Improving Value Estimation Critically Enhances Vanilla Policy Gradient

Tao Wang ! Ruipeng Zhang' Sicun Gao'

Abstract

Modern policy gradient algorithms, such as TRPO
and PPO, outperform vanilla policy gradient in
many RL tasks. Questioning the common belief
that enforcing approximate trust regions leads to
steady policy improvement in practice, we show
that the more critical factor is the enhanced value
estimation accuracy from more value update steps
in each iteration. To demonstrate, we show that
by simply increasing the number of value update
steps per iteration, vanilla policy gradient itself
can achieve performance comparable to or bet-
ter than PPO in all the standard continuous con-
trol benchmark environments. Importantly, this
simple change to vanilla policy gradient is sig-
nificantly more robust to hyperparameter choices,
opening up the possibility that RL algorithms may
still become more effective and easier to use.

1. Introduction

Deep policy gradient methods have demonstrated their
strength in various domains, including robot learning (Song
et al., 2023), game playing (Vinyals et al., 2019), and large
language model training (Ouyang et al., 2022). Policy gra-
dient methods in its modern versions, such as Trust Region
Policy Optimization (TRPO) (Schulman et al., 2015a), Prox-
imal Policy Optimization (PPO) (Schulman et al., 2017),
have been the popular choice for delivering state-of-the-
art performance across the broad range of RL tasks. In
comparison, the original policy gradient algorithm, Vanilla
Policy Gradient (VPG) (Sutton et al., 1999), typically per-
forms significantly worse than the modern algorithms. The
common explanation for why TRPO and PPO outperform
VPG is their ability to prevent excessive large policy up-
dates. This is achieved through a surrogate objective that
incorporates importance sampling, constrained by a limit
on policy step size each iteration. While monotonic im-

lUniversity of California, San Diego, La Jolla, USA. Corre-
spondence to: Tao Wang <taw003 @ucsd.edu>.

Proceedings of the 42" International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

provement is theoretically guaranteed for sufficiently small
policy updates (Kakade & Langford, 2002; Schulman et al.,
2015a), empirical results suggest otherwise: smaller learn-
ing rates for the policy network do not always yield better
performance (Andrychowicz et al., 2021). According to the
trust region theory (Schulman et al., 2015a), there is a gap
between theory and practice because the theory guarantees
improvement of the original policy objective only when the
surrogate objective improves by a margin greater than the
distance between the old and new policies. However, there
is no guarantee that this condition is consistently satisfied
in practical policy training.

Moreover, it has been reported that deep policy gradient
methods often suffer from implementation issues such as
brittleness, poor reproducibility, and sensitivity to hyperpa-
rameter choices (Henderson et al., 2018; Engstrom et al.,
2020; Andrychowicz et al., 2021). Extensive empirical
analysis has shown that the behavior of deep policy gra-
dient methods does not align with the predictions of their
motivating framework (Ilyas et al., 2020). Recent studies
further highlight that the optimization landscape of many
RL tasks is highly non-smooth and even fractal, raising
questions about the well-posedness of all policy gradient
methods (Wang et al., 2023). Consequently, there is still no
clear answer to the question: while almost all theoretical as-
sumptions are violated in practice, why does PPO perform
better than vanilla policy gradient empirically?

In this paper, we present a different perspective on deep pol-
icy gradient methods within the actor-critic framework: ac-
curate value estimation is more critical than enforcing trust
regions. We first demonstrate that, in practice, trust region
methods do not behave as their theoretical analysis suggests.
Then, we analyze how TRPO and PPO implicitly enhance
value estimation through their implementation designs. Our
theoretical analysis reveals that the true value often grows
significantly faster than the critic’s predictions, leading to
poor value estimation during policy training. Finally, empir-
ical results show that simply increasing the number of value
updates enables the basic VPG algorithm to match PPO’s
performance across multiple continuous control benchmarks
in Gymnasium. This highlights the pivotal role of value es-
timation in improving policy gradient methods.

This paper is organized as follows. In Section 4, we analyze

Improving Value Estimation Critically Enhances Vanilla Policy Gradient

the relationship between trust regions and policy improve-
ment, demonstrating that there is no clear correlation. This
suggests that enhancing a trust region may not be the fun-
damental reason for the success of trust region methods. In
Section 5, we explain that both TRPO and PPO perform
more value steps per iteration compared to VPG, funda-
mentally contributing to closer value approximation and
improved performance. Additionally, we provide a theo-
retical framework suggesting that value networks typically
require more gradient steps to optimize than policy networks.
In Section 6, extensive experiments are conducted and pre-
sented to corroborate our theoretical analysis. Specifically,
we show that by increasing the number of value steps alone,
VPG achieves performance similar to or better than PPO
across several Gymnasium benchmarks.

2. Related Work

Performance gap between VPG and PPO. Much work
has been done to understand the performance gap between
VPG and PPO. It has been shown that the VPG loss performs
significantly worse than the PPO loss, even with optimally
conditioned hyperparameters (Andrychowicz et al., 2021;
Raffin et al., 2021). On the theoretical side, the global opti-
mality of TRPO/PPO is proven for overparameterized neural
networks under the assumption of a finite action space (Liu
et al., 2019). It is also shown that ratio clipping may not
be necessary in PPO (Sun et al., 2023). Another theory
suggests that policy gradients work by smoothing the value
landscape (Wang et al., 2024), indicating that the choice
of policy objective may not be a critical factor affecting
performance, as all of them provide the same smoothing
effect through Gaussian kernels. In this work, we take a step
forward to demonstrate that the fundamental gap between
VPG and PPO lies in value estimation, and by optimizing it,
VPG can achieve performance comparable to PPO.

Value estimation in off-policy methods. Although it has
been demonstrated that an optimal baseline in policy gradi-
ents can effectively reduce the variance of the policy gra-
dient estimator (Peters & Schaal, 2008), it remains unclear
to what extent value estimation affects the performance of
on-policy algorithms. In contrast, the importance of value
estimation has been extensively studied in off-policy algo-
rithms. In particular, it has been found that the max operator
may lead to overestimated () values, and double () learning
methods were introduced to mitigate this error in estima-
tion (van Hasselt, 2010; van Hasselt et al., 2016). This
method also serves as one of the keystones in advanced
off-policy algorithms such as TD3 (Fujimoto et al., 2018)
and SAC (Haarnoja et al., 2018), compared to the DDPG
algorithm (Lillicrap et al., 2015). Additionally, it has been
numerically shown that using state-action-dependent base-
lines does not reduce variance compared to state-dependent

baselines in benchmark environments (Tucker et al., 2018).

Implementation matters in deep policy gradients. De-
spite its accomplishments, deep RL methods are notorious
for their brittleness, lack of stability and reliability (Hender-
son et al., 2018; Engstrom et al., 2020). Furthermore, it has
been reported that the performance of PPO heavily relies on
code-level optimization techniques, due to its sensitivity to
hyperparameter choices (Henderson et al., 2018; Engstrom
et al., 2020) and regularization techniques (Liu et al., 2021).
Recent works aimed at systematically understanding and
addressing hyperparameter tuning issues in deep RL have
been developed (Paul et al., 2019; Eimer et al., 2023; Ad-
kins et al., 2024). We contribute to this line of research by
directly identifying value estimation as the core component
that makes deep policy gradients work.

3. Preliminaries

Consider an infinite-horizon Markov decision process
(MDP), defined by the tuple (S, A, , 7, po,y), where the
state space S and the action space A are continuous and
compact, ® : § x § x A — [0, 00) is the transition proba-
bility density function, R : S — R is the reward function,
po is the distribution of the initial state sg, and vy € (0,1) is
the discount factor. For a parameterized stochastic policy
my, the policy objective to maximize is given by

oo

J(Q) =]E(St,at)NTrg,SoEpo {Z ’VtR(Sta at):| ’ (1)

t=0

where § € RY is the policy parameter. According to (Sutton
et al., 1999), the original form of policy gradient estimator
is given as:

V@J(Q)oc/sp”(s)/AQ”(s,a)ngg(ab) dads, (2)

where Q™ is the @-function of the current policy 7 and
p™ the discounted visitation frequencies. While there are
various methods for approximating () values, the most
commonly used approach is Monte-Carlo, which esti-
mates the discounted return for each trajectory, i.e., Gy =
ZT k=t Ry.. Th illa poli dient loss is gi

ot %- The vanilla policy gradient loss is given as

L(0) = By, ay)om, [1og mo(ar]st) (;t] : 3)
which is the REINFORCE algorithm (Williams, 1992).

REINFORCE with baseline. In practice, the variance
of the estimation Qt can be large, making it difficult to
distinguish between higher-valued actions and less highly
valued ones. This motivates the use of baseline functions
to reduce the variance (Sutton & Barto, 1998). In this case,

Improving Value Estimation Critically Enhances Vanilla Policy Gradient

the objective is given by:
LPG(Q) = E(St,at)'\/ﬂ‘g IOg o (at|5t) Ati|7 (4)

where A, = Qt — (st) is the estimated advantage of
(s¢,az), and V is the estimated value function of the current
policy 7 which serves as the baseline. Let Vi (s) = V(s; ¢)
denote the value approximation to the true value function
V™ by a neural network where ¢ € RM is the network
parameter.

In some literature, this algorithm is also referred to as Ad-
vantage Actor-critic (A2C) (Mnih et al., 2016)). To avoid
any potential ambiguity, we henceforth refer to the objective
in equation (4) whenever mentioning the vanilla policy gra-
dient (VPQG) algorithm. In the following sections, we will
demonstrate that optimizing the objective in equation (4)
is sufficient to achieve performance comparable to PPO,
provided that the baseline function Vis properly optimized.

Trust region methods. According to the conservative pol-
icy iteration method (Kakade & Langford, 2002), a small
policy update that improves the corresponding surrogate
objective is guaranteed to improve the true policy objective.
This result motivated the TRPO algorithm (Schulman et al.,
2015a), which optimizes the following surrogate objective:

LTRPO 9y — [N [We(at\st)A] 5
() (s¢,a¢)~mo W(at|8t) t (%)
which is further subject to a constraint on the KL divergence
between the current and the old policy:

Bunr | Dicr(mCls) | 7Cls)| <6, ©)

for some § > 0. In practice, however, TRPO can be expen-
sive, as it involves the computation of second-order deriva-
tives. This motivates the PPO algorithm (Schulman et al.,
2017), which simplifies the objective and avoids the need
for second-order derivatives:

LPPO9) = K, [min (rtflt,clip(rt, 1—¢€1+ E)At))],

N
where 7; = 7¢ is the probability ratio from importance
sampling, and e is the clipping parameter.

4. Revisiting Trust Regions

According to the theoretical analysis in TRPO (Schulman
et al., 2015a), the true performance J(-) is guaranteed to
improve when a policy update is made to improve the TRPO
surrogate LT %P0 (.), provided that the KL divergence be-
tween two consecutive policies is small enough. This condi-
tion is expressed through the following inequality:

4
By D

J(0) = LTPO(6) — A=z lKe (7o | m0,0.) (8)

where = max; o |Ax(s,a)| is the maximum advantage
value. In practice, the TRPO algorithm solves the following
approximate constrained optimization problem (Achiam,
2018):

maxiemize VeLTRPO(@‘ (0 — boia)

0=0o14

1
subject to 5(9 — Hold)TH(G —Op1d) <6
where H is the Hessian of F,., |:DKL(7T9(‘|S)|7T("S)):|,
which provides a quadratic approximation to the KL con-
straint. Solving with conjugate gradient methods leading

to the update rule 01 = 0 + o’

g = VoLTEPO(9)|4_e, denotes the gradient at 6 = 0y,
a € (0,1) is the backtracking coefficient, and j is the small-
est nonnegative integer that makes the update satisfy the KL,
constraint (6) while producing a positive surrogate advan-
tage.

25 —1
THgH g, where

However, there are two issues with the design in prac-
tice. First, although it is proven that Vo LTRPO(0)|g—g, =
Vo J(0)]|g=p, under conditions that assume the existence
of gradients (Schulman et al., 2015a), the gradient V.J(6)
may not exist for many continuous control problems in the
first place. This is because the policy optimization land-
scapes in these cases often exhibit fractal structures, as il-
lustrated in Figure 1 (Wang et al., 2023). Consequently, the
linear approximation used in the TRPO implementation may
poorly represent the original objective, making it difficult to
attribute the success of TRPO to this approximation.

e 0

Mfﬂ W ,,l‘ bt
W

Lt W il

(b) Walker2d-v3

s0)

(a) Hopper-v3

Figure 1. Policy objectives in many continuous-control environ-
ments are highly non-smooth and fractal.

Second, since the approximate objective is linear in 6 and
the quadratic constraint induces a convex feasible region,
the solution to this problem should always lie on the bound-
ary of the feasible region. As a result, the practical al-
gorithm attempts to take the largest possible step in each
iteration, whereas the theory suggests taking the smallest
step to guarantee policy improvement. This discrepancy
suggests that the effectiveness of trust region methods may
not stem solely from their enforcement of theoretical con-
straints, but rather from hyperparameter tuning and practical

Improving Value Estimation Critically Enhances Vanilla Policy Gradient

12{ — vpG 1.4
—— PPO w/ 10 epochs
PPO W/ 1 epoch 0.8 S-SR dl L el ol

0a WWM\M‘.&.A
— VPG
—— PPO w/ 10 epochs
__________________________ 02 PPO w/ 1 epoch
- 1-¢
0.0

0.2 .4 0.4 0.8 1.0 0.2 0.4 0.6 0.8 1.0
Timestep 16

o N & o ®
°
Y

Timesten 16

(a) maximum ratio max r¢ (b) minimum ratio min r

— VPG
—— PPO w/ 10 epochs
3000 PPO w/ 1 epoch

—— PPO w/ 10 epochs
05 PPO w/ 1 epoch

il

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
Timestep 1e6 Timestep 1e6

(c) clipping fraction (d) cumulative reward

Figure 2. We compare the performance of different implementa-
tions on the MuJoCo Hopper task. The clipping parameter is set to
€ = 0.2 as default.

code-level optimizations that extend beyond the theoretical
framework (Henderson et al., 2018).

Ratio trust regions in PPO. To simplify implementation,
PPO instead defines trust regions using the importance sam-
pling ratio rather than KL divergence. However, despite
the potential correlation, there is no strong correspondence
between enforcing a trust region and policy improvement.
Notably, during PPO training, the maximum probability ra-
tio max; r; can significantly violate the trust region defined
by the clipping coefficient € (Engstrom et al., 2020). This
occurs because the gradient Vyr; vanishes outside the trust
region (e.g., when r; > 1 4 ¢) due to the clipping opera-
tor. Consequently, if an excessively large step is taken on
mg(a¢|s¢) such that ry leaves the trust region, it may not be
pulled back to the trust region anymore due to the vanishing
gradient.

Our empirical results support this observation. Figure 2
(a)-(c) show that the standard PPO implementation with 10
epochs per iteration, despite employing the ratio clipping
mechanism, consistently violates the ratio bound, coinciding
with findings from prior work. In contrast, PPO with only
1 epoch per iteration and VPG both successfully enforce
the trust region defined by the ratio bound. However, they
are outperformed by the standard PPO implementation as
shown in Figure 2 (d).

5. Importance of Value Estimation

In the previous section, we demonstrated that there is no
direct relationship between enforcing a trust region and im-

proving algorithmic performance. Nevertheless, trust region
methods generally outperform VPG, so it remains to identify
the fundamental factors that drive policy improvement in
practice. Given that the number of optimization steps plays
a crucial role in the outcome, we focus on analyzing this as-
pect throughout this section and argue that value estimation
is the core factor driving policy improvement.

5.1. Increased value steps in TRPO

The VPG algorithm employs a single optimization loop
to simultaneously optimize the policy and value networks
using automatic differentiation software. In this loop, the
value network is trained to minimize the regression loss:

LV((b) = HVd) - VtargetHQD)

where D represents the collected data, V, is the param-
eterized value approximation, and f/tm«get is the target
value, typically obtained through Temporal Difference
(TD) estimates. For instance, the target value is given by
Viarget(st) = Sop_y ¥ Rig+7T 17V (s711) when the
GAE factor A = 1.

However, the TRPO implementation requires separate opti-
mization loops for the policy and value networks: the policy
is optimized using the conjugate gradient algorithm to en-
force the trust region constraint, while the value network is
updated similarly to VPG. Perhaps surprisingly, this seem-
ingly small modification in the code-level implementation
may account for the fundamental difference between the
two algorithms. Specifically, the VPG algorithm performs
only one optimization step per epoch, which is insufficient
for the value network to accurately estimate the true returns.
In contrast, TRPO applies multiple optimization steps per
iteration for the value network without over-optimizing the
policy network. This results in more accurate value estima-
tion and, consequently, better performance. Some examples
are presented in Table 1.

RL libraries # Value steps Learning rate
OpenAl Baselines 5 0.001
Spinning Up 80 0.001
Stable-Baseline3 10 0.001
Tianshou 20 0.001

Table 1. The number of value steps per iteration and the learning
rate for value networks in default settings of several deep RL
libraries (Dhariwal et al., 2017; Achiam, 2018; Raffin et al., 2021;
Weng et al., 2022).

5.2. How PPO addresses value estimation?

Having a properly optimized value network is also the key
reason why PPO outperforms VPG. To understand this, we
analyze two algorithmic techniques in the PPO algorithm

Improving Value Estimation Critically Enhances Vanilla Policy Gradient

and examine how they contribute to improved value estima-
tion.

Mini-batching and multiple epochs. In practice, both of
them contribute to increasing the number of value steps in
each iteration, as we have

full-batch size

gradient steps = # epochs x mini-baich size

Therefore, if the entire batch is used with the same number
of epochs, the value network will be under-approximated,
leading to inaccurate baseline estimation. As shown in
Figure 3 (a), PPO completely fails to find a good policy
when the entire batch is used for policy training. This failure
can be attributed to the poor value estimation displayed in
Figure 3 (b), where the value estimation error is calculated
through

T
n(so) = > 7" " R(st, ar) — V(s0; 0) (10)
k=0

where a; ~ mg and so ~ pg. This also helps explain why
PPO with a single epoch performs poorly as seen in Figure 2.

Cumulative Reward Value Estimation Error

— full-batch —— full-batch

4
4000 150
— mini-batch —— mini-batch
3500 125
3000
100
2500 \

2000
1500
1000

500

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
Timestep 1e6 Timestep 1e6

(@) (b)

Figure 3. The cumulative reward and value estimation error during
PPO training in the Hopper task are compared between full-batch
and mini-batch updates. It highlights how the use of full-batch
updates leads to suboptimal policy performance, as reflected in the
large value estimation errors, while mini-batch updates facilitate
more accurate value estimation and better cumulative reward out-
comes.

Probability ratio clipping. Like VPG, PPO uses a single
optimization loop for both networks as well. Therefore,
while increasing the number of optimization steps improves
value estimation, it may also lead to over-updating of the pol-
icy network. The clipping mechanism in PPO mitigates this
by blocking excessive updates made to the policy network,
allowing the value network to catch up with true returns.

5.3. Theoretical analysis

We now show that this value estimation issue can be ex-
plained from the perspective of optimization landscapes
in the policy space. Briefly speaking, the policy objective

changes rapidly in many continuous-control environments,
which necessitates more update steps for the value network
in each iteration. In dynamical systems theory, maximal
Lyapunov exponents are used to study chaotic behaviors:
given a dynamical system s;+1 = F'(s¢),s0 € R", and a
small perturbation AZ, made to sg, the divergence caused
at time ¢ is denoted by AZ(t). For chaotic systems, their
dynamics are sensitive to initial conditions so that it has

IAZ(t)[| = || AZo]

for some A > 0. The rigorous definition of Maximal Lya-
punov exponents is presented below:

Definition 5.1. (Maximal Lyapunov exponent (Lorenz,
1995)) For the dynamical system s;11 = F(s;),s0 € R",
the maximal Lyapunov exponent A\, at sq is defined as
the largest value such that

[AZ@®)|

11
Az Y

Amax = limsup lim sup 71
t—oo [[AZo||—0

Specifically, according to Proposition C.2, we have the fol-
lowing estimation for the policy objective update:

[7(6") = J(0)] ~ O(]l6" —

where o = lf’é‘:’;)” and A\(0) is the maximal Lyapunov ex-
ponent of the dynamics controlled by 7, which is typ-
ically positive in many continuous-control environments.
Thus, we may have @ < 1 when A\() > —log~, which
is generally the case when the underlying dynamics is
chaotic (Lorenz, 1995). This results in fractal landscapes
in the policy space as illustrated in Figure 1, and a rapidly
changing policy objective.

0[1*) (12)

The above estimation also suggests that even a small update
in the parameters can lead to a significant change in the value
function of the policy objective J(#). On the other hand,
the training of value networks is generally more stable. For
most activation functions used in neural networks, such as
tanh and ReLU, the network output is Lipschitz continuous
with respect to both the input variables and the network
parameters. Specifically, for a given state s and parameters
¢ and ¢, the difference in the value network output can be
estimated by

V(s:¢") = V(s;)| ~ O([l¢' = ¢l]) (13)
when ||¢’ — ¢|| is sufficiently small. This suggests that the
landscape of the value regression loss in equation (9) is
smooth (e.g., as illustrated in Figure 12), such that small
updates in the parameters always lead to small changes
in the estimated values. We summarize this analysis with
the following theorem, which provides an estimate of the
relationship between the updating rates of the value and
policy networks:

Improving Value Estimation Critically Enhances Vanilla Policy Gradient

Theorem 5.2. Assume that the dynamics, reward function,
policy and value networks are all Lipschitz continuous with
respect to their input variables. Let 31, B2 denote the learn-
ing rate for policy and value network, respectively, and Ky
denote the number of value steps per epoch. Then for each
policy step, a good value estimation requires

steps made to the value network when 31, Bo are small. o =

7)\18%7 < 1 and \(0) is the maximal Lyapunov exponent

of the dynamics controlled by 7y, v € (0,1) the discount
factor and K1, K2 > 0 are constant independent of the
learning rates (1 and (.

This result suggests that the value network should be op-
timized more aggressively than the policy network, with
more optimization steps and/or higher learning rates, to en-
sure that the value estimates made by the critic network
can closely track the true values observed in rollouts. Fur-
thermore, to prevent interference between the policy and
value networks, separate networks should be used, as also
suggested in (Cobbe et al., 2021; Huang et al., 2022a). Ad-
ditional details can be found in Appendix C.

6. Experiments

In the previous section, we theoretically demonstrated that
value estimation is the core component of on-policy algo-
rithms, and by optimizing it, a simple method is expected
to perform as well as more advanced methods. In this sec-
tion, we evaluate the role of value estimation across a range
of continuous-control tasks from the OpenAl Gym bench-
marks (Brockman et al., 2016). Specifically, we first show
that the VPG algorithm, with a properly optimized value net-
work, can achieve performance comparable to or even better
than PPO with their corresponding default settings. Addi-
tionally, we conduct ablation studies on several code-level
optimizations that may impact the performance of value
estimation in both VPG and PPO. The experimental setup
is detailed in Appendix A, and further experimental results
can be found in Appendix B.

We adapt the implementation and PPO baseline from Tian-
shou (Weng et al., 2022). We also provide a single-file
codebase modified from CleanRL (Huang et al., 2022b)
which enables implementations in other environments such
as DeepMind Control (Tunyasuvunakool et al., 2020) and
Isaac Gym (Makoviychuk et al., 2021). Code for the em-
pirical results is available at https://github.com/
taowang0/value-estimation-vpg.

Vanilla policy gradient with multiple value steps. The
performance of the VPG algorithm with different numbers
of value steps is compared to PPO in Figure 4. The results

show that by simply increasing the number of value steps,
VPG can eventually achieve performance comparable to
PPO in the Halfcheetah, Hopper, and Walker environments,
and outperform PPO in the higher-dimensional Ant and Hu-
manoid environments. The performance of VPG stabilizes
when the number of value steps reaches 50, at which point
the value network is able to accurately capture the true re-
turns, leading to more precise advantage estimations. Full
comparisons of algorithmic performance and correspond-
ing value estimation errors for different implementations
are presented in Figure 4 and Figure 5. Additionally, Fig-
ure 10 shows that VPG is more efficient than PPO in terms
of policy steps. Also, VPG consistently improves the policy
across all environments, while PPO’s performance drops af-
ter 2M environment steps in the Walker and Ant tasks. Each
task is trained with five random seeds, with solid curves rep-
resenting the average return and shaded regions indicating
the one standard deviation confidence interval.

GAE factor \. The effect of the Generalized Advantage
Estimation (GAE) factor is to reduce the variance of value
estimation in on-policy algorithms (Schulman et al., 2015b).
To assess how the GAE factor influences the performance
of VPG and PPO, we consider two cases: A = 0.95 (default
GAE factor) and A = 1 (equivalent to Monte-Carlo). As
shown in Figure 6, both the reward curves of VPG and
PPO drop when A = 1 compared to A = 0.95, which can
be attributed to the variance reduction effect of the GAE
method. Notably, while the performance of VPG with 100
value steps is only slightly affected, the change in the GAE
factor has a significant impact on PPO, as shown in Table 2.
For example, in Walker and HalfCheetah, PPO’s cumulative
reward drops by more than 40% when \ = 1.

Learning rate of policy network. In general, the sensi-
tivity to learning rate in deep RL is at a similar level to that
in supervised learning. Most commonly-used learning rates
from 0.0003 to 0.001 work well for VPG. One caveat is that
excessively small learning rates do not always guarantee pol-
icy improvement due to the fractal landscapes in value and
policy space. On the other hand, using learning rates that are
too large leads to poor performance, too. The reason is that
unlike in supervised learning where the loss is optimized
for multiple steps which corrects the potentially wrong di-
rection generated in the first step, VPG only performs one
policy update per collected batch of data and thus has no
chance to subsequently correct the error. In Figure 6, we
can observe that PPO suffers from the sensitivity to learning
rates in the Ant environment, while the performance of VPG
remains relatively stable across different learning rates.

Reward normalization. While increasing the number of
value steps is the most straightforward way to improve value
estimation, reward normalization can impact the effective-

https://github.com/taowang0/value-estimation-vpg
https://github.com/taowang0/value-estimation-vpg

Improving Value Estimation Critically Enhances Vanilla Policy Gradient

Hopper

Walker

Halfcheetah

3500 5000

3000
4000
2500

° 3000
5 2000
H

Reward

Q
o 1500 2000

1000
1000

8000

5000

4000

3000

Reward

2000

1000

0.4 0.6
Global Steps

7000

6000

— PPO
5000

—— VPG-repeat-1
T 4000 —— VPG-repeat-5
g —— VPG-repeat-10
2 3000 —— VPG-repeat-50

—— VPG-repeat-100

2000 VPG-repeat-500

1000

0.4 0.6
Global Steps

Figure 4. Training curves on Gymnasium benchmarks. The curve VPG-repeat-k corresponds to the vanilla policy gradient algorithm
with k value steps applied each iteration. For example, VPG-repeat-1 represents the original vanilla policy gradient implementation.
As the number of value steps increases, the performance of vanilla policy gradient consistently improves, eventually converging to or
outperforming PPO when the number of value steps reaches 50 or more.

Hopper Walker

Humanoid

Difference

-100
-100

-150

-150

—— PPO

—— VPG-repeat-1

—— VPG-repeat-5

—— VPG-repeat-10

—— VPG-repeat-50

—— VPG-repeat-100
VPG-repeat-500

WV\W_ 3
i |

-200

-300

2 3 2 3
Global Steps Global Steps

0.4 0.6
Global Steps

Figure 5. The corresponding value estimation difference in the experiments shown in Figure 10. We disabled exploration during evaluation,
using the deterministic policy as the direct output of the policy network. The difference in value estimation is computed through
Equation 10. We observe a clear correlation between the value estimation difference in VPG and its performance. As the value steps
increase, the estimation error decreases and eventually oscillates around zero, leading to improved performance. More results can be

found in Figure 11.

ness of value estimation as well. The PPO algorithm em-
ploys a reward normalization scheme that rescales the re-
wards in the current batch by dividing them by the standard
deviation of a rolling discounted sum, without altering the
mean. As shown in Figure 9, reward scaling improves the
performance of VPG when the number of value steps is 1 or
10, but has no significant effect when the number of value
steps is 100. This suggests that reward normalization helps
reduce the magnitude of rewards when it is large, thereby
decreasing the error in value estimation. However, its effect
is negligible when the value network is already properly
optimized, as in the case of VPG with 100 value steps per
iteration and PPO.

Mini-batching and multiple epochs. In Figure 2, we
observed that using full batches in PPO can lead to poor
value estimation due to an insufficient number of value steps.
Figure 9 (b) illustrates how varying mini-batch sizes sig-
nificantly affects PPO’s performance in the Hopper task.
Additionally, the learning curves in Figure 10 show that the
default hyperparameters are not optimal for the Ant and
Humanoid tasks, where the dynamics are more complex,
making the policy gradient estimator effective only for small
policy updates. As shown in Figure 9, PPO performs sig-
nificantly better with larger mini-batches and fewer policy
epochs on these two tasks, both of which reduce the number
of policy updates per iteration.

Improving Value Estimation Critically Enhances Vanilla Policy Gradient

Hopper Walker

Halfcheetah

3500 5000
3000
4000
2500

°
& 2000 3000
=

Reward

]
1500 2000

1000

/ 1000
5001/

8000

—— PPO-gae-0.95
PPO-gae-1
VPG-repeat-1-gae-0.95

—— VPG-repeat-1-gae-1
VPG-repeat-10-gae-0.95

6000

4000

Reward

VPG-repeat-10-gae-1
—— VPG-repeat-100-gae-0.95
—— VPG-repeat-100-gae-1

2000,

2 3 2 3
Global Steps Global Steps

3 0.0 02

0.4 0.6
Global Steps

Figure 6. The influence of GAE factor A across three tasks.

Algorithm GAE)\ Hopper

Walker HalfCheetah

VPG 0.95 2601.57 +232.14
VPG 1 2323.28 £ 436.24
PPO 0.95 1965.29 + 478.14
PPO 1 1611.46 £ 541.32

3457.79 + 646.70
3123.83 £ 987.58
2527.74 £ 507.40
1431.50 £ 612.17

4928.88 + 807.04
4381.30 £+ 222.15
4488.60 £ 2699.54
2604.08 = 1237.80

Table 2. Performance of VPG and PPO with different GAE factors after SM environment steps for Hopper and Walker, 10M environment

steps for HalfCheetah.

Hopper

WA

. J :
Froo vMMW o e gl XA
Zusoof Al RS L [‘ WWMWMM
00| P (il caldx J 'ﬂ

I

Hopper

3500

3000{ —

r
500 /‘// 00

@ i

p3

z 3 z 3
Global Steps Global Steps

(a) VPG, Hopper-v3 (b) PPO, Hopper-v3

Figure 7. The influence of learning rates in VPG and PPO.

7. Conclusion

In this work, we provide both theoretical and empirical
analyses to demonstrate that the performance of a policy
gradient algorithm is primarily determined by how accu-
rately the value function is estimated, rather than by any
specific policy objective design adopted for policy training.
Our findings suggest that deep on-policy algorithms may
work for a very simple reason that even the simplest vanilla
policy gradient method can accomplish.

In the meantime, we should clarify that the ratio clipping
mechanism in PPO, although it does not fundamentally con-
tribute to performance improvement, still has its strengths
in that it allows multiple policy updates on a single batch,
thereby enhancing sample efficiency, sometimes at the cost
of reduced robustness. This point is evident in the Ant and
Humanoid tasks, where the default PPO implementation
updates the policy too aggressively and leads to suboptimal
performances. Although our argument may, in principle, be
generalizable to other domains such as large language mod-
els (LLMs), the present analysis is confined to continuous
control problems, and we refrain from asserting its validity

Hopper

— pPO

3500 PPO-reward-scaled

— VPG-repeat-1
VPG-repeat-1-reward-scaled

3000 VPG-répeat-10

— va—repea;ao—rew;ru—scale

2500

2000

Reward

1500

1000

500

2 3
Global Steps

Figure 8. The influence of reward normalization in different algo-
rithms. We see that although normalizing rewards can improve the
performance of VPG when it has 1 and 10 value steps, it does not
make significant difference to VPG when there are as many as 100
value steps per iteration.

beyond this specific context.

There are two key messages we want to convey through
this work: First, value estimation is perhaps the most cru-
cial component of on-policy algorithms. By optimizing
it, we can significantly improve their performance. This
finding encourages us to revisit the foundations of the de-
velopment of policy gradient methods (namely, from VPG
to TRPO/PPO), as the core ideas in these methods (e.g., en-
forcing a trust region, performing multiple policy updates)
may not be the fundamental underpinnings of the improved
performance observed in practice. Second, our results indi-
cate that it is possible to develop on-policy algorithms that
are robust without the extensive need for hyperparameter
tuning and code-level optimization techniques. For instance,
VPG with multiple value steps performs well and requires
very few hyperparameters to tune, suggesting that complex

Improving Value Estimation Critically Enhances Vanilla Policy Gradient

Hopper

Hopper

Humanoid

‘ ol
W= urIs I Lol
, *WmeMWWMWNW :

. /M/'W : o

T 4000

g
H
&

3 3
Global Steps

(b) Mini-batch, Hopper

3 3
Global Steps

(a) Reward norm., Hopper

01 0%
Global Steps.

(d) Mini-batch, Humanoid

07 06
Global Steps.

(c) Mini-batch, Ant

Figure 9. Code-level optimizations in policy gradient methods. (a) Although normalization rewards can improve the performance of
VPG when # value steps = 1, its strength is rather limited compared to the fully-optimized VPG with # value steps = 100. (b) The
performance of PPO varies with different mini-batch sizes where the number of epochs is fixed at 10. (c) (d) We use mini-batch size =
512, # epoch = 2 for PPO in Ant and Humanoid which significantly outperform the default implementation in Figure 4.

algorithmic architectures like PPO may not be necessary
for effective policy gradient methods. This is important for
deep RL in real-world applications, especially for practition-
ers who want to leverage policy gradient methods in their
domains but have little or no expertise in RL. With well-
developed parallel computing architectures that accelerate
simulation and data collection, vanilla policy gradient has
the potential to serve as a robust and effective alternative to
PPO in various robot learning tasks.

Acknowledgements

The authors would like to thank Yuexin Bian for her valuable
suggestions in developing the codebase, and the anonymous
reviewers for their helpful comments in revising the paper.
This material is based on work supported by NSF Career
CCF 2047034, NSF CCF DASS 2217723, and NSF Al
Institute CCF 2112665.

Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References

Achiam, J. Spinning Up in Deep Reinforcement Learning.
2018.

Adkins, J., Bowling, M., and White, A. A method for
evaluating hyperparameter sensitivity in reinforcement
learning. In NeurIPS, 2024.

Andrychowicz, M., Raichuk, A., Staficzyk, P., Orsini, M.,
Girgin, S., Marinier, R., Hussenot, L., Geist, M., Pietquin,
0., Michalski, M., Gelly, S., and Bachem, O. What
matters for on-policy deep actor-critic methods? A large-
scale study. In ICLR, 2021.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. OpenAl Gym.
arXiv preprint arXiv:1606.01540, 2016.

Cobbe, K., Hilton, J., Klimov, O., and Schulman, J. Phasic
policy gradient. In ICML, 2021.

Dhariwal, P., Hesse, C., Klimov, O., Nichol, A., Plappert,
M., Radford, A., Schulman, J., Sidor, S., Wu, Y., and
Zhokhov, P. OpenAl baselines. GitHub repository, 2017.

Eimer, T., Lindauer, M., and Raileanu, R. Hyperparameters
in reinforcement learning and how to tune them. In ICML,
2023.

Engstrom, L., Ilyas, A., Santurkar, S., Tsipras, D., Janoos,
F., Rudolph, L., and Madry, A. Implementation matters
in deep RL: A case study on PPO and TRPO. In ICLR,
2020.

Fujimoto, S., van Hoof, H., and Meger, D. Addressing
function approximation error in actor-critic methods. In
ICML, 2018.

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S.,
Tan, J., Kumar, V., Zhu, H., Gupta, A., Abbeel, P., and
Levine, S. Soft actor-critic algorithms and applications.
arXiv preprint arXiv:1812.05905, 2018.

Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup,
D., and Meger, D. Deep reinforcement learning that
matters. In AAAI 2018.

Huang, S., Dossa, R., Raffin, A., Kanervisto, A., and Wang,
W. The 37 implementation details of proximal policy
optimization. In ICLR Blog Track, 2022a. URL https:
//iclr-blog-track.github.i0/2022/03/
25/ppo-implementation-details/.

Huang, S., Dossa, R. F. J., Ye, C., Braga, J., Chakraborty,
D., Mehta, K., and Aratjo, J. G. Cleanrl: High-quality
single-file implementations of deep reinforcement learn-

ing algorithms. Journal of Machine Learning Research,
23(274):1-18, 2022b.

https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/

Improving Value Estimation Critically Enhances Vanilla Policy Gradient

Ilyas, A., Engstrom, L., Santurkar, S., Tsipras, D., Janoos,
F., Rudolph, L., and Madry, A. A closer look at deep
policy gradients. In /CLR, 2020.

Kakade, S. and Langford, J. Approximately optimal approx-
imate reinforcement learning. In ICML, 2002.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez,
T., Tassa, Y., Silver, D., and Wierstra, D. Continuous

control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

Liu, B., Cai, Q., Yang, Z., and Wang, Z. Neural proxi-
mal/trust region policy optimization attains globally opti-
mal policy. In NeurlIPS, 2019.

Liu, Z., Li, X., Kang, B., and Darrell, T. Regularization
matters in policy optimization - an empirical study on
continuous control. In ICLR, 2021.

Lorenz, E. N. The Essence of Chaos. University of Wash-
ington Press, 1995.

Makoviychuk, V., Wawrzyniak, L., Guo, Y., Lu, M., Storey,
K., Macklin, M., Hoeller, D., Rudin, N., Allshire, A.,
Handa, A., and State, G. Isaac Gym: High performance
gpu-based physics simulation for robot learning. arXiv
preprint arXiv:1606.01540”, 2021.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap,
T., Harley, T., Silver, D., and Kavukcuoglu, K. Asyn-

chronous methods for deep reinforcement learning. In
ICML, 2016.

Ouyang, L., Wu, J, Jiang, X., Almeida, D., Wainwright, C.,
Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A.,
Schulman, J., Hilton, J., Kelton, F., Miller, L., Simens, M.,
Askell, A., Welinder, P., Christiano, P. F., Leike, J., and
Lowe, R. Training language models to follow instructions
with human feedback. In NeurIPS, 2022.

Paul, S., Kurin, V., and Whiteson, S. Fast efficient hyperpa-
rameter tuning for policy gradient methods. In NeurIPS,
2019.

Peters, J. and Schaal, S. Reinforcement learning of motor
skills with policy gradients. Neural Networks, 21(4):
682697, 2008.

Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus,
M., and Dormann, N. Stable-Baselines3: Reliable rein-
forcement learning implementations. Journal of Machine
Learning Research, 22(268):1-8, 2021.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz,
P. Trust region policy optimization. In ICML, 2015a.

10

Schulman, J., Moritz, P., Levine, S., Jordan, M., and Abbeel,
P. High-dimensional continuous control using generalized
advantage estimation. arXiv preprint arXiv:1506.02438,
2015b.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Song, Y., Romero, A., Miiller, M., Koltun, V., and Scara-
muzza, D. Reaching the limit in autonomous racing:
Optimal control versus reinforcement learning. Science
Robotics, 8(82):eadgl1462, 2023.

Sun, M., Kurin, V., Liu, G., Devlin, S., Qin, T., Hofmann,
K., and Whiteson, S. You may not need ratio clipping in
PPO. arXiv preprint arXiv:2202.00079, 2023.

Sutton, R. S. and Barto, A. Reinforcement Learning: an
Introduction. MIT Press, 1998.

Sutton, R. S., McAllester, D., Singh, S., and Mansour, Y.
Policy gradient methods for reinforcement learning with
function approximation. In NIPS, 1999.

Tucker, G., Bhupatiraju, S., Gu, S., Turner, R. E., Ghahra-
mani, Z., and Levine, S. The mirage of action-dependent
baselines in reinforcement learning. In ICML, 2018.

Tunyasuvunakool, S., Muldal, A., Doron, Y., Liu, S., Bohez,
S., Merel, J., Erez, T., Lillicrap, T., Heess, N., and Tassa,
Y. DM control: Software and tasks for continuous control.
Software Impacts, 6:100022, 2020.

van Hasselt, H. Double Q-learning. In NIPS, 2010.

van Hasselt, H., Guez, A., and Silver, D. Deep reinforce-
ment learning with double Q-learning. In AAAI, 2016.

Vinyals, O., Babuschkin, I., Czarnecki, W., and et al. Grand-
master level in StarCraft II using multi-agent reinforce-
ment learning. Nature, 575:350-354, 2019.

Wang, T., Herbert, S., and Gao, S. Fractal landscapes in
policy optimization. In NeurlPS, 2023.

Wang, T., Herbert, S., and Gao, S. Mollification effects of
policy gradient methods. In ICML, 2024.

Weng, J., Chen, H., Yan, D., You, K., Duburcq, A., Zhang,
M., Su, Y., Su, H., and Zhu, J. Tianshou: A highly
modularized deep reinforcement learning library. Journal
of Machine Learning Research, 23(267):1-6, 2022.

Williams, R. J. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Machine
Learning, 8:229-256, 1992.

Improving Value Estimation Critically Enhances Vanilla Policy Gradient

A. Experiment Hyperparameters

PPO VPG
Num. env. 16 16
Discount factor (v) 0.99 0.99
Num. epochs 10 1
Batch size 2048 2048
Minibatch size 64 2048
GAE factor () 0.95 0.95
Optimizer Adam Adam
Clipping parameter (¢) 0.2 N/A
Advantage normalization False False
Observation normalization True True
Reward normalization False False
Learning rate decay False False
Entropy coefficient 0 0
Policy network [64,64] [64, 64]
Value network [64,64] [64, 64]
Activation function tanh tanh
Gradient clipping (/3 norm) 1.0 1.0

Table 3. Default hyperparameters for policy gradient algorithms.

Hopper Walker HalfCheetah Ant Humanoid

VPG 0.0003 0.0007 0.0007 0.0007 0.0007
PPO 0.0003 0.0003 0.0003 0.0003 0.0003

Table 4. The learning rate used for the policy and value network in each task. Note that the learning rate 0.0003 is specifically chosen
for Hopper to allow for a better comparison with PPO on that task. As shown in Figure 7 (a), using the learning rate 0.0007 in Hopper
actually results in better performance.

11

Improving Value Estimation Critically Enhances Vanilla Policy Gradient

B. Additional Experimental Results

Hopper Walker Halfcheetah
E il 3 " E
5 v N : ' A 3
< /""A"‘N 4 WA i &
I“‘Mr Aw 1) —jﬂ 1
e N
monaitINLEY DPRIE SPSOENN
]
500 1000 1500 2000 2500 500 1000 1500 2000 2500 1000 2000 3000 4000 5000
Policy Steps Policy Steps Policy Steps
Humanoid
— PPO
4 —— VPG-repeat-1
° o4 | —— VPG-repeat-5
g & 4 —— VPG-repeat-10
2 2 ¥ —— VPG-repeat-50
—— VPG-repeat-100
! —— VPG-repeat-500
1 'Ju
- Al ANy e ——
|
1000 2000 3000 4000 5000 1000 2000 3000 4000 5000
Policy Steps Policy Steps
Figure 10. The cumulative rewards versus policy step in each MuJoCo task.
Hopper s Walker Halfcheetah
N I-.«.!.«'\..m.“.,. s g al
i | AT E e Py P B
S LYk Y fr Tha e ! 2o i
100} fusenge it e kil /\‘f.,., N e A0t s f
o Loy L 0

Difference
o

Difference
Difference

2 0.0 02 04 06 .
Global Steps e Global Steps e Global Steps o

Ant Humanoid

PPO
VPG-repeat-1
VPG-repeat-5
VPG-repeat-10
VPG-repeat-50
VPG-repeat-100
VPG-repeat-500

Difference
Difference

0.8 1.0

0.0 0.2 0.4 0.6 X 0.4 0.6
Global Steps o Global Steps “

Figure 11. A full comparison of value estimation difference for each implementation.

12

Improving Value Estimation Critically Enhances Vanilla Policy Gradient

C. Theoretical Analysis of Value Estimation
Existing work has shown that the optimization landscape in the policy space is fractal in many continuous-control environ-
ments. To better characterize this behavior, we first introduce the concept of Holder continuity:

Definition C.1. (Holder continuity) Let f : R¥1 — R¥2 be a function. Given 2 € R*' and o € (0, 1], we say that f is
a-Holder continuous at x if for any § > 0, there exists C; > 0 such that

1f(2") = f(z)]| < Culle" — 2|
for all 2/ € R* that has ||z’ — z|| < 4.

Note that Holder continuity is equivalent to Lipschitz continuity when o = 1, and the function can be highly non-smooth
and fractal when o < 1. The following theorem establishes a connection between the chaotic behavior in an MDP and the
smoothness of the corresponding policy optimization objective:

Proposition C.2. (Wang et al., 2023) Assume that the dynamics, reward function and policy are all Lipschitz continuous
with respect to their input variables. Let Ty be a deterministic policy and \(0) denote the maximal Lyapunov exponent of
the dynamics. Suppose that A\(0) > —log~y and let o = 7)}?5)7, then

1. Value function V™ (s) is a-Holder continuous in the state s € S;
2. Q-funtion Q™ (s, a) is a-Hélder continuous in the action a € A;

3. Policy objective J(0) is a-Holder continuous in the policy parameter 0 € RY.

Proof of Theorem 5.2. According to Proposition C.2, we have the following estimation:

— log

7(8) = T(0)] ~ O(|¢" 6] 5) (14)
where A(6) is the maximal Lyapunov exponent of the dynamics controlled by 7y, which is typically positive in many
continuous-control environments. Illustrations of fractal landscapes in several MuJoCo environments are shown in Figure 1,

where even a small update in the parameters can lead to a significant change in the value of the policy objective J(6).

Unlike policy networks, which can lead to dramatic changes in the return even with a single parameter update, the training
of value networks is generally more stable, as it minimizes the regression loss:

LY (¢) = Vs — Viarget | (15)

where D represents the collected data, V, is the parameterized value approximation, and f/ta,.get is the target value.

For most activation functions used in neural networks, such as tanh and ReLLU, the network output is Lipschitz continuous
with respect to both the input variables and the network parameters. Specifically, for a given state s and parameters ¢ and ¢’,
the difference in the value network output can be estimated by

V(s:¢") = V(si¢)| ~ O(ll¢' = ¢l]) (16)

when ||¢' — ¢|| is sufficiently small. This suggests that the landscape of the value regression loss in equation (9) is smooth
(e.g., as illustrated in Figure 12), such that small updates in the parameters always lead to small changes in the estimated
values.

Now, let us consider the policy improvement. Let 65 and ¢ denote the parameters of the policy and value networks at the
k-th iteration, respectively. Note that equation (14) suggests that for a fixed state s, the discounted return Y ,° 'Ry is
7;235’)7 -Holder continuous with respect to the policy parameter. Therefore, the difference in the target value between two
consecutive policy steps can be estimated by

—logy

|V;5arget,k;+1(8) - Vvtarget,k(s)‘ ~ Klﬁl)\(Tk)

13

Improving Value Estimation Critically Enhances Vanilla Policy Gradient

Figure 12. Value objective L" () is always smooth in the network parameter ¢.

for some constant K3 > 0 where (31 is the learning rate of policy network. We can also find another constant K5 > 0 such
that the difference in the value network output can be estimated by

[V (s; brt1) — V(s; on)| ~ KoKy fa.

where Ky is the number of optimization steps for the value network and 3, is the learning rate. Therefore, the step sizes
should satisfy

K «

Ky > 151

K35

so that the value network continues to provide accurate estimates of the true return and we complete the proof.

(a7

14

Improving Value Estimation Critically Enhances Vanilla Policy Gradient

D. Monte-Carlo Value Estimation

Most on-policy algorithms, including VPG, TRPO, and PPO, estimate the return value using either Monte Carlo methods or
their generalizations (e.g., GAE (Schulman et al., 2015b)). However, the return estimated by Monte Carlo methods can
only reflect how good (or bad) the sequence of actions a = (ag, a1, ..., ar) is as a whole, given the initial state sg ~ p.
Consequently, this return may deviate significantly from the true value V™ (sq) due to: (a) randomness in the stochastic
policy 7, and (b) exponential divergence of perturbed trajectories in the (potentially) chaotic dynamics.

Mollified value landscapes. It has been demonstrated that policy gradient methods work by smoothing the value landscape
through a Gaussian kernel, thereby providing a valid updating direction even in the presence of fractal structures within
the value landscape (Wang et al., 2024). While the averaged return can point to a correct direction, it also implies that
a single trajectory is not sufficiently informative. For instance, consider two sampled trajectories with action sequences
a= (agp,a1,...,ar)anda’ = (ay,al,...,al), where ag ~ af. The resulting returns, G and G’, could be entirely different
despite the initial actions being nearly identical. This discrepancy arises because subsequent actions may differ. In such
cases, fl(so, ag) and A(so, a(y) could have opposite signs, even when ag ~ af,. Therefore, it underscores the importance of
relying on the averaged return rather than focusing too much on individual trajectories.

Understanding the Role of Baselines Theoretically, both REINFORCE (3) and VPG (4) provide the same gradient
estimator since

E(st’at)Nﬂe [V log 779(at|5t)Qt}
= By ar)oma | V108 0 (a]5) (A + V7 (s2) |

= E(stﬂt)"’ﬂe [V log We(at|5t)At}

>

under the assumption that

Ea,m, {v log wa(at|st)} -0 (18)

for any s; and any probability density function my. However, Equation 18 is not guaranteed in practice, where the number of
samples may be insufficient to support it. Here, we demonstrate that the number of samples required to ensure the empirical
mean satisfies |i| = |V log mg(as|s:)| < e becomes prohibitively large when € is very small: Without loss of generality, let
7p be a one-dimensional Gaussian distribution, i.e., a ~ N (u(s), o?). Suppose that a1, ..., ac are i.i.d. samples obtained
from 7y. The empirical mean

K
X 1 1 (a;i — pu(s))?
MKZEIOgﬂe(aﬂS):—E;T-
This implies that —fix ~ x2(K). Therefore, for each state s;, approximately O(K) samples are needed. This requirement
results in a total of O(K™T') samples per iteration.

This approach is exhaustive, as it involves exploring sufficiently many actions for each state encountered at every timestep.
Consequently, it converges to tabular search approaches, offering no reduction in computational complexity. However, such
exhaustive exploration is clearly not the intended purpose of policy gradient methods. In fact, this process resembles the
vine TRPO algorithm, which partially expands the tree due to computational constraints (Schulman et al., 2015a).

It is worth noting that we have disregarded the accumulation of errors arising from the hierarchical structure. If these errors
were taken into account, the required number of samples would be even larger, but we do not elaborate further on this point.
Therefore, the assumption anws [V log we(at|st)} = 0 for any s; is too strong to be realistically satisfied in practice. This

implies that using a baseline can significantly influence the performance of the gradient estimator. Specifically, when there
is no baseline value function or when the baseline function is poor, the policy gradient estimator tends to converge toward
suboptimal solutions. This behavior explains the poor performance of the original VPG algorithm in Gymnasium.

15

