, and Appendix C.3.

5.1. Quantitative Performance Improvements

We start by studying the performance of LLMSELEC-
TOR on practical compound AI systems. We compare
LLMSELECTOR with using any fixed model for all mod-
ules and DSPy optimizer MIPROv2 (Khattab et al., 2024),
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Figure 4: An illustrative example of applying LLMSELECTOR on Self-Refine on LiveCodeBench. (a) the task. (b) Using
Claude 3.5 Sonnet for all modules leads to the wrong answer. (c) LLMSELECTOR learns to use GPT-4o as the feedback
provider, leading to the correct answer.

an open-source library specialized for prompt optimiza-
tion in compound systems. MIPROv2 searches for best
prompts using Bayesian optimization. We use GPT-4o as
the backbone LLM, and set max bootstrapped demos=2,
max labeled demos=2, and all other parameters as default.

General-purpose models. Table 1 summarizes the quan-
titative results using |M | = 10 general-purpose models.
First, we observe that no LLM is universally better than all
other LLMs for all tasks. For example, Gemini-1.5 Pro per-
forms the best on TableArthmetic, but GPT-4o is the best for
FEVER. Second, LLMSELECTOR offers 4%-73% perfor-
mance gains compared to the best baselines. Interestingly,
LLMSELECTOR also outperforms the DSPy MIPROv2,
which optimizes the prompt. This is because different mod-
els have their own strengths and weaknesses, and prompting
alone is insufficient to overcome an LLM’s weaknesses.

Reasoning models. As shown in Figure 3, LLMSELEC-
TOR offers 3%-21% performance gains compared to using
frontier reasoning models such as o3-mini and Claude 3.7
Sonnet. This suggests that LLMSELECTOR is effective
across different types of LLMs.

5.2. Qualitative understanding of LLMSELECTOR

To further understand when and why LLMSELECTOR out-
performs allocating the same model to all modules, we dive
into an example from LiveCodeBench using Self-Refine, as
shown in Figure 4. Here, the task is to decide the output
of a python program for a particular input. In this case,
using Claude 3.5 Sonnet leads to an incorrect answer. As
shown in Figure 4(b), this is because Claude 3.5 Sonnet
is not able to recognize its own mistake as a critic. And

thus, the error propagates from the initial answer generator
to the final output. On the other hand, LLMSELECTOR
learns to use GPT-4o as the critic. As shown in Figure 4(c),
GPT-4o, as the critic, correctly finds the mistake made by
the initial answer generator. Thus, LLMSELECTOR leads
to the correct answer. This justifies that LLMSELECTOR is
effective because it identifies which model is most suitable
for which role in the given compound AI system.

6. Conclusion
The complexity of orchestrating multiple LLM calls in com-
pound AI systems underscores the critical need for strategic
model selection to optimize these systems’ performance
across diverse tasks. In this paper, we propose LLMSELEC-
TOR, a principled framework that identifies optimal model
selection with provable performance and sample complexity
guarantees, whose effectiveness has also been justified via
extensive experiments on question answering, constrained
text generation, code execution, and many other tasks.

Compound AI systems that make multiple LLM calls are a
rapidly growing industry with broad economic and societal
impact. Despite relieves users from tedious and challeng-
ing system configuration overhead, LLMSELECTOR opens
the door for many exciting future directions. LLMSELEC-
TOR focuses on optimizing compound AI systems with a
bounded number of LLM calls, and it remains open how
to select models for compound AI systems with a dynamic
or unlimited number of LLM calls. Based on discussions
with practitioners, it is also an interesting question to jointly
optimize model selection and prompting methods. We will
release the code and data to stimulate more research and
positive societal impacts.
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A. Notations and Technical Details
We summarize the main notations in Table 2. The details of LLMSELECTOR is given in Algorithm 1.

Table 2: Notations.

Symbol Description

G = (V,E) A compound AI system

|V | Number of LLM modules

M The set of LLMs

f : V 7→M A model allocation

z One task

P(f) End-to-end performance

p(f, z) End-to-end performance on z

pi(f, z) ith module’s performance on z

D The task distribution

DTr The training dataset

Algorithm 1: How LLMSELECTOR works.
Input: A compound AI system G = (V,E), a pool of K candidate LLMs, a training dataset DTr, and a training

budget B
Output: An optimized model allocation f̂

1 Choose a random f0 ∈ F // initialize

2 Compute fz,i by equation (2) ∀z ∈ DTr, i = 1, · · · ,min{|V |, ⌊ BM ⌋}
3 f0 ← mode({fz,min{|V |,⌊ B

M ⌋}}z∈DTr) // quality learning

4 Compute f i by equation (3) ∀i = 1, · · · ,min{⌊ B
|M |⌋ − |V |, 0}⌋// module-wise ascent

5 return f i // optimized model choices

B. Missing Proofs
B.1. Proof of Lemma 4.1

Proof. We prove that Problem (1) is NP-Hard via a polynomial-time reduction from the canonical NP-complete problem
3-SAT.

Construction. Consider a 3-SAT instance with a CNF formula over Boolean variables z1, . . . , zm with clauses C1, . . . , Cn,
where each clause has exactly three literals.

Construct the following compound AI system instance:

• Let |V | = m, with one module vi ∈ V corresponding to each Boolean variable zi.

• Let M = {0, 1}, where model 0 represents False and model 1 represents True.

• Each allocation f ∈ F corresponds to a truth assignment to all variables.

• For each clause Cj , define a task zj ∈ D whose success depends on whether clause Cj is satisfied under allocation f .
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Define:

p(f, zj) ≜

{
1, if Cj is satisfied under assignment f,
0, otherwise.

Let the data distribution D = {z1, . . . , zn} be uniform over clauses. Then the expected performance becomes:

P(f) = Ez∈D [p(f, z)] =
1

n

n∑
j=1

p(f, zj),

which is simply the fraction of clauses satisfied by the assignment f .

Reduction from 3-SAT to Problem 1. The original 3-SAT formula is satisfiable if and only if there exists an allocation
f such that P(f) = 1. Thus, any 3-SAT instance can be solved by solving Problem 1 for the above compound AI system
instance, and returning satisfiable if and only if the optimal solution is 1.

Thus, we conclude that Problem (1) is NP-Hard in |V | (number of modules).

B.2. Proof of Theorem 4.2

Proof. The first half (termination) is straightforward: Line 2 takes min{|V |, ⌊ BM ⌋} iterations, and line 4 takes min{⌊ B
|M |⌋−

|V |, 0}⌋ iterations. Thus, Algorithm 1 terminates after ⌊ B
|M |⌋ iterations.

Now we turn to the second half. This involves two parts. First, we show that the majority vote of all individual fz,|V | leads
to the optimal solution to model selection on the training dataset. Next, we show that the optimal solution on the training
dataset is the same as that on the data distribution with high probability. Both of them would need the following lemma.

Lemma B.1. Assume p̂i = pi. Then fz,|V | is the unique optimal allocation for the task z.

Proof. We first note that the uniqueness of a task’s optimal model allocation implies that for each module only one unique
model maximizes the per-module quality. That is, for each i, there exists some k, such that for any k′ ̸= k, we have
pi(fi→k > pi(fi→k′). Suppose not. Let k∗ be the model allocated to module i by the optimal allocation. Due to the
monotone assumption, k∗ should also maximize module i’s performance. Let k′ be another model that maximizes module
i’s performance. By the inter-monotone assumption, switching from k∗ to k′ does not hurt any other module’s performance.
By the monotone assumption, k′ also maximizes the overall performance. A contradiction. Therefore, for each module,
there is only one unique model that maximizes its performance, regardless of how other modules are allocated.

Now we can show that at the iteration i, allocation fz,i allocates the same models to the first i modules as the optimal
allocation. To see this, one can simply notice that the unique “best” model for each module must also be the optimal model
for the end-to-end system. This is again because of the monotone assumption: otherwise, one can change the model in
the optimal allocation to have better performance of one module and thus the overall system. Therefore, allocating the
per-module optimal model is the same as allocating the optimal model for the entire system. Thus, at iteration i, allocation
f i,z allocates the same models to the first i modules as the optimal allocation. Therefore, after |V | iterations, the allocation
must be the unique optimal allocation for query z.

Now let us start with the first part. We first argue that the allocation learned at line 3, i.e., the majority vote of fz,|V | (since
B ≥ |V | · |M |) over all z, is the optimal solution to

max
f

1

|DTr|
∑

z′∈DTr

p(f, z′).

By Lemma B.1, the optimal allocation for each query is unique. That is, p(f, z′) is 1 if f = fz′,|V |, and 0 otherwise. Hence,
the training performance of any fixed f is proportional to∑

z′∈DTr

1f=fz′,|V |
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That is, the performance of allocation f is proportional to the number of training data points whose optimal allocation is the
same as f . Therefore, taking the majority vote of all optimal allocations is sufficient to obtain the best allocation for the
training dataset.

Now we turn to the second part. By definition, P(f) = E(p(f, z)) = E(1f=fz,|V |) = Pr[f = fz,|V |]. In words, the
performance of allocation f is the probability that it is the same as the optimal allocation of a query sampled from
the distribution. The optimal allocation is thus f∗ = maxf∈F Pr[f = fz,|V |], where F is all possible allocations.
The solution we obtain at line 3, fa, as shown in the first part, is the optimal solution on the training dataset, i.e.,
fa = maxf∈F

∑
z∈DTr

1
|DTr|1f=fz,|V | . Now we can show that these two allocations are the same with high probability, by

showing that for each allocation f the two objectives are close to each other with high probability, and then applying the
union bound.

Specifically, let ∆ ≜ P(f∗) = maxf∈F−{f∗} P(f), i.e., ∆ is the gap between the optimal allocation’s performance and the
second best allocation’s performance. By the assumption that the optimal solution to Problem 1 is unique, we must have
∆ > 0. For ease of notation, let n ≜ |DTr| denote the size of the training dataset, and P̂(f) ≜

∑
z∈DTr

1
|DTr|1f=fz,|V | .

For any given allocation f , by Hoeffding bound,

P
(∣∣∣P(f)− P̂(f)

∣∣∣ ≥ ϵ
)
≤ 2 exp

(
−2nϵ2

)

Set ϵ = ∆/2. This implies that with probability at least 1− 2 exp
(
−n∆2/2

)
,
∣∣∣P(f)− P̂(f)

∣∣∣ < ∆/2. By union bound,

for all allocation f , with probability at least 1 − 2|F| exp
(
−n∆2/2

)
,
∣∣∣P(f)− P̂(f)

∣∣∣ < ∆/2 holds for all f . Now, this

suggests that for any f ̸= f∗, we have P̂(f∗)− P(f∗) > −∆/2, and P̂(f)− P(f) < ∆/2. Therefore, we can have

P̂(f∗)− P̂(f) =P̂(f∗)− P(f∗)− (P̂(f)− P(f)) + (P(f∗)− P(f))

>−∆/2−∆/2 + (P(f∗)− P(f))

=P(f∗)− P(f)−∆ ≥ 0

where the last ≥ is be definition of ∆. That is to say, the performance of f∗ on the training dataset is higher than that
of any other allocation with high probability. Hence, the allocation that maximizes the performance on the training
dataset must be the same allocation that maximizes the performance on the data distribution, with probability at least
1 − 2|F | exp

(
−n∆2/2

)
. Recall that there are |M ||V | many possible allocations and thus |F| = |M ||V | and also that

n = DTr by definition. Thus, with probability at least 1 − 2 exp
(
|V | ln |M | − |DTr|∆2/2

)
, the obtained allocation by

Algorithm 1 is the optimal allocation, which finishes the proof.

C. Experiment Details
C.1. Compound AI Systems

In this paper, we focus on three compound AI systems, Locate-Solve, Self-Refine, and Multiagent-Debate. Their architectures
are shown in Figure 5. Locate-Solve designed for TableArithmetic and TableBias consists of two modules: the first module
extracts the task associated with an ID from an input table, and the second module returns the answer to the extracted task.
Self-Refine (Madaan et al., 2023) has a generator, a critic, and a refiner. The generator gives an initial answer to a question,
the critic gives feedback to this answer, and the refiner uses the feedback to refine the original answer. Multiagent-Debate (Du
et al., 2024) involves two types of modules: answer generators and debaters. The answer generators offer initial answers to a
question. The debaters take the initial answers and then debate which one is correct. In this paper, we focus on a six-module
Multiagent-Debate: three modules are answer generators, and the other three are the debaters.

C.2. Datasets and Evaluation Metrics

Now we provide details of all datasets used in this paper.
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Gen 1

Gen 2

Gen 3

Debate 1

Debate 2

Debate 3

(b) Self-Refine

Gen Critic Refine

(c) Multiagent-Debate

(a) Locate-Solve

Locate Solve

Figure 5: The architectures of the compound AI systems studied in the experiments. (a) Locate-Solve using two modules.
(b) Self-Refine using three modules. (c) Multiagent-Debate that involves six modules in total.

LiveCodeBench. LiveCodeBench (Jain et al., 2024) is a benchmark for code understanding. We use the code execution
task in LiveCodeBench 1. It contains 479 questions in total. Each question contains a program and an input. The goal is to
predict the output of the program. Note that this is a generative task, as the output space of a given program is unbounded.
We use the exact match to measure the performance of a compound system’s generation. This dataset is under the MIT
License.

CommonGenHard. CommonGenHard (Madaan et al., 2023) is a constrained generation dataset consisting of 200
questions. Each question gives 20-30 concepts, and the goal is to generate a coherent paragraph that uses all the provided
concepts. Since all LLMs used in our evaluation generate coherent texts, we focus on evaluating the quality of whether all
concepts are included. That is, the quality is 1 if all concepts are contained in the generated paragraph, and 0 if any concept
is missing. This dataset is under the Apache-2.0 License.

SimpleQA. SimpleQA (Wei et al., 2024) contains 4326 short, fact-seeking questions. Example questions include “Who
received the IEEE Frank Rosenblatt Award in 2010” and “What is the first and last name of the woman whom the British
linguist Bernard Comrie married in 1985”. While seemingly simple, LLMs actually struggle to answer them correctly. We
use the exact match to measure the generation quality of a compound system. This dataset is under the Apache-2.0 License.

FEVER. FEVER (Thorne et al., 2018) is a fact-verification dataset. We use the v2.0 variant consisting of 2384 questions 2.
Each question contains a claim, and the task is to classify the claim as one of NOT ENOUGH INFO, SUPPORTS, and
REFUTES. Again, we use exact match as the accuracy metric. This dataset is under the Creative Commons Attribution
Share Alike 3.0 License.

TableArithmetic. TableArithmetic is a synthetic dataset used to understand the locate-solve system’s performance. It
contains 100 questions. Each question consists of a table of “ID” and “task” rows, and the goal is to solve the task associated
with a specific ID. Each row contains 100 entries. Each question has the form of “What is X+(10.9¿10.11)?”, where X is a
randomly generated integer.

TableBias. TableArithmetic is another synthetic dataset. It contains 100 questions. Each question consists of a table of
“ID” and “task” rows, and the goal is to solve the task associated with a specific ID. Here, each table contains 80 entries.
Each question has the form of “The surgeon, who is the boy’s father, says I cannot operate on this boy, he is my son. Who is
the doctor to the boy? (Ax) Father (Bx) Mother”, where again x is a randomly generated integer.

C.3. LLM Endpoints and Providers

We give the details of all models used in our experiments in Table 3, including their API endpoints and model providers for
reproducibility purposes.

1https://huggingface.co/datasets/livecodebench/execution-v2
2https://huggingface.co/datasets/fever/fever
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Table 3: Overview of all LLMs used in this papers. We use |M | = 10 models for experiments using general-purpose models,
and |M | = 3 models for experiments with frontier reasoning models. The model endpoints and providers are detailed here
for reproducibility.

Type Model API Endpoint Provider

General-Purpose GPT-4o gpt-4o-2024-05-13 OpenAI
General-Purpose GPT-4o Mini gpt-4o-mini-2024-07-18 OpenAI
General-Purpose GPT-4 Turbo gpt-4-turbo-2024-04-09 OpenAI
General-Purpose Claude 3.5 Sonnet claude-3-5-sonnet-20240620 Anthropic
General-Purpose Claude 3.5 Haiku claude-3-haiku-20240307 Anthropic
General-Purpose Gemini 1.5 Pro gemini-1.5-pro Google
General-Purpose Gemini 1.5 Flash gemini-1.5-flash Google
General-Purpose Llama 3.1 405B meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo Together AI
General-Purpose Llama 3.1 70B meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo Together AI
General-Purpose Qwen 2.5 72B Qwen/Qwen2.5-72B-Instruct-Turbo Together AI

Reasoning o3-mini o3-mini-2025-01-31 OpenAI
Reasoning Claude 3.7 Sonnet claude-3-7-sonnet-20250219 Anthropic
Reasoning Gemini 2.0 Flash gemini-2.0-flash Google

C.4. LLM Evaluators: Prompts and Ablation Studies

Prompt for the LLM evaluator. We give the LLM evaluator prompt template in the following box. The LLM evaluator
takes the module index i and the compound AI system’s description (including the description of each module, and how
modules connect to each other) as input, and follows this prompt to evaluate module i’s performance. As we focus on binary
performance, the performance is either high (1) or low (0).

LLM evaluator prompt

You are an error diagnosis expert for compound AI systems. Below is the description of a compound AI system
consisting of multiple modules, a query, the generations from each module of the compound AI system, the final
output, and the desired answer. Assume that the desired answer is 100% correct. If the final output matches the
correct answer, generate ‘error: 0’. Otherwise, analyze whether module i leads to the mistake. If so, generate ‘error:
1’. Otherwise, generate ’error: 0’. Think step by step.
[Compound AI system]:
[query]:
[module 0 output]:
[module 1 output]:
...:
[module |V | output]:
[final output]:
[desired answer]:
[your analysis]:

Effects of LLM evaluator. Here we study how different LLM evaluators affect LLMSELECTOR’s performance. In
particular, we use three different LLM evaluators, namely, Gemini 1.5 Pro, GPT-4o, and Claude 3.5 Sonnet, and measure
their evaluation accuracy as well as end-to-end system performance, i.e., how the learned Locate-Solve system performs on
the testing dataset. As shown in Table 4, we first observe that the evaluation accuracy does vary across different evaluators.
Gemini 1.5 Pro’s evaluation accuracy is the highest (85%), while GPT-4o’s accuracy is only 68.4%. On the other hand, we
observe that the end-to-end performance by using any of these LLM evaluators is impressive. This suggests that the LLM
evaluators do not need to be perfect to obtain a high-quality model allocation. Finally, we note that the evaluator accuracy
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has an impact on “convergence rate”, i.e., the training budget required to reach the optimal model allocation. When Gemini
1.5 Pro is the evaluator, budget=2 (the number of modules) is sufficient. This is because the LLM evaluator is near-optimal
and thus the allocation anchoring is sufficient to find the optimal allocation, matching our theoretical analysis as well. When
the LLM evaluator is noisy (such as GPT-4o), additional budget is needed for the module-wise ascent.

Table 4: Effects of different LLM evaluators for the Locate-Solve system on TableArithmetic using all 10 models. All LLM
evaluators lead to a high end-to-end performance. Gemini 1.5 Pro’s evaluation accuracy is the highest and thus requires the
smallest training budget to find the optimal model allocation. On the other hand, using GPT-4o as the evaluator leads to a
lower evaluation accuracy and thus requires more training budget.

LLM Evaluator Evaluator Accuracy (%) Required Budget End-to-End Accuracy (%)

GPT-4o 68.4 40 100
Claude 3.5 Sonnet 70.1 40 100
Gemini 1.5 Pro 85.0 20 100

The first example shown in Figure ??(a) is a task from the SimpleQA dataset. Allocating GPT-4o to all modules leads to an
incorrect answer as seen in Figure ??(b). This is because the GPT-4o generators always return 8 as the initial answers, and
the debaters fail to identify this mistake. On the other hand, LLMSELECTOR, as demonstrated in Figure ??(c), learns to
allocate GPT-4o, Llama 3.1 405B, and Gemini 1.5 Pro for the three answer generators separately, and use GPT-4o for the
three debaters. In this case, the three generators give completely different answers: 8, 3, and -18. Interestingly, the GPT-4o
debaters reaches the consensus of 3, which is indeed the correct answer.

Another example from the LiveCodeBench dataset is shown in Figure ??(d). Here we focus on the Self-Refine system which
contains three modules (a generator, a critic, and a refiner). Recall that allocating Claude 3.5 Sonnet to all modules is better
than allocating any other fixed LLMs, as shown in Table 1. However, this leads to an incorrect answer for this example, as
shown in Figure ??(e). This is because Claude 3.5 Sonnet as the critic mistakenly tags its initial generation as correct. On
the other hand, LLMSELECTOR learns to allocate Claude 3.5 Sonnet for the generator and the refiner, but GPT-4o for the
critic. As shown in Figure ??(f), this leads to a correct response to the task. This is because GPT-4o is better than Claude 3.5
Sonnet as a critic for LiveCodeBench tasks.

To sum up, LLMSELECTOR performs better than allocating any fixed models to all modules, because it identifies the
strengths and weaknesses of different models across modules, and then allocate to each module the model that best fits it.

D. Limitations and Broader Impacts
LLMSELECTOR focuses on optimizing compound AI systems with a bounded number of LLM calls, and it remains open
how to select models for compound AI systems with a dynamic or unlimited number of LLM calls. Based on discussions
with practitioners, it is also an interesting question to jointly optimize model selection and prompting methods.

Compound AI systems that make multiple LLM calls are a rapidly growing industry with broad economic and societal impact.
The large increase in available LLMs makes it inevitable to select which LLMs to use for these systems. LLMSELECTOR
offers an off-the-shelf framework to automate model selection in compound AI systems. This substantially relieves users
from tedious and challenging system configuration overhead. It also makes compound AI systems more accessible to more
users, especially those without professional skills and knowledge in LLMs. LLMSELECTOR can optimize a compound
system over any given set of LLMs, enhancing the robustness and availability of compound AI systems—even in the face of
cloud outages or individual model failures—thereby supporting more reliable AI services in critical applications. We will
release the code and data to stimulate more research and positive societal impacts.
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