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Abstract

Grokking, or delayed generalization, is a phenomenon where generalization in a deep neural
network (DNN) occurs long after achieving near zero training error. Previous studies have reported
the occurrence of grokking in specific controlled settings, such as DNNss initialized with large-norm
parameters or transformers trained on algorithmic datasets. We demonstrate that grokking is actually
much more widespread and materializes in a wide range of practical settings, such as training of
a convolutional neural network (CNN) on CIFARI1O0 or a Resnet on Imagenette. We introduce
the new concept of delayed robustness, whereby a DNN groks adversarial examples and becomes
robust, long after interpolation and/or generalization. We develop an analytical explanation for the
emergence of both delayed generalization and delayed robustness based on the local complexity
training dynamics of a DNN’s input-output mapping. Our local complexity measures the density of
so-called “linear regions” (aka, spline partition regions) that tile the DNN input space.
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Figure 1: Emergence of Robust Partition. We train a 4-layer ReLU MLP of 200 width, on 1K samples from
MNIST for 10° optimization steps, with batch size 200. The network starts grokking adversarial examples
after approximately 10* optimization steps (left-top). The local complexity around data points (left-bottom)
follows a double descent curve with the final descent starting approximately around 10* optimization steps
as well. Where do the non-linearities migrate to? In the middle and right images we present analytically
computed visualizations of the DNN input space partition [9] before and after the network groks adversarial
examples. The partition or linear regions are visualized across a 2D domain in the input space, that intersects
three training samples. During the final descent in local complexity, a unique structure emerges in the DNN
partition geometry, where many non-linearities (black lines) have concentrated around the decision boundary
(red line), allowing the formation of a robust partition.
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Figure 2: Grokking across datasets and architectures. From left to right, examples of delayed robustness
emerging late in training for a CNN trained on CIFAR10, CNN trained on CIFAR100, and ResNet18 trained
on the Imagenette. Clear double descent behavior visible in the local complexity of CNN with CIFAR10 and
CIFAR100. The ResNet18 trained with Imagenette obtains a very high local complexity during the ascent
phase of the complexity dynamics. To compute local complexity we consider 25 dimensional neighborhoods
centered on 1024 train, test or random samples. We use » = 0.005 for CNN and r = 10~* for ResNet18.

1. Introduction

Grokking is a surprising phenomenon related to representation learning in Deep Neural Networks
(DNNs) whereby DNNs may learn generalizing solutions to a task long after interpolating the training
dataset, i.e., reaching near zero training error. It was first demonstrated by [19] on simple Transformer
architectures performing modular addition or division. Subsequently, multiple studies have reported
instances of grokking for settings outside of modular addition, e.g., DNNs initialized with large
weight norms for MNIST, IMDb [14], or XOR cluster data [25]. For all the reported instances, DNNs
that grok show a standard behavior in the training loss/accuracy curves approaching zero error as
training progresses. The test error however, remains high even long after training error reaches zero.
After a large number of training iterations, the DNN starts grokking—or generalizing—to the test data.
This paper concerns the following question:

Question. How subjective is the onset of grokking on the test data? When grokking does not manifest
as a measurable change in the test set performance, could there exist an alternate test dataset for
which grokking would occur?

Observation. For a number of training settings, with standard initialization with or without weight
decay, DNNs grok adversarial samples long after generalizing on the test dataset. We dub this
phenomenon delayed robustness, a novel form of grokking previously unreported.

Question. How can we explain both delayed generalization and delayed robustness?
Observation. 7o explain grokking, we propose a novel complexity measure based on the local
non-linearity of the DNN. Our novel measure does not rely on the dataset, labels, or loss function
that is used during training. We show that DNNs undergo a phase change in the local complexity
(LC) averaged over data points during training. The phase change coincides with grokking.

We come to the following conclusion: Grokking occurs due to the emergence of a robust input
space partition by a DNN, through a linearization of the DNN function around training points as a
consequence of training dynamics.
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2. Measuring Local Complexity using the Deep Network Spline Partition

Barak et al. [3] introduced the notion of progress measures for DNN training, as scalar quantities
that are causally linked with the training state of a network. We will introduce a novel measure based
on the spline formulation of DNNs, that we review in Appendix A.1.

Suppose a domain is specified as the convex hull of a set of vertices V' = [vy,... vp]T in the
DNN’s input space. We wish to compute the local complexity or smoothness [7] for neighborhood

V = conv(V). Let’s denote the DNN layer weight as W () £ [wg), e 7wg%e)], b where

¢ is the layer index, 'wz@ is the i-th row of W or weight of the ¢-th neuron, and DO is the
output space dimension of layer £. The forward pass through this layer for V' can be considered
an inner product with each row of the weight matrix WO followed by a continuous piecewise
linear activation function. Without loss of generality, let’s consider ReLLU as the activation function

in our network. The partition at the input space of layer ¢ can therefore be expressed as the
()

set of all hyperplane equations formed via the neuron weights such as 02 = UZD:( j) ;" and

i
® = f1.4-1(V) be the embedded representation of the neighborhood V by layer ¢ — 1 of the network.

Therefore, approximating the local complexity of V induced by layer ¢, would be equivalent to
(0)

7

j—cgz) = {$ c RP“V . <w§e), x) + bl = 0} which is also the set of layer ¢ non-linearities. Let,

counting the number of linear regions in ® N 92 = Uf):( i) ® N J:". The local partition inside ®

results from an arrangement of hyperplanes; therefore the number of regions is of the order N =
[22], where N = |{i : i = 1,2..D") and }CZ@ N ® =£ ()} is the number of hyperplanes from layer ¢
intersecting ®. We consider N as a proxy for local complexity for any neighborhood ®. To make
computation tractable, let, ® ~ ® = conv(f1.4—1(V')). Therefore, for ®, any sign changes in layer
¢ pre-activations is due to the corresponding neuron hyperplanes intersecting conv(V'). Therefore
for a single layer, the local complexity (LC) for a sample in the input space can be approximated
by the number of neuron hyperplanes that intersect V' embedded to that layers input space. If we
consider input space neighborhoods with the same volume, then local complexity measures the
un-normalized density of non-linearity in an input space locality. We highlight that this is tied to
the VC-dimension of (ReLU) DNN [4] where the more regions are present the more expressive
the decision boundary can be [15]. In Figure 7, we provide a visual explanation of our method for
local complexity approximation through a cartoon schematic diagram. To summarize, we consider
randomly oriented P dimensional ¢; norm balls with radius r, i.e., cross-polytopes centered on any
given data point x as a frame defining the neighborhood. We therefore follow the steps entailed in
Figure 7 in a layerwise fashion, to approximate the local complexity in the prescribed neighborhood.
Experimental setups are described in Appendix B

3. Local Complexity Training Dynamics and Grokking

In all our experiments either involving delayed generalization or robustness, we see three distinct
phases in the dynamics of local complexity:

o The first descent, when the local complexity start by descending after initialization. This phase is
subject to the network parameterization as well as initialization, e.g., when grokking is induced in
the MLP-MNIST case with scaled initialization, we do not see the first descent (Figure 20, Figure 4).
o The ascent phase, when the local complexity accumulates around both training and test data
points. The ascent phase happens ubiquitously, and the local complexity generally keeps ascending
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Figure 3: Grokking visualized. We induce grokking by randomly initializing a 4 depth 200 width ReLU
MLP and scaling the initialized parameters by eigth following [14]. In the leftmost figure, we can see that the
grokking is visible for both the test samples as well as adversarial examples generated using the test set. We see
that the network robustness, periodically increases. By visualization the partition and curvature of the function
across a 2D slice of the input space [9], we see that the network periodically increases the concentration of
non-linearity around its decision boundary, making the boundary sharper at each robustness peak. This occurs
even when the network doesn’t undergo delayed generalization (Figure 1). As the local complexity around
the decision boundary increases, the local complexity around data points farther from the decision boundary
decreases (Figure 17). Anonymized video showing periodic accumulation https://bit.ly/grok-splinecam.
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Figure 4: Local complexity across depths. From left to right, accuracy, local complexity around training
and local complexity around test data points, for an MLP trained on MNIST with width 200 and varying depth.
As depth is increased the max LC during ascent phase becomes larger and second descent is expedited. We
can also see a distinct second peak right before the descent phase.

until training interpolation is reached (e.g., Figure 2). During the ascent phase, the training local
complexity may be higher for training data points than for test data points, indicating an accumulation
of non-linearities around training data compared to test data Figure 1.

o The second descent phase or region migration phase, during which the network moves the linear
regions or non-linearities away from the training and test data points. Focusing on Figure 1-bottom-
left and Figure 20 for the MLP-MNIST setting, one perplexing observation that we make is that the
local complexity around random points — uniformly sampled from the domain of the data — also
decreases during the final descent phase. This would mean that the non-linearities are not randomly
moving away from the training data, but moving to a part of the input space where under expectation,
we do not get samples for LC measurement. To better understand the phenomenon, we consider
a square domain D that passes through three MNIST training points, and use Splinecam [9] to
analytically compute the input space partition on . In short, Splinecam uses the weights of the
network to exactly compute the input space representation of each neuron’s pre-activation zero-level
set on D e.g., black lines in Figure 1, Figure 3, and Figure 17. Through these visualizations, we see
clear evidence that during the second descent phases of training, linear regions or the non-linearities
of the network, migrate close to the decision boundary creating a robust partition in the input space.


https://bit.ly/grok-splinecam
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Figure 5: Left: Memorization requirement delays grok. When training an MLP on varying number of
randomly labeled MNIST samples, we see that with increase in the number of samples, the ascent phase gets
delayed. This shows that with increased memorization requirement the network takes longer to complete
ascent and later undergo region migration.Middle & Right: Increasing width hastens region migration. LC
dynamics while training an MLP with varying width on MNIST. For the peak LC during the ascent phase, we
see an initial increase and then decrease as the network gets overparameterized.

Moreover, during region migration, the network intends to lower the local complexity around training
points, resulting in a decrease in local complexity around training even compared to test data points.

4. What Affects the Progress Measure?

Parameterization In Figures 5, 18 and 20, we see that increasing the number of parameters either
by increasing depth, or by increasing width of the network in our MNIST-MLP experiments, hastens
region migration, therefore makes grokking happen earlier.

Weight Decay. We train a CNN with depth 5 and width 32 on CIFAR10 with varying weight decay.
In Figure 21 we present the train, test and random LC for our experiments for neighborhoods of
different radius. Weight decay does not seem to have a monotonic behavior as it both delays and
hastens region migration, based on the amount of weight decay.

Batch normalization removes grokking. In Appendix D, we show that at each layer ¢ of a DN,
BN explicitly adapts the partition so that the partition boundaries are as close to the training data as
possible. This is confirmed by our experiments in Figure 14 where we see that grokking adversarial
examples ceases to occur compared to the non-batchnorm setting in Figure 2.

Activation function. While most of our experiments use RelLU activated networks, in Figure 25
we present results for a GeLU activated MLP, as well as in Figure 10 we present results for a GeLU
activated Transformer. For both settings we see similar training dynamics as with ReLLU.

Effect of Training Data. We control the training dataset to either induce higher generalization on
higher memorization. We increase the number of samples in our dataset to monitor the effect of
grokking Figure 19 and LC Figure 23. We see that increasing the size of the dataset hastens grokking.

5. Conclusions and Limitations

We proposed a thorough empirical study of grokking, both on the test dataset and adversarial examples
generated using the test dataset. We obtained new observations hinting that grokking is a common
phenomenon for DNNs. Delving into DNN geometry, we isolate the root cause of both delayed
generalization and robustness as region migration, i.e., a descent of local complexity around training
data points that occurs in the latest phase of training. Again, the observation of such migration of the
DNN partition is a new discovery of its own right. We hope that our analysis has provided novel
insights into DNNs training dynamics from which grokking naturally emerges.
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Appendix A. Empirical analysis of our proposed method

A.1. Deep Networks are Affine Spline Operators

DNNs primarily perform a sequential mapping of an input vector & through L nonlinear transforma-
tions, i.e., layers, as in

fox) 2 WD | a (W<2>a (Wu)w 4 b<1>) n b(2>> b, (1)

starting with some input «. For any layer £ € {1,..., L}, the W () weight matrix, and the b(®) bias
vector can be parameterized to control the type of operation for that layer, e.g., a circulant matrix as
W ® results in a convolutional layer. The operator a is an element-wise nonlinearity, e.g., ReLU,
and @ is the set of all parameters of the network. According to Balestriero and Baraniuk [1], for any
a that is a continuous piecewise linear function, fy is a continuous piecewise affine spline operator.
That is, there exists a partition €2 of the DNN’s input space R” (for example, Figure 6 left) comprised
of non-overlapping regions that span the entire input space. On any region of the partition w € 2,
the DNN’s input-output mapping is a simple affine mapping with parameters (A, b,,). In short, we
can express fy as

fo(z) = Z(Awm + bw)]l{me}a (2)

weN

where, 11, 18 an indicator function that is non-zero for z € w.

Curvature and Linear Regions. Formulations like that in Equation (2) that represent DNNSs as
continuous piecewise affine splines, have previously been employed to make theoretical studies
amenable to actual DNNs, e.g. in generative modeling [8], network pruning [26], and OOD detection
[12]. Empirical estimates of the density of linear regions in the spline partition have also been
employed in sensitivity analysis [17], quantifying non-linearity [5], quantifying expressivity [20]
or to estimate the complexity of spline functions [7]. We demonstrate the relationship between
function curvature and linear region density through a toy example in Figure 6. In Figure 6-left and
Figure 1-(middle,right), any contiguous line is a non-linearity in the input space, corresponding to a
single neuron of the network. All the non-linearities re-orient themselves during training to be able
to obtain the target function (Figure 6-right). Therefore, in Figure 6, we see that DNN partitions
have higher density of linear regions/non-linearities/knots in the spline partition, where the function
curvature is higher.

Computing the exact number of linear regions or piecewise-linear hyperplane intersections for an
deep network with N-dimensional input space neighborhood has combinatorial complexity and
therefore is intractable. This is one of the key motivations behind our approximation method.

MLP with zero bias. To validate our method, we start with a toy experiment with a linear MLP
with width 400, depth 50, 784 dimensional input space, initialized with zero bias and random
weights. In such a setting all the layerwise hyperplanes intersect the origin at their input space. We
compute the LC around the input space origin using our method, for neighborhoods of varying radius
r = {0.0001,0.001,0.01,0.1, 1,10} and dimensionality P = {2, 10, 25, 50,100, 200}. For all the
trials, our method recovers all the layerwise hyperplane intersections, even with a neighborhood
dimensionality of P = 2.

Non-Zero Bias Random MLP with shifting neighborhood. For a randomly initialized MLP, we
expect to see lower local complexity as we move away from the origin [7]. For this experiment
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Figure 6: Curvature and complexity. Visual depiction of Equation (2) with a toy affine spline
S : R? — R, obtained by training an MLP to regress the piecewise function f(z1,x2) = {sin(z1) +
cos(x2) } 14, <0- Regions in the input space partition € (left) and the graph of the affine spline function
(right) are randomly colored. The spline partition has significantly higher density of non-linearities
for x1 < 0, i.e., the local complexity is higher where the function has more curvature.

we take a width 100 depth 18 MLP with input dimensionality d = 784, Leaky-ReLU activation
with negative slope 0.01. We start by computing LC at the origin [0]%, and linearly shift towards
the vector [10]¢. We see that for all the settings, shifting away from the origin reduces LC. LC gets
saturated with increasing P, showing that lower dimensional neighborhoods can be good enough for
approximating LC. Increasing r on the other hand, increases LC and reduces LC variations between
shifts, since the neighborhood becomes larger and LC becomes less local.

Trained MLP comparison with SplineCam. For non-linear MLPs, we compare with the exact
computation method Splinecam [9]. We take a depth 3 width 200 MLP and train it on MNIST for
100K training steps. For 20 different training checkpoints, we compute the local complexity in terms
of the number of linear regions computed via SplineCam and number of hyperplane intersections
via our proposed method. We compute the local complexity for 500 different training samples. For
both our method and SplineCam we consider a radius of 0.001. For our method, we consider a
neighborhood with dimensionality PP = 25. We present the LC trajectories in Fig. 26. We can see
that for both methods the local complexity follows a similar trend with a double descent behavior.

Deformation of neighborhood by deep networks. As mentioned in Appendix A, we compute the
local complexity in a layerwise fashion by embedding a neighborhood conwv (V') into the input space
for any layer and computing the number of hyperplane intersections with conv(V*), where V* is the
embedded vertices at the input space of layer £. The approximation of local complexity is therefore
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Figure 7: Local Complexity Approximation. 1) Given a point in the input space z € R”, we start by
sampling P orthonormal vectors {v1, va, ..., vp } to obtain cross-polytopal frame V,, = {x+r*v,Vp}
centered on x, where 7 is a radius parameter. We consider the convex hull conv(V,,) as the local
neighborhood of z. 2) If any neuron hyperplane intersects the neighborhood conv(V;) then the
pre-activation sign will be different for the different vertices. We can therefore count the number
neurons for a given layer, which results in sign changes in the pre-activation of V,; to quantify local
complexity x for that layer. 3) By embedding V. to the input of the next layer, we can obtain a
coarse approximation of the local neighborhood of = and continue computing local complexity in a
layerwise fashion.

subject to the deformation induced by each layer to conv(V'). To measure deformation by layers
1 to ¢ — 1, we consider the undirected graph formed by the vertices V* and compute the average
eccentricity and diameter of the graphs [24]. Eccentricity for any vertex v of a graph, is denoted
by the maximum shortest path distance between v and all the connected vertices in the graph. The
diameter is the maximum eccentricity over vertices of a graph. Recall from Appendix A that conv (V)
where V' = {x £ rv, : p = 1...P} for an input space point z, is a cross-polytope of dimensionality
P, where only two vertices are sampled from any of the orthogonal directions v,,. Therefore, all
vertices share edges with each other except for pairs {(x + rv,, x — rv,) : p = 1...P}. Given such
connectivity, we compute the average eccentricity and diameter of neighborhoods conv(V*) around
1000 training points from CIFAR10 for a trained CNN (Fig. 11). We see that for larger r both of the
deformation metrics exponentially increase, where as for r < 0.014 the deformation is lower and
more stable. This shows that for lower r our LC approximation for deeper CNN networks would be
better since the neighborhood does not get deformed significantly.

Appendix B. Experimental Setup

Sensitivity of approximation to P and » One of the possible limitations of local complexity
measure is the deformation of the local neighborhood when its passed through a network from layer
to layer, as shown in Figure 7. For different radius r of the input space neighborhood V; centered on
any arbitrary data point x, we compute the change of graph eccentricity [24] by different layers of a
CNN to measure the degree of deformation by each layer. We present the results in Figure 8 for 1000
different training data points for a CNN trained on CIFAR10. The higher the deformation, the less
reliable the approximation. Here, layer index 0 corresponds to the input space. We see that below
a certain radius value, deformation by the CNN is limited and does not exponentially increase. In
subsequent experiments, e.g., Figure 18, we have also observed that the dynamics of local complexity

10
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Figure §: Deformation with depth. Change of average eccentricity [24] of the input space neighbor-
hoods V. by different layers of a CNN trained on the CIFAR10 dataset, for different radius . We
see that, for larger radius, the deformation increases with depth almost exponentially. For » < 0.014
deformation is low, indicating that smaller radius neighborhoods are reliable for LC computation on
deeper networks. Values are averaged over neighborhoods sampled for 1000 training points from
CIFARI10. For ResNet18 see Figure 13.

is similar between large and small r neighborhoods. We present more validation experiments in
Appendix A.

Experimental Setup For all experiments we sample 1024 train test and random points for local
complexity (LC) computation, except for the MNIST experiments, where we use 1000 training points
(all of the training set where applicable) and 10000 test and random points for LC computation. We
use 7 = 0.005 and P = 25 unless specified otherwise and except for the ResNet18 experiments with
Imagenette where we use » = 10~%. For training, we use the Adam optimizer and a weight decay
of 0 for all the experiments except for the MNIST-MLP experiments where we use a weight decay
of 0.01. Unless specified, we use CNNs with 5 convolutional layers and two linear layers. For the
ResNet18 experiments with CIFAR10, we use a pre-activation architecture with width 16. For the
Imagenette experiments, we use the standard torchvision Resnet architecture. For all settings we
do not use Batch Normalizaiton, as reasoned in Appendix D. In all our plots, we denote training
accuracy/LC using green, test accuracy/LC using orange and random LC using blue colors. We also
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Figure 9: LC for a P dimensional neighborhood with radius r while being shifted from the origin
[0]% to vector [10]%. In left, we vary P with fixed 7 = 5 while on right we vary r for fixed P = 20.
We see that for all the settings, shifting away from the origin reduces LC. The increase of LC with
the neighborhood dimensionality P gets saturated as we increase P, showing that lower dimensional
neighborhoods can be good enough for approximating LC. Increasing r on the other hand, increases
LC and reduces LC variations between shifts, since the neighborhood becomes larger and LC

becomes less local.

1001 train LC - 60
| —— test LC

[ f— random LC =

_ - 40 3
g 50 o
E el 2
25 A -20 £

<«

0 train acc. test acc.
101 102 103 104 10°

Optimization Steps

Figure 10: Region migration in modular addition. By measuring the local complexity for the
GeLU activated fully connected layers of a Transformer architecture, we see that here as well, region

migration occurs during grokking.

color curves for adversarial examples using different shades of orange. All local complexity plots
show the 99% confidence interval.

Appendix C. Impact of Batch-Normalization and Relation to Circuits

Local complexity as progress measure While we don’t quite understand why the network goes
from accumulation to repelling of non-linearities around the training data between the ascent and
second descent phases, we see that the second descent always precedes the onset of delayed gener-
alization or delayed robustness. In Figure 3-middle and right, we present splinecam visualizations
for a network during grokking. The colors denote the norm of the slope parameter A, for each

12
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Figure 11: Change of avg.

3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
Layer Idx Layer ldx

eccentricity and diameter [24] of the input space neighborhood by

different layers of a CNN trained on the CIFAR10 dataset. For different sampling radius r of the
sampled input space neighborhood V/, the change of eccentricity and diameter denotes how much
deformation the neighborhood undergoes between layers. Here, layer O corresponds to the input
space neighborhood. Numbers are averaged over neighborhoods sampled for 1000 training points
from CIFAR10. For larger radius the deformation increases with depth exponentially. For » < 0.014
deformation is lower, indicating that smaller radius neighborhoods are reliable for LC computation
on deeper networks. Confidence interval shown in red, is almost imperceptible.

Figure 12: Training a ResNet18 with batchnorm on Imagenet Full. LC is computed only on test
points using 1000 test set samples. Computing LC 1000 samples takes approx. 28s on an RTX 8000.
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Figure 13: Change of avg. eccentricity and diameter [24] of the input space neighborhood by different
layers of a ResNet18 trained on the CIFAR10 dataset, similar to the setting of Fig. 11. Resnet deforms
the input neighborhood by reducing the avg. eccentricity and diameter of the neighborhood graphs.
For r < 0.014 deformation is lower, indicating that smaller radius neighborhoods are reliable for LC
computation on deeper networks.
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Figure 14: Batch-norm removes grokking. Training a CNN with an identical setting as in Figure 2-
left, except the CNN now has Batch Normalization layers after every convolution. With the presence
of batchnorm, the LC values increase, the initial descent gets removed and most importantly, grokking
does not occur for adversarial samples.

region w computed obtained via SplineCam. We see that while a network groks, the regions start
concentrating around the decision boundary where the network has the highest norm. This is intuitive
because in such classification settings, an increase of local complexity around the decision boundary
allows the function to sharply transition from one class to another. Therefore, therefore the more the
non-linearites converge towards the decision boundary, the higher the function norm can be while
smoothly transitioning as well. We have provided an animation showing the evolution of partition
geometry and emergence of the robust partition during training here'. In the animation, we can see
that the partition periodically switches between robust configurations during region migration. As
time progresses we see increasing accumulation of the non-linearities around the decision boundary.
These results undoubtedly show that the local non-linearity or local complexity dynamics is directly
tied to the partition geometry and emergence of delayed generalization/robustness.

Relationship with Circuits A common theme in mechanistic interpretability, especially when it
comes to explaining the grokking phenomenon, is the idea of ’circuit’ formation during training
[16, 18, 23]. A circuit is loosely defined as a subgraph of a deep neural network containing neurons
(or linear combination of neurons) as nodes, and weights of the network as edges. Recall that
Equation (2) expresses the operation of the network in a region-wise fashion, i.e., for all input vectors

1. https://vimeo.com/907898050
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{z : x € w}, the network performs the same affine operation using parameters (A, b,,) while
mapping x to the output. The affine parameters for any given region, are a function of the active
neurons in the network as was shown by Humayun et al. [9] (Lemma 1). Therefore for each region,
we necessarily have a circuit or subgraph of the network performing the linear operation. Between
two neighboring regions, only one node of the circuit changes. From this perspective, our local
complexity measure can be interpreted as a way to measure the density of unique circuits formed in
a locality of the input space as well. While in practice this would result in an exponential number
of circuits, the emergence of a robust partition show that towards the end of training, the number
of unique circuits get drastically reduced. This is especially true for sub-circuits corresponding to
deeper layers only. In Figure 15, we show the robust partition in a layerwise fashion. We can see that
for deeper layers, there exists large regions, i.e., embedding regions with only one circuit operation
through the layer. This result, matches with the intuition provided by Nanda et al. [16] on the cleanup
phase of circuit formation late in training.

Appendix D. Understanding Batch Normalization and its effect on the partition

Suppose the usual layer mapping is
zoi1=a(Wyzg+¢y), £=0,...,L—1 (3)

While a host of different DNN architectures have been developed over the past several years, modern,
high-performing DNNs nearly universally employ batch normalization (BN) [11] to center and
normalize the entries of the feature maps using four additional parameters piy, op, B¢, v¢. Define
2o as Eth entry of feature map 2, of length Dy, wy y as the k' row of the weight matrix Wy, and
Mt ks 0 s Bek, Yo i as the k™ entries of the BN parameter vectors L, oy, B¢, e, respectively. Then
we can write the BN-equipped layer ¢ mapping extending (1) as

Otk

)

Wy gy Z0) — Hik
2041k = 0 << ) Yer + 5@,k> Jk=1,...,D,. “4)

The parameters iy, 0y are computed as the element-wise mean and standard deviation of Wz, for
each mini-batch during training and for the entire training set during testing. The parameters 3y, ¢
are learned along with W, via SGD.? For each mini-batch B during training, the BN parameters
e, 0¢ are calculated directly as the mean and standard deviation of the current mini-batch feature
maps By

1 1 2
e <= By > Wiz, o <= \/W > (Weze— )", ®)

z€By z€By

where the right-hand side square is taken element-wise. After SGD learning is complete, a final fixed
“test time” mean 7, and standard deviation oy are computed using the above formulae over all of the
training data,’? i.e., with By = X,.

2. Note that the DNN bias ¢, from (1) has been subsumed into w, and S;.
3. or more commonly as an exponential moving average of the training mini-batch values.
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The Euclidean distance from a point v in layer £’s input space to the layer’s k" hyperplane Hy . is
easily calculated as

[(wp k, v) —
|we k|2

d('l], Hf,k) = (6)

as long as |Jwy || > 0.

Then, the average squared distance between IHy ;. and a collection of points V in layer £’s input space
is given by

2
g
Zd JH i) e (M

by (pek, V) 5
= w2

vl

Appendix E. What affects the robust partition? Reprise

Depth. In Figure 18 we plot LC during training on MNIST for Fully Connected Deep Networks with
depth in {2, 3,4, 5} and width 200. In each plot, we show both LC as well as train-test accuracy. For
all the depths, the accuracy on both the train and test sets peak during the first descent phase. During
the ascent phase, we see that the train LC has a sharp ascent while the test and random LC do not.

The difference as well as the sharpness of the ascent is reduced when increasing the depth of the
network. This is visible for both fine and coarse r scales. For the shallowest network, we can see a
second descent in the coarser scale but not in the finer r scale. This indicates that for the shallow
network some regions closer to the training samples are retained during later stages of training. One
thing to note is that during the ascent and second descent phase, there is a clear distinction between
the train and test LC. This is indicative of membership inference fragility especially during latter
phases of training. It has previously been observed in membership inference literature [21], where
early stopping has been used as a regularizer for membership inference. We believe the LC dynamics
can shed a new light towards membership inference and the role of network complexity/capacity.

In Figure 14, we plot the local complexity during training for CNNss trained on CIFAR10 with varying
depths with and without batch normalization. The CNN architecture comprises of only convolutional
layers except for one fully connected layer before output. Therefore when computing LC, we only
take into account the convolutional layers in the network. Contrary to the MNIST experiments, we
see that in this setting, the train-test LC are almost indistinguishable throughout training. We can see
that the network train and test accuracy peaks during the ascent phase and is sustained during the
second descent. It can also be noticed that increasing depth increases the max LC during the ascent
phase for CNNs which is contrary to what we saw for fully connected networks on MNIST. The
increase of density during ascent is all over the data manifold, contrasting to just the training samples
for fully connected networks.

In Appendix, we present layerwise visualization of the LC dynamics. We see that shallow layers
have sharper peak during ascent phase, with distinct difference between train and test. For deeper
layers however, the train vs test LC difference is negligible.

Width. In Figure 5 we present results for a fully connected DNN with depth 3 and width {20, 100, 500, 1000, 2000}.
Networks with smaller width start from a low LC at initialization compared to networks that are
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Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Figure 15: Layerwise visualization of the input space partition for a 2D domain passing through a
training set triad, after robust partition formation. The partition is visualized for an MLP with depth
6 and width 200, trained on 1000 samples from MNIST, similar to the setting described in Figure 1.
We see that deeper layer neurons partake more in the formation of the robust partition, compared to
shallower layers. This is due to the fact that deeper layer neurons can be more localized in the input
space due to the non-linearity induced by preceding layers.

wider. Therefore for small width networks the initial descent becomes imperceptible. We see that
as we increase width from 20 to 1000 the ascent phase starts earlier as well as reaches a higher
maximum LC. However overparameterizing the network by increasing the width further to 2000,
reduces the max LC during ascent, therefore reducing the crowding of neurons near training samples.
This is a possible indication of how overparameterization performs implicit regularization [13], by
reducing non-linearity or local complexity concentration around training samples.

Weight Decay regularizes a neural network by reducing the norm of the network weights, therefore
reducing the per region slope norm as well. We train a CNN with depth 5 and width 32 and varying
weight decay. In Fig. 21 we present the train and random LC for our experiments. We can see that
increasing weight decay also delays or removes the second descent in training LC. Moreover, strong
weight decay also reduces the duration of ascent phase, as well as reduces the peak LC during ascent.
This is dissimilar from BN, which removes the second descent but increases LC overall.

Batch Normalization. It has previously been shown that Batch normalization (BN) regularizes
training by dynamically updating the normalization parameters for every mini-batch, therefore
increasing the noise in training [6]. In fact, we recall that BN replaces the per-layer mapping
from Equation (1) by centering and scaling the layer’s pre-activation and adding back the learnable
bias b(®). The centering and scaling statistics are computed for each mini-batch. After learning is
complete, a final fixed “test time” mean 7z(*) and standard deviation 7(©) are computed using the
training data. Of key interest to our observation is a result tying BN to the position in the input space
of the partition region from [2]. In particular, it was proved that at each layer ¢ of a DN, BN explicitly
adapts the partition so that the partition boundaries are as close to the training data as possible. This
is confirmed by our experiments in Fig. 14 we present results for CNN trained on CIFAR10, with
and without BN.

Appendix F. Extra Figures
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Input Partition LC,r =0.05 LC,r=0.1 LC,r=0.5 LC,r=1

{

I.
Figure 16: Input space partition computed analytically via SplineCam [10] for the 2D toy setting
presented in Figure 6 (left). Regions are colored by white and knots are colored by red. The partition
is computed for the input space domain [—10, 10]2, induced by an MLP of depth 5 and width 30. We
take a meshgrid of 300 x 300 points over the input domain, and measure the local complexity at
each point with radius, » € {0.05,0.1,0.5, 1} (rest). We see that our proposed method can locate
the non-linearities for small . As r is increased our method provides a coarser estimate of the local
density of non-linearities, i.e., number of non-linearities intersecting the a fixed volume defined by

the local neighborhood.
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Figure 17: Partition visualization for 2D domains localized around the decision boundary (top) and
away from the decision boundary (bottom) for the grokking setup presented in Figure 3. All the plots
are show for the optimization step 95381. Number of regions in the partition for top-right, top-left,
bottom-right, and bottom-left are 123156, 88362, 33273, and 32018 respectively. The domain used
for all of the plots has the same area/volume. Therefore, close to the decision boundary, the region
density is much higher compared to away from the decision boundary. This is evidence of region
migration happening during the latter phases of training.
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Figure 18: MLP with width 200 and varying depth being trained on 1000 samples from MNIST.
Increasing the depth of the network decreases the sharpness of the LC peak during ascend phase.
Deeper networks also tend to have a sharper decline in the training LC during region migration.
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Figure 19: For an MLP with depth 4 and width 200, we train with varying training set sizes and
evaluate the adversarial performance after each training iteration. We see that with increasing dataset
size, the network groks earlier in time, as can be visible in the adversarial grokking curves for all the

different epsilon values.
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Figure 20: Training a 200 width MLP on MNIST with initialization scaling of 8 and varying

depths. Along the row, we consider larger and larger radius neighborhoods for local complexity
approximation.
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Figure 21: Local complexity dynamics training an MLP on MNIST with weight decay
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Figure 22: Increasing the volume of randomly labeled training data. Continued from Figure 5.
Increasing the number of randomly labeled training samples delays the ascent phase of the LC
training dynamics for both training and test samples. For random samples the behavior is not affected

as much.
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Figure 23: Dataset size does not affect the onset of region migration. Local complexity dynamics
training an MLP on MNIST with weight decay
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Figure 24: Training and Test accuracy for the different datset sizes presented in Figure 23.
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Figure 25: LC dynamics for a GeLU-MLP with width 200 and depth {3, 4,5} presented from left to
right. LC is calculated at 1000 training points and 10000 test and random points during training on
MNIST.

Figure 26: Comparing the local complexity measured in terms of the number of linear regions
computed exactly by SplineCAM [9] and number of hyperplane cuts by our proposed method. Both
methods exhibit the double descent behavior.
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Figure 27: Random label radius and depth Sweep
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