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Abstract

The rapid advancement of Zero-Shot Text-to-Speech (ZS-TTS) technology has
enabled high-fidelity voice synthesis from minimal audio cues, raising significant
privacy and ethical concerns. Despite the threats to voice privacy, research to
selectively remove the knowledge to replicate unwanted individual voices from
pre-trained model parameters has not been explored. In this paper, we address the
new challenge of speaker identity unlearning for ZS-TTS systems. To meet this
goal, we propose the first machine unlearning frameworks for ZS-TTS, especially
Teacher-Guided Unlearning (TGU), designed to ensure the model forgets desig-
nated speaker identities while retaining its ability to generate accurate speech for
other speakers. Our proposed methods incorporate randomness to prevent consis-
tent replication of forget speakers’ voices, assuring unlearned identities remain
untraceable. Additionally, we propose a new evaluation metric, speaker-Zero Re-
train Forgetting (spk-ZRF). This assesses the model’s ability to disregard prompts
associated with forgotten speakers, effectively neutralizing its knowledge of these
voices. The experiments conducted on the state-of-the-art model demonstrate that
TGU prevents the model from replicating forget speakers’ voices while maintaining
high quality for other speakers 2.

1 Introduction

Significant advancements in Zero-Shot Text-to-Speech (ZS-TTS) [25, 6, 21, 48] enable models to
synthesize speech accurately using minimal speaker input. Methods like VALL-E [48] utilize discrete
speech tokens, while VoiceBox [25] employs masked prediction for speech synthesis and audio
infilling. Given that a person’s voice is a key biometric characteristic used for identification [35, 36],
these rapid advances in ZS-TTS raise significant ethical concerns, especially regarding the potential
misuse of synthesizing speech from an individual’s voice without consent.

To address these threats, machine unlearning (MU) can serve as an effective solution by selectively
removing certain knowledge by modifying model weights itself. Since generative AI models easily
create new content, they are particularly susceptible to privacy breaches [38, 45], and thus MU
has gained traction across various fields of generative AI. Despite growing privacy concerns in
speech-related tasks [44, 54], there is still no method to effectively unlearn the ability to generate
speech in a specific speaker’s voice.

To this end, this paper brings forward a new task of speaker identity unlearning. We propose
guided unlearning as the first machine unlearning framework for ZS-TTS, and present two novel
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Figure 1: An overview of speaker identity unlearning task and its objective. When a system provider
for pre-trained ZS-TTS receives an unlearning request from a speaker, we incorporate our proposed
guided unlearning frameworks that guide random generation while retaining performance on remain
identities.

approaches : computationally efficient Sample-Guided Unlearning (SGU) and advanced Teacher-
Guided Unlearning (TGU). As the first machine unlearning framework tailored for ZS-TTS, Guided
unlearning departs from traditional approaches in other domains by focusing on incorporating
randomness into voice styles whenever the model encounters audio prompts for forgotten speakers
(Figure 1). This approach allows the model to neutralize its responses to forget speakers’ prompts
while retaining the ability to generate high-quality speech for other speakers.

To evaluate the effectiveness of unlearning, we also introduce the speaker-Zero Retrain Forgetting
(spk-ZRF) metric. Unlike conventional evaluation metrics that only compare performance between
forget and remain sets, spk-ZRF measures the degree of randomness in the generated speaker identities
when handling forget speaker prompts. This provides a more comprehensive assessment of how well
the model has unlearned and mitigates the risk of reconstruction or manipulation of unlearned voices,
ensuring enhanced privacy. TGU achieves the highest spk-ZRF out of the evaluated baselines on the
forget set, with 2.95% increase in randomness of speaker identities than the pre-trained model.

The main contributions are as follows:

• To the best of our knowledge, this paper is the first to address the challenge of speaker
identity unlearning in ZS-TTS, focusing on making the model ‘forget’ specific identities
while maintaining its ability to perform accurate speech synthesis for remain speakers.

• We propose two novel frameworks, SGU and TGU, which guide the model to generate speech
with random voice styles for forget speakers, effectively preventing identity replication.

• We introduce a new metric, spk-ZRF, to evaluate the effectiveness of unlearning by measur-
ing the degree of randomness in synthesized speaker identities for forget prompts.

2 Related Works

2.1 Zero-Shot TTS

Recently, groundbreaking advancements in large-scale speech generative models, allowed successful
replication of a given voice with just a 3-second audio prompt. VALL-E [48], for example, uses an
audio codec model like Encodec [13] to represent speech information as discrete tokens, training an
auto-regressive language model. NaturalSpeech 2 [42] utilizes a latent diffusion model to create a
high-quality and robust text-to-speech system in zero-shot settings. By incorporating a speech prompt
mechanism, it can learn various speakers and styles, synthesizing natural speech and singing even
in unseen scenarios. VoiceBox [25] utilizes conditional flow matching [29] to perform tasks like
zero-shot TTS, noise removal, and style transfer. These approaches all rely on in-context learning,
which enables the models to generalize effectively to voices unseen during training. Our proposed
method is built on the Voicebox [25] model which has reached the state of the art as a ZS-TTS model
in terms of cloning voices of speech prompts.
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2.2 Machine Unlearning

Machine unlearning emerged as a process of making a model forget specific knowledge while
maintaining its overall performance [4, 37, 52] as privacy concerns over personal data grew, such as
RTBF [47, 3, 34]. Early MU techniques focused on adjusting the pre-trained model’s parameters to
remove the influence of specific data within the training set [17]. Thus, Exact Unlearning, a method
of retraining the model without data to forget from scratch, was a predominant golden standard of
MU methods [4, 53, 8, 5, 26]. Approximate unlearning, a method that removes the impact of specific
data without retraining, has gained prominence for its efficiency and proved particularly useful for
large-scale and generative models [16, 43, 9, 50, 18]. Research in computer vision and natural
language processing has recently focused on ensuring that generative models like GAN or Diffusion
do not generate specific identities, data, words, or phrases [56, 57, 15, 41, 30–32]. The importance of
privacy is also emphasized in the audio domain, especially speech generation [45]. While unlearning
has been explored in natural language description generation through concept-specific neuron pruning
within the Audio Network Dissection framework [51], its effectiveness for more complex audio
generation tasks like ZS-TTS remains untested and uncertain. Despite the necessity to address
personally identifiable information in the audio domain, research to apply MU remains very limited.

3 Problem Formulation: Speaker Identity Unlearning

As the first study to address the key idea of speaker identity unlearning in ZS-TTS, we define the
problem as follows.

Let S be the set of all speakers, and let DS refer to a dataset that comprises pairs of transcribed
speech (xs, y), where xs is an audio prompt uttered by s ∈ S, and y is its corresponding transcription.
When (xs, y) is given as input to the original ZS-TTS model θ capable of replicating any given voice
style, the model generates synthesized speech:

θ(xs, y) ≈ x̂spk=s
y , (1)

where x̂spk=s
y refers to a speech x that delivers the given text y in the voice style of speaker s.

In the context of unlearning, S is divided into two distinct subsets: a forget speaker set F , the set of
speakers the model is intended to forget, and a remain speaker set R = S −F , the set of speakers the
model is intended to retain. As each speaker s belongs to either F or R, DS can also be divided into
DF and DR : DF includes all data pairs (xf , y) for speaker f ∈ F , and the remaining DR consists
of all data pairs (xr, y) for speaker r ∈ R.

Given θ pre-trained on DS ,the parameters of unlearned ZS-TTS model (θ−) should be trained with
the following twofold objective:

• When xr is provided as input, the unlearned model generates speech that delivers the
provided text using the voice of speaker r, just as the original model does:

θ−(xr, y) ≈ x̂spk=r
y . (2)

That is, the quality of generating correct speech with respect to transcribed content should
be retained to meet the expectations of the pre-trained model.

• Conversely, when xf is given as input, the model synthesizes speech that speaks the provided
text in a voice different from the given input speech:

θ−(xf , y) ≈ x̂spk ̸=f
y . (3)

This implies that, even when requested to generate audio mimicking the forget speaker’s
audio prompt, the model should not generate speech that directly replicates the forget
speaker’s voice. Beyond simply avoiding mimicry, the generated speech should also avoid
being fixed in a specific style that could lead to tracing back to the forget speaker’s identity.
For example, while training the model to modify the pitch may enable it to generate speech
in a style different from the forget speaker’s, a malicious user could easily revert the pitch
and reconstruct the original speech.
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Figure 2: The training procedure for the forget set in (b) the SGU framework and (c) the proposed
TGU framework, along with (a) the training procedure for the remain set in both SGU and TGU.

4 Method

4.1 Approach: Guided Unlearning

In line with the objectives outlined earlier, the synthesized output from a speaker identity unlearned
ZS-TTS model must not only diverge from replicating the forget speaker’s style but should also avoid
being fixed in any specific voice style. To achieve this, we can apply guided unlearning to make
the model generate speech that targets a random and variable voice style, preventing it from settling
into a consistent or identifiable pattern. However, to train the model to generate the given text y in
a random voice style, it requires a pair (xspk ̸=f , y), where an audio in any different speech style
xspk ̸=f uttering y aligns frame-wise with that of (xspk=f , y). Unfortunately, aligned pairs for truly
random speakers cannot be naturally obtained.

As an alternative, for speakers in the remain set DR, we can extract an aligned pair (xr, y), and
for speakers in the forget set, we can similarly extract (xf , yf ). Thus, a simple approach to tackle
this challenge would be to concatenate those two pairs as if they form a single sample, then mask
the xr part and set this as the target for generation (Figure 2-(b)). We suggest this framework as
Sample-Guided Unlearning (SGU). However, the issue with SGU is that masking can only be applied
to the entirety of xr, and not selectively in the middle of the concatenated speech. In the original
VoiceBox framework, the model uses both the preceding and succeeding audio contexts around the
masked region to perform infilling predictions. In this case, the model would only have access to
the unmasked portion from the opposite side (xr) for infilling, which severely limits its ability to
leverage both contexts. Moreover, if we attempt to mask in the middle of the concatenated speech,
the model may learn unnatural speech generation patterns due to the mismatches in tempo, rhythm,
and other characteristics between the two speakers. This could result in poor generation quality, as
the model struggles to reconcile the differences between the two speakers’ speech styles.

4.2 Teacher-Guided Unlearning

To address the limitation in SGU, we propose an advanced machine unlearning method for ZS-TTS,
named Teacher-Guided Unlearning (TGU), where we generate text-speech aligned target samples
using the pre-trained teacher model itself to guide the unlearning process effectively. Specifically, we
suggest utilizing the fact that when θ is conditioned solely on y, it generates speech with linguistic
content based on y, but the resulting voice style varies depending on the initialization of x0, (i.e.,
Gaussian noise), leading to the synthesis of different voice styles. Using θ(y) as target guidance
thus assures that at each initialization, the model generates varying voice styles, reducing the risk of
reproducing identifiable information on forget speaker’s voice:

θ−(xf , y) ≈ θ(y). (4)
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As Figure 2-(c) illustrates, when a pair of speech and text, xf and y, is provided as input, the
pre-trained model θ first generates speech conditioned only on the textual features y. This generated
sample x̄ is then used as the target sample that the model θ− should produce when xf and y are given
as conditions. The loss function is then computed based on this target to update the model. Note that
parameters of θ− are initialized with those of θ.

LCFM-forget(θ
−) = Et,q(x1),pt(xf |x1)

[
∥m⊙ ut(x|x̄)− vt(w

f , y, xf
ctx; θ

−)∥2
]
, (5)

where x̄ = θ(y) and wf = (1− (1− σmin)t)x0 + tx̄.

In addition to ensuring effective forgetting of the target speaker, it is important to maintain the original
ZS-TTS performance for speakers other than the forget speaker. To achieve this, we utilize the remain
set Dr, which excludes the forget speaker from the original training dataset. As depicted in Figure
2-(a), when the xr is provided as its input, the θ− is trained with the same objective as the original θ,
specifically through the use of the CFM Loss :

LCFM-remain(θ
−) = Et,q(x1),pt(xr|x1)

[
∥m⊙ ut(x|xr

1)− vt(w
r, y, xr

ctx; θ
−)∥2

]
, (6)

where wr is same operation as w.

Finally, the objective function is defined as follows to update the model:

Ltotal = λLCFM-remain + (1− λ)LCFM-forget, (7)

where λ, a hyper-parameter that controls the weighting between the losses, is set to 0.2.

4.3 Proposed Metric: spk-ZRF

Conventional evaluation methods on MU such as completeness [49], JS-divergence, activation
distance and layer-wise distance merely compare the performance gap between forget and remain set.
However, a model exhibiting consistent patterns on the forget set is not necessarily well unlearned, as
these patterns can be exploited to reverse-engineer the forget data. Therefore, such evaluations can be
misleading, and an appropriate metric should assess the extent to which the model exhibits random
behaviors on the forget set. Although epistemic uncertainty [2] evaluates how little information about
the forget set is present in model parameters, the metric is not suitable when representations contain
entangled information. A low epistemic uncertainity in ZS-TTS model cannot indicate that the model
has forgotten speaker-specific information instead of performance of audible speech generation. To
this end, we suggest a novel metric to evaluate randomness in speaker identity named speaker-Zero
Retrain Forgetting metric (spk-ZRF) inspired by Zero Retrain Forgetting metric [12]. With spk-ZRF,
the degree of random behavior of identity generation can be evaluated.

In the case of ZS-TTS, originally suggested Zero Retrain Forgetting metric is not directly applicable
as we aim to randomize solely on voices’ characteristics, not the overall content. Thus, we modify
the metric by integrating usage of random speaker generation and a speaker verification model.

To evaluate an unlearned model θ− on a given a test dataset DS = {(xs
yi
, yi)}ni=1, we generate two

comparable speech for each i-th sample (xs
yi
, yi) : θ−(xs

i , yi) and θ(yi). Across n samples, each
θ(yi) will synthesize a random speaker’s identity, forming a random probability distribution. To
obtain this random probability distribution, speaker embeddings sθ(xs

i ,yi) and sθ(yi) are extracted
using a same speaker verification model. Each embedding is converted into a probability distribution
with the softmax function, and the Jensen-Shannon divergence (JSD) [28] between each pair of
speaker embeddings is calculated as follows:

JSDi = 0.5×DKL
(
Softmax(sθ(xs

i ,yi)) ∥ Mi

)
+ 0.5×DKL

(
Softmax(sθ(yi)) ∥ Mi

)
, (8)

where
Mi =

1

2

(
P (sθ(xs

i ,yi)) + P (sθ(yi))
)
. (9)

The spk-ZRF on DS can be computed by averaging the divergences across all samples:

spk-ZRF = 1− 1

n

n∑
i=1

JSDi. (10)
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Table 1: Quantitative results on LibriSpeech test-clean (-R) and the forget (-F) evaluation set. ⋄

refers to the reported value in the original paper. "-" refers to unavailable values. For spk-ZRF-R, the
optimal benchmark is to achieve the same score as the Original model. Please refer to Appendix F
for the result of statistical significance analysis.

Methods WER-R ↓ SIM-R ↑ WER-F ↓ SIM-F ↓ spk-ZRF-R spk-ZRF-F ↑
Original⋄ 1.9 0.662 - - - -
Original 2.1 0.649 2.1 0.708 0.857 0.846

Exact Unlearning 2.3 0.643 2.2 0.687 0.823 0.846
Fine Tuning 2.2 0.658 2.3 0.675 0.821 0.853

NG 6.1 0.437 5.0 0.402 0.840 0.842
KL 5.2 0.408 47.2 0.179 0.838 0.810
SGU (ours) 2.6 0.523 2.5 0.194 0.860 0.866
TGU (ours) 2.5 0.631 2.4 0.169 0.857 0.871
Ground Truth 2.2 - 2.5 - - -

A spk-ZRF closer to 1 would illustrate the distribution of speaker identities generated by θ− being
nearly as random as those generated by θ without an audio prompt. Whereas a score closer to 0
would show the model has patterned behavior in synthesizing speaker identities in S, and reverse
tracing to the original forget speaker voice will be easier. Details of implementations are elaborated
in Section 5.1.

5 Experiment

5.1 Experimental Setup

Baseline Methods. We evaluate four unlearning baselines applied to VoiceBox [25]. (1) Exact
Unlearning retrains a new model from scratch on the remain set DR. (2) Fine-Tuning (FT) updates
a pre-trained model using only DR [50]. (3) Negative Gradient (NG) performs gradient ascent on
the forget set DF [43, 14]. (4) Selective KL Divergence (KL) maximizes KL divergence for forget
samples while minimizing it for remain samples using a teacher model [27, 7].

Evaluation Metrics. We employ three quantitative metrics: Word Error Rate (WER), Speaker
Similarity (SIM), and the proposed spk-ZRF. WER evaluates content accuracy using a HuBERT-L
model [20] trained on LibriLight and LibriSpeech. SIM measures voice similarity between prompt
and output. spk-ZRF quantifies identity randomness for forget speakers and consistency for remain
ones. Both SIM and spk-ZRF use speaker embeddings from WavLM-TDCNN [11]. For qualitative
evaluation, we use Comparative MOS (CMOS) for audio quality and Similarity MOS (SMOS) for
voice similarity. Details on training, inference, and datasets are provided in Appendix A.

5.2 Evaluation

Correctness and Speaker Similarity. Table 1 reports WER and SIM for both remain and forget sets
across all methods. As per our objectives (Section 3), effective unlearning requires low WER for all
sets, high SIM for remain speakers, and low SIM for forget speakers.

Exact Unlearning and Fine-Tuning show similar performance to the original model, indicating that
removing DF from training alone is insufficient to prevent style replication in ZS-TTS. NG and KL
exhibit training instability, leading to high WER and low SIM, with KL notably generating noise
instead of distinct voices due to entanglement between style and content.

Among all methods, TGU aligns with the unlearning goal. It reduces SIM-F to 0.169, while
maintaining SIM-R at 0.631 (only a 2.8% drop). In contrast, SGU sees a 21% drop in SIM-R,
indicating degraded retention of remain speakers’ styles. Both TGU and SGU preserve WER, but
TGU achieves better balance between forgetting and performance retention. See Appendix C for
ground-truth SIM.
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Table 2: Quantitative results on LibriSpeech test-clean evaluation set (-R) and the forget evaluation
set of (-F). k refers to the number of forget speakers in the forget set. Please refer to Appendix F for
the result of statistical significance analysis.

Methods WER-R ↓ SIM-R ↑ WER-F ↓ SIM-F ↓
SGU (k=1) 2.7 0.586 2.8 0.173
SGU (k=3) 2.9 0.566 2.7 0.209
SGU (k=10) 2.6 0.523 2.5 0.194

TGU (k=1) 2.3 0.624 2.5 0.164
TGU (k=3) 2.9 0.626 2.3 0.159
TGU (k=10) 2.5 0.631 2.4 0.169
Ground Truth 2.2 - 2.5 -

Table 3: Quantitative results on LibriSpeech test-clean evaluation set (-R) and the out-of-domain
LibriTTS forget evaluation set (-F).

Methods WER-R ↓ SIM-R ↑ WER-F ↓ SIM-F ↓
Original 2.7 0.649 5.1 0.678

SGU 2.9 0.602 5.5 0.157
TGU 2.5 0.630 5.3 0.186
Ground Truth 2.2 - 5.9 -

Randomness. The final two columns in Table 1 show spk-ZRF scores, evaluating speaker identity
randomness. A desirable outcome is high spk-ZRF on the forget set and similarity to the original
model on the remain set.

NG and KL methods yield low spk-ZRF-F, indicating consistent, non-random generation for forget
speakers—despite low SIM—highlighting that these methods fail to decouple speaker identity. This
confirms our earlier observation that penalizing speaker identity without preserving linguistic content
results in degraded performance.

TGU and SGU improve spk-ZRF-F, demonstrating greater speaker variability for forget samples.
Notably, TGU achieves the highest spk-ZRF-F while preserving low randomness on remain speakers,
confirming its effectiveness in producing identity-agnostic outputs for the forget set while maintaining
fidelity elsewhere.

Scalability. Table 2 shows that both SGU and TGU successfully unlearn the target speakers while
preserving intelligibility on the remain set (-R). Notably, even when scaling from speakers of different
sizes, both methods continue to yield solid results, with TGU displaying almost no performance
degradation. In contrast, SGU suffers from a drop in similarity scores as more speakers are removed.
On the scalability of guided unlearning approaches, this indicates that both methods can maintain
similar levels of unlearning and speech quality regardless of the number of forget speakers.

Out-of-Domain Unlearning. In Table 3, we report evaluated results of unlearning methods under
the scenario of preventing generation of a out-of-domain (OOD) speaker, where the speaker was
not present in the pre-train dataset. Both SGU and TGU successfully unlearns speaker identities of
forget speakers, with TGU maintaining average SIM-R of 0.630. Aligning with in-domain unlearning
scenario, where the forget speaker was present in the pre-train dataset, SGU suffers a drop with 0602
and the highest WER for both remain (-R) and forget (-F). Both methods achieve results that indicate
effective unlearning even for speakers that were never seen during training.

5.3 Analysis

Visualization. Figure 3 illustrates the results of t-SNE, focusing on the model outputs for eight
speakers selected from each set. The speaker embedding vectors of the input speech prompt and
its resulting generated outputs were used for this analysis. For the forget set, SGU and TGU both
showed that the embedding vectors of generated speech are intermixed, regardless of the prompt used.
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Table 4: Human assessment on Librispeech test-clean (-R) and forget (-F) evaluation set.

Methods CMOS-R ↑ CMOS-F ↑ SMOS-R ↑ SMOS-F ↓
Original 0.00 ± 0.00 0.00 ± 0.00 4.47 ± 0.38 4.44 ± 0.36

SGU (ours) -0.15 ± 0.27 -0.53 ± 0.28 3.12 ± 0.83 1.45 ± 0.31
TGU (ours) -0.02 ± 0.19 -0.45 ± 0.23 4.67 ± 0.26 1.28 ± 0.24

Ground Truth 1.00 ± 0.26 0.22 ± 0.29 3.70 ± 0.70 3.89 ± 0.69

Both unlearning methods effectively remove the ZS-TTS system’s ability to mimic forget speakers.
In contrast, for the remain set, TGU demonstrated strong clustering among the embeddings of prompt
and generated speech, showing consistent results for each speaker. SGU failed to achieve the same
degree of clustering, with some embedding vectors intermixing rather than forming tight clusters.
This indicates that TGU better preserves the performance of the original ZS-TTS system. NG and KL
embeddings failed to cluster for remain speakers, and to show random distribution for forget speakers
- suggesting poor unlearning performance overall.

Human Subjective Evaluation. Table 4 presents the qualitative results for TGU and SGU. The
results show that TGU generates speech quality more similar to the original model compared to
SGU, demonstrating its ability to better preserve high-quality speech generation. In terms of SMOS,
TGU outperforms SGU on replicating voice styles for remain speakers. For forget samples, TGU
produces voices that are more distinct from the prompt, effectively limiting the replication of the
forget speakers. These results indicate that TGU effectively restricts the model’s ability to mimic
forget speakers and better preserves the performance of the ZS-TTS system. Please refer to Appendix
H for detailed information on human involved evaluation.

6 Conclusion
In this paper, we applied and analyzed machine unlearning techniques for the first time in the context
of speaker identity unlearning in Zero-Shot Text-to-Speech (ZS-TTS). Unlike traditional unlearning
methods, randomness is incorporated to ensure that a model has forgotten its knowledge and ability
to process the audio prompts of forget speakers. TGU effectively neutralizes the model’s responses
to forget speakers and limits the model’s ability to replicate unwanted voices, while maintaining
the performance of original ZS-TTS system. Our experiments showed that TGU results in only a
2.6% decrease in speaker similarity (SIM) for remain speakers, while maintaining competitive word
error rate (WER) scores compared to the original model. Furthermore, we introduce a new metric to
evaluate the lack of knowledge and trained behavior on the forget speakers, spk-ZRF. This metric
evaluates randomness in voice generation to assess how effectively the unlearned model prevents
reverse engineering attacks that could expose a speaker’s identity.
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A Experiment Settings

A.1 Dataset Details

For the training set, we utilized the LibriHeavy dataset [23], which contains approximately 50,000 hours of
speech from 7,000 speakers. To create the forget set, 10 speakers were randomly selected from the dataset.
To avoid any bias in speaker selection, we first analyzed the distribution of audio duration per speaker in the
LibriHeavy dataset. The lower and upper quartiles of audio duration per speaker were 440 seconds and 4,603
seconds, respectively. We randomly sampled 10 speakers whose audio durations fell within this range. For each
selected speaker, approximately 300 seconds of audio was randomly chosen as the evaluation set, while the
remaining audio was designated for the unlearning training set. The selected speakers are: 789, 1166, 3912,
5983, 6821, 7199, 8866, 9437, 9794, and 10666.

To evaluate the performance of the existing ZS-TTS model, specifically its ability to replicate the voices of
unseen speakers, we used the LibriSpeech test-clean set [39]. It is important to note that there is no overlap
between the speakers in the LibriSpeech test-clean set and those in LibriHeavy [23]. Following the experimental
setup outlined in the original VoiceBox paper [25, 48], for both the forget and remain evaluation sets, a different
sample from the same speaker was randomly selected, and a 3-second segment was cropped to be used as a
prompt.

A.2 Data Preprocessing

Speech is represented using an 80-dimensional log Mel spectrogram. The audio, sampled at 16 kHz, has its Mel
spectral features extracted at 100 Hz. A 1024-point short-time Fourier transform (STFT) is applied with a 10 ms
hop size and a 40 ms analysis window. A Hann windowing function is then used, followed by an 80-dimensional
Mel filter with a cutoff frequency of 8 kHz. We used the Montreal Forced Aligner (MFA) [33] to phonemize
and force-align the transcripts, utilizing the MFA phone set, a modified version of the International Phonetic
Alphabet (IPA), while also applying word position prefixes.

A.3 Model Configurations

We applied both baseline machine unlearning methods and the proposed method to VoiceBox [25], using the
same configuration. The audio feature generator is based on a vanilla Transformer [46], enhanced with U-Net
style residual connections, convolutional positional embeddings [1], and AliBi positional encoding [40]. This
model has 24 Transformer layers, 16 attention heads, and an embedding/feed-forward network (FFN) dimension
of 1024/4096, with skip connections implemented in the U-Net style.

A.4 Duration Predictor and Vocoder

We used the regression version of duration predictor proposed in [25]. The duration predictor has a similar model
structure to the audio model, but with 8 Transformer layers, 8 attention heads, and 512/2048 embedding/FFN
dimensions. It is trained for 600K steps. The Adam optimizer was employed with a peak learning rate of 1e-4,
linearly warmed up over the first 5K steps and decayed afterward. HiFi-GAN [24], trained on the LibriHeavy
[23] English speech dataset, is employed to convert the spectrogram into a time-domain waveform.

A.5 Pre-training

Following [25], we trained the original Voice model for 500K steps. Each mini-batch consisted of 75-second
audio segments, and the Adam optimizer was employed with a peak learning rate of 1e-4, linearly warmed up
over the first 5K steps and decayed afterward. All training was conducted using mixed precision with FP16.

A.6 Inference Configurations

During inference, classifier-free guidance (CFG, [19, 25]) was applied as follows:

v̂t(w, x, y; θ) = (1 + α) · vt(w, xctx, y; θ)− α · vt(w; θ) (11)

where α is fixed at 0.7, as specified in the original paper. Refer to Appendix G for information on the impact of
α.

We utilized the torchdiffeq package [10], which offers both fixed and adaptive step ODE solvers, using the
default midpoint solver. The number of function evaluations (NFEs) was fixed at 32 for both the evaluation stage
and the generation of x̄ in the proposed method. The Ground Truth for WER is obtained by transcribing the
target speech using the Automatic Speech Recognition (ASR) model [20], then comparing the ASR result to the
target speech transcription.
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B Unlearning Implementations

B.1 Teacher-Guided Unlearning

The Teacher-Guided Unlearning (TGU) model was trained for 145K steps for 1 and 10K steps for 2. Each
mini-batch included 75-second audio segments. The Adam optimizer was employed with a peak learning rate
of 1e-4, which was linearly warmed up during the first 5 K steps and subsequently decayed throughout the
remainder of the training. To facilitate the unlearning process, samples from the forget set xf were randomly
selected with a 20% probability in each mini-batch.

B.2 Sample-Guided Unlearning

To apply Sample-Guided Unlearning (SGU) in the ZS-TTS system, we set up the training process such that
when a forget sample xf is provided, a random retain sample xr is selected as the target for training. To train
VoiceBox, both speech data and aligned text segments are required. However, as discussed in Section 4.1, it is
not naturally feasible to collect utterances from different speakers that share the same alignment. To address this,
the SGU training was set up as follows: Let yf and yr represent the corresponding text segments for xf and xr ,
respectively. We generated a mask corresponding to the length of xr , training the model to predict xr based
on this masked input. The text segments yf and yr were concatenated along the time axis and used as input,
with the same process applied to the other input components, such as wf and wr . During the training phase, the
model was fine-tuned using 145K steps for 1 and 10K steps for 2. Additionally, forget samples xf and remain
samples xr were selected and trained in a 2:8 ratio.

B.3 Exact Unlearning & Fine-Tuning

The Exact Unlearning method was trained with the same configuration as the pre-training, except that only the
dataset Dr was used. Similarly, the Fine Tuning method involved additional training for 145K steps, exclusively
using the dataset Dr .

B.4 Negative Gradient

Implementation of Negative Gradient (NG) method follows that of [43]. On the pre-trained VoiceBox model, we
provide only the samples from the forget speaker set F . The loss is inverted to counteract loss minimization
previously occurred in the pre-trained model’s weights. Given that approaches based on reversing the gradient
often suffer from low model performance and unstable training, we searched for learning rate with best evaluation
score {1e-5, 1e-6, 1e-7, 1e-8}. For evaluation, we use the checkpoint of 9.5K fine-tuned with Adam optimizer
with a peak learning rate of 1e-8, linearly warmed up over first 5K steps and decayed after.

B.5 Selective Kullback-Leibler Divergence

Numerous studies have adopted a loss function that focuses on utilizing a teacher-student framework with
selective Kullback-Leibler divergence loss [27, 7]. We implement this loss so the student model is fine-tuned to
maximize KL-divergence between teacher and student output when xf is given as input, and minimize when xr

is given :

LKL = λKL(θ(xr, yr)∥θ−(xr, yr))− (1− λ)KL(θ(xf , yf )∥θ−(xf , yf )) (12)

where λ is a hyper-parameter between 0 and 1 to balance the trade-off. Similar to NG, unbounded reverted loss
on KL-divergence is prone to low model performance. We searched for learning rate with best evaluation score
from {1e-5, 1e-6, 1e-7, 1e-8}, and λ from {0.5, 0.8}. For evaluation, we use the checkpoint of 32.5K fine-tuned
with Adam optimizer with a peak learning rate of 1e-8, following warm up and decay of previous methods using
λ = 0.5.

13



C Speaker Similarity in Real Samples
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Figure 4: Boxplot of speaker similarity on same speaker’s and different speakers’ audio. Each are
evaluated with 100 pairs of random speech audio in LibriSpeech test-clean subset.

From the LibriSpeech dataset, we make extensive analysis to get a grip of actual speaker similarity scores
between pairs of audios from the same speaker, and that consisting of different speakers. For the SIM of same
speakers, we retrieved random 100 pairs of audio, each pair comprised of different audio from random speaker.
For the SIM of different speakers, similarly, we retrieved random 100 pairs of audio, with each pair comprised
of audio from different speakers.

As shown in Figure 4, audios with same speaker’s voice return SIM with 0.66 as mean, 0.57 and 0.76 each being
lower and upper quartiles. With different speakers, mean of SIM is 0.09, lower and upper quartiles are 0.02 and
0.17. We take these values into consideration when evaluating Table 1 and Table 2. While actual values can have
a wider range, we focus on the lower and upper quartiles as a primary boundary to achieve in unlearned models.

D Compute Resources

Table 5: Details on computation resources for main experiments illustrated in Table 1. Approximate
training time (hours) is reported for each setting. RTF denotes the Real Time Factor evaluated on an
NVIDIA A100 (40GB). We report both batch sizes of forget set (-F) and remain set (-R) used for
each experiment. "-" refers to unavailable values.

Methods GPU # of GPUs Training Time RTF # of Steps Sec/Iter. Batch (-F) Batch (-R)

Original A100(40GB) 8 100 hrs 0.71 500K 1.68 - -
NG A100(40GB) 1 100 hrs 0.71 9.5K 8.08 64 -
KL A100(40GB) 1 187 hrs 0.71 32.5K 16.56 8 32
SGU A100(40GB) 8 75 hrs 0.71 145K 2.68 8 32
TGU A100(40GB) 8 250 hrs 0.71 145K 7.21 8 32

In Table 5, we provide additional details regarding the computational anlysis of our study. All experiments were
performed on NVIDIA A100 (40GB) GPU. The VoiceBox has model parameter size of approximately 328M.

The total training time is shorter in NG and KL only due to the fact they were intentionally halted at 9,500 and
32,500 steps, respectively. This decision was based on our observations that further training led to diminishing
returns in terms of model performance and effectiveness in unlearning, with both models struggling to maintain
performance beyond these points.

Additionally, it is pertinent to mention that the KL and TGU methods incorporate a teacher model. This
inherently extends the training time per step due to the additional computations required.

Regarding inference, we note that the unlearning methods implemented do not influence the size of the final
unlearned models. Consequently, the inference time per sample remains consistent across all methods – 0.71
RTF on A100(40GB). The full research project requires more compute than reported, as we pre-trained two
versions of VoiceBox on LibriHeavy and LibriTTS, with preliminary and unrecorded experiments that did not
make into the paper.
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Table 6: One-way ANOVA F statistics for the effect of unlearning method. The within-methods
degrees of freedom are df2 = 768 for analyses on remain speakers (-R) and df2 = 1188 for forget
speakers (-F). ∗∗∗p < .001.

Tables WER-R SIM-R WER-F SIM-F spk-ZRF-R spk-ZRF-F

Table 1 3900.01∗∗∗ 3275.76∗∗∗ 71.64∗∗∗ 501.71∗∗∗ 116.31∗∗∗ 807.97∗∗∗

Table 2 2.71 174.58∗∗∗ 2.80 7.44∗∗∗ - -

E Quantitative Results Over the Training Process

(a) WER-R (b) WER-F

(c) SIM-R (d) SIM-F

Figure 5: Quantitative results for SGU and TGU across different training stages. The top row shows
the WER for both methods, while the bottom row displays the SIM results at each stage of the training
process.

Figure 5 depicts the training process of our two proposed methods : SGU and TGU in Table 1. We evaluate the
unlearning model’s checkpoints at every 10% of full iterations. Notably, SIM score for the forget set declines
quickly within first 10% of steps. However, SIM score for the remain set also declines in the early unlearning
process - with the remaining process improving SIM-R.

Also, for WER scores for both remain set and the forget set remains relatively stable for both SGU and TGU.
This suggests that guided unlearning method is highly effective in maintaining model performance in generating
accurate speech on the given target text. It can also be interpreted that guided unlearning method is successful in
disentangling speaker specific speech features from model’s knowledge of correct speech generation.

F Statistical Significance of Experiments

Table 6 depicts the statistical significance analysis results of the paper’s main experiments. The results reported
in Table 1 and Table 2 were evaluated with a one-way ANOVA to assess how the unlearning method influences
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content correctness (WER), speaker similarity (SIM), and randomness in speaker identity (spk-ZRF). In Table 1,
the analysis reveals a significant effect of the method on all metrics, demonstrating that the chosen unlearning
strategy impacts content accuracy and speaker similarity. By contrast, in Table 2, low significance is observed in
WER, indicating that two of our methods are comparable in terms of generating correct content. Nonetheless,
the significant difference in SIM confirms that TGU is a more effective method for speaker identity unlearning.

G Impact of α

Table 7: Quantitative results based on the alpha value of CFG during the TGU inference process

WER-R ↓ SIM-R ↑ WER-F ↓ SIM-F ↓
α = 0.0 3.4 0.552 2.6 0.265
α = 0.3 2.6 0.583 2.3 0.198
α = 0.7 2.4 0.631 2.4 0.169
α = 1.0 2.5 0.629 2.4 0.187

In the CFG used during inference, vt(w; θ) does not incorporate linguistic information y or the surrounding
audio context xctx, making it relevant to our formulation. To assess the impact of CFG on unlearning, we
experimented with different values of α. Table 7 presents the results of these experiments.

According to the results, when α is set to 0, removing the influence of vt(w; θ), the model showed the highest
SIM-F value, indicating increased reliance on xctx. On the other hand, when α was set to 0.3 or higher, the
model consistently produced lower SIM-F values.

H Qualitative Evaluation Instruction

Table 8 and Table 9 present the instructions used for evaluating CMOS and SMOS in the qualitative assessment.
Both the CMOS and SMOS evaluations were conducted with 25 participants.

Table 8: Comparative mean opinion score (CMOS) Instruction

Introduction
Your task is to evaluate how the quality of two speech recordings compares,
using the Comparative mean opinion score (CMOS) scale.

Task Instructions
In this task, you will hear two samples of speech recordings, one from each system.
The purpose of this test is to evaluate the difference in quality between the two files.
Specifically, you should assess the quality and intelligibility of each file in terms of
its overall sound quality and the amount of mumbling and unclear phrases in the recording.

You should give a score according to the following scale: -3 (System 2 is much worse)
-2 (System 2 is worse)
-1 (System 2 is slightly worse)
0 (No difference)
1 (System 2 is slightly better)
2 (System 2 is better)
3 (System 2 is much better)
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Table 9: Similarity mean opinion score (SMOS) Instruction
Introduction
Your task is to evaluate how similar the two speech recordings sound in terms of
the speaker’s voice.

Task Instructions
In this task you will hear two samples of speech recordings.
The purpose of this test is to evaluate the similarity of the speaker’s voice between
the two files.
You should focus on the similarity of the speaker,
speaking style, acoustic conditions, background noise, etc.

You should give a score according to the following scale:
5 (Very Similar)
4 (Similar)
3 (Neutral)
2 (Not very similar)
1 (Not similar at all)

H.1 Demographics of Human Evaluators

To assess the quality of synthesized speech, we conducted quantitative evaluation with total of 25 participants.
Participants were recruited for individuals physically and cognitively capable of normal activities with ages
between 20 and 45 years with high proficiency in English. Recruitment and study procedures adhered to Institu-
tional Review Board guidelines, and all participants provided informed consent. Additionally, all participants
were general listeners with no prior expertise in audio or speech synthesis.

H.2 Evaluation Conditions

All participants completed a brief instructive session with an evaluator to familiarize themselves with the
evaluation criteria. Evaluation was conducted in a quiet enclosed environment with the same listening device
and volume levels, under the instructions of Table 8 and Table 9. Each evaluation took less than 10 minutes.

I Experiment on Unlearning Robustness

While Table 1 shows that TGU has effectively unlearned in overall, we go through extensive experiments to
evaluate unlearning robustness. Figure 6 illustrates how TGU unlearned model behaves on remain speakers’
speech prompts with various similarity scores to a forget speaker’s speech prompt. As unlearning specifically on
forget speakers is our objective in speaker identity unlearning, we expect the model to clearly classify forget
speakers and remain speakers despite possible resemblances of each other.

For the x-axis, we identified speech prompts in remain set and the highest speaker similarity (SIM) score with
any forget speech prompt. Then, the same remain speech prompts were used to generate speech with TGU
unlearned model. The y-aixs was then obtained, by comparing the speech prompt with its TGU generated output
speech. The results are visualized on 6.

A Pearson correlation analysis was conducted to assess the relationship between the similarity of remain speech
prompts to forget speech prompts (x-axis) and the similarity of remain speech prompts to TGU-generated speech
output (y-axis). The obtained statistic is 0.1396 while the p-value is 0.0003. This indicates a weak positive
correlation with statistical significance, meaning that TGU generated speech is generally independent of the
remain samples’ similarity to forget speakers. Had the model not been robust and mistreated remain samples as
forget speaker samples, there would have been a strong negative correlation.

In Table 10, we further assess the model’s robustness by comparing its behavior on remain speakers with similar
vocal characteristics to forget speakers. First, we compute the speaker similarity (SIM) between utterances
from the two groups. We select utterances whose similarity to any forget-speaker utterance exceeds 0.40 and
use these as prompts in our evaluation. Even when a remain speaker’s voice closely resembles that of a forget
speaker, TGU maintains its performance with the original model. This demonstrates TGU’s ability to preserve
the identity of remain speakers while effectively neutralizing traces of forget speakers. In constrast, NG, KL and
SGU significantly drop SIM-R (drops of 0.226–0.321), suggesting unlearning using these methods may trigger a
trade-off that sacrifices remain speaker speech synthesis.
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Figure 6: Robustness scatterplot of TGU on remain speakers. The x-axis represents the maximum
SIM score between the remain speech prompt and forget speech prompt to depict the level of similarity
between a remain speaker and a forget speaker. The y-axis represents the similarity score between the
remain speech prompt and its resulting generated output using TGU. The red dashed line indicates
average SIM score for all remain speech prompts in the evaluation set.

Table 10: Quantitative results on LibriSpeech test-clean evaluation set (-R) which show high speaker
similarity to any forget speaker utterances (exceeding 0.40 in SIM).

Methods WER-R ↓ SIM-R ↑
Original 4.96 0.637

NG 6.67 0.393
KL 8.78 0.316
SGU (ours) 5.70 0.411
TGU (ours) 4.70 0.622
Ground Truth 2.94 -

J Experiment on General Tasks

To provide deeper insights on how TGU unlearning may affect model performances on general tasks where
ZS-TTS is used, we experiment the original model and TGU on transient noise removal.

J.1 Transient Noise Removal

ZS-TTS can be applied in tasks where editing is required to remove undesired noise in speech datasets. To
prevent having to go through repetitive and inefficient recording to obtain clean speech, ZS-TTS can generate
clean audio for the noisy segment. We follow experimental settings of [25] to analyze how TGU unlearned
model performs on the task of transient noise removal.

From LibriSpeech test-clean dataset samples of durations 4 to 10 seconds, we construct noise at a -10dB
signal-to-noise ratio over half of each sample’s duration. Table 11 suggests that TGU provides comparable
performances to that of the original model. While seemingly low, diminished model performances on transient
noise removal is present relatively to the original model. We suggest that this is a trade-off from successful
unlearning. While the model has unlearned to generate voice characteristics of the forget dataset, smaller
knowledge-base and implemented randomness could have affected its reconstructing abilities.
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Table 11: Transient noise removal results on LibriSpeech test-clean set

Methods WER↓ SIM↑
Clean speech 4.3 0.689
Noisy speech 47.9 0.213

Original 2.4 0.666
TGU (ours) 2.5 0.641

Table 12: Diverse speech sampling results on LibriSpeech test-other evaluation set

Methods WER ↓ FSD ↓
Ground truth 4.5 164.4

Original 8.0 170.2
TGU (ours) 7.9 177.8

J.2 Diverse Speech Sampling

Being able to generate diverse speech is also an important feature of ZS-TTS models as it ensures realistic
and high-quality speech that resembles natural distributions. This is necessary in applications such as speech
synthesis or generating training data for speech related tasks (e.g., Automatic Speech Recognition). The diversity
of generated speech samples is measured with Fréchet Speech Distance (FSD) as suggested in [25]. From
generated speech samples, we extracted self-supervised features using 6th layer representation of wav2vec 2.0
[1]. The features were reduced to 128 dimensions with principle component analysis and used to calculate the
similarity of distributions with real speech. High FSD indicates lower quality and minimal diversity, while low
FSD refers to high quality and more diversity. For this experiment, α is set to 0 to ensure more diversity. Ground
truth FSD is obtained by partitioning the LibriSpeech test-other set into half while ensuring equal distribution of
data per speaker across both subsets

Experimental results in Table 12 show that FSD increases in TGU unlearned model. Because this task does
not require input audio prompts, diverse speech sampling relies relatively heavier on datasets used to train the
model. Implementing machine unlearning and thus inducing forgetting of specific speakers causes a trade-off in
model’s diversity. Meanwhile, it is noticeable that TGU achieves a lower WER in this case. We can infer that
TGU obtains robustness in relatively noisy dataset comparable to the Original model.

K Recovery Experiment

Table 13 illustrates an experimental result on whether an unlearned model is recoverable to its original state.
Aligning with our motivation to make ZS-TTS models safe, we presume a scenario of a privacy attacker who
attempts to retrieve the original model parameters. We train the TGU unlearned checkpoints on all 10 of forget
speaker’s dataset to recover the original model. We also presume a practical scenario and attempt to recover the
model performance using average of 1 minute for each speaker.

When given audio duration of 15 minutes for the forget speakers, the model fails to generalize over other
speakers, hence, failing to mimic voices other than the forget speaker’s. Additionally, the recovered model is
more likely to generate wrong speech content as shown with higher WER in both remain set and the forget
set. This process resembles fine-tuning a Text-to-Speech model for specific speakers rather than true recovery.
Consequently, the original ZS-TTS model cannot be restored, and the attacker is essentially leveraging transfer
learning to create a forget speaker-specific TTS model. However, with enough training data, the attacker could
achieve similar results using any other non-zero-shot TTS model. We also consider a scenario where an attacker
has access to only 1 minute of the forget speaker’s voice sample. In this case, the model parameters also remain
unrecoverable. The model also fails to generate forget speaker’s voice. The model loses its zero-shot abilities
hence the performance at early steps. Therefore, in practical scenarios where an attacker may attempt to train the
model to clone an individual’s voice with short sample of speech (e.g., voice phishing), it would not be feasible
to recover the model or successfully generate the forget speaker’s voice.
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Table 13: Quantitative results for recovery experiments on unlearned models. WER and SIM
evaluation follows the procedures of Table1.

Methods Recover Steps Audio per Spk WER-R ↓ SIM-R ↑ WER-F ↓ SIM-F ↑
Original - 15 min 2.1 0.649 2.1 0.708

TGU - 15 min 2.5 0.631 2.4 0.169

TGU 36.25K 15 min 4.23 0.303 2.5 0.735
TGU 14.5K 1 min 4.61 0.226 2.8 0.162

Table 14: Quantitative results for reproducibility experiments using LibriTTS as pre-train dataset.

Methods Unlearn Steps WER-R ↓ SIM-R ↑ WER-F ↓ SIM-F ↑
Original - 3.2 0.610 6.3 0.503

TGU 10K 3.3 0.548 6.4 0.184

L Reproducibility Experiment

Table 14 illustrates the reproducibility of our experiment of Table 1 using a different dataset, LibriTTS [55].
We pre-trained the VoiceBox model on LibriTTS for 500K steps and 10 speakers were randomly selected as
forget set. When performing unlearning for only 10K steps (7% of pre-training steps), results of TGU illustrate
effective unlearning while maintaining content accuracy.

M Limitations and Discussions

M.1 Limitations

While we were able to effectively apply machine unlearning to ZS-TTS to suppress replication of specific
identities, we also acknowledge potential trade-offs or untackled challenges.

In J, we have investigated the difference in performance of the TGU model and original model on downstream
tasks. On downstream usage of unlearned ZS-TTS model, machine unlearning, in its nature, removes knowledge
or datasets from the model’s parameters. Therefore, the impact of unlearning process could pose unexpected
results when the model is used for various purposes. In K, we analyze the possibility of regaining unlearned
model parameters to its original state - an attack scenario of malicious user. Without usage of sufficient remain
set, the original model weights of ZS-TTS system cannot be recovered. However, unlearning does not safeguard
the architecture itself from being trained to replicate a specific forget speaker after the training process. This
challenge should be tackled in future works, where adaptation of methods to hinder further finetuning on
unwanted speaker identities can be applied for voice privacy.

In scope of claims, our method requires access to the original training set and becomes more computationally
demanding as the number of forget speakers grows. Without access to the original training set (or other sufficient
remain dataset), the unlearning performance may not be consistent and could be prone to catastrophic forgetting.
This reflects a broader challenge in machine unlearning, where efficiency and practicality remain open questions.
As the first work to address unlearning in ZS-TTS, our focus is on establishing a strong foundation. We anticipate
future research will extend this direction by developing lighter approaches and exploring scenarios with more
limited data access.

This paper provides results in different settings, using a VoiceBox model pretrained on LibriHeavy in 1 and
on LibriTTS in L. We selected VoiceBox for its state-of-the-art performance at the time of our study. While
our evaluations focus on this architecture, the approach is expected to extend naturally to other flow-matching
models with analogous structures, such as F5TTS, which we anticipate will exhibit similar behavior. To further
reinforce the generality of our findings, additional experiments could be made on more ZS-TTS systems.

M.2 Discussions

Although our work addresses the need for individuals to opt out of voice replication, determining how to handle
similar voices raises complex questions. In striving to protect the privacy of a single individual, one could
unintentionally restrict beneficial TTS capabilities to others whose voices resemble the forget set. Balancing
personal privacy rights and broader technological benefits is at the heart of this tension. Also, techniques for
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ensuring speaker identity unlearning must be verifiable and transparent. Providing evidence that the model no
longer replicates a forgotten identity requires both quantitative evaluation and subjective analysis. In light of
the current situation—where many models remain closed due to concerns about misuse—we believe our work
marks a new chapter in safeguarding individuals, paving the way for broader availability in the future. We aim to
foster a deeper ethical discourse and encourage further research on responsibly handling ZS-TTS.

Overall, this work establishes the first foundation for applying machine unlearning to ZS-TTS. While certain
aspects such as efficiency, robustness across diverse conditions, and fairness in privacy protection remain open
challenges, we view these as important directions for future research. By addressing them, subsequent studies
can build upon our framework to develop more practical, resilient, and equitable unlearning methods.

N Inference Samples

Figures 7 and 8 show the Mel-spectrograms for the ground truth, original VoiceBox, SGU, and TGU inference
results on forget speaker samples. These figures represent samples from speakers 789 and 6821, respectively.
The ground truth Mel-spectrogram corresponds to the audio where the same speaker as the prompt reads the
same transcription.

(a) Ground Truth

(b) Original

(c) SGU Sample 1

(d) SGU Sample 2

(e) TGU Sample 1

(f) TGU Sample 2

Figure 7: Mel-Spectrogram Comparisons: GT, Original, SGU Samples, and TGU Samples for the
forget speaker 789
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(a) Ground Truth

(b) Original

(c) SGU Sample 1

(d) SGU Sample 2

(e) TGU Sample 1

(f) TGU Sample 2

Figure 8: Mel-Spectrogram Comparisons: GT, Original, SGU Samples, and TGU Samples for the
forget speaker 6821
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: Abstract and introduction both include the claims made in this paper - specifically,
suggested method of Guided Unlearning and novel metric spk-ZRF. These methods are followed by
experimental results that prove our proposed methods’ effectiveness in unlearning speaker identities in
ZS-TTS system.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in the
paper.

• The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: In Appendix M, we discuss the limitations of work in terms of assumptions, scope of
claims, and factors that may influence performance followed by ethical considerations of the work.
Additionally, we provide sufficient discussions in robustness in Appendix I, scalability in terms of
forget set size in Table 2, computational efficiency in Appendix E. We believe these extensive analysis
and transparent reflections of work further strengthen not only this paper, but future works in speaker
identity unlearning.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to violations of

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide
closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [NA]
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Justification: This paper does not contain any theoretical claims.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they appear in

the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper clearly states with pretrained model (VoiceBox [25]) was used, and usage
of publicly available and cited datasets (LibriHeavy [23], LibriTTS [55], LibriSpeech [22]. We
provide implementation details of all baselines and our methods in full detail with hyperparameters in
Appendix B. We also report the model and inference configurations, data preprocessing, remain/forget
split sizes, selection of forget speakers, evaluation settings, and pre-training settings in Appendix A.
The proposed evaluation pipeline and unlearning pipelines is made publicly available as well. Yet,
we do not redistribute pre-trained VoiceBox model weights nor the VoiceBox pre-training code in
compliance the Ethics Statement of original authors’ measures due to risks of misuse3. Nevertheless,
researchers can reproduce the experiments following publicly available procedures to reproduce
VoiceBox pre-training along with our provided pre-training procedures.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by the

reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either be

a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code

3https://voicebox.metademolab.com/
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Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: We provide the code for data access and preparation, evaluation pipeline and training
pipeline of unlearning methods. As mentioned in the previous checklist, we omit pre-training code and
weights for reproducing VoiceBox hence privacy. Additionally, we provide generated results using our
methods in the project page.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: We specify full details on training and test settings in terms of data splits, optimizers,
hyperparameters in not only the Section 5.1, but also in Appendix A, Appendix B, and ablations in
Appendix G.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide statistical significance of experiments in Appendix F for main claims of the
paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

25

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report
a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: We provide the type of compute workers with relevant memory for the main experiment
and estimate of compute in Appendix D

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experimental

runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: For human assessment, we follow the guidelines of IRB of the institution and specify the
procedures as mentioned in Appendix H.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [Yes]

Justification: We discuss the impacts and ethical considerations of this paper that may result in
unwanted results; where remain speakers of highly similar identities to that of forget speakers may be
omitted from accessibility to ZS-TTS system usage in Appendix M. We make effort to cover this part
by evaluation on similar speakers in Appendix I.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
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other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [Yes]

Justification: We release all code but omit the weights and training code for the VoiceBox model which
has a high risk of misuse (speech generation without consent).

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: We credit the creators or owners of all datasets, code, and models used in this paper in
both the main content and specify in Appendix A.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [Yes]

Justification: While this paper does not release new dataset or models, we release the pipelines of
proposed method and code for evaluation.

Guidelines:

• The answer NA means that the paper does not release new assets.
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• Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [Yes]

Justification: We provide the full text of instructions and research procedures with human subjects,
along with details about compensation in Appendix H.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [Yes]

Justification: We obtained IRB approval for experiments that involve human subjects in Table 4 and
mention this in Appendix H.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
component of the core methods in this research? Note that if the LLM is used only for writing,
editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or
originality of the research, declaration is not required.

Answer: [NA]

Justification: We do not use LLMs in any way impacting important, original, or non-standard compo-
nent of the core methods in this research.

Guidelines:

• The answer NA means that the core method development in this research does not involve LLMs
as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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