
DexHub and DART:
Towards Internet Scale Robot Data Collection

Younghyo Park
MIT CSAIL
United States

younghyo@mit.edu

Jagdeep Singh Bhatia
MIT CSAIL
United States

jagdeep@mit.edu

Lars Ankile
MIT CSAIL
United States

ankile@mit.edu

Pulkit Agrawal
MIT CSAIL
United States

pulkitag@mit.edu

Hand
Tracking

States
RealityKit

AR Rendering

Movements
ARKit

DART: Dexterous
Augmented Reality Teleoperation

=

Get our dataset to
train and deploy
robot policies.

Physics Engine

Storage for Simulation Scenes

Hand Retargeter
(Differential IK)

Contact Solver

DexHub: Robot Data Hub on Cloud

Contribute any robot data!

Training
Dataset

Real-world
Datasets

Public
Storage

for
Robot

Datasets

Solve Rubik’s Cube Assembly

Play Piano

Sort Bolts and Nuts

any robot script
import dexhub
dexhub.log(obs, act)

Train with ever-growing data!

Figure 1: We present DART, Dexterous Augmented Reality Teleoperation system, enabling in-
tuitive, low-latency teleoperation with cloud-hosted simulation. Through a user study, we found
that DART enables first-time robot teleoperators to achieve 2.1× faster data collection through-
put with significantly lower physical fatigue than existing real-world teleoperation platforms. To
further support scaling up data collection efforts in the community, we also release DexHub, a
cloud-hosted data hub for robot learning where data collected in DART is automatically stored.
https://dexhub.ai/project

Abstract: The field of robotics has long grappled with a critical challenge: the
scarcity of diverse, high-quality data that can be used to train a generalist robot
policy. While real-world data collection efforts exist, requirements for robot hard-
ware, physical environment setups, and frequent resets significantly impede the
scalability needed for modern learning frameworks. To address these limita-
tions, this paper introduces DART, a novel teleoperation platform that reimag-
ines robotic data collection by leveraging cloud-based simulation and augmented
reality (AR). Our user studies highlight that DART enables higher data collec-
tion throughput and lower physical fatigue compared to real-world teleoperation
frameworks. In addition, our policy training experiments using DART-collected
datasets demonstrate successful Sim2Real transfer with robust trained behaviors.
Most importantly, all data collected through DART is automatically stored in our
cloud-hosted database, DexHub, and publicly available to anyone.

Keywords: Robot Teleoperation, Augmented Reality, Sim2Real

CoRL 2024 Workshop on X-Embodiment Robot Learning.

https://dexhub.ai/project

1 Introduction

Robotics has seen impressive progress with the advent of learning-based control. However, the
primary bottleneck remains the lack of large amounts of diverse and high-quality data for training
robust and generalizable robot policies. It would be ideal to have an internet-scale robotics dataset
that continually and rapidly grows with data coming from everywhere in the world — just like how
people easily upload language and vision data on the internet. Despite recent efforts [1, 2, 3, 4],
we are not there yet. In this paper, we examine and address many key bottlenecks in achieving this
dream.

Consider the typical process of collecting robot data on an example task: moving dishes from sink
to dishwasher. The very first point of friction is setting up the right environment for the robot to
perform the task in. There are two options: physically construct a kitchen in the lab around the robot
or physically move the robot to an actual kitchen. Neither is easy to scale as we will need data from
many kitchens.

Once in the right environment, a common scheme for data collection is to have humans operate the
robot for a task. As an operator, the second point of friction is observing and understanding what
is happening in the scene. Even when in the same room with the robot, due to visual occlusions,
operators may not understand how objects are moving as a result of robot’s operation. Remote
teleoperation adds additional challenges originating from network delays, limited field of view, and
visual artifacts. Such challenges can slow down operators and in some cases prevent them from
performing dynamic or precise tasks.

If the operator manages to resolve the first two challenges and move all the dishes from the sink to
the dishwasher to complete the sample task, a third obstacle emerges; they must then return all the
dishes to the sink to collect a new trajectory! In addition to being time-consuming, this resetting
process is both physically and mentally exhausting as operators must context-switch between robot
control and environment setup. Ensuring that each reset presents the robot with a diverse range of
scenarios is also mentally taxing.

What makes the experience even worse for the operators is the need to repeat the process of tele-
operating and resetting a large number of times. The number of required demonstrations scale with
the task complexity and the extent of required generalization. Unfortunately, humans are known to
lose focus when performing a repetitive job [5].

Finally, say the operator has finished collecting a few hundred demonstrations. How does the
recorded data get processed and stored? It is common to store collected demonstrations on a lo-
cal machine or a private cloud, which is often not shared unless someone explicitly requests it.
Additionally, different data structures and conventions for data storage make data-sharing difficult.

To address the aforementioned pain points in collecting robot data via teleoperation, we introduce
DART, a Dexterous Augmented Reality Teleoperation system, enabling anyone in the world to
teleoperate robots in simulation with an intuitive, game-like AR interface. Connected to a cloud-
hosted simulation, DART allows users to collect demonstrations for an unlimited number of scenes
in one sitting without having to physically set up environments or physically move robots to different
places. DART’s high-fidelity AR rendering allows users to observe the scene in great detail with
minimal occlusion, enabling teleoperation of complex tasks. DART also allows users to reset the
environment with a click of a button, removing the taxing process of physically resetting the scene.

As a result, our user study shows that DART achieves 2.1× faster data collection throughput with
significantly less physical and cognitive fatigue on tasks requiring fine-grained control compared to
most existing robot data collection pipelines. Our experiments also highlight the unmatched ben-
efits of collecting demonstrations in simulation over the real world. Simulation-trained policies
achieve higher robustness than real-world trained policies due to data augmentation and randomiza-
tion strategies only possible in simulation.

Last but not least, all robot demonstrations collected through DART are automatically stored and
logged to our public cloud-hosted database, DexHub, which serves as an open-sourced data hub

2

for robot learning. In fact, DexHub is not limited to hosting DART-generated data; DexHub offers
a simple Python API for anyone to easily log any robot data on the cloud by adding a single line
of code to existing robot execution scripts, dexhub.log(obs,act), offering a seamless cloud-
logging solution for any real-world policy rollout or teleoperation happening around the world.

Our key contributions are outlined as follows:

1. In Sec. 3, we introduce DART, a novel AR-based teleoperation platform, and detail its
system architecture and supported features. We also showcase the diversity of tasks we can
perform with DART, unlocked by enhanced teleoperation experience.

2. In Sec. 4.1, we analyze the impact of different teleoperation interface design choices
through user study. We show that DART enables higher data collection throughput and
lower fatigue than alternatives.

3. In Sec. 4.2, we show that policies trained with data collected via DART can be effectively
transferred to the real world and are more robust than those trained with real-world demos.

4. In Sec. 5, we provide an in-depth overview of the proposed DexHub platform that serves
as a central hub for logging not only the demonstrations generated by DART, but all robot
interactions happening around the world.

2 Related Works

2.1 Large-Scale Robot Data Collection Efforts

Addressing the need for large-scale datasets in robotics, there have been two primary approaches
within the community. The first approach, as exemplified by projects like [1], focuses on gathering
existing datasets from various robotics institutes worldwide into a single place. These initiatives
involve a central team overseeing the data gathering, post-processing, and release. The second
approach involves teams actively collecting large-scale datasets themselves by teleoperating robots
in real-world environments. For example, [2] collected 110k trajectories for diverse tasks through
real-world teleoperation with the help of volunteer participants. Similarly, [3] created a dataset of
60k trajectories using a low-cost robotic arm. Most recently, [4] have released 76k demonstrations
across 564 scenes using a Franka Panda attached to a mobile platform. These efforts all unanimously
highlight the value of large datasets in improving the performance of trained policies.

However, we argue that relying on disconnected, project-level efforts to create such datasets is not
a scalable solution for the robotics community. The episodic, labor-intensive collection efforts seen
in these examples fail to mirror the organic growth of language and vision datasets on the internet.
Furthermore, these datasets are limited in scope, primarily focused on single-arm robots with parallel
jaw grippers, neglecting the richness of bimanual or dexterous manipulations. Finally, these datasets
are collected exclusively in real-world settings, overlooking the significant potential of simulation
as a data source. Simulation allows for the refinement and augmentation of human-collected –
and therefore possibly suboptimal – datasets through online reinforcement learning using massively
parallelizable simulation environments [6]. Such refinement can address the potential performance
saturation often observed on policies trained only with supervised learning [7, 8, 9, 10].

2.2 Collecting Robotic Dataset in Simulation

Using simulation as an alternative environment for collecting demonstrations has been explored in
the community. For example, [11] utilized webcams attached to laptops to allow users to teleoper-
ate various robot morphologies in simulation. [12] employed a VR interface where humans control
simulated dexterous hands, while specialized exoskeletons capture their hand movements. More
recently, with advancements in VR devices, [13, 14] have demonstrated similar technical stacks
that no longer require external hand trackers, but instead utilize the built-in capabilities of modern
VR/AR devices to capture hand movements. All existing VR-based systems use stereo rendering

3

streams as a source of visual feedback. However, relying on raw visual streams of simulated render-
ings inevitably creates a noticeable latency in network communication, forcing designers to trade-off
visual fidelity and latency to maintain real-time performance. The use of Augmented Reality (AR)
for robot teleoperation, on the other hand, has not yet been extensively explored as a solution to
this problem. Finally, no existing platform has fully leveraged simulation’s potential by making
data collection widely accessible and available to the general public – particularly to those without
specialized knowledge in robotics or the ability to set up simulation servers.

3 DART: Teleoperating Robots in Sim via AR

This section details the system architecture of DART and its benefits (Sec 3.1). We then introduce
the main features of the platform (Sec 3.2), which are designed to maximize the platform’s capability
(Sec 3.2) and enhance user experience. DART is easy to install: anyone can download and install
from App Store.

3.1 System Architecture

Simulation Assets as AR Objects Enabled by Apple’s RealityKit, DART presents all assets in sim-
ulation environments, including robots, as photo-realistic AR objects overlayed over each operator’s
real-world environment. Handling visualization locally on the AR device (a) removes unnecessary
latency from transmitting large image data packets and (b) significantly improves the real-timeliness
of the simulation by removing the compute-intensive rendering layer. Variation in latency critically
impacts the user’s data collection throughput and cognitive fatigue, as highlighted by our user study
(See Sec. 4.1).

DART (Ours) Other Immersive
Teleoperation Works

Human
→ Robot

Data Type Hand Tracking Hand and Head
Tracking

25 Hand Keypoints
× SE(3)

(25 Hand Keypoints
+ 1 Head) × SE(3)

Packet Size 0.7kB 0.728kB

Robot
→ Human

Data Type Oracle Sim States Stereo RGB image

n joints × float
m objects × SE(3)

2×(480×640×3)
uint8

Packet Size 1.6kB 1843.2kB

Table 1. We highlight DART’s 1,000× reduction
in network packet size between robot and opera-
tor’s AR device compared to existing frameworks.
n = 58, m = 50 assumed for DART.

Low-Latency Communication Communica-
tion between the AR device, i.e., Apple Vision
Pro, and the cloud-hosted simulation is handled
via gRPC, which facilitates low-latency, asyn-
chronous bidirectional data transfer. The AR
device sends hand-tracking data to the simula-
tion, and asynchronously receives the simula-
tion state. Table 1 highlights the reduced net-
work load of our approach compared to a typi-
cal setting where real-world or simulated cam-
era streams are transmitted over the network.
Even in the most adversarial case, where robots
have n = 58 joints and simulation scenes con-
tain m = 50 objects, the data packet size is over
1,000× smaller than that required for existing
teleoperation frameworks.

Cloud-Hosted
Simulation

Local Machine
and Local Network

CPU AWS EC2 C7i i9-13900k

Packet Travel Time 15.4 ms 10.3 ms
Simulation Step 1.8 ms 1.6 ms

Total 17.2 ms 11.9 ms

Table 2. Comparing the time profile of our system
running on the cloud vs hosted on a local machine.

Cloud-Hosted Simulation The robot simula-
tion is powered by MuJoCo [15] and dynami-
cally launched on AWS Elastic Container Reg-
istry (ECR) as users join. Each simulation
instance runs in the cloud, enabling open ac-
cess and low user setup costs. Due to compact
packet sizes (Table 1), cloud-hosting does not
critically impact the overall latency of our plat-
form compared to local-hosting, as evidenced
in Table 2.

Hand Tracking and Mapping DART leverages Apple’s ARKit to track poses of hand and wrist
keypoints. We use a subset of detected keypoints, which fully determine the end-effector and finger
movements, as target points for robots to track. Specifically, for robot systems with parallel-jaw

4

grippers, we use the xyz position of 4 finger key points as tracking targets, which fully determine
the SE(3) pose of the robot’s end-effector (Fig. 2).

Figure 2: 4 finger keypoints used as tracking
points for robots with parallel-jaw grippers.

DART uses differential inverse kinematics [16]
by defining position-only tracking costs for
each keypoints, e(p). We additionally ap-
ply basic safety constraints, i.e., self-collision
avoidance, expressed as d(q). The resulting op-
timization problem is as follows,

min
v∈c

∑
p∈P

∥Je(q)v + αe(p)∥2

s.t. vmin(q) ≤ v ≤ vmax(q), d(q) > 0.

For dexterous five-fingered hands, we use six
position-only keypoints – five from the fingertips and one from the wrist.

3.2 System Features

DART supports a wide range of features to enhance the teleoperation experience while maintaining
low setup costs, allowing anyone to participate in robotics data collection.

Pre-Designed Robots and Scenes Out-of-the-box, DART supports many robots: Unitree Hu-
manoid Series (H1, G1), ALOHA [17], UR5 with multiple end-effectors (Robotiq 2F-85 gripper,
Allegro Hand, Shadow Hand), Franka Research 3 with Panda Hand. High-fidelity MuJoCo models
of these robots were provided by [18].

Importing Custom Scenes Users can import custom simulation environments and assets to extend
the platform’s capabilities further. Assets can be uploaded through our online portal [https:
//dexhub.ai] and accessed via DART App on VisionOS App Store.

One-Click Reset DART includes an efficient task-resetting feature in simulation. Users can reset
the environment with a single click of a button, significantly reducing operator fatigue and increasing
data collection throughput.

Instant Task Switching In addition to resetting a single scene, DART enables quick switching
between various tasks and simulation environments. This functionality minimizes the operator’s
mental fatigue that arises from repetitively performing the same task, allowing for a more engaging
data collection experience.

Capability and Task Diversity DART is capable and versatile. It supports a wide range of tasks,
from simple object manipulation to complex, precise, and dexterous maneuvers, as highlighted in
Figure 1. These examples and those below illustrate the platform’s potential to support various
research and practical applications in robotics. Please find videos on our website.

• Fine motor skills: e.g., picking up small objects.

• Household chores: e.g., organizing kitchen countertop, hanging mugs on a rack.

• Dexterous Manipulation: e.g., solving a Rubik’s cube.

4 Experiments
Our experiments address two key questions:

1. How intuitive is DART for robotics novices to use? We conduct a formal user study to
assess the platform’s accessibility to individuals without robotics expertise. (Section 4.1)

2. Can the data collected in simulation be effectively transferred to real-world robots? We
demonstrate that policies trained on data collected through DART transfer zero-shot to real
environments with simple Sim2Real techniques. We also highlight the generalizability of
DART policies compared to those trained with real-world data. (Section 4.2)

5

https://dexhub.ai
https://dexhub.ai

DART Modulation of
Command Interface

Modulation of
Visual Feedback Design ALOHA [17]

Finger
Tracking

↓
Kinematic

Double

Rendering as
AR Objects

↓
Sim Rendering
(RGB, Stereo)

Rendering as
AR Objects

↓
Sim Rendering
(RGB, Mono)

Active
Viewpoint

↓
Fixed

Viewpoint

Data
Throughput

7.8
parts / min

6.8
parts / min

3.6
parts / min

3.0
parts / min

2.7
parts / min

3.7
parts / min

Table 3. Quantitative comparison between different teleoperation setups for two ViperX arms with
parallel-jaw gripper [17]. Users are tasked to organize ten bolts and nuts into two boxes, and DART
allowed users to organize 7.77 parts per minute on average, while modulation of both command
interface and visual feedback settings dropped the performance significantly. We report percent
change in throughput relative to DART averaged across users.

4.1 User Study
Through a controlled user study, we analyze the impact of DART’s design decisions on intuitiveness
and usability. Specifically, we compare: (a) the experience of collecting data in real-world versus
simulation environments (Sec 4.1.1), (b) methods of visual perception (Sec 4.1.2), and (c) control
interfaces (Sec 4.1.3). A total of nine participants with no prior experience in robotics were recruited.

In varying settings, participants spent 7 minutes collecting as many robot demonstrations as possible.
We asked the participants to organize 10 bolts and nuts from a table into boxes. Participants were
responsible for resetting the scene both in simulation and real-world environments via reset button
or manual effort, respectively. Participants teleoperated two ViperX arms with parallel-jaw grippers,
and kinematically equivalent teacher devices were used as a real-world teleoperation interface [17].
Quantitative results are presented in Table 3; further analysis follows.

4.1.1 Teleoperating in Real-World vs Simulation

Figure 3: Time spent in DART is more productive than
real-world equivalent.

Our user study comparing DART and real-
world teleoperation revealed two key find-
ings. First, a significant portion of time in
real-world data collection is spent physi-
cally resetting the environment and man-
aging unexpected hardware failures (e.g.,
performing electrical resets after motor
malfunctions) as reported in Fig. 3. By
contrast, most of the time in DART is ded-
icated to actual data collection.

Bolt and Nut
Sorting

(with ALOHA)

Travel Items
Sorting

(with RB-Y1)

Precise Part
Insertion

(with RB-Y1)

Bimanual
Handover

(with RB-Y1)
Tasks

0

20

40

60

Da
ta

 T
hr

ou
gh

pu
t

(#
 o

f p
ar

ts
/it

em
s)

DART (Ours)
Real-world Teleoperation

Figure 4: Data throughput comparison between DART
and real-world teleoperation systems. For each robot
and task, five participants were asked to teleoperate the
tasks as many as possible for 7 minutes. For real-world
teleoperation, kinematically equivalent teacher device
was used as a teleoperation interface.

Second, even after accounting for reset
times and hardware malfunctions, partic-
ipants in real-world teleoperation showed
around 2× lower data collection through-
put. For a comparison experiment with
wide range of real-world data collection
systems, we used two different robot sys-
tems: dual ViperX arms [17] and RB-Y1
from Rainbow Robotics. Both data col-
lection system has kinematic double as its
teleoperation interface. Total 20 partici-
pants were asked to perform 4 bimanual
tasks ranging from relatively simple ob-
ject rearrangment task to precise insertion
tasks. Figure 4 shows the data throughput
comparison between DART and two dif-
ferent real-world robot systems.

6

4.1.2 Effect of Visual Observation on Human Operator’s Performance
Our key findings are threefold. First, transmitting images over a network inevitably introduces a
tradeoff between latency and decreased visual fidelity, which can negatively impact teleoperation
experience. All methods transmitting simulation renderings over the network (those with stero and
mono rendering) suffered a significant drop in user’s data collection throughput compared to DART
which transmits only the raw simulation states. Second, we find that mono rendering, which limits
the ability to properly perceive depth, suffered a performance drop over stereo rendering. Addi-
tionally, some participants reported feeling nauseous (Table 3) with stereo rendering – which uses
a fixed interpupillary distance (IPD). By contrast, DART relies on VisionOS’s 1 native rendering
engine, which dynamically adjusts to each user’s IPD [19]. Finally, we found that active perception,
where users can explore their surroundings and adjust their viewpoint by moving their heads, is
critical. Teleoperation without active perception reduces the data collection rate by 21.7%.

4.1.3 Control Method
We compared two methods for operating robots in simulation: a) a kinematically equivalent teacher
device and b) inverse kinematics (IK) using hand tracking keypoints as targets. Our findings indicate
that the kinematic double did not significantly improve task success rate over its IK equivalent.
While the kinematic double provides more direct control over the robot’s joints, users reported that
the intuitive hand tracking offered by DART was sufficient, or even better, due to reduced weight
and strain on the operator (Table 3).

4.2 Sim2Real and Generalizability

(a) Nominal Lab Setting (b) Cam Pose Change

(c) Unseen Distractions (d) Green background

(e) Lighting Change (f) Location Change

Figure 5: Six different settings to evaluate
the robustness of our vision-based policy.

Both DART and real-world data collection offer dis-
tinct advantages for real-world policy training. With
DART, roboticists benefit from significantly higher
data throughput with reduced physical and cognitive
demands, as demonstrated by our user study (Sec.
4.1). One minor downside of using DART is the
need to import scenes into the simulation environ-
ment. Fortunately, with modern advances in com-
puter vision [20, 21], scanning 3D objects from the
real world has become incredibly efficient. The big-
ger challenge, however, lies in bridging the poten-
tially large Sim2Real gap. Given these trade-offs,
how does one weigh the benefits of faster data col-
lection against the challenge of real-world deploy-
ment?

Our experimental results suggest that collecting data
in simulation offers more advantages than draw-
backs when paired with a proper Sim2Real pipeline.
In particular, we demonstrate the unique robustness
of Sim2Real-transferred policies, enabled by diverse
data augmentation techniques only available in sim-
ulation environments.

Specifically, we compare two types of RGB vision policies: (a) a policy trained on real-world data,
and (b) a policy trained on simulation data collected through DART. Both policies are trained on
two tasks with 50 minutes of operator effort. Both policies also use a standard ACT [17] imple-
mentation at 20Hz. Real-world datasets are augmented with Gaussian blur and color-jitter. DART
datasets were additionally augmented by randomizing the camera extrinsic and intrinsics, replacing
the background with random textures and images from [22, 23, 24], and randomizing the lighting
setting in simulation (Figure 6).

1Apple’s Operating System for AR devices

7

(a) Real-world Images (b) Simulation Renderings with Augmentations

Figure 6: Visual comparison between training images for Real and DART policies.

Task Pick Mug in Basket Sorting Small Items

Trained on data from Real-world DART Real-world DART

Lab Space 65% 80% 45% 60%
with:

Lighting Changes 45% 45% 25% 65%
Background Changes 10% 60% 5% 40%
Cam. Pose Changes 5% 35% 0% 40%
Unseen Distractions 0% 70% 0% 45%

Communal Kitchen 0% 50% 0% 35%

Table 4. Success rates for policies trained with 50 minutes
of data collection effort in the real-world v/s DART. The re-
sults highlight the robustness of policies trained with simu-
lation data, enabled by diverse data augmentation strategies.

Inspired by [25], we evaluated poli-
cies in six diverse environments in
the real world illustrated in Fig.
5. We found that our DART poli-
cies not only demonstrate zero-shot
Sim2Real in the nominal setting but
also significantly outperform the Real
policy in many of the modified set-
tings (Table 4). Our results highlight
the benefit of scaling up simulation
data versus real-world data: a single
demo in simulation, which can be ag-
gressively augmented, is more valu-
able for learning than that collected
in real world.

5 DexHub: Central Data Hub for Robot Learning on the Cloud

5.1 Purpose and Vision

To serve as a central data hub for logging every demonstration collected through DART, we de-
veloped DexHub, a cloud-hosted data repository where anyone can sign in and retrieve datasets
collected by themselves and others.

In fact, to further enhance its role as an organically growing data hub, DexHub also provides an
API that enables users to log all robot interaction with ease, regardless of whether they use DART
or other setups. Leveraging a cloud database, user authentication system, and secure data logging,
the API allows seamless integration for individuals and institutions alike to contribute and access
data. The user authentication system ensures that every data contribution is properly attributed to
the individual who made it, offering potential for future reward mechanisms based on contributions.

5.2 API for End-Users

DexHub’s token-protected API supports multiple key functionalities ranging from downstream
(downloading from the cloud) and upstream (uploading to the cloud) operations.

Downstream API Users can retrieve the data they have personally collected through DART by
simply hitting /get-my-data with an API key retrieved from our website. This endpoint returns
a list of downloadable links for every log file that users have uploaded to the cloud. The API also
allows users to access the global dataset which includes robot data collected and contributed by
other users. Access to the global dataset is available to all DexHub contributors.

Upstream API We provide an easy-to-use upstream API allowing users to contribute to DexHub
without an AR device. A simple addition of dexhub.log(obs, act) to any Python-based
robot execution script will automatically log and upload robot interactions to DexHub. All upstream
contributions will be logged in the system and properly attributed to the individual who contributed,
unlocking access to the global dataset via the downstream API. To retrieve the API keys and learn
more about the detailed usage instructions, visit [https://dexhub.ai/].

8

https://dexhub.ai/

References
[1] A. O’Neill, A. Rehman, A. Maddukuri, A. Gupta, A. Padalkar, A. Lee, A. Pooley, A. Gupta,

A. Mandlekar, A. Jain, et al. Open x-embodiment: Robotic learning datasets and rt-x models:
Open x-embodiment collaboration 0. In 2024 IEEE International Conference on Robotics and
Automation (ICRA), pages 6892–6903. IEEE, 2024.

[2] H.-S. Fang, H. Fang, Z. Tang, J. Liu, C. Wang, J. Wang, H. Zhu, and C. Lu. Rh20t: A com-
prehensive robotic dataset for learning diverse skills in one-shot. In 2024 IEEE International
Conference on Robotics and Automation (ICRA), pages 653–660. IEEE, 2024.

[3] F. Ebert, Y. Yang, K. Schmeckpeper, B. Bucher, G. Georgakis, K. Daniilidis, C. Finn, and
S. Levine. Bridge data: Boosting generalization of robotic skills with cross-domain datasets.
arXiv preprint arXiv:2109.13396, 2021.

[4] A. Khazatsky, K. Pertsch, S. Nair, A. Balakrishna, S. Dasari, S. Karamcheti, S. Nasiriany,
M. K. Srirama, L. Y. Chen, K. Ellis, et al. Droid: A large-scale in-the-wild robot manipulation
dataset. arXiv preprint arXiv:2403.12945, 2024.

[5] J. A. Häusser, S. Schulz-Hardt, T. Schultze, A. Tomaschek, and A. Mojzisch. Experimental
evidence for the effects of task repetitiveness on mental strain and objective work performance.
Journal of Organizational Behavior, 35(5):705–721, 2014.

[6] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin, D. Hoeller, N. Rudin,
A. Allshire, A. Handa, and G. State. Isaac gym: High performance gpu-based physics simula-
tion for robot learning, 2021.

[7] S. Ross and D. Bagnell. Efficient reductions for imitation learning. In Y. W. Teh and M. Tit-
terington, editors, Proceedings of the Thirteenth International Conference on Artificial In-
telligence and Statistics, volume 9 of Proceedings of Machine Learning Research, pages
661–668, Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010. PMLR. URL https:
//proceedings.mlr.press/v9/ross10a.html.

[8] S. Ross, G. Gordon, and D. Bagnell. A reduction of imitation learning and structured predic-
tion to no-regret online learning. In Proceedings of the fourteenth international conference
on artificial intelligence and statistics, pages 627–635. JMLR Workshop and Conference Pro-
ceedings, 2011.

[9] T. Z. Zhao, J. Tompson, D. Driess, P. Florence, S. K. S. Ghasemipour, C. Finn, and A. Wahid.
Aloha unleashed: A simple recipe for robot dexterity. In 8th Annual Conference on Robot
Learning.

[10] L. Ankile, A. Simeonov, I. Shenfeld, M. Torne, and P. Agrawal. From imitation to refinement–
residual rl for precise visual assembly. arXiv preprint arXiv:2407.16677, 2024.

[11] Y. Qin, W. Yang, B. Huang, K. Van Wyk, H. Su, X. Wang, Y.-W. Chao, and D. Fox.
Anyteleop: A general vision-based dexterous robot arm-hand teleoperation system. arXiv
preprint arXiv:2307.04577, 2023.

[12] M. Mosbach, K. Moraw, and S. Behnke. Accelerating interactive human-like manipulation
learning with gpu-based simulation and high-quality demonstrations. In 2022 IEEE-RAS 21st
International Conference on Humanoid Robots (Humanoids), pages 435–441. IEEE, 2022.

[13] A. Iyer, Z. Peng, Y. Dai, I. Guzey, S. Haldar, S. Chintala, and L. Pinto. Open teach: A versatile
teleoperation system for robotic manipulation. arXiv preprint arXiv:2403.07870, 2024.

[14] X. Cheng, J. Li, S. Yang, G. Yang, and X. Wang. Open-television: teleoperation with immer-
sive active visual feedback. arXiv preprint arXiv:2407.01512, 2024.

9

https://proceedings.mlr.press/v9/ross10a.html
https://proceedings.mlr.press/v9/ross10a.html

[15] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026–
5033. IEEE, 2012. doi:10.1109/IROS.2012.6386109.

[16] S. Caron, Y. De Mont-Marin, R. Budhiraja, S. H. Bang, I. Domrachev, and S. Nedelchev.
Pink: Python inverse kinematics based on Pinocchio, 2024. URL https://github.com/
stephane-caron/pink.

[17] T. Z. Zhao, V. Kumar, S. Levine, and C. Finn. Learning fine-grained bimanual manipulation
with low-cost hardware. arXiv preprint arXiv:2304.13705, 2023.

[18] K. Zakka, Y. Tassa, and MuJoCo Menagerie Contributors. MuJoCo Menagerie: A collec-
tion of high-quality simulation models for MuJoCo, 2022. URL http://github.com/
google-deepmind/mujoco_menagerie.

[19] URL https://support.apple.com/en-us/118507#:˜:text=Apple%
20Vision%20Pro%20features%20an,feel%20contact%20on%20your%
20nose.

[20] M. Daneshmand, A. Helmi, E. Avots, F. Noroozi, F. Alisinanoglu, H. S. Arslan, J. Gorbova,
R. E. Haamer, C. Ozcinar, and G. Anbarjafari. 3d scanning: A comprehensive survey. arXiv
preprint arXiv:1801.08863, 2018.

[21] S. Hampali, T. Hodan, L. Tran, L. Ma, C. Keskin, and V. Lepetit. In-hand 3d object scanning
from an rgb sequence. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 17079–17088, 2023.

[22] M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, and A. Vedaldi. Describing textures in the
wild. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 3606–3613, 2014.

[23] A. Kuznetsova, H. Rom, N. Alldrin, J. Uijlings, I. Krasin, J. Pont-Tuset, S. Kamali, S. Popov,
M. Malloci, A. Kolesnikov, et al. The open images dataset v4: Unified image classification,
object detection, and visual relationship detection at scale. International journal of computer
vision, 128(7):1956–1981, 2020.

[24] A. Quattoni and A. Torralba. Recognizing indoor scenes. In 2009 IEEE conference on com-
puter vision and pattern recognition, pages 413–420. IEEE, 2009.

[25] A. Xie, L. Lee, T. Xiao, and C. Finn. Decomposing the generalization gap in imitation learning
for visual robotic manipulation. In 2024 IEEE International Conference on Robotics and
Automation (ICRA), pages 3153–3160. IEEE, 2024.

10

http://dx.doi.org/10.1109/IROS.2012.6386109
https://github.com/stephane-caron/pink
https://github.com/stephane-caron/pink
http://github.com/google-deepmind/mujoco_menagerie
http://github.com/google-deepmind/mujoco_menagerie
https://support.apple.com/en-us/118507#:~:text=Apple%20Vision%20Pro%20features%20an,feel%20contact%20on%20your%20nose.
https://support.apple.com/en-us/118507#:~:text=Apple%20Vision%20Pro%20features%20an,feel%20contact%20on%20your%20nose.
https://support.apple.com/en-us/118507#:~:text=Apple%20Vision%20Pro%20features%20an,feel%20contact%20on%20your%20nose.

	Introduction
	Related Works
	Large-Scale Robot Data Collection Efforts
	Collecting Robotic Dataset in Simulation

	DART: Teleoperating Robots in Sim via AR
	System Architecture
	System Features

	Experiments
	User Study
	Teleoperating in Real-World vs Simulation
	Effect of Visual Observation on Human Operator's Performance
	Control Method

	Sim2Real and Generalizability

	DexHub: Central Data Hub for Robot Learning on the Cloud
	Purpose and Vision
	API for End-Users

