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Abstract

We introduce PVSGym, a reinforcement learning (RL) gym environment tailored
for the PVS (Prototype Verification System) theorem prover. PVSGym includes an
ML-friendly dataset of expert-level PVS formalizations drawn from the NASALib
library which span a number of mathematical and computational domains. Our
aim is to catalyze research at the intersection of Al and formal methods, ultimately
advancing proof automation and mathematical discovery. Both the environment
and dataset will be publicly available.

1 Introduction

The advent of large language models (LLMs such as OpenATI’s ol Jaech et al.|[2024]] and DeepSeek-
R1|Guo et al.|[2025]]) has opened up the possibility of constructing problem solving frameworks
that combine soft reasoning (e.g., natural language processing and generation, pattern matching,
search) with hard reasoning procedures (e.g., theorem provers, constraint solvers, rewrite engines).
LLM-driven AI agents are susceptible to hallucination and flawed reasoning, while formal reasoners
tend to be brittle and hard to use. The application of LLMs in assisting with the formalization and
proof of mathematical theorems is one such application. The ultimate goal here is to help users
express mathematical specifications in a formal language and to train models to generate definitions,
conjectures, and proofs in this language.

We introduce PVSGym, the first gym environment for the PVS (Prototype Verification System) theorem
prover. PVS intertwines rich dependently-typed specifications and aggressive state-of-the-art proof
automation into a coherent specification/verification environment that can be readily extended to
fit any desired niche. PVSGym integrates reasoning engines like PVS and its supporting symbolic
decision procedures with Al agents to construct formally verified mathematical proofs. Our work
advances the broader goal of automated mathematical discovery by bridging advances in large-scale
machine learning with the rigor of formal verification.

In summary, our contributions are:

* The first interactive gym-style environment [Brockman et al.|[2016]], PVSGym, for PVS,
enabling the training and evaluation of Al agents for proof search.

* A dataset of theorems and their corresponding proofs derived from the NASALib library, a
collection of industrial-scale theorems used in the mathematical and computational modeling
of safety-critical systems. Each proof is constructed by expert users (NASA engineers, PVS
developers) to ensure correctness and diversity, providing high-quality trajectories that can
serve both as training data and as evaluation benchmarks.

* An application of PVSGym and NASALib to establish initial baselines for RL-guided theorem
proving.
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Figure 1: The figure at the top depicts an interactive PVS proof session of Cantor’s Theorem.
The NASALib dataset contains a number of formalizations used to train/finetune the Al agent in
a reinforcement-learning loop. The figure at the bottom depicts an inference-time workflow for
predicting the next command. PVSGym provides both insight into the model’s prediction probabilities
and an evaluation of the reward by applying the proof commands to the proof state.

1.1 Related Work

For a comprehensive summary of related work, see|Yang et al[[2024]]. We highlight here two primary
sources of inspiration: the CoProver project|Yeh et al.| for proof step prediction and lemma
retrieval and the LeanDojo project Yang et al.|[2023]] for an integrated environment for Al/agentic
integrations to computed-assisted theorem-proving.

2 PVS: A Prototype Verification System

PVS was initially developed over thirty years ago and has been continuously maintained and improved
since then. The PVS specification language is based on higher-order logic extended with dependent
function, tuple, and record types, predicate subtypes, algebraic and coalgebraic datatypes, and
parametric theories. Type correctness is undecidable, but is decidable modulo proof obligations
called Type Correctness Conditions (TCCs). Nearly all of the specification language is executable as
a functional language, and there are generators for extracting efficiently executable code in Common
Lisp and C (with experimental generators for OCaml and Rust). The type systems makes mathematics
coherent by ruling out anomalies such as division by zero or taking the square root of a negative
number. It also makes computation safe so that the execution of a well-typed PVS program cannot
trigger runtime errors. Many ideas initially prototyped in PVS have been adopted in other proof
assistants and verification tools.

Theorem proving, computer-assisted or otherwise, is a practice fraught with sparse reward signals.
Taking steps is like walking in the dark. The PVS methodology has been to reduce the number of
steps you take in the dark and to correct missteps as early as possible. This is accomplished by
the tight integration of decision procedures and proof automation in every command. PVS ships
with an arsenal of such proof engines like the Shostak decision procedures and has
been further enhanced with solvers for monadic second-order logic (WS1S|Owre and Ruess|[2000]),
MetiTarski (Denman and Munoz| [2014]]), binary decision diagrams, symbolic model checking,
external SMT solvers (Yices/Z3). PVS provides user-defined hooks to flexibly develop and integrate
external oracles, allowing users to define what’s obvious in their domain of interest and reason at
its appropriate level of abstraction. For instance, NASA has implemented a sub-theorem prover for
differential dynamic logic and hybrid programs entirely within PVS [Slagel et al| [2024]], which is
available through our NASALib distribution.
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(sum: THEORY
BEGIN

n: VAR nat

sum(n) : RECURSIVE nat =
(IFn=0
THEN O
ELSE n + sum(n - 1)
ENDIF)

MEASURE n

closed_form: THEOREM
sum(n) = (n * (n + 1))/2

END sum

2.1 PVS specification file (. pvs) with formula declarations
and theorem statements.

{(induct—and—simplify "n") ]

2.2 A combined PVS proof command applying
induction on n and applying aggressive simplifi-
cation.

closed_form :

{1} FORALL (n: nat):
sum(n) = (n * (n + 1)) / 2

2.3 PVS sequent on which proof commands will
be applied.

Figure 2: A simple PVS theory formalizing the nth triangular number !*_,¢, and a proof relating it to
its closed-form solution. The PVS tactic induct-and-simplify invokes a high-level induction step
and dispatches low-level arithmetic/theory reasoning with decision procedures and proof engines.

async def run_agent(PORT, file_path, formula_name):
async with PVSExecutor("localhost", str(PORT)) as env:

sequents, info =
print(£"Goal: {sequentsl}")
done = False
while not done:
## recieve command from the agent

state, reward, terminated, truncated, info =

done = terminated or truncated

await env.reset(file_path, formula_name)

await env.step(command)

Figure 3: PVSGym parses and typechecks the PVS specification and then enters the PVS prover
awaiting user or agent commands. Useful information regarding proof state, reward for executed
command, and debug information is readily provided through the APL

3 PVSGym

PVSGym is an interactive environment for PVS similar to the OpenAl Gym Brockman et al.|[2016]
interface, enabling programmatic interaction. To the best of our knowledge, no prior framework
exists that allows users or agents to interact with PVS in a tactic-level execution loop. This envi-
ronment transforms PVS into a symbolic reasoning engine, where agents can issue commands and
receive structured feedback from the PVS prover. In addition to interactive capabilities, the PVSGym
environment supports command communication via a JSON-RPC API to evaluate multiple proof
tree expansions. Together these features are valuable for large-scale data generation, high-throughput

training, and evaluation of proof-generating agents.

PVSGym accepts a PVS specification file and parses/typechecks the specification. The system then
returns a goal sequent for a provided theorem, as shown in Figure [3| After that, the user can send
commands and receive the updated proof state after each command is executed. PVSGym also supports
custom reward functions defined on state/action pairs. For example, it includes a default reward

function that mimics human provers:

* High rewards if all branches are proved

» Smaller positive rewards if some branches are proved or partial progress is made

* Negative rewards if a bad command is issued or if the state does not change after applying a

command



4 Experiments

NASALib Dataset: We construct a large dataset of proof rollouts extracted from the NASA PVS
Libraries called NASALib |[LaRC]. NASALib is a comprehensive formal methods library consisting
of 62 top-level libraries with around 38K proven formulas (including TCCs), designed to support
a wide range of mathematical, logical, and application-specific domains. It spans foundational
areas such as algebra, analysis, topology, linear algebra, probability, and number theory, while
also covering specialized topics like differential dynamic logic, interval arithmetic, multivariate
polynomials, term rewriting systems, cooperative game theory, and aviation safety. The library
integrates automated reasoning tools like MetiTarski, provides executable specifications for structures
like matrices and graphs, and formalizes advanced areas including Lebesgue and Riemann integration,
ordinary differential equations, and temporal logics. The full library and its dependencies can be seen
in Figure[5]in the Appendix.

From these proofs we extract definitions, lemmas, and step-by-step command sequences required to
complete the proofs, including both successful tactic applications and intermediate sequents. The
resulting dataset comprises over 21,743 proof trajectories, each representing a grounded reasoning
task in a formal domain.

Command Prediction Task: We frame theorem proving as a command prediction task, where
the model is trained to generate a valid PVS command given an existing proof state and supporting
material (prior proof states and theory declarations). We experiment with three input configurations:
(i) command-only, (iii) sequent-only (iii) command + current sequent, and all results are reported in
Table

Evaluation: We benchmark on a 95%/5% train-test split with the test set constructed from files
and libraries that are completely disjoint from those used during training. This ensures that no proof
steps, definitions, or contextual information from the test set appear during training. By isolating the
source files, we prevent overlap at both the example and contextual knowledge levels, providing a
more realistic assessment of model performance on unseen proofs.

Experimental details: We fine-tune CodelLlama-7B Roziere et al.|[2023]] on our rollout dataset
with an autoregressive next-token prediction objective. For example, for the cmdhist+sequent setting,
the model is prompted with the current sequent and the previous k=3 commands, and trained to
predict the next command. Training on a single NVIDIA A100 GPU takes 10-12 hours.

During inference, we apply temperature sampling to generate top-k candidate predictions. Each
candidate is scored based on its average log probability, and for every generated output we extract
only the first line (split by newline characters) as the predicted command. This approach ensures both
consistent formatting and alignment with the expected PVS command syntax.

5 Results

Table 1| shows that predictive accuracy improves as the model is given richer contextual information.
Using only command history performs worse than using only the current sequent, while combining
both yields the best performance. This highlights the complementary nature of structural (sequent)
and procedural (history) signals for guiding proof search. Prior work such as CoProver |Yeh et al.
[2023]] has explored similar models but is limited to command-type prediction (e.g., (assert),
(expand), (inst), (replace)), without addressing the more challenging task of predicting full
commands with arguments.

We also present the confusion matrix of our command prediction model on a held-out test set in
the Appendix Figure[d] While some frequently used commands such as (assert), (expand), and
(inst) are predicted with high accuracy, while syntactically or semantically similar commands
(e.g. (skolem)/(skosimp)/(skeep)) exhibit moderate confusion. A more detailed analysis of error
patterns is provided in the Appendix.



Table 1: Command prediction accuracies, with and without command history information. Note that
CoProver*|Yeh et al.|[2023]] evaluates only the command-type prediction task, without testing the
prediction of the correct command arguments.

Method | emdhist + sequent | sequent | cmdhist
K-NN|Yeh et al.| [2023]] 0.28 0.19 0.27
CoProver*|Yeh et al.|[2023]] 0.48 0.28 0.21
Ours 0.49 0.47 0.42

6 Conclusion

We introduced PVSGym, the first interactive environment for the PVS theorem prover, together with
an expert-vetted dataset of proof rollouts from the industrially used NASALib. Both resources, along
with baselines, documentation, and reproducible scripts will be released publicly. We hope this lowers
the barrier to entry for researchers and practitioners of the PVS system, and provides a foundation for
advancing Al-assisted theorem proving.
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We present a confusion matrix of our command prediction model on a held-out test set Figure [4]
Notably, some commands are highly represented such as (assert), (expand), (inst) with each
showing over 1,000 correct predictions. Some syntactically similar commands such as (replace),
(replaces), and (rewrite) are often confused with one another, likely due to overlapping lexical
patterns and similar usage contexts. Similarly, tactical proximity for commands like (skolem),
(skosimp), and (skeep) also exhibit moderate off-diagonal confusion, suggesting that semantically
related tactics are harder to disambiguate without richer context. Finally for low-frequency commands
which occur rarely in the training dataset such as (induct), (move), or (typepred) tend to show

Predicted Command Type

Figure 4: Confusion matrix

weaker prediction accuracy and higher dispersion across predicted labels.
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Figure 5: Summary of NASALib.
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