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Abstract

We tackle the contextual question answering (QA) problem on the SQuAD 2.0
dataset. Our project has two main objectives. Firstly, we aim to build a model
that achieves a reasonable performance while keeping the number of trainable
parameters to a minimum. In this regard, we insert task-specific modules inside the
pre-trained BERT model to control the flow of information between transformer
blocks. Our proposed method for fine-tuning BERT achieves comparable perfor-
mance to fine-tuning all BERT parameters while only training 0.57% of them.
Secondly, we use our findings in the previous task to achieve an EM score of 78.36
and an F1 score of 81.44 on the test set (ranked 3rd on the PCE test leaderboard).

1 Introduction

Question answering (QA) is considered to be a proxy for machine comprehension, or at least a way
to quantify it, and has been a central topic in NLP research during the last decade. It, however, still
remains a challenging task since it requires complex reasoning in order to determine relationships
between words across long sequences of text. In this project, we tackle the contextual question
answering problem. More specifically, given a context paragraph and a question, our model returns a
span of the answer in the context. We use SQuAD 2.0 dataset [12] and build a system that is both
efficient to train, has minimal parameter overhead and achieves F1 and exact match (EM) scores
comparable to human performance.

Pre-trained models have gained immense use and popularity in neural NLP tasks in recent years.
While pre-trained word vectors such as word2vec [8] and GloVe [9] have been successful in capturing
the meaning of single words, by themselves they generally do not help in capturing the meaning of
words in their context. The advent of pre-trained contextual models such ULMFiT [4], ELMo [10],
OpenAI transformer [11] and BERT [1] has led to a paradigm shift in NLP research where anyone
can use pre-trained representations that encode contextual information rather than training everything
from scratch.

Another important trend in NLP research is developing systems that can perform multiple tasks at the
same performance level as a single-task model. [7] and [16] provide two datasets and approaches
to tackle this problem. Considering these two trends, an important question arises: can we use a
pre-trained model like BERT in a multi-task setting? [3] and [15] try to answer this very question for
the GLUE benchmark [16]. Our work, though inspired by them, is different in two ways: Firstly, tasks



in GLUE are mostly sentence-level.1 We investigate the possibility of using similar techniques for
contextual QA in which understanding the details of every part of the sentence is crucial. Secondly,
we extend their approach to a single-task setting where performance is much more important than the
number of parameters.

Inspired by [3], we propose a method to use pre-trained BERT for QA without adding much more
than half a million trained parameters, while maintaing the same F1 and EM scores as fine-tuning
approach described in [1].

2 Related work

2.1 BERT and fine-tuning

BERT [1] differs from OpenAI GPT [11] and ELMo [10] by virtue of its bidirectional encoder
where each word attends to every other word in both directions. A Masked Language Modeling task
(where a portion of words is masked out and the model is made to predict these words) is used for its
pre-training. BERT also entails a next sentence prediction task to understand relationships between
sentences gaining deeper context.

Most current systems that tackle a single NLP task, use BERT as a means to get contextual word
embeddings, and build a secondary model on top of that2. For reference, using BiDAF [14] would
add 2.6 million additional parameters that need to be trained from scratch, using QANet[19], a
state-of-the-art model, would add 1.3 million, which requires long training time. Another approach is
to fine-tune all parameters of BERT for each task. This approach, however fast in terms of training
time, does not generalize to the multi-task learning setting since it requires a separate BERT model
for each task. This is especially more challenging when we consider deployment of trained models
on mobile or edge devices since their memory is usually limited.

2.2 Answer Pointer

Our baseline model predicts a start-token and an end-token which constitutes a span in the passage,
and are produced independently. We adopt Answer Pointer proposed by [17] where the start-token
prediction is fed to a GRU to point to the corresponding end-token.

2.3 Adapters and PALs

Both PALs (Stickland and Murray [15]) and adapters ([3]) introduce task-specific modules in the
BERT architecture for multi-task training. Adapters [3] add new bottleneck modules within the
transformer layers of the pre-trained network which are fine-tuned for the given task. Similarly [15]
add Projected Attention Layers within the transformer layer with shared weights across the different
transformer layers of the BERT model. We describe these models in more details in the next section.

2.4 Transfer Learning from CoQA

Reddy et al. [13] have performed a comparative study of question answering datasets (CoQA, SQuAD
2.0 & QuAC) where it was shown that models benefit from pre-training on the CoQA dataset to
SQuAD 2.0 (but not from QuAC). This prompts us to employ transfer learning from the CoQA
dataset for our model as well.

3 Approach

In this section we describe our models and training approaches. Implementation of all these ap-
proaches (except for the baseline) and the idea and method of using adapters and PALs for QA are
ours.

1Even QNLI part of GLUE which is based on SQuAD, is a simplified binary classification version.
2There are very few published work in this field due to its newness.
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3.1 Baseline

We used the question answering model proposed in [1] to build our baseline. This model uses two
vectors S,E ∈ RH for Start and End respectively where H is the size of output vectors for each
token. Let Ti ∈ RH be the final hidden vector from BERT of the ith token, the probability of each
word i ∈ {start, end} is computed as follows:{

Pi =
eK.Tj∑
j e

K.Tj
| K ∈ {S,E}

}
Similar to the original implementation of BERT for SQuAD 2.0, we use a threshold to decide whether
question is unanswerable. This is the simplest way to apply BERT to SQuAD as Devlin et al. [1] did,
to intentionally avoid substantial task-specific architectural modifications. We use a modified version
(to add training/validation tracking and other changes) of Huggingface Pytorch implementation [2]
for the baseline.

3.2 Architecture Search

In this section we describe our modifications to the BERT architecture, and how they affect the
performance. Our model choices are focused on two main goals:

1. Improving the overall performance on the SQuAD dataset

2. Keeping the storage overhead minimal

The three main parts of the our methods are summarized in Figures 1, 2 and 3 respectively. Our
changes are both within the BERT-base transformer layers as well as at the output layer.

One of the changes that we made to the baseline model is to change the prediction of the start and
end positions at the output layer and this is depicted in 3. Since predicting the start and end positions
independently in BERT (see section 3.1) seems too simplistic, we employ the Boundary Model of the
Answer Pointer Layer proposed by [17] to condition the end-position prediction on the start-position
prediction.

The other two components, Adapters and PALs (Projected Attention Layers), add task-specific
layers within the BERT model specifically in each of the 12 transformer blocks of the BERT-base.
These methods are explained in more detail in the following parts. They are inspired by the papers
mentioned below, however, since our task and goals are quite different from theirs, we only use their
core idea as inspiration. The implementation, specific choice of additional layers and experiments
conducted are ours.

3.2.1 Output Layer

Let S be the sequence output from the last block of BERT for a single example. S ∈ R(L,H) where L
is the sequence length andH is the hidden size. This model generates the start-token and the end-token
using attention weight factors βstart and βend ∈ RL on S. βstart and βend represent the start-token
and end-token softmax probabilities respectively. The computation of these factors depends on the
following parameters which are to be learned: V ∈ RH×H ,W a ∈ RH×H , ba ∈ RH , v ∈ RH , c ∈ R
and hastart ∈ RH (h0 ∈ RH is initialized as a zero vector). ⊗eL expands the first dimension of its
left vector by repeating it L times. We start by computing Fstart ∈ RL×H :

Fstart = tanh(SV + (W aha0 + ba)⊗ eL)

βstart = softmax(Fstartv + c⊗ eL)

hastart =
−−→
GRU(STβstart, h0)

Fend = tanh(SV + (W ahastart + ba)⊗ eL)

βend = softmax(Fendv + c⊗ eL)

The loss function is calculated in the same way as the baseline model once we have the start_logits
(Fstartv + c⊗ eL) and the end_logits (Fendv + c⊗ eL).
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3.2.2 Task-specific Layers

These two task-specific architectures were inspired from [3] and [15]. These papers aim at minimizing
the number of parameters they train without hurting the performance of the model on the GLUE
benchmark [16].

All layers we add, include some kind of bottleneck projection to lower-dimensional spaces to achieve
a regularization effect, and a skip connection to minimize interference with other layers in BERT.
We now describe these layers in more details. Let BERTw(x) be the function that represents the
BERT model and BERTAw,v(x) be our models where v are the parameters of our additional layers.
Based on our experiment, we learned that v should be initialized to make these layers near-identity
i.e. BERTAw,v0(x) ≈ BERTw(x).

Projected Attention Layers:

[15] introduced the idea of using task-specific attention mechanisms in BERT. In Figure 2, the inputs
and outputs to the task-specific component are L vectors each in RH where L is the sequence length
and H = 768 is the hidden size. The task-specific layer is applied to each of these vectors and has
the following formulae (A is the number of attention heads, a hyperparameter):

Attentioni(hj) =
∑
k

softmax(
WQ

i hj ·WK
i hk√

H/A
)WV

i hk

MultiHead(hj) =WO[Attention1(hj);Attention2(hj); ...;AttentionA(hj)]

TaskSpecific(hj) =WDMultiHead(WEhj)

Here, WE projects the inputs to a smaller space, and WD projects them back to the original size.
These two matrices are the only parameters shared accross all transformer blocks. The size of the
smaller space (bottleneck size) is a hyperparameter that needs to be tuned.

Adapters:

[3] proposes adapters as a more efficient alternative to fine tuning. The paper shows that adapter-
based tuning requires training two orders of magnitude fewer parameters compared to fine-tuning the
BERT model, while attaining similar performance on different tasks in the GLUE benchmark.

We adopt a similar approach for our question answering task. We implemented these bottleneck
architectures and added them to the BERT architecture after the self-attention layer and after the
feed-forward layer (see Figure 1). This module is added across all 12 transformer blocks with the
goal to filter information and retain only the relevant information specific to Question Answering
from the two main layers of the Transformer across all 12 blocks.

The Adapter has a simple bottleneck architecture. The bottleneck contains fewer parameters than the
attention and the feed-forward layers.

The adapter layer can be expressed as follows:

Adapter(hj) =WD(non-linearity(WEhj + bE)) + bD

Here, similarity to the task-specific attention layers WE projects the inputs to a smaller space, and
WD projects them back to the original size and bE and bD are the corresponding biases. The size of
the smaller space is the only hyper-parameter that needs to be tuned.

3.3 Data Augmentation

One direction we considered is the effect of data augmentation on performance. We have experimented
with two data augmentation techniques:

No-Answer Augmentation:

The paragraphs in SQuAD come from Wikipedia articles, and each paragraph has several questions.
We retrieve the article from which the paragraph is chosen, choose two adjacent paragraphs from that
article and add them with their questions, using unanswerable as the label. This increases the size of
our training set by a factor of 3.
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Figure 1: One transformer
block in BERT. The adapter

part is shown in orange

Figure 2: One
transformer block in
BERT. The projected
attention layers are
shown in orange.

Figure 3: Answer Pointer Architecture

Transfer Learning from CoQA:

Inspired by [18] which compares different question answering datasets, we perform transfer learning
from the model pre-trained on the CoQA dataset [13] (Conversational Question Answering systems)
to the SQuAD datasest. This paper [18] shows that the datasets are ineffective for direct transfer but
can improve the performance significantly when the model is pre-trained on a different dataset then
normaly trained on the target dataset. Therefore we pre-train our model on the CoQA dataset prior to
fine-turning it on the SQuAD dataset. We do not decrease the initial learning rates when fine-tuning
on the SQuAD dataset.

4 Storage Efficiency

In this section, we explain how to achieve a good performance without greatly increasing the
number of trainable parameters. We train our models on SQuAD 2.0 dataset only, i.e. without any
augmentation. We do not use Answer Pointers here. We evaluated our models using F1 and EM
metrics as well as the total number of parameters to be trained.

4.1 Experiments

We used BERT-base (the smaller version) to make training faster on the moderately powerful GPUs
we have access to. We use mixed precision3 for better speed and lower GPU memory consumption.
Unless otherwise stated, we use Adam optimizer with β1 = 0.9, β2 = 0.99, learning rate of 2× 10−5

with learning rate warm-up during the first 10% of the training. We train each model for 2 epochs
with batch size 16. The results for each of the models are reported in table 1. The numbers are
reported before tuning the answer/no-answer threshold since it increases overfitting to the dev set.

Note that if bottleneck size is b, hidden size is H and the number of transformer blocks is L,
ignoring the bias parameters, adapters adds 4LHb, layer norms have 4HL and PALs add 2Hb+3Lb2

parameters in total.

3https://github.com/NVIDIA/apex
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Table 1: Storage Efficient fine-tuning

Model F1 EM # Parameters
(overhead)

baseline (fine-tuned) 76.5 73.5 110 M (+100% )
baseline (top block fine-tuned) 54.0 51.7 9.2 M (+8.3% )
baseline (frozen) 51.1 51.0 1.5 K (+0.001% )
baseline (frozen) + PALs(120) 63.9 60.7 704 K (+0.64% )
baseline (frozen) + Adapters(768) 70.9 67.4 592.9 K (+0.54% )
baseline (frozen) + Adapters(768) + LayerNorm 74.7 72.3 629.7 K (+0.57% )

In the table, baseline means fine-tuning all BERT parameters (and the final output layer) and baseline
(frozen) means all BERT parameters (other than the final output layer) are frozen. For comparison,
we have included a naive approach to reducing trainable parameters, which is only fine-tuning the
last transformer block. baseline (frozen)+ means we freeze all pretrained parameters of BERT, and
only train parameters of the module after +. The number in parenthesis is the size of the bottleneck.
We have tried bottleneck sizes in [64, 120, 768] and the latter achieved the best performance. To have
a fair comparison, we use smaller bottleneck for PALs so that is has roughly the same number of
parameters as adapters. Since adapters consistently outperformed PALs in QA, we report and analyze
adapters in more details.

Our experiments show that freezing layer norms inside BERT negatively affect the performance,
therefore our best model also trains them. If we used data augmentation, we could potentially get the
same scores as the baseline while maintaining an extremely low number of parameers.

4.2 Analysis

We visualize the weights of WE and WD from each of two adapter modules in the last transformer
block after training in figure 4. The general patterns of these matrices are similar in all transformer
blocks: The first adapter (bottom one in figure 1) seems to be unnecessary since its weights do not
show a particular pattern.

Figure 4: Learned weights from the last trans-
former block’s adapter module. Top row:
weights from adapters in self-attention sub-
module. Bottom row: weights from output sub-
module

Figure 5: Top row: 6th transformer block.
Bottom row: Last (12th) transformer block.
Plots on the left are before training and plots
on the right are after training

5 Performance

In this section we use some of our findings from the previous section and combine them with data
augmentation to achieve higher performance by sacrificing the storage efficiency (we fine-tune all
BERT weights).
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5.1 Experiments

The setting and hyper-parameters are similar to experiments in the previous section.

In order to improve our model’s performance on the SQuAD dataset, we performed several exper-
iments. Our models were trained on a combination of the SQuAD dataset, the CoQA dataset, as
well as the no-answer augmented dataset. We evaluated our models using F1 and EM metrics as
well as the overall training time (in minutes). In the table, +Adapter means we trained the model
before +, then froze all BERT parameters and inserted adapter modules, then trained adapter weights
on the SQuAD dataset for 2 more epochs. Other methods like training adapters and BERT weighs
simultaneously perform poorly.

The results for each of the models are reported in table 2. We have made a final submission to PCE
test leader-board under the name sfk and we achieved an F1 score of 81.442 and EM score of 78.36.
The results are better than expected. As shown in the table, the data-augmentation and adapters
gave the majority of the performance boost. Our approach is thus fairly competitive with the recent
approaches for the SQuAD competition. We observe good generalizability based on our results on

Table 2: Performance of various combinations of our techniques

Model F1 EM Training time
(minutes)

baseline (fine-tuned) 76.5 73.5 377
baseline + Answer Pointer 76.7 73.5 388
baseline + Data Augmentation 77.9 75.5 1110
baseline + Pre-training on CoQA 78.5 75.7 836
baseline + Pre-training on CoQA + Adapter(768) 79.2 76.3 1240
baseline + Pre-training on CoQA
+ Data Augmentation + Answer Pointer 79.5 76.5 1722

baseline + Pre-training on CoQA
+ Data Augmentation + Answer Pointer+Adapter(768) 80.5 77.5 2151

dev and test set. This can be attributed to the fact that we freeze layers before additional training, and
the bottleneck characteristics of adapters.

5.2 Analysis

Here we analyze the output of our best model from the Performance section.

We visualize self-attention probabilities of two blocks when question with id
68cf05f67fd29c6f129fe2fb9 is fed into the network. The question ("In what country is Nor-
mandy located?") comes first in the input sequence and the paragraph comes second. For conciseness,
we have taken the maximum over 12 attention heads. We see that after training, attentions in the last
layer are higher for the key word in the question ("Normandy") and around the answer ("France").
WE observe that attentions on later blocks change more drastically.

We also analysis and compare the performance of our final model and the baseline model using the
following plots inspired by the paper [5] (the implementation is ours). Figure 6 shows the percentage
of the correctly and the incorrectly answered questions that have length at most k.

Figure 6: Question Lengths analysis for the baseline model and the final model
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We notice that in the first graph, the blue curve is slightly above the red curve for k ≤ 18 and equal for
k > 18 . This means that a bigger fraction of the correctly answered questions have short questions
than the incorrect ones, which implies that the model performs slightly better on the short questions.
We see that this is no longer the case in the second graph as the two curves are equal this means that
the model has improved at answering longer questions.

Figure 7 shows the fraction of questions with at least an n-gram match between the question and the
the original paragraph for the model’s successes and failures. We compare these percentages for the
baseline model and the final model and for each value of n.

Figure 7: Fraction of n-gram match of question and context for successes and failures

We notice that successes are more likely to have an n-gram match than failures in both our models
and we can see that the differences between the percentages of n-gram match for the correctly and
the incorrectly answered questions have increased from the baseline model to the final model. This
means that the success percentages slightly increased and failure percentages slightly decreased. This
implies that our final model is smarter in finding answers to non-trivial questions. i.e the questions
that are not very similar to the context. However this improvement is not very significant therefore
we can further address this problem in the future.

Lastly, we evaluate our model as a binary classifier for answer/no-answer questions. We report below
the confusion matrices and the classification accuracy for the baseline model and the final model.

Figure 8: Confusion Matrix and Accuracy

Figure 8 shows that the true negatives have increased and the false positives have decreased however
the false negatives have increased and the true positives have decreased. This means that our model
improved the no answer predictions but worsened the answers predictions. The overall accuracy of
the model has also improved.

6 Conclusion

In this project, we conducted numerous experiments to find a better way of using BERT pretrained
weights without having to tune all parameters of the model. We showed that for QA, adapters
outperform other approaches such as tuning the last transformer block of BERT or using PALs. We
have also provided a method to use adapters to achieve high F1 measure.

One possible future direction is using the very large TriviaQA [6] dataset for pretraining instead of
CoQA. The sheer size of this dataset can help the performance. Furthermore, we believe adding
appropriate task-specific modules inside BERT can help interpreting its performance on the task. For
example, one could add task-specific attentions where we used linear projection, and try to visualize
the attention mechanism. This visualization would not be mixed with what BERT attentions have
already learned during their pre-training on language modeling tasks and therefore can provide a
better understanding of the model.
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