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ABSTRACT

Synthetic training data generation with Large Language Models (LLMs) like
Google’s Gemma and OpenAI’s GPT offer a promising solution to the challenge
of obtaining large, labeled datasets for training classifiers, especially when rapid
model deployment is critical, such as classifying emerging social media trends
or combating new forms of online abuse tied to current events. While prior re-
search has examined the comparability of synthetic data to human-labeled data,
this study introduces a novel sampling algorithm based on the maximum coverage
problem to select a representative subset from a synthetically generated dataset.
Our results demonstrate that training a classifier on this contextually sampled sub-
set achieves superior performance compared to training on the entire dataset. This
“less is more” approach not only improves accuracy but also reduces the volume
of data required, leading to potentially more efficient training.

1 INTRODUCTION

In recent years, the ability to generate high-quality synthetic data using large language models
(LLMs) like OpenAI’s GPT Achiam et al. (2023) or Google’s Gemma Team et al. (2024) has opened
new possibilities for training machine learning models, particularly in areas where human-labeled
data is costly, inaccessible, or impractical to obtain at scale Bunte et al. (2021). With a reliance
on labeled data for downstream tasks such as text classification, sentiment analysis, and informa-
tion retrieval, LLMs offer a promising alternative by efficiently generating data that closely mirrors
real-world inputs.

While synthetic data has been shown to perform comparably to human-labeled data for certain tasks
Ding et al. (2022), simply relying on large values of synthetic text introduces several challenges.
One of the main issues is the quality and diversity of the generated data. LLMs often produce
redundant or skewed examples that can degrade the training performance or delay model conver-
gence Long et al. (2024). For example, an LLM tasked with generating training data for sentiment
analysis may over-generate text that reflects common or typical expressions of sentiment, while
under-representing more nuanced or less frequent cases Hao et al. (2024). This imbalance can lead
to model overfitting, hinder generalization to real-world test data, and increase computational costs
due to the processing of unnecessary samples.

Consider the example of generating training data to classify sentiments for a novel event, such as a
newly released product or a political debate. An LLM might generate hundreds of slightly varied
but largely repetitive examples of positive sentiment, which could saturate the dataset and obscure
valuable minority cases, such as neutral or mixed sentiments. Without

::::
Such

::::::::::
imbalances

:::
can

::::
lead

::
to
::::::

model
::::::::::
overfitting,

::::::
hinder

::::::::::::
generalization

::
to

:::::::::
real-world

:::
test

:::::
data,

:::
and

:::::::
increase

::::::::::::
computational

:::::
costs

:::
due

:::
to

:::
the

:::::::::
processing

:::
of

::::::::::
unnecessary

::::::::
samples.

::::::::::
Moreover,

::::::
without

careful selection of representative data points, this over-representation dilutes the usefulness of the
data and increases the likelihood that the model will underperform on less frequent, yet equally
important, sentiment categories.

In this paper, we address a fundamental question in the utilization of synthetic data: how can we
effectively downsample large synthetic datasets to select the most informative and diverse subset of
data points for training machine learning models?

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

1.1 OUR RESULTS

To address this question, it becomes crucial to devise a robust method for selecting representative
data points from the synthetic dataset in a way that preserves the diversity and relevance of the
original data without sacrificing

::::::
training

:
accuracy.

Our key contribution is a novel binary search algorithm that determines the optimal configuration for
:
a
:::::::
modified

:
max coverage sampling, enabling the selection of a small

:
, yet diverse and representative,

subset of a synthetic dataset. Starting from a large set of synthetic text data generated by a large
language model (LLM), we embed the data into a latent space and construct a similarity graph
where nodes represent data points and edges are weighted by pairwise cosine similarity. On this
graph, we run a greedy max-coverage approximation algorithm, pruning edges through our binary
search procedure to identify the best k ”representative”

:::::::::::::
“representative” samples for fine-tuning a

model on various downstream tasks.
:::
We

::::
refer

::
to

:::
our

:::::::
method

::
as

:
A

:::::
daptive

::
C

::::::
overage

::
S

::::::
ampling

::::::
(ACS).

We
:
In

:::::::::::
configuring

:::::
ACS,

:::
we

:
demonstrate that selecting a coverage level below 1.0–meaning

:::::::::
—meaning

:
the k representative samples do not cover the entire synthetic dataset–leads

::::::::::::
dataset—leads to better performance across multiple datasets. Specifically, coverage is defined as
the proportion of data points adjacent to the k selected samples in the pruned similarity graph. Each
sample covers itself and all its neighbors. A coverage of 1.0 indicates that all data points are con-
nected to at least one of the selected samples or themselves are in the samples set, while lower
coverage values selectively exclude data points that are not good representatives of the dataset. The
optimal coverage level in ACS depends on the specific characteristics of the dataset. Intuitively,
datasets with more noise would benefit from a lower coverage target, as this would prioritize the
selection of high-quality representative samples. However, our experiments consistently show that
targeting a full coverage of 1.0 yields to inferior model performance and that the performance peaks
around a coverage of 0.7 to 0.9.

Our method enables practitioners to efficiently select representative subsets of synthetic data, min-
imizing redundancy while maintaining diversity. Crucially, by identifying this optimal subset, we
show that models trained on this smaller, yet diverse, dataset can outperform models trained on the
full corpus of synthetic data, while also potentially reducing computational overhead.

Unlike previous approaches that rely on heuristics or manually experimenting with threshold values
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Gao et al. (2023); Zhang et al. (2023); Chen et al. (2023); Meng et al. (2022; 2023); Seedat et al. (2023)
, our method offers a principled approach to determining the best configuration for processing
and sampling synthetic data. This significantly reduces the need for tuning while delivering
optimal subsets for downstream model training, making it a more efficient solution with reduced
computational cost.

2 RELATED WORK

Large Language Models (LLMs) Large language models (LLMs), built upon the Transformer
architecture introduced by Vaswani et al. Vaswani (2017), have driven significant advancements in
natural language processing Team et al. (2023). By training on vast amounts of data, these models
have achieved state-of-the-art results across various NLP tasks Brown (2020); Rae et al. (2021);
Taylor et al. (2022), demonstrating the efficacy of large-scale supervised learning. Most crucially,
the discernment between human and LLM generated data is becoming increasingly challenging as
these systems capability to generate fluent text improves Hartvigsen et al. (2022); Sahu et al. (2022);
Tang et al. (2023); Ye et al. (2022). Given this new state-of-the-art in human data mimicry, the
natural question arises as to when data generated by these systems can actually be used in place of,
or in tandem with, real data.

Synthetic Data High-quality data is generally defined as diverse data that contains labels which
closely resemble human intent. However, obtaining such data from humans can be challenging or
even impractical due to high costs and privacy concerns Kurakin et al. (2023). Several studies have
further showcased that human-generated data, being inherently prone to biases or errors, may not
even be ideal for model training on all tasks in general Gilardi et al. (2023); Hosking et al.; Singh
et al.. In mitigating these issues, a burgeoning area of research has explored the task of generating
data which more diversely samples the training space

::::::::::::::::::::::::::::::
Gandhi et al. (2024); Liu et al. (2024).
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For novel or specialized tasksspecifically, many existing, publicly available, datasets are insufficient
for model training towards the

:
a
:
given task Bunte et al. (2021). To address this gap, many studies

have focused on generating synthetic data that closely mirrors real-world data for model training
purposes Shorten & Khoshgoftaar (2019). Learning from limited labeled data has been extensively
explored through methods like unsupervised pre-training Devlin (2018); Yang (2019); Raffel et al.
(2020), multi-task learning Glorot et al. (2011), semi-supervised learning Miyato et al. (2016), and
few-shot learning Deng et al. (2020); He et al. (2021). One common strategy to mitigate data scarcity
is data augmentation, which involves creating new samples by modifying existing data or leveraging
known characteristics of the target data distribution Ding et al. (2020); Wei & Zou (2019).

LLMs as Synthetic Data Generators
:
. LLMs have shown great potential in generating

:::
such

:
syn-

thetic data through their ability to produce fluent text responses from simple prompts. Researchers
have leveraged both zero-shot and few-shot prompting with models like OpenAI’s GPT Achiam
et al. (2023) and Google’s Gemma Team et al. (2024) to generate synthetic training data for text
classification tasks Long et al. (2024). The effectiveness of this approach depends on factors such
as the size of the label space Ding et al. (2022), the subjectivity of the classification task Li et al.
(2023), and the ability of the models to produce sufficiently diverse data for robust model training
Hao et al. (2024). We here examine this synthetically generated data and explore the gap between
classification performance from training on synthetic versus human data by employing a sophisti-
cated downsampling technique, effectively filtering the synthetic dataset to more closely resemble a
real-world set.

Downsampling for High Quality Data Filtering. Filtering of data samples is a common practice
to identify a more helpful subset of the training data. These methods typically take the form of
heuristics criteria or sample re-weighting.

:
“Sample-reweightinginstead

:
” weights individual data

samples importance to the training data, assigning higher weights to correctly annotated or highly
influential samples Gao et al. (2023); Zhang et al. (2023).

Heuristics often rely on designing criteria based on learning dynamics Meng et al. (2022;
2023); Seedat et al. (2023). Other such methods include throwing out samples with
low confidence or uncertainty.

::::
Such

::::::::
methods

::::
can

:::::::
involve

::::
the

:::::
costly

::::::::
process

:::
of

:::::::
repeated

::::::
training

::
a
::::::

model
:::

on
::::::::

selected
::::::::::
subsamples

:::
to

:::::::
identify

::::::
which

:::::::::
contribute

:::::
most

::::::::::::
meaningfully

::
to

::::::::::
downstream

::::::::
accuracy

:::::::::::::::
Ilyas et al. (2022)

:
,
:::::::::
emphasize

::::::::::::
classification

:::::::
specific

::::::::::
diagnostics

:::
in

::::
their

:::::::
selection

::::::::::::::::::::::
Swayamdipta et al. (2020),

::::
rely

::
on

::::::::
repeated

:::::
model

:::::::
updates

::::::::::::::
Park et al. (2022)

:
,
::
or

:::::
favor

::
the

:::::
“hard”

::::::::
examples

::
in

::
a

::::::
training

:::
set

:::::
which

::::
can

::
be

:::::
prone

::
to

:::::::
labeling

:::::
errors

::::::::::::::
Guo et al. (2022).

:::
In

::::::
contrast

::
to

::::
these

::::::::::
limitations,

::::
ACS

::
is

:
a
::::::::::
lightweight

:::::::
approach

::::
that

::::::::
identifies

::::::
subsets

::
of

:
a
::::::
desired

::::
size

::
in

:
a
:::::
single

::::
step,

:::::::::
effectively

::::::::::
representing

:::
the

:::
full

:::::::
training

::::::
corpus

:::
and

:::::::
offering

::::::::
flexibility

:::
for

:::
use

::::::
across

::::
tasks

:::
and

:::
data

::::::::::
modalities.

LLMs have been deployed for this filtering task to assess the quality of samples with low scores ac-
cording to some metric. Particularly relevant to the present work is Chen et al. (2023) which demon-
strated that Pegasus

::::::::
AlpaGasus, trained on a much smaller but cu- rated

::::::
curated

:
dataset, surpasses the

original Alpaca model Taori et al. (2023) across several benchmarks. While their simplistic method
of querying a language model to rate each sample and only including those that exceed a threshold is
comparable to the present work, their approach relies on a repeated query to such models to reduce
the space.

Our method is considerably more flexible to the data source being filtered, demonstrates that con-
siderably less data is required (6.7% as compared to 17%), and continues to outperform baselines,
further emphasizing the importance of selecting refined training sets.

3 METHODOLOGY

::
In

:::
this

:::::::
section,

:::
we

:::::::
describe

:::
the

:::::::
pipeline

::::
used

::
to

:::::::
generate

::::
data

::::
from

::::::::
language

::::::
models

:::
for

:::::::::
fine-tuning

::
the

:
BERTbase :::::

model
:::

on
::

a
:::::::::::
downstream

::::
task.

::::
We

::::::
begin

::
by

::::::::::
generating

::
a

::::::
corpus

::
of

::::
text

:::::
from

::
an

::::::::::
open-access

:::::
LLM.

:::::
Next,

:::
we

:::::
apply

:::::::::::::
downsampling

:::::::::
techniques

::
to

:::::
filter

:::
this

:::::
data.

::::
The

::::::
filtered

::::
data

:
is
::::
then

:::::
used

::
to

::::
train

:::
the

:
BERTbase ::::::

model.
:::::::
Finally,

:::
we

:::::::
evaluate

:::
the

::::::
trained

::::::
model

:::::
using

:
a
:::
test

:::
set

::
of

::::::::::::::
human-generated

::::
data

::::
from

::::::::::
well-known

:::::::::
benchmark

::::::::
datasets.
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3.1 SYNTHETIC DATA GENERATION

In this work, we utilize a corpus of synthetic samples generated by GPT-3.5 Achiam et al. (2023),
which is capable of producing diverse and contextually rich text in response to

::::
plain

::::
text

:::::::
prompts.

:::
The

:
prompts . The generation process begins with designing prompts tailored to the specific

downstream task (e.g.
:::
used

:::
for

:::::::::
generating

:::
this

:::::
data,

:::::::
tailored

::
to

::::::
specific

:::::::::::
downstream

::::
tasks

:::::
(e.g., sen-

timent analysis)and is drawn from the work of Ding et al. (2022). We briefly overview the prompts
used for generating this textual data when describing the different tasks and results in Section 5,
::
are

::::::::
adopted

::::
from

:::::
prior

:::::
work

::
by

:::::::::::::::
Ding et al. (2022)

:
.
::::

Our
::::::::

approach
:::::::::

leverages
::::
their

:::::::
prompt

:::::
design

::::
while

::::::::
focusing

:::
on

::::::::::::
experimenting

::::
with

:
a
:::::
novel

:::::::::::::
downsampling

::::::
method

::
to
::::::::

improve
:::
the

:::::
utility

::
of

:::
the

::::::::
generated

::::
data.

To ensure sufficient variation, a large number of samples are included across all classes. The
resulting corpus consists of

::
the

::::::::
generated

::::::
corpus

::::::::
includes

::
an

:::::
equal

:::::::
number

::
of

::::
data

:::::
points

:::
for

::::
each

::::
label

::
in

:::
the

::::
label

:::::
space

:::
of

:::
the

:::::::::::
classification

::::
task.

::::
This

:::::::
balance

::
is

:::::::::
maintained

::::::
across

::
all

::::::::::
downstream

::::
tasks

::::
and

:::::::
datasets

:::::
where

:::
we

:::::
apply

::::
our

:::::::
methods.

::::
As

:
a
::::::
result,

:::
the

::::::
corpus

:::::::::
comprises a diverse col-

lection of text, with samples ranging from straightforward, highly representative instances to edge
cases and more nuanced examples. However, due to the nature of

::::::::
examples

::
to

:::::::
nuanced

::::
edge

:::::
cases.

::::::::
However, synthetic data generation , there is a high likelihood of redundancy, ie. multiple generated
texts may convey

::::
often

:::::::::
introduces

::::::::::
redundancy,

:::::
where

:::::::
multiple

:::::
texts

::::::
express

:
the same sentiment

:
or

::::
label in slightly different ways Long et al. (2024). This necessitates the development of methods to
intelligently

::
To

:::::::
address

::::
this,

:::
our

::::::::
methods

::::::::
carefully downsample the synthetic corpusto focus on

:
,
:::::::::
identifying

the most representative and informative data points–reducing overfitting while making the training
process more efficient.

::::::
points.

::::
This

::::::::
approach

::::::
reduces

::::::::::
redundancy

::::
and

:::::::::
overfitting

:::::
while

::::::::
enhancing

::
the

:::::::::
efficiency

::
of

:::
the

:::::::
training

:::::::
process.

:::::::
Further

::::::
details

::
on

:::
the

:::::::
prompts

::::
and

::::
their

:::
use

::::::
across

::::
tasks

:::
are

::::::::
discussed

::
in

::::::
Section

::
5.

:

3.2 DOWNSAMPLING METHODS

Given a large volume of synthetically generated data, we employ and compare three different down-
sampling methods to select a representative subset of size k, where k < N , from the full corpus
of N samples. The goal is to identify an optimal subset of samples that preserves the diversity and
informativeness of the full dataset while maintaining a low computational overhead.

Random Sampling. The most basic baseline and computationally lightweight downsampling
method is random sampling. In this approach, we randomly select k samples from the full cor-
pus.

k-Means Sampling. As a more sophisticated baseline, we embed the text data using pre-trained
Gecko embedding from Google Clouds Vertex AI Lee et al. (2024), and subsequently run the k-
means clustering algorithm Lloyd (1982). We then retain the samples closest to each k-center as our
representative samples for model fine tuning.

Adaptive Coverage Sampling (ACS). The main algorithm we introduce for the down-sampling
problem towards model fine tuning is based on a greedy max coverage sampling approach. Our
approach aims to select a diverse and representative subset of the data by selecting samples that
are close to and therefore represent a large number of data points in the latent embedding space,
while striking a balance between sampling dense and sparse regions. This algorithm ensures that the
selected k samples capture the full diversity of a synthetic training set while ignoring redundancies.
We refer to this method as “Adaptive Coverage Sampling” (ACS) and outline the technique here.

The ACS method begins by constructing a similarity graph where each node corresponds to a data
point, and edges are weighted by the cosine similarity between text embeddings of the corresponding
points. We again use pre-trained Gecko embedding Lee et al. (2024) to quantify the semantic rela-
tionships among data points. Note that any embedding model can be used, as long as it is appropriate
for the downstream task and identifying similarities between data points.

In constructing the similarity graph, only edges with cosine similarity above a certain threshold are
included. This threshold is set using a novel binary search, with the goal of achieving a desired

4
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“coverage” level of the graph. A node in the graph is covered if itself or at least one of its neighbors
are in the sample set. We thus define coverage as follows:
Definition 1 (Coverage). Let G = (V,E) be a graph with vertex set V , edge set E, and self-loop
for all vertices. A subset H ⊆ V of size |H| = k achieves coverage c ∈ [0, 1] if∣∣∣∣∣⋃

i∈H

Ni

∣∣∣∣∣ = c · |V |

where Ni is the neighborhood of vertex i ∈ H (ie. i covers the elements of Ni, including itself).

Therefore, a coverage level of 1.0 means that every node in the graph has at least one neighbor in the
sample set or itself is in the sample set. A coverage level of 0.9 means 10% of the nodes neither are in
the sampled set nor have any neighbors in the sample set and thus are not covered/represented. Since
max-cover aims to maximize the coverage with the least amount of samples, the uncovered nodes
typically corresponding to outliers or less informative samples. We formally verify the monotonicity
of this coverage level when solving the max coverage problem which allows binary search on the
cosine similarity threshold to be implemented successfully.
Theorem 1. Let D be a dataset, and for each similarity threshold si, construct a similarity graph
Gi(V,Ei), where V represents the data points and (u, v) ∈ Ei if and only if the cosine similarity
between u and v exceeds si. Let Hi ⊆ V be the set of k samples selected by the max coverage
algorithm on Gi, and let ci denote the coverage achieved by Hi. For any two thresholds si and sj
such that sj < si, the similarity graph Gj(V,Ej) has a coverage cj ≥ ci when maximally covered
by k samples.

Proof. Consider two similarity thresholds si and sj such that sj < si. The corresponding similarity
graphs Gi(V,Ei) and Gj(V,Ej) are constructed by adding edges between data points whose cosine
similarity exceeds si and sj , respectively. Since sj < si, it follows that Ei ⊆ Ej ; that is, Gj

includes all the edges from Gi, possibly with additional edges.

Now, let Hi ⊆ V be the set of k samples selected by the max coverage algorithm on Gi, which
achieves coverage ci. The coverage ci is defined as the proportion of vertices in V that are adjacent
to at least one vertex in Hi.

Since Ei ⊆ Ej , the set of neighbors of each vertex in Hi in Gi is a subset of the neighbors of the
same vertex in Gj . Therefore, the coverage achieved by Hi in Gj is at least as large as the coverage
in Gi. More formally, if Hj is the set of k samples selected by the max coverage algorithm on Gj ,
we have:

cj =

∣∣∣∣∣∣
⋃

v∈Hj

Nj(v)

∣∣∣∣∣∣ and ci =

∣∣∣∣∣ ⋃
v∈Hi

Ni(v)

∣∣∣∣∣ ,
where Nj(v) and Ni(v) denote the neighborhoods of v in Gj and Gi, respectively. Since Ei ⊆ Ej ,
we have Ni(v) ⊆ Nj(v) for all v ∈ V , implying that the coverage in Gj is at least as large as the
coverage in Gi. Therefore, cj ≥ ci.

The monotonicity of coverage allows us to find the largest similarity threshold that achieves a cov-
erage equal or greater than the target coverage. This thresholding ensures that the max coverage
component of ACS focuses on the most relevant and diverse samples to achieve the target coverage.
We note that the max coverage problem itself is NP-hard Feige (1998) and our implementation uses
the greedy approximation Hochbaum (1996) which is not guaranteed to be monotonic. However,
we show that, in practice, this monotonicity persists (see Section 4.1).

Once the graph is constructed using the found optimal edge threshold, the greedy max cover algo-
rithm selects k points which collectively cover a c-portion of the dataset. This procedure proceeds
by sequentially selecting the node with the highest degree (ie. the data point that is most similar
to others). The selected node is then added to the representative subset, and all of its neighboring
points (including the sampled node itself) are deemed “covered” and removed from further con-
sideration to avoid redundancy. This process is repeated until k representative samples have been
selected. By prioritizing high-coverage points, ACS ensures that the selected subset captures the
most important variations within the dataset, leading to better downstream performance than random
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sampling (see Sections 5.1.2 and 5.2.2).
::
We

::::::::
highlight

:::
that

:::
he

::::::::
additional

::::::::::::
computational

::::
cost

::
of

::::
ACS

:
is
:::::::
incurred

:::::
only

::::
once

::::::
during

:::::::
training,

:::::::
yielding

:
a
::::::
several

:::::
point

:::::::::::
improvement

::
in

:::::::::::
performance

::::::
metrics.

::::
This

:::::::::::
enhancement

::
is

::::::::
especially

:::::::::
impactful

::
in

:::::::::
real-world

::::::::
scenarios

::::
with

::::::::::::::
high-throughput

::::::::
inference,

:::::
where

::::
even

::::::
modest

:::::::::::
performance

:::::
gains

:::
can

::::::::::
significantly

:::::
boost

::::::
overall

::::::
system

::::::::::::
effectiveness.

In executing this sampling, we impose two strict constraints on each of the k points with respect to
the constructed similarity graph to force further diversification and efficiency of the subsampling.

Constraint 1: Maximum Nearest Neighbors Constraint. To further enhance the efficiency and
diversification of ACS, we first introduce a constraint on the maximum number of nearest neighbors
(i.e., maximum outdegree) for each node in the similarity graph. This constraint serves several
important purposes. Firstly, the maximum nearest neighbors constraint promotes diversification
in the sampling process. Without this constraint, a single sample could potentially cover a large
portion of the graph, especially in lower similarity thresholds. By limiting the number of neighbors,
we prevent any single sample from dominating the coverage. This leads to a more representative
sample subset that captures the underlying structure of the dataset more effectively. Secondly, it
improves the scalability of the algorithm. By limiting the number of edges on each node, we reduce
the overall density of the graph, leading to faster computation and lower memory usage. This is
particularly crucial when dealing with large datasets, where an unconstrained graph can lead to
memory limitations and prohibitively long processing times.

Finally, this constraint aligns with common graph construction scalability techniques such as
Locality-Sensitive Hashing (LSH) with limited bucket sizes. Shekkizhar et al. (2023). These tech-
niques often inherently limit the number of neighbors considered for each data point to improve
efficiency and scalability. By explicitly incorporating a maximum nearest neighbors constraint into
ACS, we ensure compatibility with these techniques and facilitate seamless integration into existing
workflows.

To implement this constraint, we set dmax for each node in the graph. In a graph without an imposed
similarity threshold, a lower bound for dmax can be defined to guarantee a desired coverage, c, with
k samples: dmax > c|D|/k. This bound, derived from the extended pigeonhole principle, ensures
that sufficient connectivity is maintained to achieve the target coverage. However, in our algorithm,
we set dmax to be twice this lower bound, dmax = 2c|D|/k. This provides a balance between
achieving the target coverage and avoiding excessive pruning of the graph, which could lead to less
representative samples.

Constraints 2: Minimum Similarity Threshold Constraint. While the adaptive similarity
threshold in ACS effectively controls the sampling process, it is essential to ensure that the selected
samples maintain a minimum level of similarity to the data points that they represent. To achieve
this, we introduce a minimum similarity threshold constraint. Without enforcing such a limit ACS
can achieve any target coverage by any k > 0 samples from the graph by choosing a low similarity
thresholds. At the extreme a single sample can cover the entire graph with a similarity threshold
of zero. This coverage, however, is not real as samples are claimed to represent their neighbors but
with very low similarities. We use a minimum similarity threshold of 0.707 which corresponds to
the cosine of a 45 degree between the embedding vectors. By imposing this bound, ACS may not
achieve a target coverage and in this case, it returns the k samples selected from a graph with the
minimum similarity threshold.

3.3 BERT FINE TUNING

Following data generation and downsampling to obtain our k
:::::
After

:::::::::
generating

:::
and

::::::::::::
downsampling

::
the

::::::::
synthetic

::::::
dataset

::
to

::::::
obtain

:
k
:
training samples, we fine-tune a BERT model Devlin (2018) on the

selected subsetof synthetic data. .
:
Specifically, we here fine-tune the BERT large

::
use

:::
the

:
BERTbase,

uncased model (with 340
:::
108 million parameters)

:::
and

::::::::
fine-tune

::
it for three epochs1.

:
.1 The majority

of the model weights are initialized from pre-trained weights, while the final classification layer

1Though we here focus on BERT fine-tuning for classification, our method is general and can be invoked
for training any classifier model.

1
:::::::
Although

:::
we

::::
focus

::
on

:::::
BERT

:::::::::
fine-tuning

::
for

::::::::::
classification

::::
tasks

::
in

:::
this

:::::
work,

:::
our

:::::::
approach

::
is

:::::
general

:::
and

::
can

:::
be

:::::
applied

::
to
::::
train

::::
other

:::::::
classifier

::::::
models.
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Figure 1: Coverage of data increases with k or when decreasing the similarity threshold.
:::::
Colors

:::::::::
correspond

::
to

:::
the

::::
fixed

:::::::::
similarity

::::::::
thresholds

::::::::
depicted

::
in

:::
the

::::::
legend.

(2048) parameters is randomly intialized
::::::::
initialized. The weights of the final classification layer are

initialized by sampling from a normal distribution with mean 0 and standard deviation 0.02, follow-
ing the standard procedure used for fine-tuning transformer-based models like BERT, RoBERTa,
and ALBERT Devlin (2018); Dodge et al. (2020); Lan (2019); Liu (2019).

We fine-tune the model with a batch size of 16, a learning rate of 2×10−5, and a dropout rate of 0.1.
All experiments are conducted on a high-performance GPU cluster with 16GB of RAM. Each exper-
iment is repeated N2 times, where N is the number of distinct random seeds used for initializing the
model and the order of data. Unless otherwise indicated, we set N = 5 to ensure robust evaluation
of our down-sampling methods across different random initializations. The implementation and all
hyperparameters are available in the HuggingFace transformer library Wolf et al. (2020), ensuring
the reproducibility of our results. Codes for model training are included as supplementary material.

4 EMPIRICAL ANALYSIS OF ACS

In this section, we validate our novel binary search procedure that computes
::
for

::::::::::
determining

:
the

optimal similarity threshold for graph creation in the ACS pipeline. Our approach leverages the
monotonicty

:
A

::::
key

::::::::::
assumption

::
of

:::
our

::::::::
approach

::
is
:::
the

::::::::::::
monotonicity of coverage as a function of

similarity, ensuring the effectiveness of binary search for threshold selection. Through experiments
across two datasets , we further demonstrate that an

:
a
::::::::
property

:::
we

::::::::::
empirically

:::::::
confirm

::::::
through

::::::::::
experiments.

:::::
This

::::::::
validation

:::::::
ensures

:::
the

:::::::::
soundness

::
of

:::
our

::::::
binary

::::::
search

::::::::
procedure

::::
and

::::::::
reinforces

::
the

:::::::::
theoretical

::::::::::::
underpinnings

::
of
::::
our

:::::::
method.

:::
Our

:::::::::::
experimental

:::::::
results

::
on

::::
two

::::::::
datasets

::::::
further

::::::
reveal

::::
that

:::
the

:
optimal coverage level below

1.0 consistently yields better performance, providing insights into why
::
for

::::::::
selecting

:::::::
training

:::
data

::::::::::
consistently

:::
lies

:::::
below

::::
1.0.

:::::
This

::::::::::
observation

::::::::::
underscores

:::
the

:::::::
benefits

::
of

:
selecting a sub-maximal

coverage can improve model generalization
::::::::
threshold,

:::
as

::
it
::::::::

enhances
::::::

model
:::::::::::::

generalization
::
by

::::::::
achieving

:
a
:::::
better

:::::::
balance

:::::::
between

:::::::::::::::
representativeness

:::
and

::::::::
diversity

::
in

:::
the

:::::::
selected

:::::
subset.

4.1 MONOTONICTY
:::::::::::::
MONOTONICITY

:
OF COVERAGE AS A FUNCTION OF SIMILARITY

Our binary search algorithm for optimal similarity hinges
:::::::::
determining

::::
the

:::::::
optimal

::::::::
similarity

:::::::
threshold

:::::
relies

:
on the monotonicity of the coverage function when approximating the solution to

the max coverage problem via the greedy algorithm. Specifically
::
We

::::
here

:::::::::::::
experimentally

:::::
show

:::
that,

as the similarity threshold decreases
::::::::
decreases, the coverage achieved by the selected representative

samples increases or remains the same, which
:::::::
constant,

:::::::::
validating

:::
the

:::::::::::
monotonicity

:::::::::
assumption

::
at

::
the

::::
core

:::
of

:::
our

:::::::::
algorithm.

::::
This

::::::::
property justifies the use of binary search to find

::::::
identify

:
the opti-

mal threshold for a desired coverage level(,
:
as was formally verified

:::::::::
established for the exact max

coverage algorithm in Theorem 1).

Figure 1 shows the results of running the
::
To

::::::::::
empirically

:::::::
validate

::::
this

::::::::::::
monotonicity,

:::
we

:::
ran

:::
the

approximate max coverage algorithm (Algorithm ??) for
::::
with

:
various fixed similarity thresholds

while increasing
::::::
varying

:
the number of training samples, k. Our results show that coverage

monotonically increases when either
:
k.

::::
We

::::::
include

::::::
results

::
for

:::::
both

::
the

:::::::
MNIST

:::::::
dataset,

:
a
::::::::
collection

::
of

::::::::::
hand-written

:::::
digit

::::::
images

::::
with

::::::
classes

:::
0-9

:::::::::::
Deng (2012),

::::
and

:::
the

:::::
SST2

:::::::
semantic

:::::::
analysis

::::::
dataset
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Figure 2: Model accuracy as a function of coverage level with peaks at a coverage level below 1.0.

::::::::::::::::
Socher et al. (2013).

:::::::::
Although

::::::::
MNIST

::
is

:::
not

:::::
used

::
in

:::
our

::::::::
primary

::::::::::
experiments

::::::::
(Section

:::
5),

::
its

:::::::
inclusion

::::::::::::
demonstrates

:::
that

::::
the

:::::::::::
monotonicity

::::::::
property,

:::
and

:::::
thus

:::
the

:::::::::
soundness

::
of

:::
our

:::::::::
algorithm,

:::::::::
generalizes

:::::
across

::::::::
different

::::
data

:::::::::
modalities.

::::
This

:::::
broad

:::::::::::
applicability

::::::::
highlights

:::
the

::::::::
potential

::
for

:::
our

:::::::
approach

::
to
::::::
extend

:::::::
beyond

::::::::
text-based

:::::::
datasets

:::
and

::::::::
synthetic

::::
data

:::::::::
generation.

:

::
To

:::::::
prepare

:::
the

::::
data

:::
for

:::::::
running

:::::
ACS,

:::
we

:::
first

::::::
embed

:::
the

::::
data

:::
to

:::::::
generate

:::
the

::::::::
similarity

::::::
graph,

::
as

::::::::
discussed

::
in

::::::
Section

::::
3.2.

:::
For

:::::::
MNIST,

:::
we

::::::::
generated

::::::::::
embeddings

:::
by

::::::::
flattening

::::
each

::::::::
grayscale

:::::
image

:::
into

::
a

:::::
vector.

:::
To

::::::::
expedite

:::::::
runtime,

:::
the

:::::::
training

::::::
dataset

::::
was

:::
first

::::::::
randomly

::::::::::::
downsampled

::::
from

::::
60K

::
to

:::
1K

:::::::
samples.

::::
For

:::
the

:::::
SST2

:::::::
dataset,

::::::
which

:::::::
consists

::
of

:::::
short

::::::
textual

:::::
movie

:::::::
reviews

::::::::
classified

::
as

::::::
positive

::
or

::::::::
negative,

:::
we

::::::
embed

:::::
using

:::::::
Google’s

::::::
Gecko

::::::::::
embeddings

::::::::::::::
Lee et al. (2024).

:

::
On

::::
the

::::::::
embedded

:::::
data,

:::
for

:::::::
various

::::
fixed

:::::::::
similarity

:::::::::
thresholds,

:::
we

::::::::
compute

:::
the

:::::::
coverage

:::::::
attained

::
by

:::::::
running

::::
ACS

::
at
:::::::::
increasing

:::::::::
subsample

:::::::
counts, kis increased

:
.
::::::
Figure

::
1

::::::::
illustrates

::::
that

:::::::
coverage

::::::::::::
monotonically

:::::::
increases

:::
as

:::::
either

::
k

:::::::
increases

:
or the similarity threshold is decreased

::::::::
decreases. At

the extremeswe can achieve a ,
:
maximum coverage of c = k/|D|

::::::::
c = k/|D|

::
is

:::::::
achieved

:
for an edge-

less graph, and a coverage of c = 1 with any k > 0 samples for
::::
while

::::
full

::::::::
coverage

::::::
(c = 1)

::
is

::::::
attained

:::
for

::::
any

::::::
k > 0

::
in

:
a fully connected graph. Results are depicted for both the MNIST, a

dataset of hand-written digits with classes 0-9 Deng (2012), and SST2 semantic analysis dataset
Socher et al. (2013) to show our methods efficacy across domains

:::::
These

::::::
results

:::
are

::::::::
consistent

:::
for

::::
both

::::::
datasets.

4.2 IDENTIFYING THE OPTIMAL COVERAGE

To optimize the representativeness of the sampled subset under the
::::::
within

:
a
:

limited budget, we
:::::::::::
systematically

:
vary the target coverage , which determines how many data points are covered

::::::::
parameter,

::::::
which

:::::::
controls

:::
the

:::::::::
proportion

::
of
::::

data
::::::

points
::
in

:::
the

:::::::::
similarity

:::::
graph

:::
that

:::
are

:::::::::
effectively

:::::::::
represented

:
by the selected samplesin the similarity graph.

To assess the effectiveness of ACS on a simple image classification task, we conducted an
experiment using

:::::::
evaluate

:::
the

::::::
optimal

::::::::
coverage

::::::::
parameter

::::::
across

:::::::
different

::::
data

:::::::::
modalities,

:::
we

::::
again

::::::::
conducted

:::::::::::
experiments

:::
on

::::
both

:
the MNIST dataset . We employed a straightforward approach

for embedding generation, where each grayscale image was flattened into a vector, serving as
its embedding. Subsequently, we

::
and

::::
the

:::::
SST2

:::::::
dataset.

::::::
These

:::::::::::
experiments

::::::::::
demonstrate

::::
that

:
a

:::::::
coverage

:::::
value

::::::
< 1.0

::::::::::
consistently

::::::
yields

::::::::
improved

::::::
results

:::
on

:::::::::::
downstream

:::::
tasks,

:::::::::
informing

:::
our

:::::::::::::
parameterization

:::
of

::::
ACS

:::
and

::::
with

::
a
:::::::::
generalized

:::::::
finding

:::::
across

::::::
diverse

:::::
types

::
of

:::::
data.

::
As

:::
in

:::
the

:::::::
previous

:::::::
section,

:::
we

::::::
embed

::::
the

:::::::
MNIST

:::
and

:::::
SST2

::::::::
datasets,

::::
and

:::::::::::
subsequently

:::
run

:::
the

::::
ACS

::::::::::::
downsampling

:::::::::
procedure.

:::::::::
However,

::
we

::::
now

:::
fix

:::
the

:::::::
number

::
of

:::::::
samples

::
k

:::
and

:::::
target

:::::::
different

:::::::
coverage

::::::
levels

::
c,

:::::
using

::::
ACS

:::
to

:::::
select

:::
an

:::::::
optimal

::::::::
similarity

::::::::
threshold

:::
for

:::::
edge

::::::::
insertion

::
on

:::
the

::::::::
similarity

:::::
graph

::::
used

::
to

:::
run

:::::::::::::
max-coverage.

:::::
Using

:::
the

:::::::
selected

::
k

:::::::
samples,

:::
we

::::
then

::::
train

::
a
:::::
model

::
to

::::::
predict

:::
the

:::::
labels

::
of

:
a
::::
test

::
set

::::
and

:::::
report

::::::::
accuracy

::
of

:::
the

::::
final

:::::::
models.

:::
For

:::::::
MNIST,

:::
we trained a ba-

sic neural network model consisting
:::::::::
composed of a flattening layer, a dense layer with 32 units and

ReLU activation, a dropout layer with a rate of 0.2, and a final dense layer with 10 units for classifi-
cation. This model was trained

:::
The

::::::
model

::::
was

::::::::
optimized

:
using the Adam optimizer and the sparse

categorical cross-entropy loss function. We evaluated the model’s accuracy across different target
coverage levels determined by ACS. To make the runtime shorter, we first randomly downsampled
the training dataset from 60K to 1K. Then, from the 1K dataset, sampled with a different number of

8
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samples and desired coverage. The accuracy is plotted in Figure 2a against coverage
:::
For

::::::
SST2,

::
we

:::::::
fine-tune

:
BERTbase ::

as
::::::::
discussed

::
in

:::::::
Section

:::
3.3.

:

:::
The

::::::::
resulting

::::::
model

:::::::::
accuracies

:::
are

::::::
plotted

::
in

:::::::
Figures

:::
2a

:::
and

:::
2b

::::::
against

:::
the

::::::::
coverage

:::::::::
parameter.

As the plot shows, larger numbers of samples always (except for once) improve the performance.
Increasing the desired coverage also generally improves the performance. But often covering the
entire graph has an adverse effect.

:::::
figures

::::::
show,

:::::::::
increasing

:::
the

:::::::
number

:::
of

:::::::
samples

::::::::
generally

:::::::
improves

::::::::::::
performance.

::::::::
However,

:::::::::
increasing

:::
the

:::::
target

:::::::
coverage

::::::
shows

::::::::::
diminishing

::::::
returns

::::::
beyond

:
a
::::::
certain

::::::
point,

:::::
with

::::::::
coverage

:::::
c = 1

:::
(a

::::::::
complete

::::::
graph)

::::::
often

::::::
leading

:::
to

:::::
slight

:::::::::::
performance

::::::::::
degradation.

::::
This

:::::::::::
demonstrates

::::
that

:::
the

::::::
optimal

::::::::
coverage

::::::::
parameter

::::
lies

:::::
below

::
1.

:

The SST2 dataset on the other hand is composed of short movie reviews which are classified as
either positive or negative, and is a well known dataset for the setiment analysis task. We again apply
ACS, but on fine-tuning a BERT model for binary classification. As illustrated in Figure 2b, across
different sampling sizes, there is a noticeable trend in model performance (measured by accuracy)
as we vary the coverage level.

For
:::::
More

::::::::::
specifically,

::
on

:::
the

:::::::
MNIST

:::::
data,

::
for

:
lower values of k (e.g., k = 200 and k = 400), we

observe a significant increase in accuracy as the coverage level increases from 0.0 to 0.8. This trend
suggests that, at smaller sample sizes, increasing coverage allows the sampled set to capture a more
diverse set of data points, which in turn improves model performance. However, for coverage values
approaching 1.0, accuracy starts to drop off, indicating that full coverage may introduce noisy or
irrelevant data points, negatively affecting the model’s ability to generalize. For larger values of
k (e.g., k = 800 and k = 1000), the performance improvement with increasing coverage is less
pronounced. However, accuracy consistently peaks at coverage levels below 1.0.

:::
For

:::::
SST2,

:::
the

:::::
model

:::::::
training

::
is

::::
more

::::::
noisy,

:::
but

:
a
::::::::::
pronounced

:::::
drop

:::
off

::
in

::::::::::
performance

::
at
::

a
::::::::
coverage

::::
level

::
of

:::
1.0

::::::
persists.

:

Our results show that, regardless of data domain, increasing the coverage level improves the accuracy
of the model trained on the selected subset to an extent. We observe that beyond

::::::
proceed

::
to

:::
use

:
a cov-

erage level of 0.9 , further increases lead to a degradation in model performance. This suggests that
approaching a coverage of 1.0 introduces outliers to our sample set and waste the limited sampling
budget on representing less frequent examples that could be irrelevant or uninformative, which in
turn, negatively impact the model’s ability to generalize.

:::
for

::::::::::
downstream

::::
task

::::::
training

::
in
:::::::
Section

::
5.

Figure 2 depicts these results in our experiments on the MNIST and SST2 dataset, where the
accuracy peaks at a coverage level of 0.9 before declining slightly.

5 FINE-TUNING FOR DOWNSTREAM TASKS

5.1 SENTIMENT ANALYSIS

In this section, we investigate the performance of models trained on synthetic data for the task of
sentiment analysis, specifically focusing on the sequence-level task of classifying movie reviews.
For our experiments, we use synthetic data generated to mimic the Stanford Sentiment Treebank
v2 (SST2) dataset Socher et al. (2013), which contains binary-labeled (positive / negative) movie
reviews.

5.1.1 SYNTHETIC DATA GENERATION

To simulate a real-world production scenario where access to high-quality labeled data is limited,
we assume that the user has access to an off-the-shelf GPT-3 API, and uses this to generate synthetic
data in place of human-labeled samples. To generate data which mimics the SST2 dataset, careful
prompting is used to encourage the generation of comparable samples. Specifically, prompts are
designed to elicit short, binary-labeled movie reviews with either positive or negative sentiments.

For the task of generating synthetic data corresponding positive sentiment reviews, an example
prompt is:

Write 20 different movie reviews with positive
sentiments with no more than 20 words.

9
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(a) Average accuracy vs. downsampling percentage. (b) Average F1 score vs. downsampling percentage.

Figure 3: Performance metrics for sentiment classification on the SST2 test set: (a) Accuracy, (b)
F1 Score, across different downsampling methods as k increases. Max coverage achieves the best
performance at all values of k.

:::
The

:::
red

::::
line

::::::::
indicates

:::
the

:::::::
training

::::::::
accuracy

:::::
when

:::::
using

:::
the

:::
full

:::::::
synthetic

:::::::
corpus,

:::
and

:::
the

:::::
green

:::
line

::::::::
indicates

:::
the

:::
full

:::::::::
real-world

:::::::
dataset.

A matching prompt is used for the negative sentiment reviews. Here we use the synthetic data set
from Ding et al. (2022) which is comprised of 6,000 samples,

:
with an even split between positive

and negative. Generated text samples are then post-processed and reformatted to align with the SST2
structure and the given labels according to which prompt was used to generate the text.

5.1.2 RESULTS

We evaluate the performance of different downsampling methods on the SST2 sentiment classifica-
tion tasks by fine-tuning a BERTBASE model on subsets of the synthetic data generated as described.
The key metrics used to evaluate performance are accuracy and F1 scores, which are measured on
the SST2 test set. These metrics allow us to assess both the correctness of the sentiment classifi-
cation (accuracy) and the balance between precision and recall (F1) score. Results are compared
to two baselines: a model fine-tuned using 6,000 real-world examples from humans and one tuned
using the full corpus of 6,000 synthetically generated samples.

Figures 3a and 3b summarize these results, where each bar represents the average for the metric
across N = 5 random initial weights on the BERT classification layer and batch processing shuf-
fles, with error bars representing the standard deviation. As the number of samples k increases,
the models trained on the synthetic subsets consistently improve in both accuracy and F1 score, ap-
proaching the performance of a model trained on the full synthetic data corpus. Across all values of
k, the ACS method outperforms random and k-means sampling approaches.

In particular, ACS achieves comparable performance to models trained on the entire synthetic dataset
using only 6.7% of the data. This significant reduction in data highlights the efficiency of the max
coverage approach. Moreover, as the subset size grows, the ACS method begins to exceed the per-
formance of the model trained on all synthetic data by 7% with only a third of the data.. The suggests
that selected representative samples offer better training signals than using the entire, potentially re-
dundant, dataset. Similarly, as seen in Figure 3b, the F1 score improves with increasing k, and ACS
consistently outperforms the baseline methods at every data point.

k-Means shows a similar trend in surpassing the synthetic baseline, which consists of all generated
samples, but it requires a larger value of k at 22% of the training data to achieve this. Additionally,
its maximum accuracy is lower than that of ACS, indicating that ACS is more effective in selecting
a diverse set of training data, ultimately bringing the system closer to the performance of human-
curated data.

Overall, these results demonstrate the effectiveness of ACS for downsampling synthetic data in
sentiment analysis tasks. By intelligently selecting a representative subset, we can match or even
exceed the performance of models trained on the full dataset, while reducing computational costs
and avoiding the pitfalls of redundant data.
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(a) Precision (b) Recall (c) F1-Score

Figure 4: Performance metrics on the FewRel dataset: (a) Precision, (b) Recall, (c) F1-Score.

5.2 RELATION EXTRACTION

We now turn our attention to the relation extraction task. Relations are inherently a more complex
classification problem compared to the prior sentiment analysis. While sentiment analysis typically
involves binary or ternary classification (e.g. positive/negative/neutral), relation extraction requires
distinguishing between a much larger set of possible relations, making it more challenging for both
the model and synthetic data generation.

FewRel Han et al. (2018) is a well-known benchmark dataset for relation extraction, consisting of
sentences labeled with 64 different relation types. The task requires the model to predict a labeled
relation between two entities within a sentence, which demands greater diversity and precision than
in the synthetic data generation process. For example, the sentence “Chester Alan Arthur, 21st
President of the United States, died of this disease in November 18, 1886” should be labeled with
the relation “head of government” for the connection between Arthur and being President.

5.2.1 SYNTHETIC DATA GENERATION

We again utilize the synthetic data generation pipeline of Ding et al. (2022) which invokes a two-step
generation of labeled data. In the first step, the LLM is given the following prompt.

Prompt: Generate 20 different Head Entity and Tail
Entity with the given Relation.

where the relation might be “head of government” as above and a definition for this relation is
defined. After the model has learned the relation, it is then prompted to generate a sentence with
each of the given entities and relation. The result is a sentence labeled by the given relation. We
defer the reader to Ding et al. (2022) for a full description of this procedure. Given the complexity
of the task and broader range of possible relations, the quality of the generated data varies more
significantly than in sentiment analysis with a notable increase in noise and redundant samples.

The generated synthetic dataset of Ding et al. (2022) that we work with is comprised of 200 gener-
ated samples for each of the 64 relation types, giving a corpus of size |D| = 12800.

5.2.2 RESULTS

Figure 4 presents the performance of the downsampling as compared to the full synthetic or human
dataset baselines on the FewRel test set. Due to the label space of 64 possible relations, we here
report the precision, recall and f1-score

:::::::
F1-score (= 2/ 1

precision + 1
recall ).

2

The performance of ACS consistently surpasses both baselines, Random Sampling and k-Means, as
the subset size, k, increases. Across all three metrics–precision, recall, and F1-score–ACS demon-
strates a clear advantage, achieving higher scores at every subset size. This indicates that ACS
is more effective at selecting informative training examples compared to Random Sampling and
k-Means, resulting in improved model performance even with limited data.

We again highlight that the ACS approach further matches the classification performance of a model
trained on the full dataset of 12,800 samples with only 0.35% of the data. Moreover, ACS surpasses

2Precision is defined as the ratio of true positive to true positives + true negatives. Recall is the ratio of true
negatives to true negatives + false positives.
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the synthetic baseline by 4.7%, 6.2% and 6.7% on precision, recall and f1-score respectively. This
suggests that the original generation of synthetic data does not yield a sufficiently diverse dataset–the
training set can be represented entire by a small subset of samples with a reduction in noise.

6 CONCLUSIONS

Our experimentation shows that ACS can reduce a large corpus of potentially redundant data to
smaller representative set for model training. Unlike random sampling, which may lead to an un-
representative subset due to chance, or k-Means, which may focus on clustering samples too rigidly
without considering their informativeness, ACS leverages both clustering and coverage principles
to pick data points that have the most significant impact on model training. This selection strategy
effectively reduces redundancy and prioritizes diversity, allowing the model to achieve higher per-
formance with a fraction of the training data. Overall, the results highlight the strength of ACS in
providing a more strategically chosen subset, which leads to superior downstream performance on
the FewRel relation extraction task. While our experiments here are largely restricted to the text do-
main as it pertains to the booming interest in LLMs as data generators, we note that our methodology
is highly flexible for any data domain.

In examining the gap between the performance of ACS and a model fine-tuned using human curated
data, it is no surprise that there appears to be no true substitute for real data. However, a natural
question for future work which our study poses is: after isolating representative training samples, can
we encourage an LLM to generate more diverse text to “fill” the latent space covered by the training
set? Moreover to further enhance downstream task performance, our work shows that reducing the
training set to a fraction of the generated samples from systems like an LLM can be beneficial if
the labels of this smaller k-subset are verified by humans. In our study, we simply use prompts to
generate labels for these samples without involving human verification, as verifying large datasets
is impractical. However, if ACS identifies a small set of representative samples, human verification
of these labels could significantly improve accuracy.
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A
:::::::::::
APPENDIX

A.1
::::::::::
DIVERSITY

::::::::
METRICS

:::
We

::::
here

::::::::
evaluate

:::
the

::::::::
diversity

:::
of

:::
the

:::::
ACS

:::::::::::
subsampling

:::::::
method

:::
as

::::::::
compared

:::
to

:::
the

:::::::
random

:::
and

::::::::
k-means

::::::::
baselines.

::::
To

:::::::
quantify

::::::::
diversity,

:::
we

::::
use

:::
the

:::::::::
SelfBLEU

::::::
metric

:::::::::::::::
Zhu et al. (2018)

:
or

::
the

:::::::
average

:::::::
BLEU

::::::
metric

::
of

:::
the

::::::::
samples

::::::::
contained

:::
in

::::
each

:::::::::::
subsampling

::::::::::::::::::
Papineni et al. (2002)

:
.
:::::::::
Crucially,

:::
this

::::::
metric

:::::::::
quantifies

:::
the

::::::
within

:::
text

::::::
corpus

:::::::::
similarity,

::::
and

:::
its

::::::
inverse

:::::
serves

::
as

:::
our

:::::::
diversity

::::::
metric

::
(as

::::
was

::::
done

::
in
::::::::::::::
Zhu et al. (2018)

::
).

:::::
Figure

::
5

::::::
depicts

:::
the

::::::::
SelfBLEU

::::::
scores

::
at

:::::::::::
incrementing

::::::
k-sized

::::::
subsets

::
of

:
a
:::::
fixed

:::::
3,000

::::::
sample

:::::
corpus

::
of

:::
the

:::::
SST2

::
or

:::::::
FewRel

:::::::::::
synthetically

::::::::
generated

::::
data.

:::
At

:::::
small

::::::
values

::
of

::
k,

:::
we

:::
see

::::
that

::::
ACS

:::::
yields

:
a
:::::::::
subsample

::::
with

::
a
:::::::::::
considerably

:::::
lower

:::::::::
SelfBLEU

:::::
score

::::
than

:::
the

:::::
other

::::::::::::::::::::
subsamplings–implying

:
a

:::::
higher

::::::::
diversity.

::::
We

::::::
further

::::::::::
demonstrate

:::
the

::::::::
improved

::::::::
diversity

::
on

:::::::::::
subsampling

:::
of

:::
the

::::::::
real-world

::::::
datasets

:::
as

:::::::
depicted

::
in

::::::
Figure

::
6.

:::
We

:::::
again

:::::::
compute

:::
the

::::::::::
Self-BLEU

::::
score

:::
for

::::
each

:::::::
k-sized

:::::
subset

::
of

:
a
::::
fixed

:::::
3,000

:::::::
sample

::::
from

:::
the

:::::::::
real-world

:::::
SST2

:::
and

:::::::
FewRel

:::::::
datasets.

:

:::
For

:::::
some

::::::
values

::
of

:::
k,

:::
we

::::
note

::::
that

::::::::
k-means

:::::::::::
demonstrates

::::::
better

:::::::
diversity

:::
for

::::::
SST2;

::::::::
however,

:
it
::
is
:::::::::

important
::
to

::::::::::
emphasize

:::
that

::::
the

::::::::
objective

::
of

:::::
ACS

::
is
::::

not
:::::
solely

:::
to

::::::::
maximize

:::::::::
diversity.

::
If

::::::::::
maximizing

:::::::
diversity

:::::
were

:::
the

::::::::
primary

::::
goal,

::::
one

::::::
would

::::::
expect

::::::
higher

::::::::
diversity

::::
with

::::::::
increased

::::::::
coverage.

:::::::
Testing

:::
this

::::::::::
hypothesis

:::::
could

::
be

:::
an

:::::::::
interesting

::::::::
direction

:::
for

::::::
future

:::::
work.

:::::::
Instead,

:::
we

::::::::::
intentionally

:::
set

::::::::
coverage

::::::
below

::
1
::::
and

::::::::::
demonstrate

::::
that

::::
this

::::::
choice

::::::
yields

:::::
better

:::::::
results.

::::
The

:::::::
objective

:::
of

::::
ACS

::
is

::
to

::::::
select

:
a
:::::::
diverse

:::
(but

::::
not

:::
the

::::
most

:::::::
diverse)

::::::
subset

::
of

::::
data

::::::
points

::::
that

::::
serve

::
as

:::
the

::::
best

::::::::::::
representatives

::
to

:::::::
achieve

:
a
::::::

target
::::::::
coverage,

::::::::
balancing

::::::::
diversity

:::
and

:::::::::::::::
representativeness

::
for

:::::::
optimal

:::::
model

::::::::::::
performance.

Figure 5:
::::::::
SelfBLEU

::::::
scores

::
of

::::::
k-sized

::::::::::
subsamples

::
of

:::
the

:::::
3,000

::::::::
synthetic

::::::
sample

::
set

:::
of

::
(a)

:::::
SST2

:::
and

::
(b)

::::::::
FewRel.

Figure 6:
:::::::::
SelfBLEU

:::::
scores

:::
of

::::::
k-sized

::::::::::
subsamples

::
of

:::
the

:::::
3,000

:::::::::
real-world

:::::::
sample

::
set

:::
of

::
(a)

:::::
SST2

:::
and

:::
(b)

:::::::
FewRel.
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A.2
::::::::
FURTHER

::::::::::
REVIEWER

:::::::::::
SUGGESTED

:::::::::::::
EXPERIMENTS

A.2.1
:::::::::::::
COMPARISONS

::
TO

::::::::
ACTIVE

:::::::::
LEARNING

::
In

:::
this

:::::::::
experiment

:::
we

:::::::
compare

:::
the

:::::::::::
performance

::
of

:
a
::::::
neural

:::
net

:::::
model

::::
with

:::
two

::::::
hidden

::::::
layers

:::::
trained

::
on

::
a

:::::
subset

:::
of

:::
the

:::::::
MNIST

::::
data

::::::::
selected

::
by

:::::
ACS,

:::::::
Margin

:::::::::
Sampling

::::::::::::::::
Zhou & Sun (2014)

:
,
:::
and

::
at

:::::::
random.

::
To

::::::
reduce

:::::::
runtime,

:::
we

::::::
limited

:::
the

:::::::
training

:::
set

::
to

:::
the

:::
first

::::::
10,000

::::::::::::::
images–holding

:::
out

:
a
:::
test

::
set

:::::::
validate

::::
our

::::::
models

::::::
trained

:::
on

:::::
small

::::::::::
subsamples

:::::::
depicted

:::
in

::::::
Figure

::
7.

::::
For

::::::
margin

::::::::
sampling,

::
we

::::
run

:::
the

:::::
model

::::
after

:::::
each

:::
step

:::
of

::::::
training

:::
on

:::
the

:::::
entire

:::::::
training

:::::::
datasets,

::::::::
calculate

:::
the

::::::::
difference

:::::::
between

:::
the

:::
two

:::
top

::::::::
predicted

::::::
labels,

:::
sort

:::
the

::::
data

::::::::
according

::
to

:::
the

::::::
margin

::::::
values,

::::
and

:::::
select

::
the

:::
top

:
k
::::
data

:::::
points

::::
with

:::
the

:::::::
highest

::::::
margin.

::::
Our

:::::::::::
experiments

::::
show

::
a

::::
clear

:::::::::
advantage

::
of

::::
ACS

::::
over

:::::
active

:::::::
learning

::::
with

::::::
Margin

:::::::::
Sampling,

::::
even

:::::::
though,

::::
ACS

::
is

::::::
model

:::::::
agnostic

:::
and

::::
does

:::
not

:::::::
require

::::::
running

:::::::
inference

:::
on

:::
the

:::::::
training

:::
data

::
at
:::
all.

:

Figure 7:
::::
ACS

:::::::::
compared

::
to

::::::
Margin

::::::::
Sampling

::::::
During

::::
these

:::::::::::
experiments,

:::
we

::::::::
observed

::::
that

::::::
Margin

:::::::::
Sampling

:::
was

:::
the

:::::::
slowest

:::::::
method

:::
due

::
to
:::

the
::::
need

::
to

:::
run

:::::
model

::::::::
inference

:::
on

:::
the

::::::
training

::::::
dataset

::
at
:::::
every

::::
step.

:::
In

:::::::
contrast,

:::
our

:::::
graph

::::::::::
construction

:::
step

::
is

:::::::::
performed

::::
only

:::::
once.

A.2.2
::::::::::::
IMBALANCED

:::::
DATA

:::::::::
PROBLEM

:::
We

::::::::
conducted

::
a
::::::
simple

::::::::::
experiment

::
on

:::
the

:::::::
MNIST

::::::
dataset

::::::
where

:::
we

::::::::
removed

::::
75%

::
of

:::::::
images

::
for

:::
one

::::
digit

:::::::::::::
(discriminated

::::
digit,

:::
5)

::
to

:::::::::
artificially

:::::
create

:::
an

::::::::::
imbalanced

:::::::
dataset.

::::::
Then,

:::
we

::::::
trained

:
a

:::::
simple

::::::
neural

:::
net

::::::::
classifier

::::
with

::::
two

::::::
hidden

::::::
layers.

::::
The

::::
plots

::::::
below

:::::
depict

:::
the

::::::
results

:::
of

::::::
training

::::
such

:
a
::::::

model
:::
on

::
a

:::::
subset

:::
of

::::
data

::::
with

::::::::
different

:::::
sizes

:::
and

:::::::
selected

::::::
either

::::::::
randomly

:::
or

::
by

:::::
ACS.

:::
The

:::::
plots

:::::
show

:::
the

:::::::
accuracy

:::
of

:::
the

::::::
trained

::::::
model

::
on

::::::::::
classifying

:::
the

:::::::::::
discriminated

:::::
digit

:::::
(digit

::
5).

::
As

::::::
shown

:::
by

:::
the

::::::
results,

:::::
ACS

:::::::
achieves

:::
an

:::::::
accuracy

:::
of

::::
over

::::
50%

:::
by

::::::::
sampling

::::
150

::::::
images,

:::::
while

::
the

::::::
model

:::::::
trained

::
on

:::::::
random

:::::::
samples

::::::::::
completely

::::
fails

:::
to

::::::
classify

::::
the

:::::::::::
discriminated

:::::
digit.

:::::
ACS

:::::::::::::
deterministically

::::::::
sampled

:
6
:::::
most

:::::::::::
representative

::::::::
examples

:::
of

:::
the

:::::::::::
discriminated

:::::
digit,

:::::
while

::::::
random

:::::::
sampling

:::::::
sampled

::::
only

::::
one,

::::
with

:::
an

:::::::
expected

:::::::
number

::
of

:::
3-4

:::::::
samples

::
in

:::::::
general.

::::
Note

::::
that

::
the

:::::
labels

::::
were

::::::
hidden

::::
from

::::
both

::::::::
sampling

:::::::::
strategies.

A.3
:::::::::
ABLATION

:::
OF

:::::
ACS

:::::::::::::
CONSTRAINTS

::
In

::::::::
response

::
to

:::
the

:::::::::
reviewer’s

:::::::
request,

::::
we

:::::::::
conducted

::
an

::::::::
ablation

:::::
study

::
to

::::::::
evaluate

:::
the

::::
two

:::
key

::::::::::
assumptions

:::::::::
underlying

::::
our

:::::::::::::
implementation

::
of

::::::
ACS:

:::
(1)

:::
that

::
a
::::::::
similarity

:::::::::
threshold

:::
(τ )

::
of

:::::
0.707

::::::::
(measured

:::
by

::::::
cosine

:::::::::
similarity)

:::::::
enhances

::::::
results

:::
by

:::::::
filtering

:::
for

::::::::::
high-quality

::::::::
samples,

:::
and

:::
(2)

:::
that

:::::::
imposing

::
a
::::::
degree

::::
cap

:::
on

:::::
nodes

::::::
during

:::
the

:::::
max

::::::::
coverage

::::::::
execution

::
is
:::::::::

necessary
:::
for

::::::::
balancing

:::::::
diversity

:::
and

::::::::::::::::
representativeness.

:

::::::
Starting

:::::
from

:
a
:::::
3,000

:::::::
random

:::::::::
subsample

:::
of

:::
the

:::::
SST2

::::::
dataset,

:::
we

::::::::
compare

:::
the

::::::
model

:::::::
accuracy

::
as

:
a
:::::::
function

::
of

:::
the

:::::::
number

::
of

:::::::
selected

:::::::
samples

:::
by

::::
ACS

::::
(k),

:::
for

:::::::
different

:::::::::::::::
parametrizations.

:::::::
Notably,

::
we

::::::::
consider

::
(i)

:::::::::
τ = 0.707

::::
and

:
a
::::::
degree

::::
cap

::
of

::::::
2c|D|/k,

:::
(ii)

::::::
τ = 0

:::
and

::
a
::::::
degree

:::
cap

::
of

:::::::
2c|D|/k,

:::
(iii)

::::::::
τ = 0.707

::::
and

:
a
::::::
degree

:::
cap

::
of

::::::
c|D|/k,

:::
(iv)

:::::::::
τ = 0.707

::::
with

:::
no

:::::
degree

::::
cap.

:
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(a)
:::::::
Accuracy

::
on

::
all

::::::
classes

(b)
:::::::
Accuracy

:::
on

:::::::::
classifying

::::::::::
discriminated

::::
“5”

:::
digit

Figure 8:
:::::::::
Imbalanced

::::
data

::::::
results

::
on

:::::::
MNIST

Figure 9:
:::::::
Ablation

:::::
study

:::
for

::::::::::::::
parametrizations

::
of

:::::
fixed

:::::
values

::
in

::::
ACS

::::::::::::::
implementation.

::
As

::::::
shown

::
in

::::::
Figure

::
9,

:::
the

:::::
results

:::::::::::
demonstrate

::
the

::::::::::
importance

::
of

::::::::
carefully

:::::
tuning

::::
both

:::
the

::::::::
similarity

:::::::
threshold

::
τ
:::
and

:::
the

::::::
degree

:::
cap

::
in

:::::
ACS.

::::::::::
Specifically,

::::::::::::::
parameterization

::
(i),

::::::
which

::::::::
combines

::::::::
τ = 0.707

::::
with

:
a
::::::

degree
::::

cap
::
of

:::::::
2c|D|/k,

::::::::::
consistently

::::::
yields

::::::
higher

::::::
model

:::::::
accuracy

::::::
across

:::::::
varying

::
k.
:::::

This
:::::::
supports

:::
our

:::::
initial

::::::::::
hypothesis

:::
that

::::::::::::
incorporating

:
a
:::::::::
reasonable

:::::::::
similarity

::::::::
threshold

:::
and

::::::
degree

:::
cap

:::::::
together

:::::::
balances

::::::::
coverage

:::
and

::::::::::
redundancy

:::::::::
effectively,

::::::
leading

:::
to

::::::::
improved

:::::
model

:::::::::::
performance.

:

::
By

::::::::
contrast,

::::::::::::::
parameterization

:::
(ii),

::::::
which

:::::::
removes

:::
the

::::::::
similarity

::::::::
threshold

:::::::
(τ = 0),

::::::
results

::
in
:::::
lower

:::::
overall

:::::::::
accuracy,

:::::::::
suggesting

:::
that

::
τ
:::::
plays

:
a
::::::
crucial

::::
role

::
in

:::::::
filtering

::::::::::
high-quality

::::::::
samples.

::::::::
Similarly,

:::::::::::::
parameterization

:::::
(iii),

:::::
which

::::::
halves

:::
the

:::::::
degree

::::
cap,

:::::::
exhibits

:::::::::
diminished

::::::::::::
performance,

::::::::
indicating

:::
that

::::::
overly

::::::::
restrictive

::::::
degree

::::
caps

:::::
limit

:::
the

:::::::::
algorithm’s

::::::
ability

::
to

:::::::
capture

::::::
diverse

::::::::
samples.

::::::
Finally,

:::::::::::::
parameterization

::::
(iv),

::::::
which

::::::::
eliminates

:::
the

::::::
degree

:::
cap

:::::::
entirely,

:::::::
performs

::::::
worse

:::
than

:::
(i),

::::::::::
highlighting

::
the

::::::::::
importance

::
of

:::::::::::
constraining

:::
the

:::::::::
maximum

::::::::
influence

::
of

:::
any

::::::
single

::::::
sample

::
in

::::::::
ensuring

:::::::
balanced

::::::::
coverage.

:::::
These

:::::::::::
observations

::::::::
reinforce

:::
our

::::::
design

:::::::
choices

:::
for

::::::
ACS,

::::::::::
particularly

:::
the

::::::::
interplay

::::::::
between

:
τ

:::
and

:::
the

::::::
degree

::::
cap.

::::
The

::::::::
similarity

:::::::::
threshold

:::::::::
τ = 0.707

:::::
aligns

::::
with

::::::::::
established

::::
best

:::::::
practices

:::
for

:::::
cosine

::::::::
similarity

::
in

:::::::::::::::
high-dimensional

:::::::::
embedding

::::::
spaces,

:::::
while

:::
the

::::::
degree

:::
cap

::
of

::::::
2c|D|/k

:::::::::
empirically

:::::
strikes

::
a

::::::
balance

:::::::
between

::::::::
diversity

:::
and

::::::::::::::::
representativeness.

:::::::
Overall,

:::
this

:::::::
ablation

:::::
study

:::::::
validates

:::
our

:::::::::::::
implementation

::::::::
decisions

:::
and

::::::::
confirms

::::
that

:::
our

::::::::
approach

::
to

:::::::::
parameter

::::::::
selection

::::::::
enhances

:::::
model

::::::
training

:::::::::
efficiency

:::
and

::::::::
accuracy.
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