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Abstract

Large language models (LLMs) need knowledge updates to meet the ever-growing
world facts and correct the hallucinated responses, facilitating the methods of
lifelong model editing. Where the updated knowledge resides in memories is
a fundamental question for model editing. In this paper, we find that editing
either long-term memory (direct model parameters) or working memory (non-
parametric knowledge of neural network activations/representations by retrieval)
will result in an impossible triangle—reliability, generalization, and locality can not
be realized together in the lifelong editing settings. For long-term memory, directly
editing the parameters will cause conflicts with irrelevant pretrained knowledge or
previous edits (poor reliability and locality). For working memory, retrieval-based
activations can hardly make the model understand the edits and generalize (poor
generalization). Therefore, we propose WISE to bridge the gap between memories.
In WISE, we design a dual parametric memory scheme, which consists of the
main memory for the pretrained knowledge and a side memory for the edited
knowledge. We only edit the knowledge in the side memory and train a router to
decide which memory to go through when given a query. For continual editing,
we devise a knowledge-sharding mechanism where different sets of edits reside in
distinct subspaces of parameters and are subsequently merged into a shared memory
without conflicts. Extensive experiments show that WISE can outperform previous
model editing methods and overcome the impossible triangle under lifelong model
editing of question answering, hallucination, and out-of-distribution settings across
trending LLM architectures, e.g., GPT, LLaMA, and Mistral‡.

1 Introduction

Large language models (LLMs) show emergent intelligence when scaling the number of parameters
and data [1–4], which reveals the sparks of artificial general intelligence [5]. However, when
deployed, LLMs still make mistakes [6], generating responses with hallucinations [7], bias [8], and
factual decays [9]. On the other hand, the world’s knowledge is ever-growing, so the up-to-date
knowledge is usually different from the one during LLMs’ pretraining [10]. Many such errors and
emerging facts will arise sequentially in deployment, some of which have to be addressed timely and
efficiently without waiting for retraining or finetuning [11, 12]. Also, retraining or finetuning is often
too computationally expensive [13, 10], which is not sustainable for lifelong growing knowledge.
Therefore, lifelong model editing [10] was proposed to remedy the continual knowledge updates and
injections for LLMs in a cheap and timely manner.
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An effective lifelong model editing approach should satisfy the following properties [14, 15, 11, 16,
17]: i) reliability, the model can remember both current and previous edits after sequential editing;
ii) locality, model editing will not influence inherent pretrained knowledge which is irrelevant to the
edited knowledge; iii) generalization, the model is not just merely memorizing the query-target pairs;
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Figure 1: Metric triangle among re-
liability, generalization, and locality.
ZsRE dataset, number of continual edits
T = 100, LLaMA-2-7B. Editing meth-
ods based on long-term memory (ROME
and FT-EWC) and working memory
(DEFER and GRACE) show the impos-
sible triangle in metrics, while our WISE
is leading in all three metrics.

instead, it should understand and generalize when given
other forms of queries with the same knowledge. We com-
pare existing model editing and continual learning meth-
ods on the three metrics in Figure 1 and find that it seems to
be an impossible triangle—reliability, generalization, and
locality can not be realized at the same time in the contin-
ual editing settings. We find that where the updated knowl-
edge resides in memories affects editing performances, and
previous methods can be generally divided into editing
either long-term memory, e.g., ROME [18], MEMIT [19],
and FT-EWC (Finetuning with Elastic Weight Consolida-
tion [20], a continual learning method), or working mem-
ory, e.g., GRACE [10]. Note that the categorization of
long-term and working memories is derived from human
recognition [21, 22] and neuroscience [23] which has re-
cently been adopted in the study of LLMs [24–27]. Model
editing of long-term memory refers to directly editing the
model parameters, which contain generalizable parametric
knowledge [28, 24]. However, editing long-term memory
will cause conflicts with previous pretrained knowledge,
resulting in poor locality (e.g., ROME and FT-EWC in
Figure 1). Working memory refers to the non-parametric
knowledge of neural network activations/representations by retrieval, and it does not change the
network parameters [24]; instead, it replaces the representations by retrieval at working (inference)
time, like GRACE. GRACE’s working memory shows promising results in reliability and locality, but
in our experiments, it shows poor generalization since retrieval-based representations can hardly make
the model understand the edits and generalize to different queries. It reveals that long-term memory
and working memory both have drawbacks for lifelong model editing, though there were some special
memory designs for LLM architectures, like MemorryLLM [28], SPALM [27], and Memoria [25],
they change the architectures and cannot be directly applied for different LLMs. Intuitively, there
is a gap between editing working and long-term memories, thus, in this paper, we study:

What is the better memory mechanism for lifelong model editing to break the impossible triangle?

Human brains contain the left and right hemispheres, which have different divisions as studied in
recognition science [29, 30], e.g., the left brain is typically associated with logical tasks while the
right brain is more involved in intuitive processes. This inspires us to design WISE, which makes
model editor WISER in memories. WISE contains a dual parametric memory mechanism for LLMs’
editing: the main memory for the pretrained knowledge and a side memory for the edited knowledge,
realizing both long-term memory’s generalization and retrieval-based working memory’s reliability
and locality. The side memory is a form of mid-term memory. We only edit the knowledge in the side
memory and train a router to decide which memory to go through when given a query. For continual
editing, we design a knowledge-sharding mechanism where different sets of edits reside in distinct
and orthogonal subspaces of parameters. These are then merged into a common side memory without
conflicts.

2 Methodology
2.1 Preliminaries: Lifelong Model Editing
We focus on lifelong model editing problem [10, 11], which can ensure hundreds or even thousands
of sequential edits on LLMs to make the outputs of target queries align with human expectations
while maintaining LLMs’ previous knowledge and capability. Let fΘ : X 7→ Y, parameterized
by Θ, denote a model function mapping an input x to the prediction fΘ(x). The initial model
before editing is Θ0, which is trained on a large corpus Dtrain. When the LLM makes mistakes or
requires injections of new knowledge, it needs model editing with a time-evolving editing dataset as
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Figure 2: Overview of WISE. Side memory (in blue) and main memory (in green) store edited and
pretrained knowledge, respectively. Note: during inference, if WISE-Retrieve, the activation routing
will retrieve and select one side memory with maximal activation score.

Dedit = {(Xe,Ye)|(x1,y1), ..., (xT ,yT )}. At the time step T , a model editor (ME) takes the T -th
edit and the LLM of the T − 1 time step fΘT−1

as inputs and produce the revised LLM model fΘT

following the equation below:

fΘT
= ME(fΘT−1

,xT ,yT ), s.t. fΘT
(x) =

{
ye if x ∈ Xe,
fΘ0

(x) if x /∈ Xe.
(1)

Equation 1 describes that after model editing, the LLM should make the correct prediction on
the current edit as fΘT

(xT ) = yT , while also preserving knowledge from past editing instances
(x<T ,y<T ) ∈ Dedit as well as maintaining capability of fΘ0 on the irrelevant data when x /∈ Xe,
especially for general training corpus Dtrain.

2.2 Rethinking the Memory Design of Lifelong Model Editing

Table 1: Comparison of current model editing methods. “!” refers to “yes” and “well-supported”,
% refers to “no” or “badly-supported”, and “#” refers to “less-supported”. The three metrics of
Reliability, Generalization, and Locality denote the performances on lifelong (continual) editing.

Methods Long-term Memory Working Memory Parametric Knowledge Retrieval Knowledge Whether Lifelong Reliability Generalization Locality

FT-EWC ! % ! % ! ! ! %

ROME/MEMIT ! % ! % % % % %

MEND ! % ! % % % % %

SERAC/DEFER % ! ! ! ! # % #
GRACE % ! % ! ! ! % !

WISE ! ! ! ! ! ! ! !

In Table 1, we compare current model editing methods in terms of memory types and lifelong
editing abilities. FT-EWC [20], ROME [18], MEMIT [19], and MEND [31] edit the long-term
memory stored in the LLMs’ model parameters, but they either do not support continual editing or
have negative effects on irrelevant knowledge (poor locality). GRACE [10] is designed for lifelong
editing via retrieval-based working memory. The retrieval codebook can avoid the conflicts of
irrelevant knowledge, but GRACE fails to generalize due to its codebook being a non-parametric
knowledge representation that solely memorizes queries without comprehension. It is worth noting
that SERAC [32]/DEFER [10] uses working memory that is stored in additional small models: a
scope classifier and a counterfactual model, whose knowledge is parametric. However, the small
counterfactual model cannot match the expressiveness and generalization capabilities of LLM itself,
making it challenging for the edited knowledge to generalize effectively.
To enable effective lifelong model editing, the method should take advantage of both LLM parameters’
long-term memory and retrieval-based working memory. Therefore, we propose WISE as follows.

2.3 WISE: Side Memory with Knowledge Sharding, Merging, and Routing

As illustrated in Figure 2, WISE comprises two key components: 1) Side Memory Design: i) side
memory: side memory is a memory container that is initialized as a copy of LLM’s certain FFN layer,
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storing the stream of edits; ii) memory routing mechanism: similar to retrieval, a routing activation
component is adopted to identify the scope of edits, routing the main (original) or side memories
during inference; 2) Knowledge Sharding and Merging: i) knowledge in random memory subspaces:
to make the edits in appropriate knowledge density and avoid forgetting, we shard the side memory
into several random subspaces for editing; ii) knowledge merging: we leverage model merging
techniques to merge different memory shards into one side memory without loss of knowledge.

2.3.1 Side Memory Design
Side memory in FFN’s value matrix. Each layer in a Transformer contains a multi-head
self-attention (MHA) mechanism and a feed-forward network (FFN), where the FFN constitutes
two-thirds of the model parameters [33]. The question of how Transformers retrieve and utilize stored
knowledge remains unresolved [18, 34], yet past works [31, 33] have demonstrated that editing the
weights of the FFN is consistently more effective for LLMs. The FFN typically consists of key-value
linear matrices: Wk,Wv , i.e., two multi-layer perceptron (MLP) layers. For the output of attention
feature f , the computation of the feed-forward network, omitting the bias terms, can be represented as:

FFN(f) = a ·Wv = σ(f⊤ ·Wk) ·Wv, (2)
where σ is a nonlinear activation function (e.g. SwiGLU, GeLU), and a represents the activation
values of the first MLP layer. Following previous works [18, 33], we edit the value matrix Wv of
the chosen FFN layer.
However, directly editing the value matrix may cause forgetting and side effects in a lifelong setting.
Thus, we copy a value matrix as side memory and edit the side memory instead of the original
matrix (main memory). Specifically, the side memory is initialized with the copy of main memory
as Wv′ ←Wv. Given the side memory, the new output is expressed as FFNs(f) = a ·Wv′ . We
will introduce how to update the side memory in Section 2.3.2.

Locating side memory’s FFN layer. Transformer LLMs have been widely demonstrated to encode
“lower-level” information (e.g., parts of speech) in earlier layers while processing more advanced
linguistic phenomena like anaphora and coreference in later layers [35–37]. Representations in later
hidden layers propagate through residual connections without drastic changes [38, 18], enabling
effective early exit in LLMs [39, 40]. Therefore, to minimize the side effects of editing and adjust
advanced linguistic phenomena, we target mid-to-late layers (e.g. 27) for side memory. Further
analysis of layer selection is provided in Section B.2.

Routing between side memories and main memory. Similar to the retrieval-based methods [10,
32], during inference, it is needed to decide whether the main memory or the side memory is used. If a
given query is within the scope of previous edits, the side memory is used; otherwise, the main memory.
Inspired by [11], we introduce a routing activation indicator, given an input x, it is formulated:

∆act(x) = ∥A(x) · (Wv′ −Wv)∥2, (3)
where A(·) = a is the activation of the side memory’s corresponding FFN layer in Equation 2. We
want the activation indicators of editing queries to be larger than the ones of irrelevant queries by
a large margin, which is:

min{∆act(xe)|xe ∈ Dedit} ≫ max{∆act(xi)|xi ∈ Dirr}, (4)
where Dirr is the irrelevant dataset which includes Dtrain.
To achieve the above objective, we design a margin-based loss function during editing training,
similar to contrastive [41] or triplet loss [42]. The margin-based loss function for routing activation is:

La = min
Wv′

{max(0,∆act(xi)− α) + max(0, β−∆act(xe)) + max(0, γ − (∆act(xe)−∆act(xi)))}, (5)

s.t. xe ∈ Dedit,xi ∈ Dirr.

Equation 5 aims that for all queries of irrelevant examples xi, the activation indicators should be
less than threshold α, and for the edit samples xe, the activations should be larger than threshold
β, with a certain distance γ between ∆act(xe) and ∆act(xi).
In the continual stream of incoming edits, the smallest activation indicator within the edits is updated
and saved: ϵ = min{∆act(xe)|xe ∈ Dedit}. We aim to recognize the local scope of edits in this form.
During inference, if the activation indicator of a new input is greater than ϵ, WISE will use the side
memory Wv′ ; otherwise, using the main memory Wv. Thus, given the query x, the output of the
targeted FFN in Equation 2 is replaced by:

FFNout(x) =

{
A(x) ·Wv′ if ∥A(x) · (Wv′ −Wv)∥2 > ϵ,
A(x) ·Wv otherwise.

(6)
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2.3.2 Knowledge Sharding and Merging
How to effectively and efficiently store continual knowledge in model parameters is important for
lifelong editing. We introduce the notion of “knowledge density” (similar to knowledge capacity [43])
that describes how many pieces of knowledge are stored per parameter on average. There is an editing
dilemma w.r.t. knowledge density: i) If only a few edits are made for full fine-tuning or editing the
entire memory, the knowledge density is low, which may lead to overfitting. ii) If numerous edits
are made within a common and limited parameter space, the knowledge density is high, resulting in
conflicts within the edited knowledge and potentially causing catastrophic forgetting. To remedy this
dilemma, we propose a knowledge sharding and merging mechanism to divide the edits into several
shards, store them in different parameter subspaces, and merge them into a common side memory.

Knowledge in random memory subspaces. We edit the side memory Wv′ . We divide n edits into
k shards, copy the side memory for k times, and generate k random gradient mask with mask ratio ρ
for each copy of side memory. A random gradient mask Mi ∈ {0, 1}|Wv′ |, i ∈ [k] is a binary mask
whose proportion of 1 is ρ [44]. For edit shard i, i ∈ [k], we edit the knowledge into the subspace
Mi as follows:

Wi
v′ ←Wi

v′ − η(Mi ⊙ gi(W
i
v′)), (7)

where Wi
v′ is the i-th copy of the side memory, η is the learning rate, gi(·) is the gradient of the i-th

shard of edits, and the gradient is the autoregressive loss plus the routing activation loss La(Equation
5): Ledit = − logPWv′ (ye|xe) + La.
The random mask of gradients freezes the parameters intact when the elements are 0 and updates
the weights when the elements are 1. It is superior to pruning because it does not harm the network
performance while regularizing optimization in a subspace [44]. In addition, the ρ subspace will have
higher knowledge density when k · ρ < 1, resulting in higher generalization (e.g., Figure 8). Also,
different shards of edits have different random masks, and due to the (sub)orthogonality of random
masks, different shards will not conflict with each other. Therefore, we can non-destructively merge
the k copies of side memory into one.

Knowledge merging. We merge the k subspace pieces of side memory into one. Because we
randomly generate the subspace masks, different random masks will have some overlapping elements
and some disjoint elements. Since knowledge conflicts also exist in the overlapped parameters, we
leverage the recent task arithmetic model merging technique Ties-Merge [45] to relieve the conflicts.
First, we compute the edit weight shift vectors Te = {τ ie = Wi

v′ −Wv|i ∈ [k]}. Then, we use
Ties-Merge to merge the edit vectors into one:

Wv′ ←Wv + Ties(Te;Wv). (8)

Ties-Merge consists of three steps: i) trim: trim the redundant parameters for each task vector; ii)
elect the sign: elect the signs of each parameter; ii) disjoint merge: compute the disjoint mean for
each parameter which has the same and correct signs [45]. By Ties-Merge, different subspaces of
knowledge are integrated into one with fewer conflicts. We study the effects of different merging
techniques in Table 10 of Appendix B.4.

Routing and retrieving among several side memories. One single side memory has its limited
knowledge capacity [43]. For the lifelong editing stream, we can produce several side memories
and retrieve them via activation score routing. We compute different activation indicator scores of
side memories and retrieve the top-1 during inference. This design is named WISE-Retrieve, which
enables a more challenging lifelong editing scenario. For WISE with only one side memory, it is
notated as WISE-Merge. For most of the experiments, we use WISE-Merge by default, and we
compare WISE-Retrieve in Table 9 and Figure 6.
The pseudo-code of our method can be found in Algorithms 1 and 2.

3 Experiments
3.1 Experimental Settings and Evaluation Metrics

In the experiments, we compare the performance of different baselines and WISE in sequentially
editing LLM models hundreds to thousands of times.
Datasets and Models. We choose trending autoregressive LLM models LLaMA-2-7B [13], Mistral-
7B [46], and GPT-J-6B [47, 48] for evaluation. The dataset details are in Table 2. Following [10],
we evaluate WISE on the closed-book question-answering (QA) dataset ZsRE [49], and also evaluate
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its ability to correct Hallucination in SelfCheckGPT [50]. The Temporal dataset [51] is employed
to test the out-of-distribution (OOD) generalization of editing. Since Temporal comprises emerging
entities post-2019, we avoid using the latest LLMs in OOD experiments. Instead, we follow the
original literature of the Temporal dataset [51] and adopt GPT-J-6B as the base model, which is
pretrained on the Pile [52] with a cutoff in 2020. Implementation details and editing examples for
each dataset and can be found in Appendix A.1.
Baselines. The baselines include methods of continual learning and model editing. We compare WISE
with various baseline methods, including fine-tuning approaches (FT-L, FT-EWC), causal-tracing
editors (ROME, MEMIT, MEMIT-MASS), hypernetwork-based editors (MEND), and memory-based
editors (DEFER, GRACE). Full descriptions of these baselines can be found in Appendix A.2.
Metrics. We evaluate methods using the following metrics: Rel. (a.k.a Edit Success Rate [10]),
Gen. (Generalization Success Rate [53]), and Loc. (Localization Success Rate [53]). The detailed
definitions of these metrics are provided in Appendix A.3.

3.2 Main Results
Competitive Performance of WISE. The competitive performance of WISE is evident in Table
6 and 8 in the Appendix, which compare its results with eight baselines on the QA (ZsRE) and
Hallucination (SelfCheckGPT) settings. In general, we observe the followings: ❶ WISE outperforms
existing methods on multiple tasks after long editing sequences; ❷ direct editing of long-term memory
(ROME, MEMIT, etc.) creates conflicts with prior pretraining knowledge, resulting in poor locality;
and ❸ retrieving working memory and modifying activations (GRACE, DEFER, etc) struggle to
generalize to diverse queries.
In the QA setting, with T = 1000, WISE achieves average scores of 0.83 and 0.79 on LLaMA and
Mistral, respectively, reflecting improvements of 18% and 11% over the nearest competitor. This
demonstrates WISE’s outstanding stability and effective management of long-sequential edits. While
methods like MEND and ROME are competitive early in editing, they show clear shortcomings as the
edit sequence extends. Directly editing long-term memory (e.g., MEMIT, FT-EWC, MEND) results
in a significant decline in Loc. When T ∈ {100, 1000}, this indicates that these methods cannot
preserve LLMs’ knowledge structure and significantly impair the model’s generalization ability.
GRACE excels in Loc. and Rel. (close to 1.00), however, it sacrifices generalization in continual
editing. A possible reason is that token representation may not be suitable for measuring semantic
similarity in autoregressive LMs, leading to paraphrase xe′ failing to achieve similarity matching with
any CodeBook Key in GRACE (detailed in Appendix B.3). Overemphasis on preserving and precisely
adapting training data (working memory) hampers adaptability to new contexts. In a nutshell, most
previous methods struggle to balance Rel., Gen., and Loc., particularly in long-form editing tasks. In
addition, the results of GPT-J-6B can be found in Figure 9 in the Appendix.
WISE also surpasses the baselines on the Hallucination dataset, maintaining the lowest perplexity
scores of 3.12 and 5.21 at T = 600, with Loc. remaining above 0.93. We similarly observe
significant PPL increases for FT-L, MEND, and ROME in long-context editing tasks, while GRACE’s
performance is lackluster in LLM long texts (possibly due to the limited fitting capacity of the very
small active trained parameters |hl| of GRACE).
Out-of-Distribution Generalization. WISE also achieves superior out-of-distribution generalization
performance, surpassing the baselines on the Temporal dataset. Detailed evaluation results and
analysis can be found in Appendix B.1.

4 Conclusion
In this paper, we point out the impossible triangle of current lifelong modeling editing approaches
that reliability, generalization, and locality can hardly be achieved simultaneously. We find the
reason behind this is the gap between working and long-term memory. Therefore, we propose WISE,
consisting of side memory and model merging, to remedy the gap. Extensive results show WISE is
promising to reach high metrics at once on various datasets and LLM models.

Due to the page limit, the empirical results are summarized in Section 3, while comprehensive
descriptions of the experimental setups and key findings, such as Implementation Details, can be
found in Appendix A. Further analyses, including Out-of-Distribution Evaluation, Visualization
of WISE’s Routing Activation, Localization Analysis of WISE’s Side Memory and Inference
Time Analysis of WISE, are provided in Appendix B. Lastly, Appendix C presents an extended
discussion of Related Works and Appendix D addresses the Limitations and Broader Impacts of
our approach.
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Appendix
In the Appendix, we introduce more details along with methodology, additional experimental results,
discussions, related works and limitations:

• Appendix A: Experimental setups (cf. Section 3).

• Appendix B: More experimental results (cf. Section 2 and 3).

• Appendix C: Additional discussions and more related works.

• Appendix D: Limitations and Broader Impacts.

A Implementation Details

A.1 Description of Datasets

Table 3: Bolded text refers to the edit labels ye. Locality example xloc is an unrelated query.

(a) ZsRE, question-answering edit-
ing dataset example.

xe,ye Which continent
is Berkner Island
in? South America

xloc who gets the
golden boot if its a
tie? shared

x′
e,ye On which continent

is Berkner Island lo-
cated? South Amer-
ica

(b) Hallucination editing dataset example. In the original data [10], there is
no paraphrase xe′ so the measurement of Gen. metric is ignored here.

xe,ye This is a Wikipedia passage about heinz christian pander.
Heinz Christian Pander (1794 - 1865) was a German
anatomist and embryologist who was born in Riga, Latvia.
He studied medicine at the University of Dorpat and later
at the University of Berlin. In 1820, he took part in a
scientific expedition to Bokhara as a naturalist.

xloc Tired and restlessly, drifting in and out of sleep. Hearing
crashing and banging, thinking the roof will cave in. Not
alert enough to quite know what it was, I yelled loudly
for whoever was making those noises at such an hour to
stop. They heard and listened, I’m guessing

Table 2: Dataset statistics for main results. Locality
Data is the irrelevant data of the editing process. T
is the number of samples. Pre-edit is the unedited
model’s performance on each dataset.

SETTING EDITING DATA T Pre-edit (LLaMA/Mistral) LOCALITY DATA

QA ZsRE [49] 1,000 0.36/0.39 ACC NQ [54]
Halluc. SelfCheckGPT [50] 600 27.4/19.4 PPL RedPajama [55]

OOD Gen. Temporal [51] 100 0.56 δ-ACC (GPT-J) Pile [52]

ZsRE The ZsRE question-answering task [49]
is extensively studied within the model editing
literature [18, 19, 31, 15, 11], where each record
contains an editing statement xe, a paraphrase
prompt x′

e, and a locality prompt xloc. We use
the same train/test split as [31] (163196/19086).
Notably, only MEND requires fitting a hypernet-
work on the training set; other methods discard
the training set and perform edits and evaluations on the test set. In practice, we randomly sample 1K
and 3K records from the test set to form the edit sets in Section 3.2 and B.2.

Hallucination We utilize the same dataset as GRACE, SelfCheckGPT [50], to assess the ability of
Model Editors to mitigate hallucinations in autoregressive LMs. This setting involves editing highly
inaccurate sentences (sourced from GPT-3 [56]) and replacing them with corresponding sentences
from actual Wikipedia entries. This dataset aligns more closely with real-world deployment scenarios
where models trigger "unexpected behaviors," and the token length of edits is significantly longer than
in past datasets, making it a more challenging editing setting. Unlike GRACE, which used GPT2-XL
(1.5B) [57], our main experiments deploy larger LLMs, LLaMA and Mistral, both with 7B parameters,
we measure retention of pretraining data (xloc) from the base model: RedPajama [55], a public version
of LLaMA’s pretraining data. Some of the exceptionally long editing samples cannot even be accom-
modated on an NVIDIA A800 (80GB) due to resource limitations. As shown in Figure 3, the original
dataset provided by GRACE, after tokenization with LLAMATOKENIZER, has length distributions
ranging from [17,390]. The dimension of a single MLP layer in llama-2-7b-hf is (11008, 4096) §.

§https://huggingface.co/meta-llama/Llama-2-7b-hf
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Table 4: Temporal OOD dataset example. Bolded text refers to the edit labels ye and yood.

xe,ye Self-driving cars, also known as autonomous vehicles, are vehicles that are capable
of navigating and operating without human intervention. These innovative vehicles
rely on a combination of advanced sensors, artificial intelligence, and computer
algorithms to interpret their environment and make real-time decisions. With the
potential to significantly impact numerous industries and sectors, self-driving cars
have the ability to revolutionize transportation by enhancing safety, improving traffic
flow, and increasing energy efficiency. However, challenges related to regulatory
frameworks, ethical considerations, and public acceptance still need to be addressed
before widespread adoption becomes a reality.

xloc Apple has a new peach with the release of its 3.0GHz, 8-core Intel Xeon-based Mac Pro.
The 8-core Mac Pro is powered bu two quad-core Intel Xeon C̈lov ertownp̈rocessors
running at 3.0GHz. Apple also released a quad-core Mac Pro featuring two Dual-Core
Intel Xeon Ẅoodcrestp̈rocessors.

xe,yood Self-driving cars, also known as autonomous cars or driverless cars, are vehicles
capable of traveling without human input. These cars utilize a range of sensors,
including optical and thermographic cameras, radar, lidar, ultrasound/sonar, GPS,
odometry, and inertial measurement units, to perceive their surroundings. By
interpreting sensory information, control systems in the car are able to create a
three-dimensional model of its environment. Using this model, the car can then
identify the best navigation path and develop strategies for managing traffic controls
and obstacles. As self-driving car technology continues to advance, it is expected to
have a significant impact on various fields such as the automotive industry, health,
welfare, urban planning, traffic, insurance, and the labor market. The regulation of
autonomous vehicles is also becoming an increasingly important topic of discussion.
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Figure 3: Hallucination length statistics.

Theoretically, fine-tuning an input of length 390 with
default full precision and the Adam optimizer would
require (390+4+4+4) * (11008 * 4096 * 4) + 4 * 7B
= 100.36GB of VRAM (for activations, gradients,
first-order, and second-order optimizers), exceeding the
memory capacity of the NVIDIA A800. Consequently,
we excluded excessively long samples (limiting tokenized
lengths to 254) and ultimately retained 906 editing
instances (compared to 1392 in GRACE). To facilitate a
fair comparison with MEND, we specifically allocated
a training set for MEND, with a final train/test split of
306/600. All methods were edited and evaluated on the test set.

Temporal [51] sources the prefix xe from the first paragraph of an entity’s Wikipedia page and
samples a paragraph ye discussed by GPT-4 [58] about the emerging entity xe, which is usually noisy
but may contain helpful information. These are presented as editing prompts to Model Editors. For
out-of-distribution (OOD) generalization to complex natural contexts (not fitted), yood is taken from
the actual Wikipedia suffix of xe. This setup is utilized to evaluate the OOD generalization of Model
Editors centered around a single canonical example. Consistent with previous work [10], the out-of-
scope data xloc is derived from the Pile [52], the pretraining corpus of GPT-J-6B. Examples from the
dataset can be seen in Table 4. To measure the OOD generalization of editing methods for emerging
entities, we perform model editing using standardized simple examples and then evaluate this behavior
on more complex instances. Following [51], in a natural setting, no single correct continuation exists.
Thus, we also use probability threshold-based evaluations, such as 80%, where the editing success rate
evaluates whether the loss Lxe,yood for an example falls below δ = −log(0.8), as indicated in the for-
mula below. The intuition behind this is that many other plausible alternative continuations may exist.

OOD Gen. =
1

T

T∑
t=1

1{(LΘT
(xe,yood) < δ)}. (9)
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A.2 Descriptions of Compared Model Editors
We compare WISE to several baselines from the fields of continual learning and model editing:
FT-L. All other layers of the LLMs remain frozen, and only a single MLP layer is fine-tuned through
autoregressive loss [18]. Additionally, we impose an L∞ norm constraint to prevent the parameters
from deviating too far from the pretrained distribution.
FT-EWC. Elastic Weight Consolidation (EWC) has been demonstrated to mitigate catastrophic
forgetting by updating weights using a Fisher information matrix, which is computed from past edits,
multiplied by a scaling factor λ [20]. Following [10], we omit the constraints of the L∞ norm in this
implementation.
MEND. MEND [31] transforms the gradients obtained from standard fine-tuning using a hyper-
network that converts gradients decomposed into low rank (rank=1) into new gradients, which are
then applied to the target layer for parameter updates. During the training phase, a small auxiliary
hypernetwork receives editing examples (xe,ye), and xloc. MEND’s training loss comprises the
standard autoregressive loss combined with the KL divergence loss of the model’s output on xloc
before and after editing. This hypernetwork plays a crucial role during the editing procedure.
ROME. ROME [18] uses causal analysis to pinpoint knowledge within specific MLP layers
and modifies the entire matrix through least squares approximation. It operates under the strong
assumption that the MLP is the primary module for storing knowledge [33], and it injects a single
piece of knowledge into the MLP at each iteration using a Lagrangian remainder.
MEMIT. Similarly, based on the assumption that the FFN serves as a knowledge key-value store,
MEMIT [19] manipulates parameters of specific layers directly through least squares approximation.
Unlike ROME, which updates a single layer, MEMIT is a multi-layer updating algorithm that
supports simultaneous updates of hundreds or thousands of facts. For sequential model editing
tasks, MEMIT requires immediate on-the-fly repairs when the model makes errors, expressed as
fΘT

= MEMIT(fΘT−1
,xT ,yT ), involving multiple operations on the original model.

MEMIT-MASS. Unlike sequential editing, MEMIT supports modification of multiple knowledge
fragments in a batch mode, named MEMIT-MASS. Suppose we collect streaming errors as (X ,Y) =
{(x0,y0), (x1,y1), ..., (xT ,yT )} and inject them collectively into the MLP, it only involves a single
editing operation on the original model as fΘT

= MEMIT(fΘ0
,X ,Y). Although this approach

loses the capability for on-the-fly repairs, we still include this baseline in our experiments.
DEFER. In GRACE, a reimplementation of SERAC [32] is utilized, denoted as DEFER. For
new inputs, DEFER includes a network g (corresponding to the scope classifier in SERAC) that
predicts whether to: 1) trust the prediction of the LLMs, or 2) trust the prediction of the new model.
Here, the new model is configured as a single-layer linear network o with a sigmoid activation
function, corresponding to the counterfactual model in SERAC. During the editing process, g and o
are fine-tuned jointly.
GRACE. GRACE [10] utilizes a discrete KEY-VALUE codebook and maintains the codebook
throughout the editing flow by adding, expanding, and splitting KEYs. During the inference phase, it
retrieves the nearest KEY and determines whether to replace the activation of the hidden layer output.

A.3 Evaluation Metrics Details
Each edit example includes an edit descriptor (i.e., query) xe, its paraphrase prompts xe′ (if available)
for testing generalization, and an unrelated statement xloc for testing locality. For the editing dataset
Dedit = {(Xe,Ye)} with T edits, we evaluate the final post-edit model fΘT

after the T -th edit
example (xT ,yT ). We evaluate the model editor’s reliability and generalization using the metrics Rel.
(a.k.a Edit Success Rate [10]) and Gen. (Generalization Success Rate [53]), while Loc. (Localization
Success Rate [53]), defined as the post-edit model should not change the output of the irrelevant
examples xloc, assesses specificity. We report these metrics and their mean scores, which are formally
defined as:

Rel. =
1

T

T∑
t=1

1(fΘT
(x

t
e) = y

t
e), Gen. =

1

T

T∑
t=1

1(fΘT
(x

t
e′ ) = y

t
e), Loc. =

1

T

T∑
t=1

1(fΘT
(x

t
loc) = fΘ0

(x
t
loc)), (10)

where 1(·) is the indicator function. Notably, for the Hallucination dataset, following [10], we use
the perplexity (PPL) to verify the locality, and there is no proper metric for generalization.

A.4 Training Details and Hyperparameters
Except for MEMIT-MASS, the batch size for all methods is consistently 1 in sequential editing
scenarios. All experiments are conducted using 3 NVIDIA A800 GPUs, with all tasks reproducible

17



on a single A800. Editing ZsRE takes approximately 4 hours, while Hallucination requires around 6
hours. To ensure fair comparisons, unless otherwise specified (for some methods like MEND, ROME,
and MEMIT, we follow the original literature by selecting the last few layers or using causal analysis
to identify the target layers), the default target layers for editing on LLaMA, Mistral, and GPT-J are
model.layers[27].mlp.down_proj.weight, model.layers[27].mlp.down_proj.weight,
and transformer.h[21].mlp.c_fc, respectively.
For FT-L, we utilize a reimplementation from ROME ¶, employing the Adam [59] optimizer with
consideration of learning rates at 1e-5, 1e-4, and 5e-4, and conducting gradient descents for 50
iterations, ultimately reporting the best results at a learning rate of 5e-4.
For FT-EWC, we follow the reimplementation in GRACE and its default settings, setting the learning
rate at 1e-2, the λewc penalty factor at 0.1, and the number of replay instances at 10.
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Figure 4: Mid-layer MLPs play a crucial mediating role in LLaMA-2-7B and Mistral-7B.

For the training phase of MEND, we adhere to the original paper, setting the learning rate at 1e-4,
iterating 100K times, and employing early stopping at 30K, ultimately achieving an accuracy of 0.95
on the training set. Notably, we target the last few MLP layers as per the original literature, such
as model.layers[i].mlp.down_proj.weight, model.layers[i].mlp.gate_proj.weight,
model.layers[i].mlp.up_proj.weight in LLaMA, where i ∈ [29, 30, 31].
For ROME and MEMIT, we follow the original literature on GPT-J using the default configurations,
specifically the fifth layer and layers [3,4,5,6,7,8]. In LLaMA and Mistral, additional causal analysis
is conducted to pinpoint the layers storing knowledge. As shown in Figure 4, an increasing trend in
the Average Indirect Effect of the MLP is observed across layers [4,5,6,7,8], suggesting that the model
recalls factual knowledge here and passes the matured token distribution via residual connections to
the last MLP. Thus, in LLaMA and Mistral, ROME edits the fifth layer, while MEMIT edits layers
[4,5,6,7,8].

Table 5: WISE hyper-parameters
during editing and merging.

Hyper-Parameters Values

Optimizer SGD
LR η 1.0
Mask Ratio ρ 0.2
α 5.0
β 20.0
γ 10.0

Merge Weights λ 0.5
Knowledge shards k 2

For DEFER, the original literature uses a learning rate of 1.0;
however, we found it unfit for LLaMA and Mistral, with severe
fluctuations in model loss. Therefore, we experiment with
learning rates of 7e-5, 7e-4, and 1e-3, and ultimately report
using 7e-5 (optimal).
For GRACE, we strictly follow the original literature, setting
the learning rate at 1.0, and using replace_last to only re-
place the activation of the last token in autoregressive scenarios.
After observing failures in generalization, we adjust various
ϵinit values and discuss this more in Appendix B.3.
For WISE, the hyperparameters for the QA and Hallucination
tasks are identical. We find that a learning rate of 1.0 with the
SGD [60] optimizer is a good approach for stable training. The
hyperparameters designed in the knowledge editing phase in-
clude the random masking probability ρ and the routing threshold guidance α, β, γ. In the knowledge
merging phase, hyperparameters include the number of merges k and the merging weights λ for
each MLP (we discuss the impact of ρ and k in Section B.2). Theoretically, as the importance of
knowledge in any MLP is considerable, we always average with λ = 1/k across all experiments.
These are shown in Table 5.

A.5 Pseudo Code of WISE
The pseudo-code of the WISE editing stage is in Algorithm 1, and the one of the WISE inference
stage is Algorithm 2.

¶https://github.com/kmeng01/rome
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Algorithm 1: WISE Editing Stage
Input: The initial LLM model fΘ0

, the targeted FFN layer, the edit dataset Dedit whose
length is T , the irrelevant dataset Dirr, the subspace mask ratio ρ, the number of subspaces k,
whether WISE-Retrieve.
Output: The final LLM model fΘT

after T edits.
1: Generate k random masks Mi, i ∈ [k] of ratio ρ; if WISE-Retrieve, copy the side memory

several times;
2: for each edit (xt,yt) ∈ Dedit, t ∈ [T ] do
3: Edit (xt,yt) in the corresponding memory subspace by Ledit = − logPWv′ (yt|xt) + La;
4: Update the activation threshold: ϵ = min(ϵ,∆act(xt));
5: if All the k subspaces of a side memory are full then
6: Use Ties-Merge in Equation 8 to update the final side memory;
7: if WISE-Retrieve then
8: Move to another copy of side memory Wv′ ;
9: end if

10: else
11: if Current subspace Mi is full then
12: Move to another subspace of side memory Mi+1;
13: end if
14: end if
15: end for
16: return Obtain the final LLM model fΘT

.

Algorithm 2: WISE Inference Stage
Input: The edited LLM model fΘT

, the activation threshold ϵ, the test dataset Dtest, whether
WISE-Retrieve.
Output: The model’s output.

1: for each query xi ∈ Dtest do
2: if WISE-Retrieve then
3: Get the value of activation ∆act = ∥A(xi) · (Wv′ −Wv)∥2 for each side memory and

select the one with the maximal value of ∆act;
4: else
5: Get the value of activation ∆act = ∥A(xi) · (Wv′ −Wv)∥2;
6: end if
7: if ∆act > ϵ then
8: Use the side memory Wv′ to generate the output as in Equation 6;
9: else

10: Use the main memory Wv to generate the output as in Equation 6.
11: end if
12: end for

B More Experimental Results and Analyses
B.1 Out-of-Distribution Evaluation

Table 7: OOD results for Temporal
dataset. GPT-J-6B is used.

Method
T = 10 T = 100

Rel. OOD Gen. Loc. Avg. Rel. OOD Gen. Loc. Avg.

w/o Editing 0.56 0.21 - 0.39 0.56 0.21 - 0.39

FT-EWC 0.87 0.17 0.13 0.39 0.81 0.22 0.18 0.40
ROME 0.09 0.00 0.06 0.05 0.05 0.00 0.03 0.03
MEMIT-MASS 0.73 0.22 0.99 0.65 0.78 0.27 0.97 0.67
DEFER 0.68 0.33 0.08 0.36 0.52 0.26 0.08 0.29
GRACE 0.97 0.28 1.00 0.75 0.97 0.28 1.00 0.75

WISE 0.99 0.36 0.98 0.78 0.96 0.37 1.00 0.78

Ideally, model editing needs to generalize distribution-
ally from formulaic editing examples to natural texts [51],
where the distributional shift involves complexity rather
than conventional domain shift [61]. Following [51], we
evaluate the OOD generalization of editing methods on
emerging entities using the temporal updating dataset,
Temporal. Editing examples and evaluation metrics are
provided in Appendix A.1. As shown in Table 7, WISE
effectively handles out-of-distribution generalization tasks
(achieving the best OOD Gen. and overall performance). DEFER delivers mediocre performance
on OOD Gen. due to the limited capacity of the auxiliary model[14]. During the fine-tuning phase,
GRACE and MEMIT focus on the representation v∗ of a single input token after Wv (GRACE:
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Table 6: Main editing results for QA setting (ZsRE dataset). T : Num Edits.

Method
QA

T = 1 T = 10 T = 100 T = 1000

Rel. Gen. Loc. Avg. Rel. Gen. Loc. Avg. Rel. Gen. Loc. Avg. Rel. Gen. Loc. Avg.

LLaMA-2-7B

FT-L 0.57 0.52 0.96 0.68 0.48 0.48 0.76 0.57 0.30 0.27 0.23 0.27 0.19 0.16 0.03 0.13
FT-EWC 0.96 0.95 0.02 0.64 0.82 0.76 0.01 0.53 0.83 0.74 0.08 0.55 0.76 0.69 0.08 0.51
MEND 0.95 0.93 0.98 0.95 0.26 0.28 0.28 0.27 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ROME 0.85 0.80 0.99 0.88 0.64 0.62 0.75 0.67 0.23 0.22 0.04 0.16 0.01 0.01 0.00 0.01
MEMIT 0.84 0.81 0.99 0.88 0.58 0.58 0.85 0.67 0.02 0.02 0.02 0.02 0.04 0.04 0.02 0.03
MEMIT-MASS 0.84 0.81 0.99 0.88 0.75 0.72 0.97 0.81 0.76 0.68 0.85 0.76 0.69 0.65 0.62 0.65
DEFER 0.68 0.58 0.56 0.61 0.65 0.47 0.36 0.49 0.20 0.12 0.27 0.20 0.03 0.03 0.74 0.27
GRACE 0.98 0.08 1.00 0.69 0.96 0.00 1.00 0.65 0.96 0.00 1.00 0.65 0.97 0.08 1.00 0.68

WISE 0.98 0.92 1.00 0.97 0.94 0.88 1.00 0.94 0.90 0.81 1.00 0.90 0.77 0.72 1.00 0.83
Mistral-7B

FT-L 0.58 0.54 0.91 0.68 0.39 0.39 0.50 0.43 0.11 0.10 0.02 0.08 0.16 0.13 0.01 0.10
FT-EWC 1.00 0.99 0.01 0.67 0.84 0.78 0.02 0.55 0.82 0.72 0.09 0.54 0.76 0.69 0.09 0.51
MEND 0.94 0.93 0.98 0.95 0.01 0.01 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ROME 0.79 0.77 0.98 0.85 0.58 0.57 0.75 0.63 0.05 0.05 0.02 0.04 0.04 0.04 0.02 0.03
MEMIT 0.81 0.79 0.99 0.86 0.46 0.45 0.61 0.51 0.00 0.00 0.01 0.00 0.04 0.04 0.02 0.03
MEMIT-MASS 0.81 0.79 0.99 0.86 0.74 0.71 0.97 0.81 0.73 0.71 0.88 0.77 0.73 0.70 0.62 0.68
DEFER 0.64 0.54 0.79 0.66 0.53 0.43 0.29 0.42 0.28 0.17 0.26 0.24 0.02 0.02 0.67 0.24
GRACE 1.00 0.00 1.00 0.67 1.00 0.00 1.00 0.67 1.00 0.00 1.00 0.67 1.00 0.02 1.00 0.67

WISE 0.98 0.97 1.00 0.98 0.92 0.89 1.00 0.94 0.87 0.80 1.00 0.89 0.70 0.67 1.00 0.79

Table 8: Main editing results for Hallucination setting (SelfCheckGPT dataset). T : Num Edits.
Hallucination

LLaMA-2-7B Mistral-7B

T = 1 T = 10 T = 100 T = 600 T = 1 T = 10 T = 100 T = 600

Method Rel. (PPL ↓) Loc. (↑) Rel. (↓) Loc. (↑) Rel. (↓) Loc. (↑) Rel. (↓) Loc. (↑) Rel. (↓) Loc. (↑) Rel. (↓) Loc. (↑) Rel. (↓) Loc. (↑) Rel. (↓) Loc. (↑)

FT-L 4.41 0.96 12.57 0.71 33.06 0.41 69.22 0.26 25.03 0.38 100.00 0.03 1594.93 0.00 - -
FT-EWC 2.56 0.24 3.63 0.09 2.10 0.16 4.56 0.24 1.75 0.04 3.05 0.09 4.73 0.17 5.46 0.25
MEND 5.65 0.87 11.01 0.86 10.04 0.88 1847.90 0.00 7.64 0.96 83.74 0.05 23114.94 0.01 - -
ROME 1.68 0.99 2.04 0.94 94.15 0.05 104.93 0.02 2.04 0.99 3.45 0.92 103.75 0.03 241.17 0.01
MEMIT 1.66 1.00 2.36 0.97 76.65 0.05 107.61 0.02 1.64 1.00 15.89 0.89 97.23 0.04 132.30 0.02
MEMIT-MASS 1.66 1.00 1.61 0.99 7.18 0.96 13.47 0.94 1.64 1.00 2.78 0.99 3.22 0.97 7.28 0.95
DEFER 1.29 0.23 3.64 0.28 8.91 0.19 19.16 0.12 4.76 0.45 7.30 0.25 9.54 0.43 24.16 0.13
GRACE 2.59 1.00 9.62 1.00 9.44 1.00 9.34 1.00 1.39 1.00 5.97 1.00 9.53 1.00 9.57 1.00

WISE 1.91 1.00 1.04 1.00 1.14 1.00 3.12 0.99 1.40 1.00 2.56 0.94 1.31 0.99 5.21 0.93

last token, MEMIT: last subject token). However, regarding v∗ the editing carrier encounters two
problems: 1) the training objective is not aligned with the pretraining phase, and 2) the single
representation limits the search scope of gradient descent, making it difficult to handle complex OOD
generalization. WISE, on the other hand, avoids the above challenges.

B.2 Further Analysis
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Figure 5: Activations of the memory
routing module of WISE when vary-
ing T . X-axis: Num edits. LLaMA-7B.

Visualization of WISE’s Routing Activation. To demon-
strate the effectiveness of memory routing, we record the
activation values ∆act(x) of 1000 (QA, ZsRE)/600 (Hal-
luc.) queries during the inference stage via knowledge
merging into a single side memory. As shown in Fig-
ure 5, the purple horizontal line represents the activation
threshold ϵ recorded during the editing phase. Almost all
unrelated queries show low activations with values less
than 10 in ZsRE and less than 20 in Halluc.; meanwhile,
WISE accurately routes the editing prompt and unseen
paraphrases into the side memory. This ensures editing
locality and prevents excessive shifts from the pre-training
distribution during lifelong editing.
Localization Analysis of WISE’s Side Memory.
To validate the benefits of editing mid-to-late layers, we
select decoder layers from early, intermediate, mid-to-late, and late stages. As shown in Figure 7, the
ablation results reveal that editing critical layers like the early and final layers (0, 1, 31) is ineffective,
even resulting in a very low Loc. value of 0.096, which indicates a failure to recognize the editing
scope.
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This may occur because the early layers represent fundamental grammatical information, and
the final layer directly controls the decoding procedure, leading to poor editing of advanced
language functions. Editing in the intermediate layers is suboptimal but still shows a markable
improvement compared to early layers, possibly because intermediate layers start to integrate
basic grammatical information with more complex semantic data.Notably, the mid-to-late layers
demonstrate exceptional editing performance; for instance, selecting layer 26 results in an 80%
success rate and generalization while maintaining 100% locality. This empirically supports our claim
in Section 2.3.1 that the redundant mid-to-late layers [39] are ideal side memory layers and confirms
the hierarchical nature of information processing in Transformer LLMs [62, 63].
Analysis of ρ and k for WISE. We analyze the important hyperparameters of WISE: the mask ratio
ρ and the number of subspaces k in Figure 8. On the left figure, for k = 2, the best ρ is 0.2, satisfying
k∗ρ = 0.4 < 1, which implies the effectiveness of our subspace design that higher knowledge density
will cause better generalization. When scaling k, we observe an increasing demand of ρ. From Theo-
rem ??, the probability of subspace overlap is ρk, and we hypothesize that this overlap is important as
an anchor for model merging. Interestingly, from the right figure, it can be observed that the optimal
cases always have the ρk closest to 0.03. This shows an inherent tradeoff between merge anchor and
merge conflicts, and the subspace overlaps around 0.03 are optimal for the best performances.

Table 9: Scaling to 3K edits of ZsRE. LLaMA-2-7B.

Method
T = 2000 T = 3000

Rel. Gen. Loc. Avg. Rel. Gen. Loc. Avg.

GRACE 0.96 0.03 1.00 0.66 0.96 0.03 1.00 0.66
MEMIT-MASS 0.64 0.58 0.55 0.59 0.58 0.53 0.47 0.53

WISE-Merge 0.66 0.63 1.00 0.76 0.58 0.56 1.00 0.71
WISE-Retrieve 0.68 0.64 1.00 0.77 0.61 0.58 1.00 0.73
WISE-Retrieveoracle 0.77 0.72 1.00 0.83 0.75 0.70 1.00 0.82

Scale Up to 3K of Edits. We scale the num-
ber of continual edits to 3K in Table 9. We
compare WISE-Merge, keeping one side mem-
ory by multi-time merging, and WISE-Retrieve,
keeping several side memories by routing and
retrieving among different side memories. For
WISE-Retrieve, we show an upper bound “ora-
cle”, which always identifies the correct routing
path. We observe that the WISE series maintains high scalability, consistently outperforming the
strongest baselines including MEMIT-MASS and GRACE. WISE-Retrieve based on top-1 activa-
tion retrieval demonstrates the best results in 3K edits, showing the effectiveness of well-organized
memory subspaces and routing strategies during editing. We note that the “oracle” exhibits marginal
performance decline when scaling the edits from 2K to 3K, yet it demonstrates remarkable perfor-
mance across all metrics. This underscores the potential of WISE to handle extremely long continual
edits, contingent upon substantial improvement in the retrieval of side memories. Additionally, an
appropriate replay of edits can further improve retrieval accuracy, as detailed in Appendix B.5.
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Figure 6: Inference time of WISE
when varying T . ZsRE, LLaMA-2-7B.

Inference Time Analysis of WISE. Figure 6 shows the
inference time of a single instance for LLaMA after t ∈
[0, 3000] editing steps, measured across 10 trials of each
setting. Consistent with our expectations, we find that
WISE-Merge incurs a constant inference delay (about 3%)
as the editing stream expands. WISE-Retrieve, due to
the introduction of retrieval routing, shows an increase in
inference time as the number of edits increases, with a time
cost increment of about 7% after 3K edits. Knowledge
merging ensures that WISE-Merge only brings constant additional costs (0.64% extra parameters and
4% extra GPU VRAM, as detailed in Appendix B.8), contrasting with past memory-based works that
continuously demand more available memory [10, 32].

B.3 On the Pitfall of GRACE: Generalization Collapses in Decoder-only LLMs
Here, we discuss why GRACE exhibits poor generalization when editing decoder-only LMs.
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Figure 9: GPT-J-6B, ZsRE, continual editing.

As shown in Figure 10, we continuously edit 15 samples (xe,ye) using GRACE and observe the
nearest codebook Key for their paraphrases xe′ and unrelated queries xloc, as well as the governed
Deferral radii ϵ of those Keys. When overlapping Keys exist, GRACE reduces the Deferral radii to
split this Keys and then adds a new codebook entry, resulting in exponentially decaying of radii ϵ
during the editing process. Though ϵ is initialized from a high ϵinit, it will be small and ineffective
after continuous edits. From Figure 10, we observe that GRACE is more likely to have a conservative
strategy that sets smaller Deferral radii during editing. Smaller Deferral radii will cause xe′ to fail
to hit the codebook (the distance to the nearest Key is farther than its Deferral radii) but let xloc
successfully far away from the radii, resulting low generalization and high locality. Also, we observe
that the Deferral radii method is not effective under any ϵinit; for all tested ϵinit values of 1.0, 3.0, 10.0,
and 500.0, they all have low generalization and high locality.
This suggests that in autoregressive LMs, the distribution of the last token cannot effectively represent
semantics; whereas in encoder-only and encoder-decoder architectures, capturing semantic infor-
mation through vector representation has been extensively studied [64–66]. This is consistent with
the degree of generalization shown by GRACE when anchoring the T5 [67] Encoder layer. Some
related works [68] also indicate that in autoregressive models, semantic similarity measures based
on averages of output tokens underperform, recommending the use of score distributions over text
continuations to represent semantic distances.

B.4 Impact of Knowledge Merging Strategies for WISE

Table 10: Varying Merging Strat-
egy. ZsRE. LLaMA-2-7B.

Methods Rel. Gen. Loc. Avg.

Linear .63 .61 .93 .72
Slerp .62 .64 .91 .72
Dare .68 .63 .92 .74
Dare_Ties .67 .63 .83 .71
Ties .85 .81 .94 .87
Sign .80 .76 .97 .84

Here, we conduct a more in-depth study of the knowledge merging
strategies for WISE, exploring various merging approaches including
(i) Linear, which uses a simple weighted average; (ii) Slerp, which
spherically interpolates the parameters of two models; (iii) Ties, a
component used in the main experiments of this paper that resolves
merging disturbances through TRIM ELECT SIGN; (iv) Dare:
which follows a Bernoulli distribution to delete redundant parame-
ters and rescale the remaining ones; (v) Dare_Ties, which combines
dare and the sign consensus algorithm of TIES; and (vi) Sign, an
ablation component of Ties that addresses directional conflicts—all
utilizing the official implementation from MergeKit [69] ||. We ran-
domly sample 100 edits from ZsRE, retaining a fine-tuned MLP every 50 edits (merging 2 MLPs).
As shown in Table 10, we observe that ignoring the direction of parameter updates (Linear, Slerp,
Dare) leads to a significant decline in editing performance, underscoring the importance of address-
ing knowledge conflicts in overlapping parameters. The success of Sign also reaffirms this point.
Meanwhile, the randomly masked knowledge shards exhibit a non-redundancy, indivisible nature.
This is demonstrated by the significantly weaker performance of Dare_Ties compared to Ties/Sign,
indicating that removing parameter updates can lead to the loss of edited knowledge or even potential
"anchors".

B.5 Analysis of Retrieving Top-1 Activation

WISE-Retrieve retains each knowledge-sharding memory and retrieves through Top-1 Activation.
However, as shown in Table 9 and Figure 11b, the retrieval accuracy still has significant room for
improvement; specifically, when T reaches 3K, the accuracy of routing to the correct MLP drops to
around 60%, indicating the specificity between side memories is insufficient. One possible reason is
that when sampling the edits from a single dataset (ZsRE), the editing instances (xe,ye) all belong

||https://github.com/arcee-ai/mergekit
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Figure 10: Investigation on the query x and its distance to the nearest Key k, as well as the
deferral radius ϵ of that Key. Red and Blue respectively represent the paraphrase query xe′ and the
unrelated query xloc, with the hatch representing the radius of the nearest Key. We observe that when
conflicts occur (hit the codebook Key but with different Edit Target ye), the deferral radius ϵ decays
exponentially. This results in GRACE being unable to encompass the paraphrase xe′ and maintain
high locality, regardless of how ϵinit is adjusted. ZsRE, LLaMA-2-7B.

to the same domain. This leads to some very similar instances being captured by multiple expert side
memories (resulting in high activations for all side memories), introducing more retrieval failures.
Therefore, to improve the specificity of side memory and reduce the probability of routing errors,
we attempt to add a new constraint Lmemo to Equation 5. For knowledge-sharding memory Wi, we
randomly replay instances (xm,ym) from the edit set DWj

of past shard Wj, j∈[0,i−1], ensuring that
Wi remains inactive for xm:

L′
a = La +max(0,∆act(xm)− α)︸ ︷︷ ︸

Lmemo

, s.t. xm ∈ DWj
.

As shown in Figure 11b, this replay behavior increases the specificity between side memories, main-
taining nearly 88% retrieval accuracy at T = 3K. Figure 11a also shows that WISE-Retrieve w.
Lmemo improves Edit Success (ES.) by 8.39% compared to WISE-Retrieve, providing a promising
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Figure 11: Comparing editing results of WISE-{Retrieve, Retrieveoracle, Retrieve w.
Lmemo} when varying T . (a) shows the simple average of Rel. and Gen. (ES.), while (b) shows
retrieval accuracy, i.e., whether the Top-1 Activation routes to the correct MLP (prec@1). X-axis:
Num edits. ZsRE. LlaMA-2-7B.

direction for future work. With finer-grained activation management, we might be able to bridge the
performance gap between Retrieve and Oracle.

B.6 Case Study

Table 11: Failure cases of using WISE to edit LLaMA-2-7B. ✔✗ represents errors in part of the tokens,
✗represents complete output errors (i.e., factual failures), and ✓indicates the expected exact match.

Prompt Edit Target Post-Edit Output

ia) By which person Lahti Town Hall has been designed? Aki Kaurismäki Wime Kaurismäki ✔✗

ib) Which is the architect of Lahti Town Hall? - Wime Kaurismäki ✔✗

ic) Which corporation was USS Leedstown (APA-56)
created by?

Lockheed
Shipbuilding

Leez Shipbuilding ✔✗

id) Which company manufactures the USS Leedstown
(APA-56)?

- Leez Shipbuilding ✔✗

iia) Which language is Garowe Principles written in? Persian Dutchian ✗

iib) In what language does the monthly football magazine
Garowe Principles report?

- Somian ✗

iic) What year was the service entry date for Panzer 58? 1957 1953 ✗

iid) What was the year Panzer 58 was commissioned? - 1953 ✗

iiia) What was Gemma Bosini’s range? mezzo-srano Wzo-srano ✗

iiib) The kind of voice of Gemma Bosini is what? - mezzo-srano ✓

iva) In which state is Qaleh Lan located? Golestan Province Golestan Province ✓

ivb) What state is Qaleh Lan in? - Lestan Province ✗

ivc) In which language Garowe Principles monthly
football magazine reporting?

American English American English ✓

ivd) What language are Garowe Principles written in? - English English ✗

In Table 11, we present bad cases of using WISE to edit the LLaMA-2-7B on the ZsRE dataset and
mitigating these failures is critical for future work in model editing. We observe that in i) errors occur
only in part of the tokens, and these errors constitute a large proportion of the bad cases, indicating
that the edits have not been sufficiently fitted. ii) displays cases where the entire output is incorrect,
and factual failures indicate difficulties in retaining memory of parameters for some rare entities
(such as Persian iia, iib). iv) presents cases of generalization failure, for example in ivd), where
the model answered “English” but did not fully follow the ground truth, indicating significant room
for improvement in the accuracy of generalized edits. Meanwhile, in iii) we surprisingly find that
even when WISE errs on the Edit Prompt, it can correctly answer its paraphrase iiib) “The kind
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of voice of Gemma Bosini is what?”. This indicates that WISE can handle contextual information
correctly in some cases but falls short in specific editing instructions, suggesting that optimizing
editing instructions (modifying the editing context) may be a direction for improvement.

B.7 Importance of Knowledge Anchor When Merging Models

Here, we discuss the effects of independent (ensured by non-overlapping masks) vs partially over-
lapping parameters within MLP subspaces on editing performance, as shown in Table 12. It is
observable that, despite varying mask ratios ρ and the number of subspaces k, partial overlap (w. KA)
consistently outperforms independent configurations (w.o. KA) in terms of Reliability (Rel.) and
Generalization (Gen.).

Table 12: Analysis of Merging w.o. and w.
"knowledge anchor" (KA). T = 1000. ZsRE.
LLaMA-2-7B.

ρ/k
w.o. KA w. KA

Rel. Gen. Loc. Avg. Rel. Gen. Loc. Avg.

2/0.30 0.76 0.72 1.00 0.83 0.79 0.73 1.00 0.84
2/0.50 0.74 0.73 1.00 0.82 0.77 0.72 1.00 0.83
3/0.33 0.72 0.68 1.00 0.80 0.75 0.71 1.00 0.82
5/0.20 0.64 0.61 1.00 0.75 0.73 0.68 1.00 0.80

For example, at ρ/k of 5/0.20, there is a relative improve-
ment of 9% and 7% respectively. This demonstrates that
the overlapping regions contribute as “anchors” for knowl-
edge fusion, facilitating information transfer across differ-
ent subspaces. Moreover, the shared parameters provide
a natural regularization [70] mechanism, helping synchro-
nize model behavior across different subspaces.

B.8 Parameter Efficiency

The key to lifelong model editing is maintaining con-
stant or slowly increasing computational costs as the number of edits expands. Here,
we provide a quantitative analysis using LLaMA-2-7B as an example. Suppose we select
model.layers[27].mlp.down_proj.weight as side memory. In that case, the theoretically
added parameters are 11008 × 4096 × 4 = 0.18 GB, which accounts for 0.64% of the original
LLaMA’s 7B × 4 = 28 GB (ignoring the VRAM required for input activations). As shown in
Figure 12, in practice, WISE-Merge increases VRAM by 4% compared to the original LLaMA and
remains constant over time. WISE-Retrieve, instead of merging, uses retrieval routing, meaning the
computational cost increases over time, but this increase is gradual and can easily handle thousands or
tens of thousands of inputs. Additionally, if we partially merge side MLPs (combining WISE-Retrieve
and WISE-Merge), we can further reduce the computational demands of WISE-Retrieve.
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Figure 12: Computational costs.

Memory and Knowledge Injection of LLMs The mem-
ories of LLMs can be divided into long-term (episodic)
memory and working memory (short-term) [24, 25,
27]. Long-term memory refers to the knowledge stored
in the model’s parameters, which can be updated by
(re)pretraining [47], finetuning [71], and model edit-
ing [14]. Working memory is stored in sustained acti-
vations/representations of neurons, which will be awakened during inference time [24]. In-context
learning (ICL) is a kind of working memory [72], also along with retrieval-based editing methods
like GRACE [10]. How to reinforce memory and inject/update knowledge for LLMs is a fundamental
question [28, 73, 74]. ICL or finetuning? Different works show different conclusions. In [74], the
authors find that few-shot finetuning is more generalizable than ICL, especially for out-of-distribution
data. In [73], the authors contrast finetuning with retrieval-augmented generation (RAG) in terms
of knowledge injection and find that RAG is better in most cases, and combining both will produce
the best results. However, finetuning and pretraining are computation-expensive [13, 10] and usually
suffer from catastrophic forgetting [75] and overfitting [76]. For ICL and RAG, the working memory
is sometimes not controllable, the model may not follow the information of the contexts [24], and
the context window is limited [77, 78], and there are works addressing these issues by training con-
trollable ICL [24], long-context techniques [77, 78], and recurrent memory architecture design [28].
SPALM is proposed to add language models with storage modules that resemble both working
and long-term memories [27]. Also, model editing is an emerging technology that aims to enable
data-efficient, fast, and non-destructive knowledge updates to LLMs [14, 53].

Model Editing of LLMs Model editing can be summarized as the following lines of research.
Constrained finetuning: Preliminary model editing uses constrained finetuning to update parameters
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based on new examples [79, 80]. Locate-and-edit: ROME [18] locates the factual associations in
autoregressive LLMs and conducts accurate and efficient edits by taking MLPs as key-value memories.
Then, MEMIT [19] extends ROME from single-editing to mass-editing. COMEBA-HK [81] identifies
the Local Editing Scope and extends MEMIT for sequential editing. In addition, T-Patcher [11]
targets the last feed-forward layer of LLMs, adding an additional neuron for each edit. Meta
learning: Recent meta-learning methods use hypernetworks for aiding editing. MEND [31] learns a
hypernetwork that can decouple the finetuning gradients into the gradient updates that generalize the
edits and won’t damage the performances on unrelated inputs. To remedy the cancellation effect of
MEND, MALMEN [15] uses hypernetwork to produce the weight shifts of editing and formulates the
weight shift aggregation as the least square problem. Retrieval-based methods: Instead of directly
editing the model parameters, retrieval-based methods aim to improve the working memory of LLMs
to enable model editing. IKE [82] uses context-edit facts to guide the model when generating edited
facts. DeCK [83] employs contrasting knowledge decoding, which enhances the confidence of
in-context-based editors in the edited facts. SERAC [32] (a modified version dubbed as DEFER [10])
records edit items in a file and trains additional scope classifier and counterfactual model to detect,
retrieve, and generate the edit-related results. Though the editing retriever and generator are neural
networks, they are too small to have the power of LLMs. GRACE [10] adopts a discrete codebook
of edits for retrieving and replacing the edits’ layer representations during inference. From single
editing [18] to mass editing [15, 19], and from static editing to sequential [11] (continual) or lifelong
editing [10], model editing is developing to meet more realistic demands.

Model Merging Model merging [69], also known as model fusion [84, 85], studies how to aggregate
different models’ knowledge into one by parameter merging. However, in the research of linear
mode connectivity, it is found that different minima of neural networks can hardly be merged into a
generalized one even if trained on the same datasets from the same initialization (but with different
random seeds) [86, 87]. The main reason is considered to be the permutation invariance property of
deep neural networks, which means that the positions of neurons can be permuted without affecting
the network function [86]; as a result, different minima reside in different loss basins [87]. To improve
linear mode connectivity and model merging, methods like optimal transport [85, 88], re-basin [87],
and training-time alignment [44] are developed. For the applications, model merging techniques can
help to improve the generalization of federated learning [89, 90] and enable knowledge aggregation
of different-task models in a task arithmetic way [91, 92]. Recently, methods like task arithmetic in
tangent space [92], TIES-Merging [45], ZipIt! [93], and ColD fusion [94] have been proposed for
deep model fusion of pretrained foundation models, such as CLIP, ViT, and large language models.
Specifically, TIES-Merging [45] consists of trim, elect sign & merge pipeline, which inspires the
merge process of side memories in our paper.

Continual Learning Continual learning [95, 96] tackles the catastrophic forgetting problem in
deep learning models with new knowledge [97], and recent research has focused on various methods
in this area. One such method is continual finetuning, where LLMs are refined over time with the
arrival of new instances. For instance, a comprehensive study by [98] explores continual finetuning
extensively. However, it has been observed that regularizing finetuning with continual learning
techniques such as Elastic Weight Consolidation [20], Experience Replay [99], and Maximally
Interfered Replay [100] can lead to a rapid decay in performance on previous tasks, although it aids
in retaining some memory of past inputs. This suggests that editing, as opposed to vanilla continual
finetuning, presents unique challenges, especially considering that edits are unlikely to be evenly
distributed [101]. One promising direction within the realm of continual learning is the adoption
of key-value methods, inspired by advancements in computer vision [102, 103]. Recent studies
have showcased the effectiveness of continual prompt-learning for NLP [104, 105], particularly in
applications like text retrieval [106]. Notably, discrete key-value methods have been shown to excel in
handling shifting distributions [107], with some recent efforts extending their application to question
answering [108]. These methods cache values to ensure that inputs remain within the distribution for
downstream encoders, thus facilitating the incorporation of longer-term memory, provided there are
adequate computational resources.

D Limitations and Broader Impacts
Although WISE shows promising results in lifelong editing, it also has some limitations. One
limitation is addressed in Table 9 that the side memory retrieval has room for improvement to reach
the oracle. Also, in Figure 6, the inference time of WISE-Retrieve increases with ever-growing
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editing streams. However, the current limitations cannot outweigh the merits of WISE in that it
currently reaches better performance in general for lifelong model editing.
We bridge the gap between long-term and working memory, it may inspire further work on memory
design for model editing or even LLM architecture. However, the application of such technologies
should be guided by ethical considerations. Malicious users may attempt to edit LLMs to propagate
hate, highlighting the need for safeguards to prevent abuse and mitigate harmful outcomes. Some
current model editors update the model’s weights directly, making edits hard to trace and withdraw.
WISE uses a modular and non-destructive side memory, allowing users to discard it if edits are
unnecessary or harmful, without modifications to the main LLMs.

27


	Introduction
	Methodology
	Preliminaries: Lifelong Model Editing
	Rethinking the Memory Design of Lifelong Model Editing
	WISE: Side Memory with Knowledge Sharding, Merging, and Routing
	Side Memory Design
	Knowledge Sharding and Merging


	Experiments
	Experimental Settings and Evaluation Metrics
	Main Results

	Conclusion
	Implementation Details
	Description of Datasets
	Descriptions of Compared Model Editors
	Evaluation Metrics Details
	Training Details and Hyperparameters
	Pseudo Code of WISE

	More Experimental Results and Analyses
	Out-of-Distribution Evaluation
	Further Analysis
	On the Pitfall of GRACE: Generalization Collapses in Decoder-only LLMs
	Impact of Knowledge Merging Strategies for WISE
	Analysis of Retrieving Top-1 Activation
	Case Study
	Importance of Knowledge Anchor When Merging Models
	Parameter Efficiency

	Detailed Related Works
	Limitations and Broader Impacts

