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ABSTRACT

Estimating causal structure in the presence of latent variables is an important
yet challenging problem. Recent works have shown that distributional con-
straints, such as rank deficiency constraints of the covariance matrices, can be
exploited to recover the underlying causal structure involving latent variables.
However, real-world data often exhibit heterogeneity/nonstationarity, which
pose challenges to existing methods. In this work, we develop a principled
approach for identifying the structure of partially observed linear causal models
from heterogeneous/nonstationary data. We first formulate a class of hetero-
geneous/nonstationary, partially observed linear causal models and prove that
their distributional constraints are equivalent to those in the homogeneous case.
Building on this, we propose a novel rank test that can efficiently handle heteroge-
neous/nonstationary data, and further establish identifiability results for recovering
the causal structure involving latent variables. We also provide a method to
identify which variables exhibit distribution shifts, i.e., whose causal mechanisms
vary across domains. Experiments on simulated and real-world data validate our
theoretical findings and the effectiveness of our method (code will be available).

1 INTRODUCTION AND RELATED WORK

Discovering causal relations from data is one of the fundamental challenges in many scientific
disciplines (Spirtes et al., 2000; Pearl et al., 2000). Traditional causal discovery methods typically
assume causal sufficiency, indicating that there are no latent confounders (Spirtes et al., 2000; Spirtes,
2001; Chickering, 2002). However, this assumption may often be violated in practice and ignoring
these latent variables can lead to inaccurate causal conclusions. This highlights the importance of
causal discovery methods that account for latent confounders.

To address this challenge, early methods such as Fast Causal Inference (FCI) (Spirtes et al., 2000;
Zhang, 2008) and its variants (Colombo et al., 2012; Spirtes et al., 2013; Claassen et al., 2013;
Akbari et al., 2021) utilize conditional independence tests to identify causal relations among observed
variables while accounting for latent confounders. These methods output partial ancestral graphs
(PAGs) (Richardson, 1996) over the observed variables, which summarize the equivalence class
of causal structures consistent with the data. While FCI does not make any assumption about the
latent structure, it often produces less informative outputs, e.g., provides no information about
relationships among latent variables. In contrast, recent approaches aim to recover the full causal
structure, including latent-to-latent and latent-to-observed relations, by leveraging parametric or
graphical assumptions. These approaches are typically based on tetrad or rank constraints (Silva et al.,
2003; 2006; Choi et al., 2011; Kummerfeld & Ramsey, 2016; Huang et al., 2022; Dong et al., 2024),
higher-order moments (Shimizu et al., 2009; Cai et al., 2019; Salehkaleybar et al., 2020; Xie et al.,
2020; Adams et al., 2021; Dai et al., 2022; Chen et al., 2022; Améndola et al., 2023; Wang & Drton,
2023), matrix decompositions (Anandkumar et al., 2013), and score-based search (Ng et al., 2024).

Apart from latent confounders, another challenge in real-world settings is the presence of heterogene-
ity in the data. Such variation often arises from different types of interventions, ranging from hard
interventions (Eberhardt & Scheines, 2007; Hauser & Bühlmann, 2012) to soft interventions (Eber-
hardt & Scheines, 2007; Yang et al., 2018). To address this, various constraint-based (Huang et al.,
2020a), score-based (Hauser & Bühlmann, 2012; Squires et al., 2020; Brouillard et al., 2020), and
hybrid (Wang et al., 2017; Yang et al., 2018) methods, as well as other general frameworks (Mooij
et al., 2020), have been proposed to infer causal structure from interventional or heterogeneous data.
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To handle both latent confounders and heterogeneous/nonstationary data, Magliacane et al. (2016);
Kocaoglu et al. (2019) proposed constraint-based methods that rely on conditional independence
tests to recover ancestral structures over the observed variables, similar in spirit to FCI. As previously
discussed, these outputs may often be uninformative when the goal is to understand the relationships
among latent variables. In contrast, a related line of work, causal representation learning (Schölkopf
et al., 2021), aims to infer both the latent causal variables and the causal structure among them. While
these methods also leverage interventional or heterogeneous data (Hyvärinen et al., 2023; Ahuja
et al., 2023; Squires et al., 2023; von Kügelgen et al., 2023; Zhang et al., 2023; Jin & Syrgkanis,
2023; Zhang et al., 2024; Varıcı et al., 2024a;b; Bing et al., 2024; Ng et al., 2025), they typically
make certain assumptions: (1) no causal edges exist among observed variables or from observed to
latent variables, and (2) the generative process from latent variables is deterministic (except several
works including Khemakhem et al. (2020); Lachapelle et al. (2024); Fu et al. (2025)) and invariant
across domains. Here, we consider a more general setting that relaxes these assumptions. Further
discussions of the related works are provided in Appendix D.

In this work, we consider a general setting that can handle latent variables and heteroge-
neous/nonstationary data, allowing all variables, including both observed and latent ones, to be
flexibly related. Our contributions are summarized as follows:

• We formulate a class of heterogeneous/nonstationary, partially observed linear causal models, i.e.,
Nonstationary POLCMs (Definition 1), to properly handle nonstationary data. It allows changing
model parameters both within and across domains while preserves structure identifiability.

• We prove that, despite the existence of nonstationarity, the conditional covariance set generated by
Nonstationary POLCMs are equivalent to the covariance set in the homogeneous case (Theorem 1).
This implies all the constraints on conditional distribution imposed by structure are equivalent
to those in the homogeneous case (Corollary 1), and thus the possibility of those constraint-based
homogeneous causal discovery methods to be upgraded to handle the nonstationary scenario.

• To make use of equality constraints for structure identifiability, we establish the relation between
rank of conditional covariance and t-separations for Nonstationary POLCMS (Theorem 2); notably,
it takes the relation between vanishing partial correlation and d-separations as a special case. To
properly control statistical errors with finite data, we further propose a novel statistical test to
examine the rank of conditional covariance in the nonstationary scenario (Theorem 3).

• We propose a novel method, Latent variable Causal Discovery from heterogeneous/NOnstationary
Data (LCD-NOD), to identify the structure of Nonstationary POLCMs. The first phase serves as
a general augmentation of current equality constraint-based methods, e.g., PC (Spirtes et al., 2000),
FOFC (Silva et al., 2003; Kummerfeld & Ramsey, 2016), and RLCD (Dong et al., 2024), to handle
nonstationary data, while the second phase further identifies which variables are directly influenced
by the nonstationarity. Extensive experiments validate the proposed rank test and LCD-NOD using
both synthetic and real-life data.

2 PRELIMINARIES

2.1 PROBLEM SETTING

To better handle both nonstationarity and latent variables, we assume that data is generated by
Nonstationary Partially Observed Linear Causal Models (nonstationary POLCMs), defined as follows.

Definition 1 (Nonstationary POLCMs). Let G be a DAG with variable set V = X ∪ L = {Xi}n ∪
{Li}m that contains n observed and m latent variables. Each variable Vi ∈ V is generated following

Vi =
∑

Vj∈PaG(Vi)
hj,i(T, δj,i)Vj + gi(T, ϵi), (1)

where PaG(Vi) denotes the parent set of Vi, hj,i(T, δj,i) denotes the edge coefficient from Vj to Vi,
and δj,i and ϵi are independent noise terms.

Remark 1. In Definition 1, T can be understood as the domain index. The coefficient for edge
Vj → Vi is hj,i, which is a deterministic function of T and δj,i. The additive noise term gi is also a
determinstic function of T and ϵi. Therefore, in Equation (1), two kinds of nonstationarity can be
modeled. 1. nonstationarity across domains, as both hj,i and gi are functions of domain index. 2.
Nonstationarity within domain, as edge coefficients hj,i is also a function of independent noise term
δj,i. It is possible to model these two kinds of nonstationarity in a more complex functional fashion,
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Table 1: Graphical notations used throughout this paper.

Pa: Parents V: Variables V: Variable T: Domain / Time index
Ch: Children L: Latent variables L: Latent variable G: Ground truth structure
PCh: Pure children X: Observed variables X: Observed variable Gaug: Structure involving T

and yet one major goal of this work is to show that the constraints are equivalent to those in the
homogeneous case. If the functional form can be arbitrary, then Theorem 1 might not hold anymore
and we conjecture that any further relaxation of functional form would induce failure of Theorem 1.

Given i.i.d. samples of observed variables X generated by Definition 1, our objective is to identify the
causal structure of the underlying nonstationary causal model. More specifically, we aim to identify
the causal structure among all the variables, including both observed and latent ones. Further, the
generating process for some variables might be stationary. Thus we are also interested in identifying
the stationary and nonstationary variable set, or equivalently, identifying Gaug, where Gaug is the
augmented graph of G such that Gaug contains one additional node T and T → Vi if and only if h:,i

and gi can change with different values of T.

2.2 NOTATIONS AND PAPER ORGANIZATION

In this paper, we use V to denote random variable and V a set of random variables. We use T to
refer to the random variable that represents domain index, and t the observed value. A summary of
commonly used notations can be found in Table 1.

The rest of the paper is organized as follows. In Section 3.1, we briefly introduce the constraints in the
homogeneous setting for structure identification and show that they normally fail to hold in the nonsta-
tionary scenario. In Section 3.2, we formally show the equivalence relation between constraints on the
covariance in the homogeneous case and the constraints on the conditional covariance in the nonsta-
tionary case. In Section 3.3, we focus on rank constraints and characterize their graphical implications
for structure identification, with a novel rank test of conditional covariance proposed in Section 3.4.
In Section 4, we propose the Latent variable Causal Discovery from heterogeneous/NOnstationary
Data (LCD-NOD) algorithm, and empirically validate LCD-NOD in Section 5.

3 DISTRIBUTIONAL INFORMATION FOR STRUCTURE IDENTIFICATION

3.1 CONSTRAINTS IN THE HOMOGENEOUS CASE

In this section, we first revisit the constraints in homogeneous Partially Observed Linear Causal
Models (POLCMs), defined as follows,
Definition 2 (Homogeneous POLCMs). Let G be a DAG with variable set V = X ∪ L = {Xi}n ∪
{Li}m that contains n observed and m latent variables. Each variable Vi ∈ V is generated following

Vi =
∑

Vj∈PaG(Vi)
fj,iVj + ϵi, (2)

where PaG(Vi) denotes the parent set of Vi, fj,i denotes the edge coefficient from Vj to Vi, and ϵi
are independent noise terms.

For a model in Definition 2, its structure G imposes various constraints on the generated population
covariance matrices, regardless of the parameter values ((fj,i) and variance of ϵi). These constraints
fall into two categories: equality and inequality constraints. For structure identification, equality
constraints are most informative. They include, for example, conditional independence (i.e., vanishing
partial correlation) constraints (Spirtes et al., 2000), which suffice to identify the whole structure
up to the Markov Equivalence Class (MEC) when there are no latent variables. To handle latent
variables, more equality constraints have been discovered and exploited, including rank constraints
(i.e., vanishing determinant) (Sullivant et al., 2010), Verma constraints (Verma & Pearl, 1991), among
others. An overview can be found in Drton (2018).

Given that these equality constraints contain crucial information for structure identifiability, a question
naturally arises: Can these constraints in the homogeneous case be directly extended to the nonstation-
ary setting? Unfortunately, they do not generally carry over, as illustrated by the following example.
Example 1. In Figure 1, the model in (a) follows Definition 2 and the model in (b) follows Def-
inition 1, but they share the same DAG structure among V. However, the equality constraints in
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L1

X1 X2 X3 X4

(a) G under the homogeneous POLCMs setting, where
the edge coefficients and the variance of the noise
terms are fixed parameters.

T L1

X1 X2 X3 X4

(b) Gaug under nonstationary setting where the dashed
arrows from T to X1 and X2 means the edge coeffi-
cients from L1 to X1 and X2 change across T.

Figure 1: Illustrative example to show that, with the same structure but in the presence of nonsta-
tionarity, the same equality constraint does not hold anymore. Specifically, in (a) σX1,X2σX3,X4 =
σX1,X3σX2,X4 holds regardless of the choice of parameters, while in (b) it does not.

(a) may not hold any more in (b). For example, the classical tetrad constraint (a kind of equality
constraint) implies σX1,X2σX3,X4 = σX1,X3σX2,X4 in (a) regardless of the choice of parameter in (a), as
σX1,X2

σX3,X4

σX1,X3
σX2,X4

=
E[fL1,X1fL1,X2 ]E[fL1,X3fL1,X4 ]
E[fL1,X1fL1,X3 ]E[fL1,X2fL1,X4 ]

= 1 always holds due to that (fj,i) are constants. However,

in (b) σX1,X2
σX3,X4

σX1,X3
σX2,X4

=
ET,δ,ϵ[hL1,X1

hL1,X2
]ET,δ,ϵ[hL1,X3

hL1,X4
]

ET,δ,ϵ[hL1,X1
hL1,X3

]ET,δ,ϵ[hL1,X2
hL1,X4

] where the expectation is taken over T, δ, ϵ and
both hL1,X1 and hL1,X2 are functions of T, δ, and thus the equality constraint does not generally hold.

By the above example, we know that the equality constraints does not readily transfer to the non-
stationary case. Thus we need to characterize the equality constraints in the nonstationary case for
structure identification, detailed as follows.

3.2 CONSTRAINTS IMPLIED BY STRUCTURE UNDER NONSTATIONARITY

In this section, we aim to characterize useful constraints in the nonstationary scenario for structure
identification. To this end, we need to first define the observational covariance set under POLCMs,
as Θ(G), and the observational conditional covariance set under Nonstationary POLCMs, as Φ(G),
in Definition 3 and Definition 4, respectively. The reason why we care about Θ(G) and Φ(G) is as
follows. A constraint imposed by G on the covariance matrix is nothing but some relations among
the entries of the covariance matrix that always holds regardless of the choice of the parameters;
Therefore, constraints imposed by G under POLCMs and Nonstationary POLCMs are just properties
of Θ(G) and Φ(G) respectively.
Definition 3 (Observational covariance set under POLCMs). Let F = (fj,i) and Ω be the covariance
matrix for {ϵi}n+m. We define the observational covariance set of G under POLCMs (Definition 2) as:

Θ(G) := {Θ : Θ = ((I − FT )−1Ω(I − FT )−T )[:n,:n], (3)

for any (F,Ω) s.t. Ω ∈ diag+and supp(F ) ⊆ supp(FG)}. (4)

Remark 2. The meaning of Θ(G) is just the set of all possible covariance matrices over {Xi}n, by
taking the same causal structure G and different model parameters (F,Ω). Note that if we assume all
ϵi in Definition 2 follow Gaussian distributions, then {Xi}n are jointly Gaussian. In this case, only
the second-order information matters, and thus all the distributional information that can be used for
structure identification are just all the properties of Θ(G).
Definition 4 (Observational conditional covariance set under Nonstationary POLCMs). Let H(T) =
(hj,i(T, δj,i)) and g(T) = (gi(T, ϵi)). The observational conditional covariance set of G under
Nonstationary POLCMs (Definition 1) is defined as:

Φ(G) := {Φ : Φ = Ep(V|T)[(I −H(T)T )−1g(T)g(T)T (I −H(T)T )−T ][:n,:n], (5)

for any (H(T), g(T)) s.t. supp(H(T)) ⊆ supp(HG)}. (6)

Remark 3. Similar to Θ(G), Φ(G) is the set of all possible conditional covariance matrices over
{Xi}n, by taking the same G and different model parameters (H, g). We note that the definition of
Φ(G) involve conditioning on T, but for any specific value of T, Φ(G) keeps the same, and thus we
omit the notion T in Φ(G).

Given the definitions of Θ(G) and Φ(G), we now introduce the main theoretical result of this section:
Theorem 1 (Equivalence Relation between Θ(G) under POLCMs and Φ(G) under Nonstationary
POLCMs). Given a DAG G, let Θ(G) be the observational covariance set of G under POLCMS, as in
Definition 3, and let Φ(G) be the observational conditional covariance set of G under Nonstationary
POLCMs, as in Definition 4. We have Θ(G) = Φ(G).
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Theorem 1 says that, given the same structure G, despite the presence of both inter-domain and intra-
domain nonstationarity in Nonstationary POLCMs, the possible covariance set in the homogeneous
case is exactly the same as the possible conditional covariance set in the nonstationary case. As
constraints are just properties of the covariance / conditional covariance set, it can be inferred from
Theorem 1 that all the constraints on Θ(G) are the same as those on Φ(G), formalized in Corollary 1.
Corollary 1 (Equality and Inequality Constraints Under Nonstationary). If G implies an equality or
inequality constraint on Θ(G), then G also implies the same constraint on Φ(G), and vice versa.

Theorem 1 and Corollary 1 are significant, as they prove the existence of structure identifiability of
Nonstationary POLCMs. The key takeaways are two folds.

(i): All the constraints implied by G on Θ(G) remains on Φ(θ); Thus all the equality-constraint-based
homogeneous causal discovery methods, e.g., PC (vanishing partial correlation) (Spirtes et al., 2000),
FOFC (Tetrad) (Silva et al., 2003; Kummerfeld & Ramsey, 2016), and RLCD (rank constraints)
(Dong et al., 2024), can be upgraded to handle the nonstationary scenario (detailed in Section 4).

(ii): If we do not restrict the function forms of h, g and distributions of δ, ϵ in the Nonstationary
POLCMs, we cannot determine whether the distribution over X conditioned on T is jointly gaussian
or not. In this case, only the second-order information can be used and thus the graphical information
from the constraints on Φ(G) is complete - those constraints on Φ(G) are all the information that
we can use for structure identification from the observed conditional distribution p(X|T).

3.3 RANK CONSTRAINT UNDER NONSTATIONARITY AND ITS GRAPHICAL IMPLICATION

In Section 3.2, we have shown the equality constraints in the homogeneous case can be transferred
to the constraints in the nonstationary case. In this section, we focus on a specific class of equality
constraints, rank deficiency constraints (Sullivant et al., 2010), to establish its relation with trek-
separations (definition of trek in Definition 7 while definition of trek-separation in Definition 5) and
thus the structure identifiability for Nonstationary POLCMs.

The reason why we focus on rank constraints are as follows. (i) Rank constraints imply t-separations
(Sullivant et al., 2010), and thus contain useful graphical information about latent variables. By
making use of rank constraints, we can employ RLCD algorithm (Dong et al., 2024) to identify
latent variable structures where all variables, including both observed and latent ones, can be very
flexibly related. Thus, when rank constraints are properly characterized in the nonstationary setting,
we can elegantly upgrade RLCD to identify the structure of Nonstationary POLCMs. (ii) The set
of all rank constraints is itself a very large subset of the set of all equality constraints. In fact,
rank constraints take both vanishing partial correlation constraints and Tetrad constraints as special
cases (Sullivant et al., 2010; Dong et al., 2024). That is to say, when rank constraints are properly
characterized, we can translate the vanishing partial correlation constraints and Tetrad constraints into
rank constraints, and thus readily upgrade the PC algorithm (Spirtes et al., 2000) (based on vanishing
partial correlation) and algorithms for One Factor Models (Silva et al., 2003) (based on Tetrad).
Definition 5 (T-separation (Sullivant et al., 2010)). Let A, B, CA, and CB be four subsets of VG in
graph G (not necessarilly disjoint). (CA,CB) t-separates A from B if for every trek (P1,P2) from a
vertex in A to a vertex in B, either P1 contains a vertex in CA or P2 contains a vertex in CB.

Below we introduce the main theoretical result in this section: rank constraints for Nonstationary
POLCMs and its graphical implication of t-separations. This result, to our best knowledge, is the
first extension of the characterization of rank and t-separations to the nonstationary setting.
Theorem 2 (Rank and T-separation for Nonstationary POLCMs). Given two sets of variables A
and B generated by Nonstationary POLCMs with DAG G and assume rank faithfulness Dong et al.
(2024). We have:

rank(ΣA,B|T) = min{|CA|+ |CB| : (CA,CB) t-separates A from B in G}, (7)

where ΣA,B|T is the cross-covariance over A and B conditional on T.

3.4 VALID RANK TEST FOR RANK OF CONDITIONAL COVARIANCE

In Section 3.3, we formally characterize the relation between rank and t-separations for Nonstationary
POLCMs, as in Theorem 2. Note that Theorem 2 requires population conditional covariance, and
yet in real-life applications we only have access to finite samples and thus the empirical counterpart.
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To properly control statistical errors, we need a valid statistical test to test the rank of the underlying
population conditional covariance, by making use of empirical observations.

A straight forward way is just to employ the classical rank test (Anderson, 1984; Camba-Méndez
& Kapetanios, 2009), by using data conditioned on a value of T. E.g., assume we are given i.i.d.
observations of X and T, where T ∈ {1, 2}. We can just pick the data points such that T = 1, and
use these samples to do classical rank tests. The problem of this straight forward method is that,
when the number of domains is large, we only make use of a very small portion of data. E.g., assume
that T ∈ {1, ..., 100} with uniform distribution and we are given 1000 data points. This straight
forward method has to condition on a value of T and thus only makes use of 10 data points for the
test. Thus, a valid test that can utilize all the data points simultaneously would be favorable.

To this end, we propose a novel statistical test based on likelihood ratio statistics to test the rank of
conditional covariance, formalized in Theorem 3.

Theorem 3 (Likelihood Ratio Statistics for Rank of Conditional Covariance). Given two sets of
variables A and B with |A| = P, |B| = Q and A ∪B = X are jointly gaussian given T. Assume
that the null hypothesis H0 is rank(ΣA,B|T) ≤ k, the likelihood ratio statistics is as follows:

Λ(k) =
∑

t∈supp(T)

−
(
Nt −

P +Q+ 1

2

)
ln(Π

min(P,Q)
i=k+1 (1− r2t,i)), (8)

where Nt is the number of data points such that T = t, and rt,i is the i-th canonical correlation
between A and B conditioned on T = t. We have that Λ(k) converges in distribution to χ2

df , with
degree of freedom df =

∑
t∈supp(T)(P − k)(Q− k).

To perform the test, we just calculate the test statistics Λ(k) and plug it in to the corresponding
chi-square distribution to get the p-value. As shown in Theorem 3, the proposed test statistics Λ(k)
is a likelihood ratio statistics based on p(X,T) instead of p(X|T), and thus it makes use of all the
data points instead of those conditioned on a specific value of T. Further, as a likelihood ratio test,
its asymptotic optimality in terms of power can normally be guaranteed under regularity conditions
(Van der Vaart, 2000; Lehmann et al., 1986). This is also empirically validated in Section 5.2 where
the proposed test properly controls Type-I and has smaller Type-II errors compared to baselines.

4 LATENT VARIABLE CAUSAL DISCOVERY FROM NONSTATIONARY DATA

In this section, we present LCD-NOD (Latent variable Causal Discovery from heteroge-
neous/NOnstationary Data), a two-phase algorithm that first recovers the graph G from single-domain
data, and then identifies changes across domains, represented by the augmented graph Gaug.

4.1 PHASE 1: IDENTIFICATION OF STRUCTURE G
The first phase of LCD-NOD aims to identify the causal structure G among all the variables V =
X∪L. It is designed as a general augmentation of existing equality-constraint-based methods to work
in the nonstationary scenario. The key idea is simple and effective: for a given causal discovery algo-
rithm, replace the test of equality constraint on the covariance matrices by the proposed conditional
rank test in Theorem 3. Next, we take PC and RLCD as two examples to show how Phase 1 works.

(i) For PC algorithm (Spirtes et al., 2000) (and those based on vanishing partial correlations such
as FCI (Spirtes et al., 2000; Zhang, 2008)), replace the test of V1 ⊥⊥ V2|V3 by the rank test using
Theorem 3. Specifically, if we fail to reject rank(Σ{V1}∪V3,{V2}∪V3|T) ≤ |V3|, then we fail to reject
V1 ⊥⊥ V2|V3. (ii) For rank based methods, e.g., Hier-Rank (Huang et al., 2022) and RLCD (Dong
et al., 2024), replace the test of rank(ΣV1,V2) ≤ k by the rank test using Theorem 3. Specifically,
if we fail to reject rank(ΣV1,V2|T) ≤ k , then we fail to reject rank(ΣV1,V2) ≤ k. Further, for those
methods that are based on Tetrad constraints, we can just reformulate the Tetrad constraint into a
rank constraint and test it using Theorem 3.

LCD-NOD Phase 1 serves as a general framework in which any existing latent variable causal
discovery method based on covariance information (e.g., for linear Gaussian models) can be directly
generalized to handle nonstationary data. This is justified by Theorem 1 which shows that in each
domain, the induced covariance set remains identical to that of a static model despite nonstationarity.

We conclude introducing LCD-NOD Phase 1 by formally stating its structure identifiability:
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Theorem 4 (Structure Identifiability of LCD-NOD Phase 1). Given an equality-constraint-based
causal discovery method M, if M asymptotically identifies G up to equivalence class C under
POLCMs and graphical assumption A, then the Phase 1 of LCD-NOD, i.e., the augmented M,
asymptotically identifies G up to C, under Nonstationary POLCMs and A.

4.2 PHASE 2: IDENTIFICATION OF AUGMENTED STRUCTURE GAUG

In previous sections, we show that any existing latent variable causal discovery method based on
covariance information can be directly applied using each single domain’s information. In this section,
we go further by leveraging data across different domains to identify where changes happen. For a
case study, we consider a specific model, the one-factor model (Silva et al., 2003).
One-factor model captures cases where latent variables are indirectly measured. By introducing non-
stationarity, it becomes a special case of the Nonstationary POLCM model (Definition 1) as follows:
Definition 6 (Nonstationary one-factor model). Let G be a DAG over latent variables L = {Li}m
where each latent variable Li is generated following Li =

∑
Lj∈PaG(Li)

hj,i(T, δj,i)Lj + gi(T, ϵi).
Each latent variable Li is then associated with a set Xi of at least two observed variables (i.e.,
|Xi| ≥ 2) as its pure measurements. For each pure measurement X(k)

i ∈ Xi, it is generated
by X

(k)
i = h′

i,k(T, δ
′
i,k)Li + g′i,k(T, ϵ

′
i,k), where we use primed notation (e.g., h′) to distinguish

parameters in the measurement process from those governing the latent variable dynamics.

Note that in Phase 1, although the latent variables themselves are unobserved, the CI relations among
them manifest as testable low-rank in observed measurements, due to the equivalent linearity in each
domain (Theorem 4). In Phase 2, however, this rank-based correspondence breaks down, as changes
to latent variables–represented by edges T → Li–can induce complex, nonlinear dependencies.
Hence, instead of testing for CI relations between T and L, we take a different route: parameter
identification. We show that model parameters can be identified up to trivial indeterminacies in each
domain, allowing us to detect changes by comparing identified parameters. We formalize this below.

We first introduce the model identification result. In each domain, there are following unknown model
parameters: ΣL,L ∈ Rm×m, the variance-covariance matrix among L; ω(1), ω(2), ϕ(1), ϕ(2) ∈ Rm,
the equivalent linear coefficients and exogenous noise variances of each latent variable’s two
pure measurements, where for k = 1, 2, ω(k)

i = E[h′
i,k(t, δ

′
i,k)], and ϕ

(k)
i = Var[g′i,k(t, ϵ

′
i,k)]. Let

Σ̂L,L, ω̂
(1), ω̂(2), ϕ̂(1), ϕ̂(2) be another set of (estimated) parameters that yield the same covariance

for X. Then, the true parameters are identified up to scaling, i.e., ω̂(1)

ω(1) = ω̂(2)

ω(2) =: c ∈ Rm, where
the division is element-wise, and ΣL,L = diag(c) Σ̂L,L diag(c) holds. Moreover, measuring noise
variances are identified, i.e., ϕ(k) = ϕ̂(k), k = 1, 2. Proofs and solution details are given in Section B.

With the parameter identification results in each domain, we proceed to identify changes by comparing
the recovered parameters across domains. Since latent variables are not accessible, this comparison
must come with a trade-off. Two levels of assumptions are needed–one to address scaling indeter-
minacies, and one to ensure faithfulness so that changes leave trace in the second-order information:
Assumption 1. Two assumptions are needed to identify changes from recovered model parameters:

(A1.) To address indeterminacies, for each latent variable Li, at least one of its measurement’s
equivalent linear coefficient, w.l.o.g. assumed to be ω

(1)
i , remains invariant across domains.

(A2.) To ensure faithfulness, if the generating process of a latent variable Li changes, then there
exist at least two domains in which, for any subset LC ⊆ L \ {Li}, the conditional variance
of Li given LC (calculated from ΣL,L) differs. Similarly, if a measurement variable X

(k)
i is

changed, its corresponding exogenous noise variance ϕ
(k)
i must change as well.

Due to space limit, we leave the explanation and justification of assumptions to Section B. Under the
assumptions, we can now formally state the result for identifying changes, as in Theorem 5, to get the
direct edges from T to L and X. After that, further orientation can be done by using e.g., Meek rules.
Theorem 5 (Identification of changing variables). Suppose measurements X are gener-
ated following Definition 6 and let {Σ̂L,L|t, ω̂

(1)
t , ω̂

(2)
t , ϕ̂

(1)
t , ϕ̂

(2)
t } be the model parameters

estimated in each domain T = t. Denote the normalized latent covariance matrices by
{Σ̂′

L,L|t := diag(ω̂
(1)
t ) Σ̂L,L|t diag(ω̂

(1)
t )}. Then, under (A1) and (A2), T → Li ∈ Gaug if and only

7
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Figure 2: F1 score under the assumption of
no latent confounders with 95% CI.

Figure 3: SHD under the assumption of no
latent confounders with 95% CI.

Figure 4: F1 under graphical assumptions
required by RLCD with 95% CI.

Figure 5: SHD under graphical assumptions
required by RLCD with 95% CI.

if for all subsets LC ⊆ L \ {Li}, the conditional variances {V̂ar
′
t(Li|LC)} calculated from {Σ̂′

L,L|t}
changes across t. And an T → X

(k)
i ∈ Gaug if and only if the estimated {ϕ̂(k)

i|t } changes across t.

5 EXPERIMENTS
5.1 SYNTHETIC SETTING, BASELINES, AND EVALUATION METRIC

We employ synthetic data to validate the proposed rank test and LCD-NOD. Specifically, to simulate
i.i.d. data from nonstationary POLCMs, we randomly generate DAG structures where each Vi has
a 0.5 possibility to be influenced by nonstationarity, i.e., h:,i and gi are a function of domain index
T ∈ {1, ..., 10}. For those that are not influenced by nonstationarity, the corresponding h:,i and gi
does not change across domain. The independent noise terms δ and ϵ are sampled from Gaussian
with variance sampled uniformly from [0.01, 0.1] and [0.1, 1] respectively. For h and g, they are set
as randomly initialized polynomial function of T and δ parameterized by neural network.

To validate the proposed conditional rank test, we employ the classical CCA-based rank test (An-
derson, 1984) on the unconditional covariance matrix, as a baseline, referred to as Standard Rank
Test, and also employ the standard rank test with conditional covariance matrix, referred to as Naive
Conditional Rank Test. We refer to our method as Proposed Conditional Rank Test. We compare the
Type-I and Type-II errors of each method. We consider six different sample sizes: 300, 500, 800,
1000, 1500, 2000, and adopt 10 random seeds to report the average performance.

To validate the proposed LCD-NOD, we employ three classical equality-constraint-based causal
discovery methods, PCSpirtes et al. (2000), FOFC (Kummerfeld & Ramsey, 2016), and RLCD (Dong
et al., 2024), and see whether the first phase of LCD-NOD can successfully upgrade these methods
to handle the nonstationary scenario, in terms of F1 score (bigger better) and SHD (smaller better).
These three methods consider structures without latent variables (Spirtes et al., 2000), structures of
one factor model (Silva et al., 2003), and structures involving latent variables where all variables can
be flexibly related (Dong et al., 2024). We also compare with CD-NOD (Huang et al., 2020b), which
can also handle nonstationary data but cannot handle the existence of latent variables.

The Phase 2 of LCD-NOD is to determine which variables are directly influenced by T. Given that
we allow the presence of latent variables, consider the whole structure, and allow T to influence
both latent and observed variables, to our best knowledge, no existing method can achieve this result.
Below is a comparison with the very related settings: CD-NOD must assume no latent variable, Jaber
et al. (2020) only cares structure among observed and only allows interventions on observed, and
LIT (Yang et al., 2024) only allow changes on exogenous noises and can only find edges from T to
X. Thus, we mainly focus on comparing with the output of Phase 2 to ground truth. We focus on the
end-2-end setting that take the data to LCD-NOD and get result of Phase 2 directly, as in Section 5.3,
while also consider the disentangled setting detailed in Section A.3. Additionally, we compare the
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Figure 6: F1 score regarding G of each method
under the OFM assumption with 95% CI.

Figure 7: SHD regarding G of each method
under the OFM assumption with 95% CI.

end-to-end performance of LCD-NOD with LIT (Yang et al., 2024) and UT-IGSP (Squires et al.,
2020). To accommodate the constraints of LIT and UT-IGSP, this comparison is conducted under
specific conditions that they require: allowing changes only in exogenous noises and identifying
edges only from T to X. The result can be found in Section A.4, where LCD-NOD still consistently
outperforms them though the setting is in favor of them.
5.2 TYPE-I AND TYPE-II COMPARISON FOR THE PROPOSED CONDITIONAL RANK TEST
The result can be found in Figure 10 and Figure 11. It can be summarized that, both proposed
conditional rank test and naive conditional rank test can properly control the Type-I errors (with
significance level α = 0.05). At the same time, the Type-II errors of our proposed method is
consistently smaller than the baselines, which illustrates the better test power of our proposed method.
More detailed analysis can be found in Section A.1.
5.3 LCD-NOD PERFORMANCE ON SYNTHETIC DATA
In this section, we employ synthetic data to validate the effectiveness of LCD-NOD. For Phase 1
of LCD-NOD, we compare PC, FOFC, and RLCD with their versions upgraded with LCD-NOD.
We also compare with the naive conditioning upgrade strategy, referred to as PC with conditioned
data, FOFC with conditioned data, and RLCD with conditioned data, respectively. We also compare
with CD-NOD, which also handles nonstationarity but requires the absence of latent variables.

Figures 2 and 3 give the performance of each method in cases without latent variables. As shown,
LCD-NOD consistently surpasses baselines in terms of both F1 score and SHD, across different
sample sizes. The performance under the one factor model assumption (Silva et al., 2003), and
under the graphical assumption required by RLCD (Dong et al., 2024) are given in Figures 6 and 7
and Figures 4 and 5, respectively. Similarly, LCD-NOD also outperforms all baselines, and the
performance of LCD-NOD becomes better with the increase of sample size, while the original verson
of PC, FOFC, and RLCD do not. This validates LCD-NOD as a general augmentation scheme of
existing constraint-based causal discovery methods to handle the nonstationary scenario.

Last, we examine the end-2-end performance of Phase 2 of LCD-NOD. Specifically, we compare
the output of Phase 2, i.e., the structure among X,L and T, with the ground truth.The results are
in Figures 12 and 13, where the Phase 2 performs quite well in terms of recovering the augmented
structure, and benefits from the increase of sample size. E.g., when sample size is 2000 per domain,
Phase 2 achieves 0.83 F1 and 6.5 SHD and it improves to 0.85 F1 and 5.7 SHD when the sample
size becomes 5000. These results empirically validate the effectiveness of LCD-NOD. We also found
that in Phase 2 it is easier to detect changes in observed variables. An intuitive explanation is as
follows. A change in an observed variable, typically amounts to only a change in its measurement
process, characterized by one set of conditional coefficients to estimate. However, a change in a
latent variable can involve multiple other latent variables in the underlying structure, and hence
multiple sets of coefficients conditioning on different latent variables need to be estimated. This
is also aligned with the reason why we need to explicitly impose Assumption 1 A2 and to address
the indeterminacies of latent variables to make such detection feasible.
5.4 LCD-NOD PERFORMANCE ON REAL-WORLD DATA
We employ Big Five personality dataset (openpsychometrics.org) to show the real-life appli-
cability of LCD-NOD. By taking country as the domain index, we found that causal mechanisms
among certain dimensions, e.g., agreeableness and extroversion, indeed exhibits nonstationarity,
which aligns with psychometric studies. Please kindly refer to Figure 9 and Section A.2.

6 CONCLUSION
This work formulates a class of nonstationary models, shows the constraints, and develops a principled
test together with latent variable causal discovery method under nonstationarity.
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APPENDIX OF ”IDENTIFYING PARTIALLY OBSERVED CAUSAL MODELS FROM
HETEROGENEOUS/NONSTATIONARY DATA”

(a) Causal structure (CPDAG) on Big Five personality data found by Phase 1.

(b) The augmented structure (structure with domain index Country) on Big Five by Phase 2.

Figure 9: The causal structure found by LCD-NOD on Big Five personality data, where (a) is found
by the Phase 1 of LCD-NOD and (b) is found by the Phase 2.

A ADDITIONAL EXPERIMENTAL RESULTS

A.1 EXPERIMENTAL RESULTS FOR THE PROPOSED CONDITIONAL RANK TEST

In this section we empirically validate our proposed conditional rank test from two perspectives. 1.
whether the proposed test is a valid test, by checking whether it can control the Type-I error properly
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(a) The probability of Type I errors with α = 0.05. (b) Type II errors (effective Type I controlled at 0.05).

Figure 10: The probability of Type I and Type II errors.

(a) The probability of Type I errors with α = 0.05. (b) Type II errors (effective Type I controlled at 0.05).

Figure 11: The probability of Type I and Type II errors without assuming jointly gaussian.

at a designated significance level. 2. the power of the test, by comparing the Type-II error with
baselines.

As for Type-I error, the result is shown in Figure 10 (a) (where variables are jointly gaussian condi-
tioned on T) and Figure 11 (a) (without assuming jointly gaussian). Specifically, with significance
level 0.05, the proposed conditional rank test can consistently control the Type-I errors around 0.05
with varying sample sizes, which shows that the proposed test is valid. Plus, if we use the standard
rank test (which tests the unconditional rank), the Type-I error will be very large and close to 1. This
also validates the motivation of our proposed novel conditional rank test for causal discovery in the
nonstationary setting as directly plugging in a standard rank test will overly reject null hypotheses.

As for Type-II error, the result is shown in Figure 10 (b) (where variables are jointly gaussian
conditioned on T) and Figure 11 (b) (without assuming jointly gaussian). As illustrated in the
figures, the proposed conditional rank test can control the Type-II error very well, even when the joint
Gaussianity is violated (Figure 11 (b)). We also note that both standard rank test and the proposed
conditional rank test have a nearly zero Type-II error, even with a pretty small sample size (N = 300).
However, the standard rank test achieves such a good Type-II error result, at the cost of having high
Type-I error. In contrast. the proposed conditional rank test not only properly controls the Type-I
error but also controls the Type-II error very effectively.

A.2 RESULTS ON REAL-WORLD BIG FIVE PERSONALITY DATASET

In this section, we aim to employ the real-world Big Five personality dataset
(openpsychometrics.org) to validate the proposed LCD-NOD method. This dataset
contains 50 personality indicators / questions with 19,719 datapoints. Each data point corresponds to
a person that participates the questionnaire and each indicator’s value is the response (”Disagree”,
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Figure 12: End-to-end performance of
LCD-NOD Phase 2 by F1 score regard-
ing Gaug (structure involving T) of each
method under OFM.

Figure 13: End-to-end performance of
LCD-NOD Phase 2 by SHD regard-
ing Gaug (structure involving T) of each
method under OFM.

”Slightly Disagree”, ”Neutral”, ”Slightly Agree”, ”Agree”) of the person to each question (e.g., ”I
am the life of the party”). Psychologists believe that there are five major dimensions that underlie
human personality: Openness, Conscientiousness, Extraversion, Agreeableness, and Neuroticism
(O-C-E-A-N), and in the dataset, each dimension is designed to be measured by 10 questions (e.g.,
O1 is the first question for Openness). In this section we only use 24 out of the 50 questions to
make the main conclusion of the result clearer. Further. the dataset contains the country information
of the participants, which is taken as the domain index T in our experiment. As the number of
data points for some countries could be very small, we choose the top-6 common countries in the
dataset to produce the structure result, which are United States, United Kingdom, Canada, Australia,
Philippines, and India. The structure produced by Phase 1 of LCD-NOD (based on FOFC) is shown
in Figure 9 (a) and the augmented structure with country by Phase 2 of LCD-NOD is shown in
Figure 9 (b).

As we can see, without any prior knowledge, the structure recovered by Phase 1 of our method aligns
well with existing psychometric studies: each item in our result is indeed caused by the corresponding
Big Five dimension, e.g., N1,...,N5 are all caused by the same latent variable L7, which is expected
to correspond to Neuroticism. This result empirically validates the effectiveness of LCD-NOD from
a psychological perspective.

We also found that, by using LCD-NOD with proposed conditional rank test, we can discovery
meaningful structure with a reasonable significance level (1e-4); as a comparison, previous rank
based methods such as hier-rank Huang et al. (2022) and RLCD Dong et al. (2024) have to use
extremely small significance level (smaller than 1e-10) to produce plausible results. The reason lies
in that, the underlying human personality model is heterogeneous and how variables affect each other
varies across different countries. The previous rank based methods fail to consider and deal with such
nonstationarity and their test p-values correspond to unconditional rank that cannot correctly reflect
the desired t-separations. In contrast, by leveraging the proposed conditional rank test, LCD-NOD
does not suffer from this issue.

Further, the Phase 2 of LCD-NOD can be leveraged to discovery how the underlying causal model
changes across different countries. The corresponding result can be found in Figure 9 (b), where the
edge from country to a variable, say, Vi, means that h:,i and gi changes with country. Take L3 in
Figure 9 (b) as an example. The existence of edge from country to L3 informs us that, although for
all the countries, L4 (corresponds to conscientiousness) has a positive effect on L3 (a sub-dimension
of openness that corresponds to ideas), the strength of such influence varies across countries. We
further look into the edge coefficients and found that in India, the strength of the edge L4→L3 is
around +0.45, which means a very strong causal influence from conscientiousness to ideativeness; on
the contrary, in all other five countries this causal strength from L4 to L3 is only around 0.1. This
informs us that, the underlying causal model related to variable L3 is indeed nonstationary across
countries and especially different in India.

A.3 DISENTANGLED RESULT FOR PHASE 2

In this section we take the ground truth structure of the output of Phase 1 as the input of Phase 2.
This is because, thought in the large sample limit, the phase 1 can produce the correct structure, given
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Figure 14: Disentangled performance
of LCD-NOD Phase 2 F1 score regard-
ing Gaug (structure involving T) of each
method under the OFM assumption with
95% Confidence Interval.

Figure 15: Disentangled performance of
LCD-NOD Phase 2 by SHD regarding Gaug

(structure involving T) of each method under
the OFM assumption with 95% Confidence In-
terval.

Table 2: Comparison of the end-to-end performance of Phase 2 of LCD-NOD with LIT and UT-IGSP
by F1 score with different sample sizes.

Method Sample size per domain
N=50 N=100 N=200 N=500 N=1000 N=2000 N=10000

LCD-NOD (end-to-end) 0.40 0.41 0.48 0.57 0.63 0.69 0.76
LIT 0.27 0.24 0.31 0.28 0.31 0.32 0.32

UT-IGSP 0.30 0.36 0.42 0.39 0.40 0.39 0.41

finite samples, there always exists statistical errors. Thus this setting can test the performance of
Phase 2 without the influence from the statistical errors in Phase 1. The result is shown in Figure 14
and Figure 15. As expected, LCD-NOD achieves better performance than that in the end-to-end
setting.

A.4 END-TO-END COMPARISON WITH LIT (YANG ET AL., 2024) AND UT-IGSP (SQUIRES
ET AL., 2020)

Here we restrict the setting to accommodate the constraints of LIT and UT-IGSP. Specifically we
allow changes only in exogenous noises and identifying edges only from T to X, and compare the
end-to-end result of Phase 2 of LCD-NOD with LIT and UT-IGSP. The result is shown in Table 2.
As shown in the table, LCD-NOD still consistently outperforms them across different sample sizes
though the setting is in favor of them.

B PROOFS

B.1 PROOF OF THEOREM 1

Theorem 1 (Equivalence Relation between Θ(G) under POLCMs and Φ(G) under Nonstationary
POLCMs). Given a DAG G, let Θ(G) be the observational covariance set of G under POLCMS, as in
Definition 3, and let Φ(G) be the observational conditional covariance set of G under Nonstationary
POLCMs, as in Definition 4. We have Θ(G) = Φ(G).

Proof. We first show the following Lemma 1.

Lemma 1 (Lemma for proof of Theorem 1).

Ep(V|T)[(I −H(T)T )−1g(T)g(T)T (I −H(T)T )−T ] (9)

=Ep(δ,ϵ|T)[(I −H(T)T )−1g(T)g(T)T (I −H(T)T )−T ] (10)

=(I − Ep(δ,ϵ|T)H(T)T )−1Ep(δ,ϵ|T)[g(T)g(T)
T ](I − Ep(δ,ϵ|T)H(T)T )−T . (11)

Proof of Lemma 1. Let Ωg = Ep(δ,ϵ|T)[gg
T ]. As gi are mutually independent given T, Ωg is a

diagonal matrix. As g and H are independent given T, we have: Ep(δ,ϵ|T)[(I − HT )−1ggT (I −
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HT )−T ] = Ep(δ,ϵ|T)[(I − HT )−1Ωg(I − HT )−T ]. Now consider the i-th row and j-th column
of it, i.e., Ep(δ,ϵ|T)[(I − HT )−1Ωg(I − HT )−T ][i,j] = Ep(δ,ϵ|T)[(I − HT )−1Ωg(I − HT )−T

[i,j]]

= Ep(δ,ϵ|T)[
∑

P1,P2∈T (Vi,Vj)
Ωg top(P1,P2)H

P1HP2 ], where HP = Πj→i∈Phj,i(T, δj,i), T (Vi,Vj)

refers to the set of treks between Vi and Vj, and top(P1, P2) is the common source of the trek
(P1, P2). As P1, P2 do not share edges, we have

Ep(δ,ϵ|T)[
∑

P1,P2∈T (Vi,Vj)

Ωg top(P1,P2)H
P1HP2 ] (12)

=
∑

P1,P2∈T (Vi,Vj)

Ωg top(P1,P2)Ep(δ,ϵ|T)[H]P1Ep(δ,ϵ|T)[H]P2 (13)

= (I − Ep(δ,ϵ|T)[H]T )−1Ωg(I − Ep(δ,ϵ|T)[H]T )−T . (14)

Now, given Lemma 1, we prove Theorem 1.

(i) For every element of Θ(G) generated by (F,Ω), let Ep(δ,ϵ|T)[H] = F and Ep(δ,ϵ|T)[gg
T ] = Ω.

Then Φ(G) can generate the same element. (ii) For every element of Φ(G) generated by (H, g), let
F = Ep(δ,ϵ|T)[H] and Ω = Ep(δ,ϵ|T)[gg

T ]. Then Θ(G) can generate the same element. Taking these
two together, we have Θ(G) = Φ(G).

B.2 PROOF OF COROLLARY 1

Corollary 1 (Equality and Inequality Constraints Under Nonstationary). If G implies an equality or
inequality constraint on Θ(G), then G also implies the same constraint on Φ(G), and vice versa.

Proof. If G implies a constraint on Θ(G), then by Θ(G) = Φ(G) as in Theorem 1, G also implies the
same constraint on Φ(G), and vice versa.

B.3 PROOF OF THEOREM 2

Theorem 2 (Rank and T-separation for Nonstationary POLCMs). Given two sets of variables A
and B generated by Nonstationary POLCMs with DAG G and assume rank faithfulness Dong et al.
(2024). We have:

rank(ΣA,B|T) = min{|CA|+ |CB| : (CA,CB) t-separates A from B in G}, (7)

where ΣA,B|T is the cross-covariance over A and B conditional on T.

Proof. By the relation between rank and t-separation in Sullivant et al. (2010) for sta-
tionary linear causal models, we have that rank(ΣA,B|T) = min{|CA| + |CB| :
(CA,CB) t-separates A from B in G}. As rank constraints are a subset of equality constraints
entailed by G for stationary linear causal models, we have rank(ΣA,B) generated by Definition 2
equals rank(ΣA,B|T) generated by Definition 1. Thus, we have rank(ΣA,B|T) = min{|CA|+ |CB| :
(CA,CB) t-separates A from B in G} for nonstationary POLCMs.

B.4 PROOF OF THEOREM 3

Theorem 3 (Likelihood Ratio Statistics for Rank of Conditional Covariance). Given two sets of
variables A and B with |A| = P, |B| = Q and A ∪B = X are jointly gaussian given T. Assume
that the null hypothesis H0 is rank(ΣA,B|T) ≤ k, the likelihood ratio statistics is as follows:

Λ(k) =
∑

t∈supp(T)

−
(
Nt −

P +Q+ 1

2

)
ln(Π

min(P,Q)
i=k+1 (1− r2t,i)), (8)

where Nt is the number of data points such that T = t, and rt,i is the i-th canonical correlation
between A and B conditioned on T = t. We have that Λ(k) converges in distribution to χ2

df , with
degree of freedom df =

∑
t∈supp(T)(P − k)(Q− k).
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Proof. Let DX be the observed data of X and Dt
X be the observed data of X conditioned on T = t.

The log-likelihood ratio statistics is:

Λ(k) = 2 log
supΣA,B|T∈Θ0

L(DX; ΣX)

supΣA,B|T∈Θ L(DX; ΣX)
(15)

= −2 log
supΣA,B|T∈Θ0

Πt∈supp(T)P (Dt
X|T = t; ΣX|T=t)P (T = t)

supΣA,B|T∈Θ Πt∈supp(T)P (Dt
X|T = t; ΣX|T=t)P (T = t)

(16)

= −2 log
supΣA,B|T∈Θ0

Πt∈supp(T)P (Dt
X|T = t; ΣX|T=t)

supΣA,B|T∈Θ Πt∈supp(T)P (Dt
X|T = t; ΣX|T=t)

(17)

=
∑

t∈supp(T )

−2 log
supΣA,B|T∈Θ0

P (Dt
X|T = t; ΣX|T=t)

supΣA,B|T∈Θ P (Dt
X|T = t; ΣX|T=t)

. (18)

For each t, the likelihood ratio statistics conditioned on t is λ(k, t) =
supΣA,B|T∈Θ0

P (Dt
X|T=t;ΣX|T=t)

supΣA,B|T∈Θ P (Dt
X|T=t;ΣX|T=t)

.

The numerator supΣA,B|T∈Θ0
P (Dt

X|T = t; ΣX|T=t) is a problem of MLE under rank constraint.
By Anderson (1984); Muirhead (2009), the problem can be solved by calculating the empirical
canonical correlation problem between the observations of A,B. More specifically, we have that
λ(k, t) = −

(
Nt − P+Q+1

2

)
ln(Π

min(P,Q)
i=k+1 (1− r2t,i)), and thus Equation (8).

Now we show the asymptotic distribution of the statistics in Equation (8). As λ(k, t) con-
verges in distribution to χ2

(P−k)(Q−k), and for different t, λ(k, t) are mutually independent, by
the use of continuous mapping theorem, Λ(k) =

∑
t∈supp(T) λ(k, t) converges in distribution to

χ2∑
t∈supp(T)(P−k)(Q−k).

B.5 PROOF OF THEOREM 4

Theorem 4 (Structure Identifiability of LCD-NOD Phase 1). Given an equality-constraint-based
causal discovery method M, if M asymptotically identifies G up to equivalence class C under
POLCMs and graphical assumption A, then the Phase 1 of LCD-NOD, i.e., the augmented M,
asymptotically identifies G up to C, under Nonstationary POLCMs and A.

Proof. In the large sample limit, the input to M and the augmented M are the population covariance
over X and the conditional population covariance over X respectively. In other words, the inputs are
an element of Θ(G) and an element of Φ(G) respectively. Under faithfulness, these two elements
contain the same set of constraints as Θ(G) and Φ(G) respectively. By Corollary 1, these two elements
contain the same set of equality constraints. Further, as M and the augmented M only makes use of
equality constraints, the two algorithms will have exactly the same output, and thus the augmented
M also asymptotically identifies G up to C.

B.6 PROOF OF THEOREM 5

Theorem 5 (Identification of changing variables). Suppose measurements X are gener-
ated following Definition 6 and let {Σ̂L,L|t, ω̂

(1)
t , ω̂

(2)
t , ϕ̂

(1)
t , ϕ̂

(2)
t } be the model parameters

estimated in each domain T = t. Denote the normalized latent covariance matrices by
{Σ̂′

L,L|t := diag(ω̂
(1)
t ) Σ̂L,L|t diag(ω̂

(1)
t )}. Then, under (A1) and (A2), T → Li ∈ Gaug if and only

if for all subsets LC ⊆ L \ {Li}, the conditional variances {V̂ar
′
t(Li|LC)} calculated from {Σ̂′

L,L|t}
changes across t. And an T → X

(k)
i ∈ Gaug if and only if the estimated {ϕ̂(k)

i|t } changes across t.

Proof. First, we show that using the indirect measurements from a single domain, the correspondences
from latent variables to measurements can be determined, and the causal structure G among latent
variables can be identified to its CPDAG. This is established in Corollary 1 and (Silva et al., 2003):
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Suppose data is generated by the nonstationary one-factor model as in Definition 6, and assume rank
faithfulness. The measurement clusters can first be identified, in that the cross-covariance matrix
between two measured variables and all the remaining measured variables has a rank < 2 if and only
if these two measured variables serve as measurements for a same latent variable. The CI relations
among latent variables can then be identified with these clusters, in that any CI relation LA ⊥⊥ LB |LC

holds, if and only if the cross-covariance matrix between XA ∪X
(1)
C and XB ∪X

(2)
C is |C|, instead

of higher. Here X
(1)
C and X

(2)
C are disjoint partitions of XC such that |X(1)

C |, |X(2)
C | ≥ 2. Then, with

these CI relations recovered through ranks, one can apply e.g., PC as if having direct access to L.

Then, we show that in additional to the model structure, it is also possible to consistently estimate (up
to trivial indeterminacies) the model parameters from data in each domain. This allows us to estimate
the conditional distributions p(Li | LC ,T = t) directly, enabling the detection of changes:

Suppose we have access to measurements X in a single domain T = t generated by Definition 6. For
simplicity, we drop the conditioning notations (|T = t) when the scope is clear. There are following
unknown model parameters: ΣL,L ∈ Rm×m and µL ∈ Rm, the variance-covariance matrix and
the mean vector among L; ω(1), ω(2), µ(1), µ(2), ϕ(1), ϕ(2) ∈ Rm, the equivalent linear coefficients,
intercepts, and exogenous noise variances of each latent variable’s two pure measuring processes,
where for k = 1, 2, ω(k)

i = E[h′
i,k(t, δ

′
i,k)], µ

(k)
i = E[g′i,k(t, ϵ′i,k)], and ϕ

(k)
i = Var[g′i,k(t, ϵ

′
i,k)].

To identify the model parameters, we first assume, without loss of generality, that each latent variable
is dependent on at least one other latent variable. This assumption is necessary as otherwise its
variance measurement parameters can be arbitrary. This assumption is also testable as isolated
variables can be directly identified using marginal pairwise independence tests.

We further notice the trivial scaling and shifting indeterminacies: a latent variable can always be
rescaled and shifted as long as its corresponding measurements are adjusted accordingly. However,
we show that these are the only indeterminacies: Let Σ̂L,L, µ̂L, ω̂

(1), ω̂(2), µ̂(1), µ̂(2), ϕ̂(1), ϕ̂(2) be
another set of model parameters (or estimators) that yield the same mean and covariance for X. Let
Σ̂L,L has unit diagonal, µ̂L = 0, and all entries of ω̂(1) are positive. Then, under these constraints,
all remaining parameters are uniquely determined and can be expressed in closed form with the mean
and covariance of X. Specifically, they are:

• Off-diagonal entries of latent covariances: Σ̂Li,Lj
= sign(Σ

X
(1)
i ,X

(1)
j
)

√
Σ

X
(1)
i

,X
(1)
j

Σ
X
(2)
i

,X
(2)
j

Σ
X
(1)
i

,X
(2)
i

Σ
X
(1)
j

,X
(2)
j

;

• Measuring weights: ω̂(1)
i =

√
Σ

X
(1)
i

,X
(2)
i

Σ
X
(1)
i

,X
(1)
j

Σ
X
(1)
j

,X
(2)
i

, for any i, j with Σ
X
(1)
j ,X

(2)
i

̸= 0;

• Measuring weights: ω̂(2)
i =

Σ
X
(1)
i

,X
(2)
i

ω̂
(1)
i

;

• Measuring noise variances: ϕ̂(k)
i = Σ

X
(k)
i ,X

(k)
i

− (ω̂
(k)
i )2, for k = 1, 2, and

• Measuring noise means: µ̂(k)
i = E(X(k)

i ), for k = 1, 2.

With these closed-form solutions, we have: the ratio between each latent variable’s two measuring
linear coefficients are identified, i.e., ω̂(1)

ω(1) = ω̂(2)

ω(2) =: c ∈ Rm, where the division is element-wise. The
latent covariance matrix is also identified to this scaling, satisfying ΣL,L = diag(c) Σ̂L,L diag(c).
The means are identified to the shifting, i.e., ω(k) ∗ µL + µ(k) = µ̂(k) holds for k = 1, 2. And last,
measuring noise variances’ exact values are identified, i.e., ϕ(k) = ϕ̂(k) holds for k = 1, 2.

Finally, with the identified model parameters (up to their indeterminacies) from each domain, we
can compare them and identify the changing variables. Under faithfulness assumption, a latent
variable Li is changing, if and only if for all subsets LC ⊆ L \ {Li}, the conditional distribution
{p(Li|LC ,T = t)} is changing with T. Using second-order information, this conditional distribution
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can be characterized by the conditional variance var(Li|LC), and regression coefficients and intercept
of Li on LC . Assumption (A2) ensures that these second-order information is changed.

Then, from the estimated rescaled and shifted model parameters, with assumption (A1), each latent
variable Li must have at least one measurement with invariant linear coefficients ω(k)

i and means µ(k)
i

across domains. For each Li, its unknown corresponding invariant measurement can be identified as
follows: for each Li, pick one measurement X(k)

i as if it was invariant, and rescale and shift Li from
different domains so that ω̂(k)

i and µ̂
(k)
i are the same across all domains. Then, use the parameters

calibrated on this set of invariant measurements to determine and to count the number of “changes”.
Due to the minimal change principle, which is another way to put faithfulness, the choice of X(k)

i that
can achieve the minimum number of changes must correspond to the true invariant measurements, and
those recovered changes must be the true changes. This is because, when parameters are calibrated
on incorrectly specified, actually changing measurements, some other truly invariant parameters will
be scaled/shifted to be changing, while for the true changes, they cannot be offset to invariances.

C ADDITIONAL INFORMATION

C.1 DEFINITION OF TREK

Definition 7 (Treks (Sullivant et al., 2010)). In G, a trek from X to Y is an ordered pair of directed
paths (P1, P2) where P1 has a sink X, P2 has a sink Y, and both P1 and P2 have the same source Z.

C.2 IMPLEMENTATION DETAILS OF LCD-NOD

Phase 1 of LCD-NOD is a general augmentation of existing equality-constraint-based methods, and
its implementation details involving the details for the proposed conditional rank test and the details
for how to substitute the test in the original equality-constraint-based methods with the proposed test.
As for the proposed conditional rank test, each time we first have a null hypo that the rank of ΣA,B|T
is smaller or equal to k, and follow Theorem 3 to calculate the test statistics Λ(k) from observed
data. Then we plug in the test statistics to the null distribution following Theorem 3 to calculate
the p-value. Under a specific significance level α, we reject the null hypothesis when the p-value is
smaller than α. In our synthetic data, we use α = 0.05 for all the compared methods. As for how to
substitute the original equality constraint test by the proposed conditional rank test, please kindly
refer to Section 4.1.

For Phase 2, since we already have L to X’s correspondence, theoretically we can directly solve for
the parameters using the closed-form expressions provided in Section B.6. However, in practice, there
might be model mis-specification and the input to the square root terms may not always be positive,
i.e., some inequality constraints are not satisfied. Hence, we use MLE to estimate the parameters
that produce the maximum likelihood for the observed sample covariances, though not necessarily
the exact covariance values. Specifically, for each DAG over L consistent with the CPDAG obtained
from Phase 1, we have one DAG over L ∪X. Using this DAG and observed data over X, we identify
the model parameters using the technique from (Dong parameter et al. 2024). Then, for each possible
choice of invariant measurements, the corresponding parameters are calibrated and the changes are
determined and counted. Finally, the configuration of DAGs and the set of invariant measurements
that realize the minimum number of changes are identified as the equivalence of true DAGs under
these changes, the true invariant measurements, and the corresponding changes are the true changes.

C.3 RUNTIME ANALYSIS OF LCD-NOD

First we note that in LCD-NOD, the runtime is almost irrelevant to the sample size, as we only need
to calculate the covariance and conditional covariance matrices once and save it for further use; the
result of the procedure is irrelevant to sample size in terms of time complexity.

For Phase 1, the time complexity depends on two things: the complexity of the proposed conditional
rank test and the complexity of the to-be-upgraded baseline method. As for the rank test, the time
complexity of the standard rank test for ΣX,Y is O(max(|X|, |Y|)3) and the complexity of the
proposed conditional rank test is O(|supp(T)| × max(|X|, |Y|)3), where |supp(T)| refers to the
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number of different values that T can take. This is because we need to conditioned on each value of
T to calculate the likelihood ratio statistics as in the proposed Theorem 3. We note that there is a
trade-off between time complexity and test power. As likelihood ratio test is often asymptotically
optimal in terms of power, we cannot further optimize the time complexity without compromising
the test power. As a comparison, if we randomly choose a domain (a value of T), then we can also
build a naive but valid conditional rank test that has the same complexity as that of the standard
rank test; Yet, the power is not as good as the proposed likelihood ratio based conditional rank
test (as shown in Figure 10 (b) and Figure 11 (b)). The time complexity for the to-be-upgraded
equality-constraint-based methods, e.g., PC and RLCD, varies and highly depends on the number of
variables and the sparsity of the ground truth graph. Thus, Specifically, in the worst case they have a
complexity exponential in the number of variables. However, if the underlying graph is sparse, which
is a common and reasonable assumption (Kalisch et al. 2007), the complexity becomes polynomial.
In our empirical experiments with single Intel(R) Xeon(R) CPU E5-2470, the Phase 1 of LCD-NOD
is pretty fast and it takes only around 10 seconds, 3 seconds, and 30 seconds, per graph with average
15 nodes for LCD-NOD (PC-based), LCD-NOD (FOFC-based), and LCD-NOD (RLCD-based)
respectively.

For Phase 2, the time complexity depends on the number of MLE parameter estimations needed, that
is, the number of DAGs over L consistent with the CPDAG estimated from Phase 1. This traversing
process can be done in O(|L|4) using clique-picking and memorization (Wienobst et al. 2023). On
each of the DAG, time complexity for parameter estimation is O(t|V|3), where |V| is the number
of variables in the graph and t is the number of iterations of gradient descent (Sivan et al. 1997).
Then finally, to choose the invariant measurement configuration, since all parameters are already
identified up to indeterminacies, this becomes a simple rescaling of matrices and can be done at once
by broadcasting the rescaling operations under different choices all directly to one tensor operation.
In practice, since MLE with latent variables is non-convex and there may be local solutions, for each
DAG we run the MLE estimation procedure under different learning rates and multiple restarts and
choose the one with best likelihood. Even under this, for the O-C-E-A-N real dataset with 7 latent
variables and 25 measurements, the whole time for identifying changes is less than 30 seconds, under
the same experimental environment as mentioned above.

D RELATED WORK

Causal discovery with latent variables: Early works that accommodate latent confounders were
the FCI method (Spirtes et al., 2000; Richardson & Spirtes, 2002; Zhang, 2008), which utilize
conditional independence tests to identify causal relations among observed variables while accounting
for latent confounders. While FCI does not make any assumption about the latent structure, it
often produces less informative outputs, e.g., provides no information about relationships among
latent variables. On the other hand, FCI has shown to be maximally informative when considering
nonparametric conditional independence constraints.

Therefore, to go beyond them, further constraints or information have been leveraged, such as those
relying on parametric assumptions, as discussed in Section 1. A common approach is to use rank
constraints (Sullivant et al., 2010), a generalization of the classical Tetrad constraints (Spirtes et al.,
2000) and conditional independence constraints. This leads to a number of works that rely on different
graphical assumptions (Silva et al., 2003; Huang et al., 2022; Dong et al., 2024). Alternatively,
several other methods also rely on higher-order information (Shimizu et al., 2009; Cai et al., 2019;
Salehkaleybar et al., 2020; Xie et al., 2020; Adams et al., 2021).

Causal discovery from heterogeneous data: Score-based methods have been developed to infer
causal structure from heterogeneous data, which include those based on greedy search (Hauser &
Bühlmann, 2012; Squires et al., 2020) or continuous optimization (Brouillard et al., 2020). On the
other hand, Huang et al. (2020a) developed a constraint-based method that relies on conditional
independence test, while Mooij et al. (2020) proposed a general framework that can incorporate
different causal discovery methods.

Causal discovery with latent variables and causal representation learning from heterogenous
data: Magliacane et al. (2016); Kocaoglu et al. (2019) proposed constraint-based methods that
rely on conditional independence tests to recover ancestral structures over the observed variables,
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similar in spirit to FCI. In contrast, a related line of work, causal representation learning (Schölkopf
et al., 2021), aims to infer both the latent causal variables and the causal structure among them.
A special case of causal representation learning is nonlinear ICA which assumes that the latent
variables are independent (Hyvarinen & Morioka, 2017; 2016; Hyvarinen et al., 2019; Hyvärinen
et al., 2023). These methods also leverage interventional or heterogeneous data, such as single-node
interventions (Ahuja et al., 2023; Squires et al., 2023; von Kügelgen et al., 2023; Zhang et al., 2023;
Varıcı et al., 2024a) or multi-node interventions (Jin & Syrgkanis, 2023; Zhang et al., 2024; Varıcı
et al., 2024b; Bing et al., 2024; Ng et al., 2025). Furthermore, some of them require hard interventions,
such as von Kügelgen et al. (2023); Bing et al. (2024). Note that this line of approaches based on
causal representation learning typically make certain assumptions: (1) no causal edges exist among
observed variables or from observed to latent variables, and (2) the generative process from latent
variables is deterministic (except several works including Khemakhem et al. (2020); Lachapelle et al.
(2024); Fu et al. (2025)) and invariant across domains. In our work, we consider a more general
setting that relaxes these assumption.

E LIMITATIONS

One limitation of this work is that, our proposed conditional rank test has to assume that all variables
X are jointly gaussian given T; otherwise it is very difficult to derive the null distribution. However,
we note that this is a common limitation of existing rank test, as the standard rank test also has to
assume jointly gaussian. Plus, our empirical result in Section A.1 (Figure 11) empirically shows that,
even when the data is not jointly gaussian, the proposed method can still control the Type-I properly
and control the Type-II error effectively. A permutation-based rank test might surpass this jointly
gaussian assumption and we plan to leave it for future exploration.

F BROADER IMPACTS

The goal of this paper is to advance the field of machine learning. We do not see any potential
negative societal impacts of the work.
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