
Occupancy-based Policy Gradient: Estimation,
Convergence, and Optimality

Audrey Huang
Department of Computer Science

University of Illinois Urbana-Champaign
Champaign, IL 61820

audreyh5@illinois.edu

Nan Jiang
Department of Computer Science

University of Illinois Urbana-Champaign
Champaign, IL 61820

nanjiang@illinois.edu

Abstract

Occupancy functions play an instrumental role in reinforcement learning (RL) for
guiding exploration, handling distribution shift, and optimizing general objectives
beyond the expected return. Yet, computationally efficient policy optimization
methods that use (only) occupancy functions are virtually non-existent. In this
paper, we establish the theoretical foundations of model-free policy gradient (PG)
methods that compute the gradient through the occupancy for both online and
offline RL, without modeling value functions. Our algorithms reduce gradient es-
timation to squared-loss regression and are computationally oracle-efficient. We
characterize the sample complexities of both local and global convergence, ac-
counting for both finite-sample estimation error and the roles of exploration (on-
line) and data coverage (offline). Occupancy-based PG naturally handles arbitrary
offline data distributions, and, with one-line algorithmic changes, can be adapted
to optimize any differentiable objective functional.

1 Introduction

Value-based methods have been the dominant paradigm in model-free reinforcement learning, with
a solid theoretical foundation in large state spaces under function approximation [CJ19; JYWJ20a;
ZLKB20; JLM21; XJ21; XFBJK22]. In contrast, a model-free RL paradigm based on their natural
counterparts—the occupancy functions—remains largely under-investigated. Occupancy functions
are densities that describe a policy’s state visitation, and play instrumental roles in guiding explo-
ration [HKSVS19; AFK24], handling distribution shift [HM17; NCDL19; CJ22], and optimizing
general objectives beyond the expected return [ZBWK20; MDSDBR22]. Despite this, they are sel-
dom modeled directly in learning algorithms and appear only in the analyses, except in conjunction
with value functions in marginalized importance sampling [LLTZ18; NDKCLS19; UHJ20; ZH-
HJL22; HJ22a]. Recently, [HCJ23] developed algorithms in online and offline RL that model only
occupancies via density function classes, spotlighting their roles in handling non-exploratory offline
data and in online exploration. However, their focus was on statistical guarantees, and computation-
ally efficient policy optimization for occupancy-based methods remained an open problem.

In answer, we develop model-free policy gradient (PG) algorithms that compute the gradient through
occupancy functions, without estimating any values. By leveraging a Bellman-like recursion, we
reduce occupancy-based gradient estimation to solving a series of squared-loss minimization prob-
lems, which can be done in a computationally oracle-efficient manner. Our analysis captures the
effects of gradient estimation error, exploration (in online PG, which is characterized by the initial
state distribution), and offline data quality (in offline PG) on the sample and iteration complexity
required for local and global convergence. In the online setting, our results complement previous
works on the optimality of value-based PG [AKLM21; BR24] and extend past their scope to in-

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

clude general objectives of occupancy functions, such as entropy maximization for pure exploration
and risk-sensitive functionals in safe RL [MDSDBR22]. These objectives generally cannot be opti-
mized using value-based policy gradients because they do not admit value functions or Bellman-like
equations with which to estimate them [ZBWK20; HDGP24].

In the offline setting, we handle gradient estimation from fixed datasets of poor coverage, which
departs from most existing (value-based) off-policy PG estimators that assume an exploratory dataset
[KU20; XYWL21; NZJZW22]. Learning with non-exploratory data is a core consideration in recent
offline RL [XCJMA21; ZHHJL22], and gives rise to unique challenges in our setting: occupancies
are converted into density ratios for learning purposes, but these ratios become unbounded when the
data lacks coverage. [HCJ23] used clipping to handle occupancy estimation under poor coverage,
which we show is insufficient for gradient estimation (Prop. 4.2). Instead, a novel smooth-clipping
mechanism (Sec. 4.2) is developed to provide statistically robust gradient estimates.

App. A includes a full discussion of related work, and our contributions are organized as follows:

1. Online PG (Sec. 3) We propose OCCUPG, an occupancy-based PG algorithm that reduces gra-
dient estimation to squared-loss minimization, based on a recursive Bellman flow-like update for
the occupancy gradient. We analyze the sample complexities for both local and global conver-
gence, and, notably, our algorithm and analyses extend straightforwardly to the optimization of
general objective functionals.

2. Offline PG (Sec. 4) For offline RL we develop and analyze OFF-OCCUPG, which optimizes
only the portions of a policy’s return that are adequately covered by offline data. Conceptually,
our algorithm is based on combining the methods in Sec. 3 with (a smoothed version of) the
recursively clipped occupancies from [HCJ23]. As a result, our estimation and convergence
guarantees do not require assumptions on data coverage, which relaxes the restrictions of previous
works.

2 Preliminaries

Finite-horizon Markov decision process (MDP). Finite-horizon MDPs are defined by the tuple
M = (S,A, P,R,H, d0), where S is the state space, A is the action space, and H is the horizon.
We use [H] = {0, . . . , H} and when clear from the context, use {□h} = {□h}h∈[H]. For notational
compactness we assume that S = ∪̇hSh is the union of H disjoint sets {Sh}, each of which is the
set of states reachable at timestep h. This is WLOG as we can always augment the state space with
[H] at the cost of only H factors [JKALS17; MBFR24].

Since each state can only be visited at a single timestep, we can now define the (non-stationary)
transitions as P : S × A → ∆(S), and the initial state distribution as d0 ∈ ∆(S0). We assume the
reward function R : S → [0, 1] is bounded on the unit interval and (for simplicity) state-wise deter-
ministic. This sufficiently captures the challenges of our setting since the occupancies are densities
over states, and it will be easily seen later that our results generalize to per-state-action rewards. A
policy π : S → ∆(A) interacting withM observes trajectories {(sh, ah, sh+1, rh+1)}H−1

h=0 , and has
expected return J(π) = Eπ[

∑H
h=1R(sh)]. At any (h, s, a), its expected return-to-go is encoded in

the value function Qπh(s, a) = Eπ[
∑
h′>hR(sh′)|sh = s, ah = a].

For each h ∈ [H], a policy’s occupancy function dπh ∈ ∆(S) is a p.d.f. describing its state visitation,
dπh(s) = Pπ(sh = s). In combination with the policy, the MDP dynamics dictate the evolution of the
occupancy over timesteps. This is encoded in the recursive Bellman flow equation, which mandates
that dπh = Pπdπh−1 for all h ∈ [H]. Here, Pπ is the Bellman flow operator with (Pπf)(s′) :=∑
s,a P (s

′|s, a)π(a|s)f(s) ∈ R□, for any function f : S → R□.

Policy optimization. For an objective function f : ΠΘ → R, the general goal of this work
is to find argmaxπθ∈ΠΘ

f(πθ) over a policy class ΠΘ = {πθ : θ ∈ Θ, θ ∈ Rp, ‖θ‖ ≤ B},
parameterized by a convex and closed parameter class Θ with dimension p. One example of f
is the expected return J(πθ). Projected gradient ascent (PGA) will be our base algorithm for
policy optimization. For a fixed learning rate η and iterations t ∈ [T], it iteratively updates
θ(t+1) = ProjΘ

(
θ(t) + η∇f(πθ(t))

)
. Here, ∇f(πθ) = [∂f(πθ)

∂θp]p∈[p] ∈ Rp is the gradient with
respect to θ, where superscript p indexes the p-th entry of a vector. We will assume that the gradient
of the policy’s log-probability is bounded, as is ubiquitous in the PG literature [LSAB19; AKLM21].

2

Assumption 2.1. For all πθ ∈ ΠΘ, maxs,a ‖∇ log πθ(a|s)‖∞ ≤ G.

We will later analyze the convergence rate of our algorithms to stationary points with (approxi-
mately) zero gradient, and refer to π(t) = πθ(t) for short. For PGA, stationarity will be measured
using the standard gradient mapping ‖Gη(π(t))‖ with Gη(π(t)) := 1

η (θ
(t) − θ(t+1)), the parame-

ter change between iterations [Bec17]. Note that if Θ = Rp and no projection is required, then
‖Gη(π(t))‖ = ‖∇f(π(t))‖ reduces to the gradient magnitude.

Computational oracles. As is common in the literature, we analyze computational efficiency in
terms of the number of calls to the following oracles, which serve as computational abstractions.
We desire a polynomial number of such calls in terms of problem-relevant parameters. Given an
i.i.d. dataset D = {(x, y)} and function class F , the maximum likelihood estimation oracle outputs
argmaxf∈F ED[log f(x)]. The squared-loss regression oracle finds argminf∈F ED[(f(x) − y)2].
Both can be approximated efficiently whenever optimizing over F is feasible [MHKL20; FR20].

3 Online Occupancy-based PG

We now develop our occupancy-based policy optimization algorithm for the online RL setting,
where the policy can continuously interact with the environment to gather new trajectories. Our
gradient estimation routine is based on a recursive Bellman flow-like equation that can be approxi-
mately solved using squared-loss regression, not unlike those used to estimate occupancy functions
in FORC [HCJ23] or value functions in FQI [ASM07]. The intuitions established for our online
algorithm form the foundation for our later offline methods.

3.1 Occupancy-based Policy Gradient

The expected return of a policy π can be expressed as the expectation over its occupancy of the
per-state rewards, J(π) =

∑
h

∑
sh
dπh(sh)R(sh). The gradient of J(π) then passes through dπ ,

∇J(π) =
∑
h

∑
sh
∇dπh(sh)R(sh) =

∑
h Esh∼dπh [∇ log dπh(sh)R(sh)] .

We use the grad-log trick above to write∇J(π) as an expectation over dπ , which makes it amenable
to estimation from online samples as long as we can calculate ∇ log dπh : S → Rp. We make
the key observation that ∇ log dπh can be expressed as a function of ∇ log dπh−1, which involves a
time-reversed conditional expectation over the previous timestep’s (sh−1, ah−1) given the current
sh.
Lemma 3.1. For any π and h ∈ [H], ∇ log dπh satisfies the recursion

∇ log dπh = Eπh−1

(
∇ log π +∇ log dπh−1

)
, (1)

where [Eπh−1f](s
′) := Eπ[f(sh−1, ah−1)|sh = s′] =

∑
s,a

P (s′|s,a)π(a|s)dπh−1(s)

dπh(s
′) f(s, a)1, for any

function f : S ×A → Rp. Further, under Asm. 2.1, maxs,h ‖∇ log dπh(s)‖∞ ≤ hG.

Eq. (1) is derived by propagating the gradient through the Bellman flow equation, and we can solve it
from h = 1 toH to compute∇ log dπh (with∇ log dπ0 = 0 by definition). While related observations
have been made throughout the rich history of PG literature [CC97; MT01; KU20; XYWL21], the
expression in Eq. (1) is adapted to our unique pursuit of modeling ∇ log dπ with general function
approximators. In particular, the conditional expectation (Eπ) immediately hints that ∇ log dπ is
amenable to estimation using squared-loss regression, a technique that is well-understood for value
functions [SB18] and, more recently, for occupancy functions [HCJ23].

Formally, to solve the dynamic programming equation of Eq. (1) in a computationally efficient
manner, we reduce it to minimizing a squared-loss regression problem. Consider the standard (super-
vised learning) regression setup. The solution to argminf E(x,y)∼Q[(f(x)−y)2] maps x 7→ EQ[y|x],
the conditional expectation given x of the target y under the joint Q. As a result (see Lem. B.2),

∇ log dπh = argming:S→Rp Eπ
[∥∥∥g(sh)− (∇ log π(ah−1|sh−1) +∇ log dπh−1(sh−1)

) ∥∥∥2]. (2)

1We use the convention 0/0 = 0 for ratios between two functions.

3

Algorithm 1 OCCUPG: Online Occupancy-based Policy Gradient
Input: Samples n; iterations T ; policy class ΠΘ; gradient function class {Gh}; learning rate η

1: for t = 0, . . . , T − 1 do
2: Collect n trajectories with π(t). Set Dreg

h = {(sh, ah, sh+1)}ni=1 for all h. Repeat for
{Dgrad

h }.
3: Initialize g0 = 0.
4: for h = 1, . . . , H do
5: Let L(t)

h−1(gh; gh−1) :=
1
n

∑
(s,a,s′)∈Dreg

h−1

∥∥gh(s′)− (∇ log π(t)(a|s) + gh−1(s)
)∥∥2. Set

ĝ
(t)
h = argmingh∈Gh

L(t)
h−1(gh; ĝ

(t)
h−1). (3)

6: end for
7: Estimate ∇̂J(π(t)) = 1

n

∑H
h=1

∑
(s,a,s′,r′)∈Dgrad

h−1
ĝ
(t)
h (s′) · r′

8: Update θ(t+1) = ProjΘ

(
θ(t) + η∇̂J(π(t))

)
.

9: end for

Here, g is a vector-valued function, and the norm ‖ · ‖2 is equivalent to the sum of p scalar-valued
squared-losses for each parameter dimension. The RHS only requires sampling (sh−1, ah−1, sh) ∼
π from online rollouts. Then, given finite samples, we can robustly estimate∇ log dπ by minimizing
an empirical version of Eq. (2) using regression oracles.

3.2 Online policy gradient algorithm and analyses

Alg. 1 (OCCUPG) displays our full online occupancy-based PG procedure. For each iteration t ∈
[T], we first collect two independent datasets: {Dreg

h } for ∇ log dπ
(t)

estimation, and {Dgrad
h } for

∇J(π(t)) estimation. The former occurs in Line 5, where we recursively solve an empirical version
of Eq. (2); the latter is computed in Line 7, then used to update the policy (Line 8).

Gradient estimation guarantee. In the following, we establish that our regression-based estima-
tion procedure produces accurate estimates of ∇J(π). Our guarantee holds under the requirement
that the gradient function classes {Gh} can express the population gradient update (Lem. 3.1) for
any target function. It is analogous to the Bellman completeness assumption that is required for
regression-based value or occupancy function estimation [CJ19; HCJ23].
Assumption 3.1 (Gradient function class completeness). For all h ∈ [H], supg∈Gh,s∈S ‖gh(s)‖∞ ≤
hG. Further, for all π ∈ ΠΘ, we have Eπh−1(∇ log π + gh−1) ∈ Gh, for all gh−1 ∈ Gh−1.

Next, since we allow G to be a continuous function class, our sample complexity bound for gradient
estimation is expressed in terms of its pseudodimension := dG (Def. F.1). Examples of G param-
eterizations and their dG are discussed in Rem. 3.1 below. Finally, Thm. 3.1 shows that OCCUPG
produces accurate gradient estimates given the following polynomial sample size.
Theorem 3.1. Fix δ ∈ (0, 1) and π ∈ ΠΘ. Under Asm. 2.1 and Asm. 3.1, we have that w.p. ≥ 1− δ,

‖∇J(π)− ∇̂J(π)‖ ≤ ε when n = Õ
(

pdGH
6G2 log(1/δ)
ε2

)
.

Remark 3.1. Lastly, we provide examples of G for Asm. 3.1 in representative MDP structures. Low-
rank MDPs (Def. B.1) are a well-studied setting where the transition function admits a low-rank
decomposition into two features of rank k, i.e., there exists ϕ : S × A → Rk and µ : S → Rk
such that P (s′|s, a) = 〈ϕ(s, a), µ(s′)〉 [JYWJ20b]. Tabular MDPs are a special case with one-
hot features. Due to the bilinear transitions, both the occupancy and its gradient are linear func-
tions of µ, i.e., dπ = µ(s)⊤ψ and ∇dπ(s) = µ(s)⊤Ψ for some Ψ ∈ Rk×p, ψ ∈ Rk, and
all s ∈ S . When µ is known, we can set Gh to be a linear-over-linear function class Gh ={
gh(s) =

µ(s)⊤Ψ
µ(s)⊤ψ

: Ψ ∈ Rk×p, ψ ∈ Rk,maxs ‖gh(s)‖∞ ≤ hG
}
, which has dG = kp (Prop. B.1).

Stationary convergence. Next, we analyze the convergence rate of OCCUPG to a stationary policy,
i.e., one that has near-zero gradient. Note that, in general, stationary policies are not necessarily
optimal as the objective function is non-convex. As is standard in the literature, we will assume that
the objective has a smooth gradient [LSAB19; AKLM21].

4

Assumption 3.2 (β-smooth objective). For a function f : ΠΘ → R , there exists β > 0 such that
‖∇f(πθ)−∇f(πθ′)‖2 ≤ β‖θ − θ′‖2 for all θ, θ′ ∈ Θ.

Cor. 3.1 shows that, in expectation, OCCUPG with T = O(βH/ε) iterations outputs a ε-stationary
point, as measured by ‖Gη(π(t))‖ = 1

η‖θ
(t) − θ(t−1)‖. The proof relies on Thm. 3.1, i.e., with

enough samples the statistical noise of the gradient estimates are sufficiently small to enable conver-
gence.
Corollary 3.1. Under Asm. 2.1, Asm. 3.1, and Asm. 3.2, the iterates of OCCUPG with T =

O(βHε−1) and n = Õ(pdGH
6G2 log(T/δ)ε−1) satisfiy 1

T

∑T
t=1 E[‖Gη(π(t))‖2] ≤ ε.

Computational efficiency. OCCUPG is not only statistically efficient but computationally oracle-
efficient as well, since it reduces to a series of squared-loss minimization problems. In each iteration,
it makesH calls to a regression oracle to compute the occupancy gradient (Line 5). Then to converge
to a ε-stationary point, from Cor. 3.1 we require a total of O(βH2/ε) such calls.

Optimality. Lastly, we analyze when the policies recovered by OCCUPG are also approximately
optimal. The key inequality is an upper bound on the suboptimality of any policy in terms of its
gradient magnitude (or stationarity), and a coverage coefficient Cπ∗

with respect to the optimal
policy.
Lemma 3.2. For any π and π′, define Bπ(π′) :=

∑
h,s,a d

π
h(s)π

′(a|s)Qπh(s, a). Suppose ∀π ∈ ΠΘ,

1. (Policy completeness) There exists π+ ∈ ΠΘ such that π+ ∈ argmaxπ′ Bπ(π′).
2. (Gradient domination) maxπ′∈ΠΘ B

π(π′)−Bπ(π) ≤ mmaxθ′∈Θ 〈∇Bπ(π), θ′ − θ〉

Given ν ∈ ∆(S), define the coverage coefficient Cπ∗
:=
∥∥∑

h d
π∗

h /ν
∥∥
∞ for π∗ = argmaxπ J(π).

Then for any πθ ∈ ΠΘ,

J(π∗)− J(πθ) ≤m Cπ
∗
max
θ′∈ΠΘ

〈∇Jν(πθ), θ′ − θ〉 , (4)

where Jν(π) := Es0∼ν,π[
∑
h rh] is the expected return of π inM with initial state distribution ν.

The lemma preconditions are identical to those required for value-based analysis [BR24]. Bπ(π′)
is a one-step improvement objective with respect to the occupancies and value functions of π, and
we require (1) the policy class to be expressive enough that it contains any maximizer; and (2)
the one-step objective to itself have optimality gap upper-bounded by the one-step policy gradient
magnitude, for which the constant m is determined wholly by the policy parameterization. For
example, the tabular policy πθ(a|s) = θsa has m = 1 [AKLM21].

The coverage coefficient Cπ∗
is the finite-horizon counterpart to the infinite-horizon “exploratory

initial distribution” salient to the analysis of [AKLM21] and [BR24] (which lists developing it as
future work). In RL, a small gradient magnitude alone does not guarantee optimality, as it can also
occur when the policy rarely visits rewarding states. The coverage coefficient quantifies both how
policy performance can suffer from insufficient exploration, as well as how exploratory initializa-
tions mitigates this problem. Finally, combining Lem. 3.2 with the stationary convergence result in
Cor. 3.1 shows that, on average, the best-iterate of OCCUPG is near-optimal.
Corollary 3.2. Under the preconditions of Lem. 3.2 and Cor. 3.1, running OCCUPG2 with initial

distribution ν satisfies E[mint J(π
∗) − J(π(t))] ≤ ε when T = Õ

(
βB2(Cπ∗

)2m2H2

ε2

)
and n =

Õ
(
B2(Cπ∗

)2m2pdGH
6G2 log(T)

ε2

)
.

3.3 Optimization of general functionals

One standout feature of OCCUPG is that it can, with a one-line change, be adapted for pol-
icy optimization of any (differentiable) objective function involving occupancies. We work with
JF (π) =

∑
h Fh(d

π
h) as a representative formula, where Fh : ∆(S) → R is a general functional.

Such objectives often evade value-based PG optimization because they do not admit value functions
or Bellman-like recursions with which to compute them. Examples include entropy maximization

2This means that trajectories are generated by first sampling the initial state s1 ∼ ν, then rolling out the
policy according to the true MDP’s dynamics.

5

where Fh(d) = −〈d, log d〉; imitation learning where Fh(d) = −‖d − dπE

h ‖22 for an expert policy
πE ; and the expected return with Fh(d) = 〈d,R〉 [MDSDBR22].

The policy gradient is then ∇JF (π) =
∑
h Es∼dπh

[
∂Fh(d)
∂d(s) |d=dπh∇ log dπh(s)

]
. Implementation-

wise, we need only change Line 7 in OCCUPG to accommodate the new gradient formula, to
∇̂JF (π) = 1

n

∑
h

∑
s∈Dh

ĝπh(s)
∂Fh(d)
∂d(s) |d=d̂πh . The partial derivative of Fh is evaluated with a

plug-in occupancy estimate d̂π that can be obtained using maximum likelihood estimation (App. D).
Notably, the occupancy gradient estimation module for ĝπh ≈ ∇ log dπh (Line 5) is reused verba-
tim. Given their resemblance to those in Sec. 3.2, the full algorithm and analyses are deferred to
App. B.5.

4 Offline Occupancy-based PG

In this section, we develop an algorithm for occupancy-based policy optimization in the offline
setting, where only fixed datasets are available for learning. A direct modification of OCCUPG, e.g.,
by converting occupancies to density ratios over the offline data distribution, will fail unless the
data covers all possible policies, otherwise the density ratio may be unbounded. In-line with recent
state-of-the-art offline RL algorithms, our goal is to establish an offline PG algorithm that adapts to
and retains meaningful guarantees under arbitrary offline datasets, for which our key consideration
is establishing an offline gradient estimation method. We begin by defining these offline datasets.
Definition 4.1. The offline dataset is D = {Dh}, where Dh = {(sh, ah, sh+1, rh+1))}ni=1 is gener-
ated i.i.d. as sh ∼ dDh for some dDh ∈ ∆(S) and ah ∼ πDh (·|sh) inM, for a known behavior policy
πDh . The marginal next-state distribution in Dh is denoted as dD,†h (sh+1).

Def. 4.1 is more general than the typical i.i.d. trajectory setting [KU20; NZJZW22], where dDh =

dD,†h−1. Crucially, unlike previous works that require lower-bounded dD or all-policy coverage [KU20;
XYWL21; NZJZW22], we will make no assumptions about the quality of D with respect to ΠΘ.

Additional notation. For short, we say EDh
[·] ≡ E(sh,ah,sh+1,rh+1)∼Dh

[·], and use (s, a, s′, r′) ∼
Dh when clear from the context. For any g : S×A → Rp and reweighting function ρ : H×S×A →
R+, we define an offline reweighted analog to Eπh (Lem. 3.1) for all h ∈ [H] to be

[ED,ρh g](s′) := E(s,a,s′)∼Dh·ρh [g(s, a)|s
′] =

∑
s,a

[Dh·ρh](s,a,s′)∑
s,a[Dh·ρh](s,a,s′) g(s, a). (5)

The (time-reversed) conditional expectation is taken over [Dh · ρh](s, a, s
′) :=

P (s′|s, a)dDh (s)πDh (a|s)ρh(s, a), the joint offline distribution re-weighted by ρh. While this
may not be a valid density, its induced conditional distribution on (s, a|s′) always is, i.e.,∑
s,a

[Dh·ρh](s,a,s′)∑
s,a[Dh·ρh](s,a,s′) = 1. As an example, for a given π we have ED,ρh = Eπh when

ρh(s, a) =
dπh(s)π(a|s)
dDh (s)πD

h (a|s) is the policy’s density ratio and is well-defined.

4.1 Offline density-based policy gradient

A policy’s occupancy dπ may not be covered by arbitrary offline data (Def. 4.1), so neither its
expected return J(π) =

∑
h 〈dπh, R〉 nor its gradient∇J(π) will be estimatable fromD. As a result,

there is no hope of recovering argmaxπ∈ΠΘ
J(π). Our solution is to instead maximize return only

on areas of the state space that are sufficiently covered by offline data, which is captured exactly
by the recursively clipped occupancy d̄π from [HCJ23]. It clamps the policy occupancy to preset
multiples Cs

h, C
a
h of the offline data distribution, thereby representing only the “sufficiently covered”

portion.
Definition 4.2 (Recursively clipped occupancy). Let (□ ∧□) := min{□,□}. Given clipping con-
stants {Cs

h, C
a
h} ≥ 1, define the clipped policy to be π̄h =

(
π ∧ Ca

hπ
D
h

)
, and recursively define

d̄πh = Pπ̄h−1
(
d̄πh−1 ∧ Cs

h−1d
D
h−1

)
, ∀h ∈ [H]. (6)

Eq. (6) resembles the Bellman flow equation with clipped policy π̄, and acts on the previous-timestep
d̄πh−1 clipped to at most Cs

h−1d
D
h−1. Above this threshold the occupancy is considered to be insuf-

ficiently covered for estimation, and Cs strikes a bias-variance tradeoff between the amount of

6

clipped mass vs. distribution shift. The clipped occupancy’s density ratio is always well-defined and
bounded as d̄πh/d

D,†
h−1 ≤ Cs

h−1C
a
h−1, and we use it to define our (now learnable) offline objective,

J̄(π) =
∑
h

∑
sh
d̄πh(sh)R(sh) =

∑
h EDh−1

[
d̄πh(sh)

dD,†
h−1(sh)

R(sh)

]
.

For any “fully covered” policy with dπh ≤ Cs
h−1C

a
h−1d

D,†
h−1 for all h ∈ [H], we have d̄π = dπ and

J̄(π) = J(π). In this sense, argmaxπ J̄(π) will be at least as good as the best policy fully covered
by offline data. Next, define the density ratio be w̄πh := d̄πh/d

D,†
h−1. The gradient of J̄(π) is

∇J̄(π) =
∑
h EDh−1

[
w̄πh(sh)R(sh) ∇ log d̄πh(sh)

]
.

To calculate this gradient we must compute both w̄π and∇ log d̄π; for the former, [HCJ23] provides
a method that we will later call as a subroutine. Our focus is on computing ∇ log d̄πh , which is
enabled by the following recursive equation, which is an offline analog of Lem. 3.1.

Lemma 4.1. For any π and all h ∈ [H], define ρ̄πh(s, a) :=
(d̄πh(s)∧C

s
hd

D
h (s))

dDh (s)

π̄h(a|s)
πD
h (a|s) . Then

∇ log d̄πh = ED,ρ̄
π

h−1

(
∇ log π � 1[π ≤ Ca

hπ
D
h−1] +∇ log d̄πh−1 � 1[d̄πh−1 ≤ Cs

hd
D
h−1]

)
, (7)

where ED,ρ̄
π

h−1 is from Eq. (5), and [M � v](·) := v(·)M(·) ∈ Rp for M : □→ p and v : □→ R.

Lem. 4.1 is derived from applying the chain rule to Def. 4.2, and the clipped occupancies play an
instrumental role in handling insufficient offline coverage. Notably, the indicator function zeroes-out
both the gradients ∇ log π and ∇ log d̄πh−1 where they are insufficiently covered, e.g., d̄πh−1(s) >

Cs
h−1d

D
h−1(s). Further, under full offline coverage we recover Lem. 3.1 and ∇ log d̄π = ∇ log dπ .

Because the rewards are nonnegative,∇ log d̄π induces a pessimistic policy gradient that shifts poli-
cies away from out-of-distribution actions, even if they generate high return. This is seen more
clearly in Prop. 4.1, that rearranges the resulting expression for ∇J̄(π) into a value-based form:
Proposition 4.1. We can equivalently write

∇J̄(π) =
∑
h EDh

[ρ̄πh(s, a)∇ log πh(a|s)Q̄πh(s, a)],
where Q̄π is a pessimistic value function that obeys the Bellman-like recursion Q̄πh(s, a) =

1[π ≤ Ca
hπ

D
h](a|s)

∑
s′ P (s

′|s, a)
(
R(s′) + 1[d̄πh+1 ≤ Cs

h+1d
D
h+1](s

′) Q̄πh+1(s
′, π̄h+1)

)
.

In Q̄π , future returns are zeroed out at states and actions that exceed the threshold of data coverage,
due to indicators functions that are inherited from∇ log d̄π . Prop. 4.1 can be seen as a pessimistic of-
fline analog to the classical PG theorem ∇J(π) =

∑
h Es,a∼dπh [∇ log π(a|s)Qπh(s, a)] [SMSM99],

entirely induced by the definition of the clipped occupancy.

Non-robustness of∇ log d̄π estimation to plug-in densities. With finite samples, however, it turns
out that consistent estimates of∇ log d̄πh in Eq. (6) cannot be computed. To make this argument, we
first outline the high-level gradient estimation procedure for a fixed policy:

• Estimate occupancies {d̂πh} and {d̂Dh }
• Compute ∇̂ log d̄πh using Eq. (7) with plug-in indicator function estimate 1[d̂πh−1 ≤
Cs
hd̂
D
h−1]

The problem arises in step two, as 1[·] is a stepwise function and not smooth. Even if d̂π is van-
ishingly close to dπ , the gradient calculated from plug-in occupancy estimates can have constant
error.
Proposition 4.2. There exists an MDP and policy π such that, for any ε > 0, maxh,s ‖∇ log dπh(s)−
∇̂ log d̄πh(s)‖ = O(1) when ‖d̄πh − d̂πh‖1 ≤ ε and ‖d̂Dh − dDh ‖1 ≤ ε for all h.

4.2 Smooth clipping

To resolve this issue, we will use a “smooth-clipping” function σ (x, c) to approximate the “hard”-
clipping (x ∧ c) in Eq. (6), whose non-smooth gradient was the source of our estimation problems.
Figure 1 plots 1-D examples of σ (x, c) against (x∧c) as reference (dashed), and Asm. 4.1 describes
the properties of σ that enable our later estimation and convergence guarantees.

7

0.5 1.0
x

0.0

0.5

1.0
(x, c = 0.5)

D =
1/2
1/4
1/8
1/16
0

0.5 1.0

I (x, c = 0.5)
L =

2
4
8
16

Figure 1: We plot σ(x, c) from
Prop. 4.3 for different b, that
trade-off between clipping ap-
proximation error and smooth-
ness (Dσ ∝ 1/Lσ).

Assumption 4.1. Assume that σ satisfies ∀x, x′, c, c′ ∈ dom(σ),

1. (Approximate clipping) ∃Dσ ≥ 0 such that 0 ≤ (x ∧ c)− σ (x, c) ≤ Dσ (x ∧ c).
2. (Monotonicity) σ (x′, c) ≤ σ (x, c) if x′ ≤ x; σ (x, c′) ≤ σ (x, c) if c′ ≤ c; and vice versa.

3. (Smooth gradient) Define the smoothed indicator 1̃ (x, c) := x ∂x log σ (x, c), where ∂x
is the partial derivative w.r.t. x. Then 1̃ (x, c) ∈ [0, 1] and ∃Lσ ≥ 0 s.t. ∀x, x′, c, c′ ∈
dom(σ),

c|1̃ (x, c)− 1̃ (x′, c) | ≤ Lσ|x− x′|, and x|1̃ (x, c)− 1̃ (x, c′) | ≤ Lσ|c− c′|.

Note that σ (x, c) = (x ∧ c) is a special case with 1̃ (x, c) = 1[x ≤ c], thus Dσ = 0 and Lσ = ∞.
The following choice of σ, which is plotted in Fig. 1, fulfills Asm. 4.1.

Proposition 4.3. For any b > 1, σ (x, c) =
(
x−b + c−b

)−1/b
has Lσ = b and Dσ = 1/b.

Next, we define the smooth-clipped occupancy function d̃πh , which is no larger than d̄πh .
Definition 4.3 (Recursively smooth-clipped occupancy). For smooth-clipping function σ satisfying
Asm. 4.1 and clipping constants {Cs

h, C
a
h}, define π̃h := σ

(
π,Ca

hπ
D
h

)
, and inductively set

d̃πh = Pπ̃h−1

(
σ
(
d̃πh−1, C

s
h−1d

D
h−1

))
, ∀h ∈ [H]. (8)

Then letting w̃πh := d̃πh/d
D,†
h−1, our new objective is J̃(π) =

∑
h EDh−1

[w̃πh(sh)R(sh)] with gradient
∇J̃(π) =

∑
h EDh−1

[w̃πh(sh)R(sh) ∇ log d̃πh(sh)], where ∇ log d̃πh obeys the following recursion.

Lemma 4.2. For σ satisfying Asm. 4.1, recall 1̃ (x, c) := x ∂x log σ (x, c) . Then for all h ∈ [H],

∇ log d̃πh = ED,ρ̃
π

h−1

(
∇ log π � 1̃

(
π,Ca

h−1π
D
h−1

)
+∇ log d̃πh−1 � 1̃

(
d̃πh−1, C

s
h−1d

D
h−1

))
, (9)

where ρ̃πh−1(s, a) :=
σ(d̃πh−1(s),C

s
h−1d

D
h−1(s))

dDh−1(s)

π̃h−1(a|s)
πD
h−1(a|s)

and ED,ρ̃
π

h−1 is defined in Eq. (5). Further,

under Asm. 2.1, maxs,h ‖∇ log d̃πh(s)‖∞ ≤ hG.

Eq. (9) replaces the (non-smooth) indicator function in∇ log d̄π (Lem. 4.1) with its smooth approxi-
mation 1̃, which, as we will show shortly, enables robust gradient estimation with plug-in occupancy
estimates. As before, we can reduce it to squared-loss regression (Eq. (11)). Further, by optimizing
J̃(π), we also approximately maximize our target objective J̄(π), with bias proportional to Dσ .

Proposition 4.4. Under Asm. 4.1, 0 ≤ maxπ∈ΠΘ J̄(π)−maxπ∈ΠΘ J̃(π) ≲ H2Dσ.

4.3 Offline smooth-clipped gradient estimation

Alg. 2 describes the offline PG algorithm for optimizing J̃(π). To reduce clutter, we have used
∇ log π̃h := ∇ log π � 1̃

(
π,Ca

hπ
D
h

)
. First, OFF-OCCUPG estimates dDh−1 using MLE (details

in App. D due to space constraints). Then, for each iteration t, it estimates the smooth-clipped
occupancy d̃π

(t)

h using FORC (adapted from [HCJ23], see App. E). This is plugged into a squared-
loss regression problem approximating Eq. (9) to learn ∇ log d̃

(t)
h (lines 8 to 10), then estimate

∇J̃(π(t)) (line 12).

8

Algorithm 2 OFF-OCCUPG: Offline Occupancy-based Policy Gradient
Input: data D; iters T ; learning rate η; function classes ΠΘ,F ,W,G; clipping constants {Cs

h C
a
h}

1: Split D equally into Dmle,DFORC,Dreg,Dgrad, each with n samples.
2: Estimate {d̂Dh , d̂

D,†
h } ← MLE

(
Dmle,F

)
// Alg. 4

3: for t = 0, . . . , T − 1 do
4: Estimate {ŵ(t)

h } ← FORC
(
π(t),DFORC,W, {d̂Dh , d̂

D,†
h }

)
// Alg. 5

5: Set occupancy estimate d̂(t)h = ŵ
(t)
h d̂D,†h−1 for all h ∈ [H].

6: Initialize ĝ(t)0 = 0.
7: for h = 1, . . . , H do

8: Set density ratio ρ̂(t)h−1 =
π̃
(t)
h−1

πD
h−1

σ
(
d̂
(t)
h−1,C

s
h−1d̂

D
h−1

)
d̂Dh−1

.

9: Set gradient regression target ŷ(t)h−1 = ĝ
(t)
h−1 � 1̃

(
d̂
(t)
h−1, C

s
h−1d̂

D
h−1

)
.

10: Let L̃(t)
h−1(g; y, ρ) :=

1
n

∑
(s,a,s′)∈Dreg

h−1
ρ(s, a)‖g(s′)−(∇ log π̃

(t)
h−1(a|s)+y(s))‖2. Solve

ĝ
(t)
h = argmingh∈Gh

L̃(t)
h−1(gh; ŷ

(t)
h−1, ρ̂

(t)
h−1) (10)

11: end for
12: Set ∇̂J̃(π(t)) = 1

n

∑H
h=1

∑
(s,a,s′,r′)∈Dgrad

h
ŵ

(t)
h (s′) · ĝ(t)h (s′) · r′

13: Update θ(t+1) = Projθ(θ
(t) + η∇̂J̃(π(t))).

14: end for

Before stating the estimation guarantee for ∇J̃(π), we first introduce the required assumptions.
For simplicity, we assume that the function classes used in MLE and FORC are finite, and defer
their guarantees to the respective appendices, as they have been well-established in previous papers
[AKKS20; HCJ23]. We focus on discussing Asm. 4.2 for the offline gradient function class, which
requires a stronger level of expressiveness. Since the regression target in OFF-OCCUPG involves
plug-in occupancy estimates, the completeness condition naturally requires Gh to express the gradi-
ent update in Lem. 4.2 for all possible targets composed of functions from Fh−1,Wh−1,Gh−1. As
a result, Asm. 4.2 is generally stronger than Asm. 3.1 for OCCUPG.

Assumption 4.2. For all h, supg∈Gh
‖gh‖∞ ≤ hG; and for all (π, g, f, f ′, w) ∈ ΠΘ × Gh−1 ×

Fh × Fh−1 × Wh−1, we have ED,ρh−1(∇ log π̃h−1 + g � 1̃
(
wf ′, Cs

h−1f
)
) ∈ Gh, where ρ =

σ(wf ′,Cs
hf)

f
π̃h−1

πD
h−1

.

When the underlying MDP has favorable structure, however, we can expect that dG is not much larger
than was required for OCCUPG. This is indeed the case in low-rank MDPs, where the G defined in
Rem. 3.1 also satisfies Asm. 4.2 (proof in Prop. C.1). Due to the bilinear transition structure, the
offline gradient update (Lem. 4.2) applied to any target remains a linear-over-linear function.

The guarantees for the MLE (Alg. 4) and weight estimation (Alg. 5) subroutines require Asm. D.1
and Asm. E.1, respectively, which are included in the preconditions of the main result below. Briefly,
Asm. D.1 requires F to realize the true data distributions dDh and dD,†h , which is standard in super-
vised learning. Asm. E.1 requires W to be closed under the Bellman flow operator, and can be
viewed as a 1-dimensional version of Asm. 4.2 where ρ = 1. In this sense both assumptions are
weaker requirements on expressivity than that of the gradient class in Asm. 4.2, and more detailed
discussions are left to App. D and App. E.

Having established its preconditions, we now present our main estimation guarantee for OFF-
OCCUPG, which pays additional factors for the coverage of offline data (

∑
h C

s
hC

a
h) and the smooth-

ness of σ.

9

Theorem 4.1. Suppose J̃(·) satisfies Asm. 3.2 and fix π ∈ ΠΘ. Under Asm. 2.1, Asm. 4.1,
Asm. 4.2, Asm. D.1, and Asm. E.1, w.p. ≥ 1 − δ we have ‖∇J̃(π) − ∇̂J̃(π)‖ ≤ ε when

n = Õ

(
pdGH

6G2(
∑

h C
s
hC

a
h)

2
L2

σ log(|W||F|/δ)
ε2

)
.

Stationary convergence & computational efficiency. Similar to OCCUPG, OFF-OCCUPG with
T = O(βH2/ε2) converges to an ε-stationary point. The formal statement is given in Cor. C.1 and is
based on the estimation guarantee in Thm. 4.1. As a result, OFF-OCCUPG is also computationally
oracle-efficient. Each invocation of MLE involves 2H calls to a likelihood maximization oracle
(see Alg. 4), and each invocation of FORC requires H calls to a squared-loss regression oracle (see
Alg. 5). Then local convergence is still achieved withO(βH2/ε2) such calls, as increasing T further
cannot reduce error from statistical noise (that depends only on the fixed n).

Optimality. Analyzing the conditions under which offline PG recovers global optima is more
challenging, as we can no longer utilize exploratory initialization (from Cor. 3.2). However, since
all occupancies have been clipped to the data distribution, we show in App. C.5 that the offline data
itself can sometimes suffice as an exploratory initial distribution, and the corresponding bound is
in terms of {Cs

h} (instead of the online Cπ∗
). However, this is not guaranteed in general and our

current result only holds under strong all-policy offline data coverage. Briefly, some hardness comes
from the fact that clipping causes gradient signals to vanish, so a stationary policy might be far off-
support, rather than optimal. Investigating the possibility of more relaxed conditions for offline PG
convergence (or, conversely, refining hardness results) are especially interesting directions for future
work.

5 Conclusion

For the first time, we demonstrate how policy optimization can be conducted with (only) occupancy
functions for both online and offline RL, and comprehensively analyze both local and global conver-
gence. In the online setting our method directly extends to optimizing general objective functionals
that cannot be optimized using value-based methods, and in the offline setting the occupancy-based
gradient naturally handles incomplete offline data coverage. As our work is the first in this line
of research and theoretical in nature, for future work we plan to launch empirical investigations of
our methods, especially those for optimizing general functionals. Additionally, the conditions un-
der which offline PG can converge to global optima is not well-understood, and we hope that our
preliminary results here encourage greater interest and investigation into this question.

Acknowledgements

Nan Jiang acknowledges funding support from NSF IIS-2112471, NSF CAREER IIS-2141781,
Google Scholar Award, and Sloan Fellowship.

References
[AFK24] Philip Amortila, Dylan J Foster, and Akshay Krishnamurthy. “Scalable Online Ex-

ploration via Coverability”. In: arXiv preprint arXiv:2403.06571 (2024).
[AKKS20] Alekh Agarwal, Sham Kakade, Akshay Krishnamurthy, and Wen Sun. “Flambe:

Structural complexity and representation learning of low rank mdps”. In: Advances
in Neural Information Processing Systems (2020).

[AKLM21] Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. “On the the-
ory of policy gradient methods: Optimality, approximation, and distribution shift”.
In: The Journal of Machine Learning Research 22.1 (2021), pp. 4431–4506.

[ASM07] András Antos, Csaba Szepesvári, and Rémi Munos. “Fitted Q-iteration in contin-
uous action-space MDPs”. In: Advances in neural information processing systems
20 (2007).

[Bec17] Amir Beck. First-order methods in optimization. SIAM, 2017.

10

[BFH23] Anas Barakat, Ilyas Fatkhullin, and Niao He. “Reinforcement learning with general
utilities: Simpler variance reduction and large state-action space”. In: International
Conference on Machine Learning. PMLR. 2023, pp. 1753–1800.

[BR24] Jalaj Bhandari and Daniel Russo. “Global optimality guarantees for policy gradient
methods”. In: Operations Research (2024).

[CC97] Xi-Ren Cao and Han-Fu Chen. “Perturbation realization, potentials, and sensitivity
analysis of Markov processes”. In: IEEE Transactions on Automatic Control 42.10
(1997), pp. 1382–1393.

[CJ19] Jinglin Chen and Nan Jiang. “Information-Theoretic Considerations in Batch Re-
inforcement Learning”. In: International Conference on Machine Learning. 2019.

[CJ22] Jinglin Chen and Nan Jiang. “Offline reinforcement learning under value and
density-ratio realizability: the power of gaps”. In: Uncertainty in Artificial Intel-
ligence. PMLR. 2022, pp. 378–388.

[DWS12] Thomas Degris, Martha White, and Richard S Sutton. “Off-policy actor-critic”. In:
arXiv preprint arXiv:1205.4839 (2012).

[FR20] Dylan Foster and Alexander Rakhlin. “Beyond ucb: Optimal and efficient contex-
tual bandits with regression oracles”. In: International Conference on Machine
Learning. PMLR. 2020, pp. 3199–3210.

[GL16] Saeed Ghadimi and Guanghui Lan. “Accelerated gradient methods for nonconvex
nonlinear and stochastic programming”. In: Mathematical Programming 156.1-2
(2016), pp. 59–99.

[HCJ23] Audrey Huang, Jinglin Chen, and Nan Jiang. “Reinforcement Learning in Low-
Rank MDPs with Density Features”. In: arXiv preprint arXiv:2302.02252 (2023).

[HDGP24] Jia Lin Hau, Erick Delage, Mohammad Ghavamzadeh, and Marek Petrik. “On Dy-
namic Programming Decompositions of Static Risk Measures in Markov Decision
Processes”. In: Advances in Neural Information Processing Systems 36 (2024).

[HJ22a] Audrey Huang and Nan Jiang. “Beyond the Return: Off-policy Function Estima-
tion under User-specified Error-measuring Distributions”. In: Advances in Neural
Information Processing Systems. 2022.

[HJ22b] Jiawei Huang and Nan Jiang. “On the convergence rate of off-policy policy opti-
mization methods with density-ratio correction”. In: International Conference on
Artificial Intelligence and Statistics. PMLR. 2022, pp. 2658–2705.

[HKSVS19] Elad Hazan, Sham Kakade, Karan Singh, and Abby Van Soest. “Provably efficient
maximum entropy exploration”. In: International Conference on Machine Learn-
ing. PMLR. 2019, pp. 2681–2691.

[HM17] Assaf Hallak and Shie Mannor. “Consistent on-line off-policy evaluation”. In: In-
ternational Conference on Machine Learning. PMLR. 2017, pp. 1372–1383.

[JKALS17] Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford, and Robert
E Schapire. “Contextual decision processes with low Bellman rank are PAC-
learnable”. In: International Conference on Machine Learning. 2017.

[JLM21] Chi Jin, Qinghua Liu, and Sobhan Miryoosefi. “Bellman Eluder dimension: New
rich classes of RL problems, and sample-efficient algorithms”. In: Advances in
Neural Information Processing Systems. 2021.

[JYWJ20a] Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. “Provably efficient
reinforcement learning with linear function approximation”. In: Conference on
Learning Theory. 2020.

[JYWJ20b] Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. “Provably efficient
reinforcement learning with linear function approximation”. In: Conference on
learning theory. PMLR. 2020, pp. 2137–2143.

[KJDC24] Pulkit Katdare, Anant Joshi, and Katherine Driggs-Campbell. “Towards Provable
Log Density Policy Gradient”. In: arXiv preprint arXiv:2403.01605 (2024).

[KU20] Nathan Kallus and Masatoshi Uehara. “Statistically efficient off-policy policy
gradients”. In: International Conference on Machine Learning. PMLR. 2020,
pp. 5089–5100.

11

[LLTZ18] Qiang Liu, Lihong Li, Ziyang Tang, and Dengyong Zhou. “Breaking the curse of
horizon: Infinite-horizon off-policy estimation”. In: Advances in neural informa-
tion processing systems 31 (2018).

[LNSJ23] Qinghua Liu, Praneeth Netrapalli, Csaba Szepesvari, and Chi Jin. “Optimistic mle:
A generic model-based algorithm for partially observable sequential decision mak-
ing”. In: Proceedings of the 55th Annual ACM Symposium on Theory of Computing.
2023, pp. 363–376.

[LSAB19] Yao Liu, Adith Swaminathan, Alekh Agarwal, and Emma Brunskill. “Off-
policy policy gradient with state distribution correction”. In: arXiv preprint
arXiv:1904.08473 (2019).

[MBFR24] Zak Mhammedi, Adam Block, Dylan J Foster, and Alexander Rakhlin. “Efficient
model-free exploration in low-rank mdps”. In: Advances in Neural Information
Processing Systems 36 (2024).

[MDSDBR22] Mirco Mutti, Riccardo De Santi, Piersilvio De Bartolomeis, and Marcello Restelli.
“Challenging common assumptions in convex reinforcement learning”. In: Ad-
vances in Neural Information Processing Systems 35 (2022), pp. 4489–4502.

[MHKL20] Dipendra Misra, Mikael Henaff, Akshay Krishnamurthy, and John Langford.
“Kinematic state abstraction and provably efficient rich-observation reinforcement
learning”. In: International conference on machine learning. 2020.

[MT01] Peter Marbach and John N Tsitsiklis. “Simulation-based optimization of Markov
reward processes”. In: IEEE Transactions on Automatic Control 46.2 (2001),
pp. 191–209.

[NCDL19] Ofir Nachum, Yinlam Chow, Bo Dai, and Lihong Li. “Dualdice: Behavior-agnostic
estimation of discounted stationary distribution corrections”. In: Advances in neu-
ral information processing systems 32 (2019).

[NDKCLS19] Ofir Nachum, Bo Dai, Ilya Kostrikov, Yinlam Chow, Lihong Li, and Dale Schu-
urmans. “Algaedice: Policy gradient from arbitrary experience”. In: arXiv preprint
arXiv:1912.02074 (2019).

[NZJZW22] Chengzhuo Ni, Ruiqi Zhang, Xiang Ji, Xuezhou Zhang, and Mengdi Wang. “Op-
timal Estimation of Policy Gradient via Double Fitted Iteration”. In: International
Conference on Machine Learning. PMLR. 2022, pp. 16724–16783.

[SB18] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
MIT press, 2018.

[SMSM99] Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. “Pol-
icy gradient methods for reinforcement learning with function approximation”. In:
Advances in neural information processing systems 12 (1999).

[UHJ20] Masatoshi Uehara, Jiawei Huang, and Nan Jiang. “Minimax weight and q-function
learning for off-policy evaluation”. In: International Conference on Machine
Learning. PMLR. 2020, pp. 9659–9668.

[UIJKSX21] Masatoshi Uehara, Masaaki Imaizumi, Nan Jiang, Nathan Kallus, Wen Sun,
and Tengyang Xie. “Finite sample analysis of minimax offline reinforcement
learning: Completeness, fast rates and first-order efficiency”. In: arXiv preprint
arXiv:2102.02981 (2021).

[XCJMA21] Tengyang Xie, Ching-An Cheng, Nan Jiang, Paul Mineiro, and Alekh Agarwal.
“Bellman-consistent pessimism for offline reinforcement learning”. In: Advances
in neural information processing systems 34 (2021).

[XFBJK22] Tengyang Xie, Dylan J Foster, Yu Bai, Nan Jiang, and Sham M Kakade. “The role
of coverage in online reinforcement learning”. In: arXiv preprint arXiv:2210.04157
(2022).

[XJ21] Tengyang Xie and Nan Jiang. “Batch value-function approximation with only real-
izability”. In: International Conference on Machine Learning. 2021.

[XYWL21] Tengyu Xu, Zhuoran Yang, Zhaoran Wang, and Yingbin Liang. “Doubly robust
off-policy actor-critic: Convergence and optimality”. In: International Conference
on Machine Learning. PMLR. 2021, pp. 11581–11591.

[ZBWK20] Junyu Zhang, Amrit Singh Bedi, Mengdi Wang, and Alec Koppel. “Cautious rein-
forcement learning via distributional risk in the dual domain”. In: arXiv preprint
arXiv:2002.12475 (2020).

12

[ZHHJL22] Wenhao Zhan, Baihe Huang, Audrey Huang, Nan Jiang, and Jason Lee. “Offline re-
inforcement learning with realizability and single-policy concentrability”. In: Con-
ference on Learning Theory. PMLR. 2022, pp. 2730–2775.

[ZLKB20] Andrea Zanette, Alessandro Lazaric, Mykel J Kochenderfer, and Emma Brunskill.
“Provably efficient reward-agnostic navigation with linear value iteration”. In: Ad-
vances in Neural Information Processing Systems. 2020.

13

Appendix

A Related work 14

B Additional results and proofs for Sec. 3 15

B.1 Proofs for Sec. 3.1 . 15

B.2 Proofs for Sec. 3.2 : Estimation and local convergence 16

B.3 Proofs for Sec. 3.2: Global convergence . 17

B.4 Examples of gradient function class G . 19

B.5 Policy optimization of general functionals . 20

C Additional results and proofs for Sec. 4 21

C.1 Proofs for Sec. 4.1 . 21

C.2 Proofs for Sec. 4.2 . 22

C.3 Proofs for Sec. 4.3 . 25

C.4 Local convergence of OFF-OCCUPG . 30

C.5 Global convergence of OFF-OCCUPG . 32

C.6 Proofs for App. C.5 . 33

D Maximum Likelihood Estimation 38

E Offline Density Estimation 39

F Probabilistic Tools 41

G Optimization Tools 43

A Related work

In this section, we discuss related works in greater detail that concern the convergence and estimation
of policy gradient in RL.

While a handful of recent papers have similarly observed that the gradient of the log density can
be utilized to compute the policy gradient, especially in the context of using it to optimize general
functionals, none of them have analyzed methods that are sample-efficient under general function ap-
proximation. In particular, [KJDC24] requires on-policy sampling from the time-reversed transition
(s, a|s′), which, as they note, is highly restrictive. To overcome this issue they propose a min-max
algorithm that converges under linear approximation, which is computationally a far more difficult
to solve (under a more stringent structural assumption) than the regression objective in Alg. 1. Simi-
larly, [BFH23] consider only online policy gradient, and to handle large state spaces they use linear
function approximation, which may incur a large error through bias in many settings. [ZBWK20]
approach the problem of optimizing risk functionals through a primal-dual approach that involves
occupancies as dual variables, but they only analyze convergence in tabular settings.

A number of works on off-policy gradient optimization utilize all three of the density ratio, value, and
policy class functions to compute the gradient [NDKCLS19; HJ22b; UIJKSX21; XYWL21]. This
is because the density ratios are required to handle distribution mismatches with offline data. The
downside, however, is that even max-min optimization is difficult, so performing optimization over
all three functions requires complex optimization loops. By using simply projected gradient ascent
on a policy class, our algorithms avoid such complexities and are amenable to classical convergence
analysis that allow us to focus on the role of coverage coefficients in our final results.

14

Because the density ratio is generally not well-defined with arbitrary offline data, all of these works
require some form of all-policy coverage for both estimation and convergence guarantees. The
weight gradient calculation in [UIJKSX21] exhibits a recursive decomposition that is related to ours.
However, their formulation is not compatible with our data assumptions and they require policy
coverage to be well-defined. A follow-up paper in [XYWL21] uses squared-loss regression on the
same updates, which is similar in flavor to our gradient estimation objectives. However, they use
linear function approximation for weight functions, which is not realizable in general, and also
require all-policy coverage for their convergence results.

One close work of comparison is [LSAB19], whose PG algorithm uses learned density ratios
to reweight the data distribution and approximate the expression of the policy gradient theorem
[SMSM99]. To handle coverage issues in offline PG, they “zero out” portions of the trajectory that
exceed data coverage, but only do this for (s, a) such that dD(s)πD(a|s) = 0. This is done (in the
infinite horizon setting) by resampling the dataset based on an augmented MDP where such (s, a)
transition to an absorbing state However, this does not control the (potentially extremely large) vari-
ance of the estimator, e.g., on states where dD(s) ≈ 0. Their objective can be seen as a special
case of J̄(π) with finite but extremely large choices of Cs and Ca. They show convergence to a
stationary point in terms of weight and value estimation errors that are left implicit, and leave the
high variance and coverage issues with offline data implicit.

Another is [DWS12], that takes the complementary approach and simply calculates the gradient aver-
aged on dD. However, this is a biased gradient object and does not express the policy gradient of any
specific function, which means its stationary point may not even exist, thus precluding convergence
analysis.

The PSPI algorithm in [XCJMA21] is a policy optimization algorithm based on pessimistic value
functions. Their setting is somewhat orthogonal to ours in the sense that they study values and
we study occupancies, and we note that they do not perform policy optimization with respect to
a standalone policy class but rather an implicit one induced by the value functions, which an be
extremely large. In the value function sphere, [NZJZW22] leverage the linear structure of linear-
MDPS to develop closed-form gradient estimators through the value functions. They largely only
analyze estimation errors and additionally require a form of all-policy coverage for their results.

Lastly, our optimality analysis builds off the results in [BR24] and [AKLM21] that analyze global
optimality in the (infinite horizon) online setting.

B Additional results and proofs for Sec. 3

B.1 Proofs for Sec. 3.1

Proof of Lem. 3.1 First we expand ∇dπh using the Bellman flow equation, dπh(s
′) =∑

s,a P (s
′|s, a)π(a|s)dπh−1(s):

∇dπh(s′) =
∑
s,a P (s

′|s, a)(∇π(a|s)dπh−1(s) + π(a|s)∇dπh−1(s))

=
∑
s,a P (s

′|s, a)π(a|s)dπh−1(s)(∇ log π(a|s) +∇ log dπh−1(s)).

In the last line above we use the grad-log trick. Note that ∇ log dπ(s) is not well-defined when
dπ(s) = 0, but the two terms will cancel out in the above expression for this case. From Bayes’
theorem, Pπ(sh−1 = s, ah−1 = a|sh = s′) = P (s′|s, a)π(a|s)dπh−1(s)/d

π
h(s

′), thus

∇ log dπh(s
′) = ∇dπh(s′)/dπh(s′)
= Eπ[∇ log π(a|s) +∇ log dπh−1(s)|sh = s′]

= [Eπh−1(∇ log π +∇ log dπh−1)](s
′).

We use the convention that 0/0 = 0, thus ∇ log dπh is always well-defined.

Lastly, the second statement results from Lem. B.1, which shows that ‖∇ log dπh(s
′)‖ is always

bounded and well-defined under Asm. 2.1.
Lemma B.1. Under Asm. 2.1, we have maxs,h ‖∇ log dπh(s)‖ ≤ hG.

Proof. The lemma statement can be derived inductively starting from the observation that Eq. (1) is
an expectation over its target functions. As a result, the maximum gradient magnitude should accrue

15

additively over horizons. More concretely, fix h and s. Then

‖∇ log d̃πh(s
′)‖ = ‖Eπ[∇ log π(a|s) +∇ log dπh−1(s)|sh = s′]‖
≤ ‖∇ log π(a|s)‖+ ‖∇ log dπh−1(s)‖
≤ G+ ‖∇ log dπh−1(s)‖,

using Asm. 2.1 in the last line. Since ∇ log dπ0 = 0 by definition, unrolling the above recursion
through timesteps gives the stated result.

Lemma B.2. For g : S → Rp and f : S ×A → Rp, define the squared loss

Lh(g; f, π) = Eπ[‖g(sh+1)− f(sh, ah)‖2].

Then for any such f ,

Eπh(f) = argmin
g:S→Rp

Lh(g; f, π)

and
∇ log dπh+1 = argmin

g:S→Rp

Lh (g;∇ log π +∇ log dπh, π) .

Proof of Lem. B.2. Since the objective is convex, can solve for the minimizer in closed form by
taking the derivative and setting it to 0 in an element-wise manner. Fix s′. Taking the gradient of
Lh(g; f, π) with respect to g(s′), we have that

0 = dπh(s
′)g(s′)−

∑
s,a

P (s′|s, a)π(a|s)dπh−1(s)f(s, a).

Rearranging and using the definition of Eπh gives the result. The second statement follows from
Lem. 3.1.

B.2 Proofs for Sec. 3.2 : Estimation and local convergence

Proof of Thm. 3.1 First we split up the errors contributed by regression and the estimation. Fix π,
then EDreg [∇̂J(π)] =

∑
h Es∼dπh [ĝ

π
h(s)Rh(s)] and

‖∇J(π)− ∇̂J(π)‖ ≤ ‖∇J(π)− EDreg [∇̂J(π)]‖+ ‖EDreg [∇̂J(π)]− ∇̂J(π)‖

The first term is related to the regression error in ĝπh approximating ∇ log dπh ,

‖∇J(π)− EDreg [∇̂J(π)]‖ =
∥∥∑

h Edπh [∇ log dπh(s)Rh(s)]− Edπh [ĝ
π
h(s)Rh(s)]

∥∥
≤
∑
h

∥∥Edπh [∇ log dπh(s)− ĝπh(s)]
∥∥

=
∑
h

√∑p
p=1 ‖∇p log dπh − [ĝπh]

p‖21,dπh .

For a fixed h and p, we recursively decompose

‖∇p log dπh − [ĝπh]
p‖1,dπh ≤ ‖∇

p log dπh − [Eπh−1(∇ log π + ĝπh−1)]
p‖1,dπh

+ ‖[Eπh−1(∇ log π + ĝπh−1)]
p − [ĝπh]

p‖1,dπh
≤ ‖∇p log dπh−1 − [ĝπh−1]

p‖1,dπh−1
+ ‖[Eπh−1(∇ log π + ĝπh−1)]

p − [ĝπh]
p‖2,dπh ,

using the fact that ∇ log dπh = Eπh−1(∇ log π +∇ log dπh−1) in the second line. Then unrolling the
recursion, we have

‖∇p log dπh − [ĝπh]
p‖1,dπh ≤

∑
h

‖[Eπh−1(∇ log π + ĝπh−1)]
p − [ĝπh]

p‖2,dπh

Applying Lem. F.2 (more exactly, this is an offline version but we invoke it with ρ = 1 and no
clipping for the online setting) with δ′ = δ/2Hp and a union bound over all h and p, we have

‖[Eπh−1(∇ log π + ĝπh−1)]
p − [ĝπh]

p‖22,dπh = E[LpDreg
h−1

(ĝπh , ĝ
π
h−1)− L

p
Dreg

h−1
(Eπh−1(∇ log π + ĝπh−1), ĝ

π
h−1)]

16

≤ 2(εregh−1)
2,

where εregh−1 =
√

cdGh2G2 log(2Hp/δ)
n . Then for any h, p we have

‖∇p log dπh − [ĝπh]
p‖1,dπh ≤

√
2
∑
g≤h

εregg ≤
√
2hεregh =

√
2cdGh4G2 log(2Hp/δ)

n

Implying

‖∇J(π)− EDreg [∇̂J(π)]‖ ≤ √pH‖∇p log dπH − [ĝπH]p‖1,dπH =

√
2cpdGH6G2 log(2Hp/δ)

n

For the second term,

|EDreg [∇̂pJ(π)]− ∇̂pJ(π)| ≤
∑
h

|Es∼dπh [ĝ
π
h(s)Rh(s)]−

1

n

∑
s∈Dh

ĝπh(s)Rh(s)| ≤ H2G

√
log(2pH/δ)

n
,

where we use Hoeffding’s inequality with union bound, for all h ∈ [H] and p ∈ p in the last line,
given that the randomness of ĝ is independent given Dreg

h . Thus

‖EDreg [∇̂J(π)]− ∇̂J(π)‖ ≤ H2G

√
p log(2pH/δ)

n

Combining the two terms, our final bound is

‖∇J(π)− ∇̂J(π)‖ ≲
√

pdGH6G2 log(2Hp/δ)

n
,

with the regression error dominating.

Proof of Cor. 3.1 For any fixed run of Alg. 1, calling Thm. 3.1 for π(t) with δ′ = δ/T and taking
a union bound over T gives with probability at least 1− δ that

‖∇J(π(t))− ∇̂J(π(t))‖ ≲
√

pdGH6G2 log(2HpT/δ)

n
, ∀t ∈ [T].

Then setting δ = 1/
√
n, we have

E
[
‖∇J(π(t))− ∇̂J(π(t))‖

]
≲
√

pdGH6G2 log(2HpTn)

n
,

where the expectation is over random samples in Dreg,Dest. Finally, plugging this into the PGD
stationary convergence bound in Lem. G.1 gives

1

T

∑
t

E
[
‖Gη(π(t),∇J(π(t)))‖2

]
≤ 4βH

T
+

6pdGH
6G2 log(2HpTn)

n

Setting the RHS to ε and setting T, n appropriately gives the result.

B.3 Proofs for Sec. 3.2: Global convergence

We will establish the conditions under which J(π) satisfies a gradient domination property, meaning
that for any θ ∈ Θ, the suboptimality of πθ is bounded by some function S that includes a measure
of its stationarity, i.e., maxπ′∈ΠΘ

J̃(π′) − J(πθ) ≤ S(∇J̃(πθ)). This combined with the sample
complexity bounds for stationary convergence established in Cor. 3.1 enables our global optimality
result in Cor. 3.2.

Though we are concerned with optimizing J(π) induced by running π starting from initial distribu-
tion d0, it will be useful to consider performing Alg. 1 using a different exploratory initial distribu-
tion µ ∈ ∆(S). By exploratory, we mean that we allow µ(s) > 0 for all s ∈ S , unlike d0 ∈ ∆(S0).
In the (stationary) infinite horizon this is a common trick for obtaining well-defined gradient domi-
nation bounds [AKLM21], but its finite-horizon (nonstationary) counterpart is nontrivial and to our
knowledge has not previously been formalized (it is listed as future work in [BR24]).

We state and prove a more general version of Lem. 3.2:

17

Lemma B.3. For any π and π′, defineBπ(π′) :=
∑
h,s,a d

π
h(s)π

′(a|s)Qπh(s, a). Suppose ∀π ∈ ΠΘ,

1. (Policy completeness) There exists π+ ∈ ΠΘ such that π+ ∈ argmaxπ′ Bπ(π′).
2. (Gradient domination) maxπ′∈ΠΘ B

π(π′)−Bπ(π) ≤ mmaxθ′∈Θ 〈∇Bπ(π), θ′ − θ〉

Given ν ∈ ∆(S), define the coverage coefficient Cπ∗
:=
∥∥∑

h d
π∗

h /ν
∥∥
∞ for π∗ = argmaxπ J(π).

Then for any πθ ∈ ΠΘ,

J(π∗)− J(πθ) ≤m

∥∥∥∥∥
∑
h d

π∗

h∑
h d

πθ

µ,h

∥∥∥∥∥
∞

max
θ′∈ΠΘ

〈∇Jµ(πθ), θ′ − θ〉

≤ Cπ
∗
max
θ′∈ΠΘ

〈∇Jν(πθ), θ′ − θ〉 ,

where Jν(π) := Es0∼ν,π[
∑
h rh] is the expected return of π inM with initial state distribution ν.

Proof of Lem. B.3 First we note two facts that hold regardless of M. We have Qπg (s
h, ah) =

Qπh(s
h, ah) for any g ≤ h, and dπg (s

h) = 0 if g > h.

J(π∗)− J(πθ) =
H−1∑
h=0

∑
s,a

dπ
∗

h (s) (π∗(a|s)− πθ(a|s))Qπθ

h (s, a)

Then we will write Qπ(s, a) ≡ Qπh(s, a), thus

J(π∗)− J(πθ) =
H−1∑
h=0

dπ
∗

h (s) (π∗(a|s)− πθ(a|s))Qπθ (s, a)

=
∑
s,a

(∑
h

dπ
∗

h (s)

)
(π∗(a|s)− πθ(a|s))Qπθ (s, a)

≤ max
π+

∑
s,a

(∑
h

dπ
∗

h (s)

)(
π+(a|s)− πθ(a|s)

)
Qπθ (s, a)

≤ max
π+

∑
s,a

∑
h d

π∗

h (s)∑
h d

πθ

µ,h(s)

(∑
h

dπθ

µ,h(s)

)(
π+(a|s)− πθ(a|s)

)
Qπθ (s, a)

≤

∥∥∥∥∥
∑
h d

π∗

h

µ

∥∥∥∥∥
∞

max
π+

∑
s,a

(∑
h

dπθ

µ,h(s)

)(
π+(a|s)− πθ(a|s)

)
Qπθ (s, a)

For the RHS, observe that dπθ
µ,g(s

h) = 0 for g > h. Then∑
h

∑
s,a

dπθ

µ,h(s)
(
π+(a|s)− πθ(a|s)

)
Qπθ (s, a)

=
∑
h

∑
s,a

dπθ

µ,h(s)
(
π+(a|s)− πθ(a|s)

)
Qπθ

h (s, a)

=
∑
h

∑
s,a

dπθ

µ,h(s)
(
π+(a|s)− πθ(a|s)

)
Qπθ

µ,h(s, a)

= Bπθ (π+)−Bπθ (πθ)

≤mmax
θ′∈Θ

〈∇Bπθ (πθ), θ
′ − θ〉

=mmax
θ′∈Θ

〈∇Jµ(πθ), θ′ − θ〉

Combining the two inequalities results in the final guarantee.

Proof of Cor. 3.2 Fix {π(t)}t∈[T] from Alg. 1. Then for any t ∈ [T], from Lem. 3.2 we have

J(π∗)− J(π(t)) ≤mCπ
∗
max
θ′∈ΠΘ

〈
∇J(π(t)), θ′ − θ

〉
18

≤ BmCπ
∗
‖Gη(π(t))‖ (Lem. G.4)

Then summing through T and taking an expectation over the randomness in the algorithm, we have

E

[
1

T

∑
t

J(π∗)− J(π(t))

]
≤ BmCπ

∗
E

[
1

T

∑
t

‖Gη(π(t))‖

]

≤ BmCπ
∗
(
4βH

T
+

6pdGH
6G2 log(2HpTn)

n

)
. (Cor. 3.1)

B.4 Examples of gradient function class G

This section contains formal statements of the claims in Rem. 3.1, and their proofs. We begin by
defining the low-rank MDP, noting that for notational compactness we have dropped the features’
h-dependence given our assumption that there is a one-to-one correspondence between states and
the timestep at which they are visited.
Definition B.1 (Low-rank MDP). We say M is a low-rank MDP with dimension k if ∀h ∈ [H],
there exists ϕ : S × A → Rk and µh : S → Rk such that (s, a, s′), we have P (s′|s, a) =
〈ϕ(x, a), µ(x′)〉. Further, ‖ϕ‖∞ ≤ Cϕ and

∑
s µ(s) ≤ Cµ.

Prop. B.1 shows that, in low-rank MDPs, a linear-over-linear parameterization for the gradient func-
tion class satisfies the completeness requirement in Asm. 3.1, with pseudo-dimension linear in the
low-rank dimension and the parameter dimension, i.e., dGh

= O(kp).
Proposition B.1. Suppose M is a low-rank MDP (Def. B.1), and suppose µ is known. For each
layer h, define the function class

Gh =

{
gh =

µ⊤Ψ

µ⊤ψ
: Ψ ∈ Rk×p, ψ ∈ Rk, ‖gh‖∞ ≤ hG, ∀h ∈ [H]

}
.

Then {Gh} satisfies Asm. 3.1 and has pseudodimension (Def. F.1) dGh
= O(kp).

Proof of Prop. B.1. It suffices to show that, for any function f : S × A → Rp and policy π, its
gradient update from Lem. 3.1 is Eπh(∇ log π + f) ∈ Gh+1.

Since [Eπh(∇ log π + f)](s′) = Eπ[∇ log π(s, a) + f(s)|s′], from Bayes’ rule and the definition of
the Bellman flow operator (see proof of Lem. 3.1), we have

[Eπh(∇ log π + f)](s′) =
[Pπ

h−1(∇ log π + f)](s′)

dπh(s
′)

.

First, we will show that [Pπ
hf](s

′) = µ(s′)⊤Ψ for some Ψ ∈ Rk×p and all s′ ∈ S . Below, we use
fp(s) to denote the p-th parameter of f(s) ∈ Rp. For fixed p ∈ [p],

[Pπ
hf]

p(s′) =
∑
s,a

P (s′|s, a)π(a|s) (∇p log π(a|s) + fp(s))

= µ(s′)⊤

(∑
s,a

ϕ(s, a)π(a|s) (∇p log π(a|s) + fp(s))

)
= µ(s′)⊤ψ,

where ψ =
∑
s,a ϕ(s, a)π(a|s) (∇ log π(a|s) + fp(s)) ∈ Rk. Stacking this result for each p into

the matrix Ψ shows the desired statement that [Pπ
hf](s

′) = µ(s′)⊤Ψ.

We can apply similar reasoning as above in the Bellman flow equation to show that dπh(s
′) =

〈µ(s′), ψ〉 for some θ ∈ Rk. Combined with the above, this shows that

∇ log dπh(s
′) =

µ⊤Ψ

µ⊤ψ
,

Combining the linear forms of the numerator and denominator reveal that ∇ log dπh ∈ Gh. Lastly,
the pseudo-dimension of Gh follows directly from applying Lemma 24 of [HCJ23], which bounds
the pseudo-dimension of linear-over-linear function classes with p = 1, in all p dimensions.

19

Algorithm 3 Online Occupancy-based PG for General Functionals
Input: Functional F = {Fh}; Samples n; iterations T ; policy class ΠΘ; function class G; learning

rate η; function class F ;
1: for t = 0, . . . , T − 1 do
2: For all h ∈ [H], deploy π(t) for 3n trajectories. Set Dreg

h = {(sh, ah, sh+1)}ni=1, and simi-
larly for Dgrad

h and Dmle
h

3: for h = 1, . . . , H − 1 do
4: Define L(t)

h−1(gh, gh−1) := 1
n

∑
(s,a,s′)∈Dreg

h−1

∥∥gh(s′)− (∇ log π(t)(a|s) + gh−1(s)
)∥∥2,

and set
ĝ
(t)
h = argmingh∈Gh

L(t)
h−1(gh, ĝ

(t)
h−1).

5: end for
6: Estimate d̂πh ← MLE(Dmle,F). // Alg. 4

7: Estimate ∇̂JF (π) = 1
n

∑
h

∑
s∈Dest

h
ĝπh(s)

∂Fh(d)
∂d(s)

∣∣∣
d=d̂πh

8: Update θ(t+1) = ProjΘ

(
θ(t) + η∇̂J(π(t))

)
.

9: end for

B.5 Policy optimization of general functionals

Alg. 3 displays the full algorithm for optimization of general functions (described in Sec. 3.3). It
shares its occupancy gradient estimation module with OCCUPG. Compared to Alg. 1, the only
change is the objective gradient calculation in Line 7, which uses a plug-in estimate of the occupancy
(Line 6) to evaluate the partial derivative.

Since the algorithmic change is small, the analysis for Alg. 3 requires only a few adaptations from the
analysis of OCCUPG. For smooth and differentiable functionals, we provide the gradient estimation
guarantee below. The smoothness ensures that using plug-in occupancy estimates to evaluate the
partial derivative leads to consistent gradient estimates, and is in line with the spirit of standard
objective smoothness requirements (Asm. 3.2).
Assumption B.1. Suppose that for all h, Fh has a smooth gradient, i.e., for any f, f ′ ∈ ∆(S) that∑

s

∣∣∣∣∂Fh(d)∂d(s)

∣∣∣
d=f
− ∂Fh(d)

∂d(s)

∣∣∣
d=f ′

∣∣∣∣ ≤ LF ‖f − f ′‖1,
and has bounded range ‖∂Fh(d)‖∞ ≤ CF .
Theorem B.1. Suppose that Asm. 2.1 and Asm. B.1 hold. Fix π ∈ ΠΘ. With probability at least
1− δ,

‖∇JF (π)− ∇̂JF (π)‖ ≲ H2GLF

√
p log(2pH|F|/δ)

n
+ CF

√
pdGH6G2 log(2Hp/δ)

n
.

When Asm. 3.2 holds, this result directly leads to a stationary convergence guarantee similar to
Cor. 3.1, by union bounding Thm. B.1 over all T then plugging it into Lem. G.5 (see proof of
Cor. 3.1). We expect that the global convergence in Cor. 3.2 can also be extended with little overhead
when {Fh} are convex, but leave a full investigation to future work.

Proof of Thm. B.1 The analysis follows largely the same lines as the proof of Thm. 3.1. However,
we must additional account for the error of approximating ∂Fh(d)

∂d(s)

∣∣∣
d=d̂πh

with the plug-in occupancy

estimate. This was unnecessary for the expected return in Sec. 3.2 since ∂Fh(d)
∂d(s) = Rh(s) is indepen-

dent of the occupancy.

First, for all h ∈ [H], with probability at least 1− δ we have occupancy estimates from Alg. 4 such
that

‖dπh − d̂πh‖1 ≤
√

2 log(H|F|/δ)
n

:= εmle, ∀h ∈ [H].

20

This follows directly from Lem. D.1 with a union bound over H .

Next, we isolate the occupancy estimation-related term from the error we would like to bound. De-
fine ∇ĴF (π) :=

∑
h Es∼dπh

[
∂Fh(d)
∂d(s) |d=d̂πh∇ log dπh(s)

]
, and decompose

‖∇JF (π)− ∇̂JF (π)‖ ≤ ‖∇JF (π)−∇ĴF (π)‖+ ‖∇ĴF (π)− ∇̂JF (π)‖

For the first term,

‖∇JF (π)−∇ĴF (π)‖ ≤
∑
h

∥∥∥∥Es∼dπh [∂Fh(d)∂d(s)
|d=dπh∇ log dπh(s)−

∂Fh(d)

∂d(s)
|d=d̂πh∇ log dπh(s)

]∥∥∥∥
≤ HG

∑
h

∥∥∥∥Es∼dπh [∂Fh(d)∂d(s)
|d=dπh −

∂Fh(d)

∂d(s)
|d=d̂πh

]∥∥∥∥
≤ HG

∑
h,s

∣∣∣∣∂Fh(d)∂d(s)
|d=dπh −

∂Fh(d)

∂d(s)
|d=d̂πh

∣∣∣∣
≤ H2GLF max

h
‖dπh − d̂πh‖1,

≤ H2GLF ε
mle.

using Asm. B.1 in the second to last inequality. This takes care of the aforementioned occupancy
estimation error.

Conditioned on such {d̂πh}, the second pair of terms ‖∇ĴF (π)− ∇̂JF (π)‖ is analogous to the error
bounded in Thm. 3.1, and the proof follows identically thereon, but with dependence on the range
CF of the functionals.

C Additional results and proofs for Sec. 4

C.1 Proofs for Sec. 4.1

Proof of Lem. 4.1 By passing the gradient through the clipped Bellman flow equation in Def. 4.2,
we have

∇d̄πh(s′)

=
∑
s,a

P (s′|s, a)
(
∇π̄h−1(a|s)d̄πh−1(s) + π(a|s)∇

(
d̄πh−1(s) ∧ Cs

h−1d
D
h−1(s)

))
=
∑
s,a

P (s′|s, a)π̄h−1(a|s)
(
d̄πh−1(s) ∧ Cs

h−1d
D
h−1(s)

) (
∇ log π̄h−1(a|s)

+∇ log
(
d̄πh−1(s) ∧ Cs

h−1d
D
h−1(s)

))
Next, dropping the h− 1 subscript for a moment, observe that

∇ log
(
d̄π(s) ∧ CsdD(s)

)
=

{
∇ log d̄π(s), if d̄π(s) < CsdD(s),
0, if d̄π(s) > CsdD(s),

with a discontinuity at d̄π(s) = CsdD(s). For simplicity, we set ∇ log
(
d̄π(s) ∧ CsdD(s)

)
=

∇ log d̄π(s)�1[d̄π(s) ≤ CsdD(s)]. Similarly, we have∇ log π̄(a|s) = ∇ log π(a|s)�1[π(a|s) ≤
CaπD(a|s)].
Finally, ∇ log d̄πh(s

′) = ∇d̄πh(s′)/d̄πh(s′), where d̄πh(s
′) =

∑
s,a P (s

′|s, a)πDh−1(a|s)dDh−1(s)ρ̄
π
h−1.

The lemma statement follows from the definition of ED,ρ̄h−1, and the gradient magnitude bound results
from invoking Lem. C.2 with σ (x, c) = (x ∧ c).

Proof of Prop. 4.1 This result follows from applying Lem. C.7, which is a more general version
of the proposition statement that holds for any (smooth-)clipping function, to σ (x, c) = (x ∧ c).

21

Proof of Prop. 4.2 The MDP we will describe corresponds to a multi-armed bandit with 2 actions.
Consider an MDP with H = 2, and S0 = {s0}, S1 = {sL, sR}, S2 = {s−, s+} which are terminal.
In any state there are two actions, A = {L,R}, with deterministic transitions. For the first level, we
have s0

L→ sL and s0
R→ sR. For the second level, we have sL → s− and sR → s+, regardless of

action taken. For the reward function, R(s+) = 1 and is 0 otherwise.

The policy is parameterized by a single parameter θ such that π(L) = 1 − θ, and π(R) = θ, such
that dπθ

1 (sR) = dπθ
2 (s+) = θ. Further, both the offline data and behavior policy are uniform in each

level. Consequently, πD0 (L) = πD0 (R) = 1
2 and dD1 = unif(S1). We set Cs

1 = Cs
2 = 2, and Ca

2 = 2
so that π̄h = πh for all h.

Fix θ and estimated occupancies d̂πθ and d̂D. For any s′ ∈ S2 we have∥∥∥∇ log dπθ
2 (s′)− ∇̂ log d̄πθ

2 (s′)
∥∥∥ =

∥∥∥∇d̄πθ
1 (s′)

(
1[d̂πθ

1 (s′) ≤ d̂D1 (s′)]− 1[dπθ
1 (s′) ≤ dD1 (s′)]

)∥∥∥
Next, we instantiate d̂πθ , d̂D for any πθ. The preconditions of the proposition are satisfied by an
estimated occupancy with d̂πθ

1 (sL) = θ + ϵ/2 and d̂πθ
1 (sR) = θ − ϵ/2. In addition, we have an

estimate d̂D with d̂D1 (sL) = 1/2− ϵ/2 and d̂D1 (sR) = 1/2 + ϵ/2.

We will consider θ = 1/2, so that dπθ
1 ≤ Cs

1d
D
1 . However, d̂πθ

1 (sL) > d̂D1 (sL). As a result,∥∥∥∇ log dπθ
2 (s′)− ∇̂ log d̄πθ

2 (s′)
∥∥∥ =

∥∥∇d̄πθ
1 (s′)

∥∥ = O(1)

C.2 Proofs for Sec. 4.2

First, we formally state and prove the claim that Lem. 4.2 can be reduced to minimizing a squared-
loss regression problem recursively over timesteps, i.e.,

∇ log d̃πh+1 (11)

= argmin
g:S→Rp

EDh

[∥∥∥g(s′)− (∇ log π � 1̃
(
π,Ca

hd
D
h

)
+∇ log d̃πh−1 � 1̃

(
d̃πh, C

s
hd
D
h

))∥∥∥2] .
This is a reweighted offline analog of Eq. (2) from the online setting, and a more general version is
presented below with proof.
Lemma C.1. For g : S → Rp and f : S × A → Rp and reweighting function ρ : S × A → R+,
define the offline reweighted squared loss regression objective

L̃h(g; f, ρ) = EDh
[ρ(sh, ah)‖g(sh+1)− f(sh, ah)‖2].

Then for any such f ,

ED,ρh (f) = argmin
g:S→Rp

L̃h(g; f, ρ).

Further, for the smooth-clipped density ratio ρ̃πh =
σ(d̃πh(s),C

s
hd

D
h (s))

dDh (s)

π̃h(a|s)
πD
h (a|s) and smooth-clipped

target function yπh := ∇ log π � 1̃
(
π,Ca

hd
D
h

)
+∇ log d̃πh � 1̃

(
d̃πh, C

s
hd
D
h

)
from Lem. 4.2, we have

∇ log d̃πh+1 = argmin
g:S→Rp

L̃h (g; yπh , ρ̃πh) .

Proof of Lem. B.2. Since the objective is convex, can solve for the minimizer in closed form by
taking the derivative and setting it to 0 in an element-wise manner. For each s′,

0 = g(s′)

(∑
s,a

P (s′|s, a)πDh (a|s)dDh (s)ρ(s, a)

)
−
∑
s,a

P (s′|s, a)πDh (a|s)dDh (s)ρ(s, a)f(s, a).

Rearranging and using the definition of ED,ρh (Eq. (5)) gives the result. The second statement follows
from Lem. 4.2.

22

Proof of Prop. 4.3 Part 1 follows from the gradient formula

∂xσ (x, c) = x−β−1
(
x−β + c−β

)−1/β−1
=
(
1 + xβc−β

)−1/β−1
.

It can be seen that ∂xσ (x, c) ∈ [0, 1] and is non-increasing in its inputs, thus σ is monotonic.
Additionally, |σ (x, c)− σ (x′, c)| ≤ |x − x′|. Since σ is symmetric in its arguments, we also have
|σs (x, c)− σs (x, c′)| ≤ |c− c′|.
Next, we prove Part 2. Let z = (x ∧ c), and observe that z − σ (x, c) ≤ z − σ (z, z) since σ is
monotonic. Further,

z − σ (z, z)
z

=
z − (2z−β)−1/β

z
= 1− 2−1/β ≤ 1− e−1/β ≤ 1

β
.

Rearranging and plugging in the expression for z gives the result.

Part 3 can be derived algebraically (but not easily), and is best intuited from the plot of the maximum
slope supx,x′,c,c′∈[0,1] |1̃ (x, c) − 1̃ (x′, c) |/|x − x′| in Figure C.2, which corresponds to Lσ/c in
the RHS of the bound. The left plot shows that the maximum slope increases linearly in β, and the
right plot shows it increases inversely with c. The dashed red line is a “guess” for the exact constant
Lσ/c = 0.3β/c, that upper-bounds the maximum slope. Clearly, Lσ = O(β).

10 20 30 40 50

5

10

15

20

25

30

M
ax

im
um

 sl
op

e

Varying ; fixed c = 0.5
= 0.3 / c

0.2 0.4 0.6 0.8 1.0
c

2

4

6

8

10

12
Varying c; fixed = 4

= 0.3 / c

Figure 2: The y-axis plots the maximum slope supx,x′,c,c′∈[0,1]

|1̃(x,c)−1̃(x′,c)|
|x−x′| = Lσ/c.

Proof of Lem. 4.2 Using the chain rule,

∇d̃πh(s′)

=
∑
s,a

P (s′|s, a)
(
∇π̃h−1(a|s)d̃πh−1(s) + π(a|s)∇σ

(
d̃πh−1(s), C

s
h−1d

D
h−1(s)

))
=
∑
s,a

P (s′|s, a)π̃h−1(a|s)σ
(
d̃πh−1(s), C

s
h−1d

D
h−1(s)

)(
∇ log π̃h−1(a|s)

+∇ log σ
(
d̃πh−1(s), C

s
h−1d

D
h−1(s)

))
=
∑
s,a

P (s′|s, a)πDh−1(a|s)dDh−1(s)ρ̃
π
h−1(s, a)

(
∇ log π̃h−1(a|s)

+∇ log σ
(
d̃πh−1(s), C

s
h−1d

D
h−1(s)

))
,

where in the last line we use the definition of ρ̃πh−1 from Lem. 4.2 to make a change-of-measure.
Further,

∇ log σ
(
d̃πh−1(s), C

s
h−1d

D
h−1(s)

)
= ∇d̃πh−1(s)� ∂xσ

(
d̃πh−1(s), C

s
h−1d

D
h−1(s)

)
= ∇ log d̃πh−1(s)�

(
d̃πh−1(s) · ∂xσ

(
d̃πh−1(s), C

s
h−1d

D
h−1(s)

))
23

= ∇ log d̃πh−1(s)� 1̃
(
d̃πh−1(s), C

s
h−1d

D
h−1(s)

)
,

by definition. We can make the analogous statement for ∇ log π̃h−1. Next, using the same change
of measure in Def. 4.3, we have

d̃πh(s
′) =

∑
s,a

P (s′|s, a)πDh−1(a|s)dDh−1(s)ρ̃
π
h−1(s, a).

The lemma statement follows from ∇ log d̃πh(s
′) = ∇d̃πh(s′)/d̃πh(s′), and the definition of ED,ρ̃h−1 in

Eq. (5). The gradient magnitude bound is proved in Lem. C.2.
Lemma C.2 (Bounded gradient magnitude). Suppose σ is differentiable almost everywhere. Under
Part 1 of Asm. 4.1 and Asm. 2.1,

max
h,s

∥∥∥∇ log d̃πh(s)
∥∥∥
∞
≤ hG.

Proof of Lem. C.2. As a consequence of Asm. 4.1, which states that the gradient of σ is nonincreas-
ing in the first argument, for any x, c ≥ 0 we have

σ (x, c) =

∫ x

0

∂xσ
s (z, c) dz ≥

∫ x

0

∂xσ
s (x, c) dz = x ∂xσ (x, c)

Then substituting x ← d̃πh−1(s) and c ← dDh−1(s), the above shows that

∇ log σ
(
d̃πh−1(s), d

D
h−1(s)

)
≤ ∇ log d̃πh−1 pointwise. Since Lem. 4.2 involves a valid (con-

ditional) expectation, for any s ∈ S we have∥∥∥∇ log d̃πh(s
′)
∥∥∥
∞

≤ max
s,a

{∥∥∇ log σ
(
π(a|s), Ca

h−1π
D
h−1(a|s)

)∥∥
∞ +

∥∥∥∇ log σ
(
d̃πh−1(s), C

s
h−1d

D
h−1(s)

)∥∥∥
∞

}
≤ G+max

s

∥∥∥∇ log σ
(
d̃πh−1(s), C

s
h−1d

D
h−1(s)

)∥∥∥
∞

≤ hG
where we use Asm. 2.1 in the second line, and unroll the same inequalities through levels in the last
line.

Proof of Prop. 4.4 First, we bound the difference between the soft-clipped and clipped density
functions:∥∥∥d̃πh − d̄πh∥∥∥

1
≤
∥∥∥σ (d̃πh−1, C

s
h−1d

D
h−1

)
−
(
d̄πh−1 ∧ Cs

h−1d
D
h−1

)∥∥∥
1
+max

s
‖π̃h−1(·|s)− π̄h−1(·|s)‖1

For the second term and any s,

‖π̃h−1(·|s)− π̄h−1(·|s)‖1 =
∥∥σ (πh−1(·|s), Ca

h−1π
D
h−1(·|s)

)
−
(
πh−1(·|s) ∧ Ca

h−1π
D
h−1(·|s)

)∥∥
1

≤ Dσ

∥∥(πh−1(·|s) ∧ Ca
h−1π

D
h−1(·|s)

)∥∥
1
≤ Dσ

For the first term,∥∥∥σ (d̃πh−1, C
s
h−1d

D
h−1

)
−
(
d̄πh−1 ∧ Cs

h−1d
D
h−1

)∥∥∥
1

≤
∥∥∥σ (d̃πh−1, C

s
h−1d

D
h−1

)
−
(
d̃πh−1 ∧ Cs

h−1d
D
h−1

)∥∥∥
1
+
∥∥∥(d̃πh−1 ∧ Cs

h−1d
D
h−1

)
−
(
d̄πh−1 ∧ Cs

h−1d
D
h−1

)∥∥∥
1

≤ Dσ

∥∥∥(d̃πh−1 ∧ Cs
h−1d

D
h−1

)∥∥∥
1
+
∥∥∥d̃πh−1 − d

π

h−1

∥∥∥
1

where in the last line we use Asm. 4.1 to upper bound the first term, and the properties of the
pointwise minimum ∧ to upper bound the second term. Since

(
d̃πh−1 ∧ Cs

h−1d
D
h−1

)
≤ d̃πh−1 ≤

dπh−1, we have ∥∥∥d̃πh − d̄πh∥∥∥
1
≤ 2Dσ +

∥∥∥d̃πh−1 − d
π

h−1

∥∥∥
1
≤ h(Dσ +Dσ)

24

after rolling out the induction. Then for any π,

J̄(π)− J̃(π) ≤
H∑
h=1

∥∥∥d̃πh − d̄πh∥∥∥
1
≤ 2H2Dσ

Lastly, let π̃∗ = argmaxπ∈ΠΘ
J̃(π), and define π̄∗ similarly. Then

J̄(π̄∗)− J̃(π̃∗) ≤ J̄(π̄∗)− J̃(π̄∗) ≤ 2H2Dσ.

C.3 Proofs for Sec. 4.3

First, we give an example of G that satisfies Asm. 4.2 in low-rank MDPs.
Proposition C.1. Suppose M is a low-rank MDP (Def. B.1), and suppose µ is known. For each
layer h, define the function class

Gh =

{
gh =

µ⊤Ψ

µ⊤ψ
: Ψ ∈ Rk×p, ψ ∈ Rk, ‖gh‖∞ ≤ hG, ∀h ∈ [H]

}
.

Then {Gh} satisfies Asm. 4.2 and has pseudodimension (Def. F.1) dGh
= O(kp).

Proof of Prop. C.1. It suffices to show that, for any f : S × A → Rp, reweighting function ρ :

S ×A → R+, and h ∈ [H], the gradient update in Lem. 4.2 has [ED,ρh f] ∈ Gh+1.

Fix ρ, f, and h. From the definition of Eρf , we have

[Eρhf](s
′) =

∑
s,a P (s

′|s, a)πDh (a|s)dDh (s, a)ρ(s, a)f(s, a)∑
s,a P (s

′|s, a)πDh (a|s)dDh (s, a)ρ(s, a)

Then since P (s′|s, a) = 〈ϕ(s, a), µ(s′)〉, we can apply the same steps as the proof of Prop. B.1 to
show that there exists Ψ ∈ Rk×p and ψ ∈ Rk such that

[Eρhf](s
′) =

µ(s′)⊤Ψ

µ(s′)⊤ψ
, ∀s′ ∈ S.

Specifically, ψ =
∑
s,a ϕ(s, a)π

D
h (a|s)dDh (s, a)ρ(s, a), and the p-th column of Ψ is Ψp =∑

s,a ϕ(s, a)π
D
h (a|s)dDh (s, a)ρ(s, a)fp(s, a).

Proof of Thm. 4.1 For the remainder of this section, we define the constants εw and εmle to be the
estimation errors of w̃π and dD, respectively, such that for a given π and any h ∈ [H] we have

‖ŵπh − w̃πh‖1,dD,†
h−1
≤ εw∥∥∥d̂Dh − dDh ∥∥∥

1
≤ εmle and

∥∥∥d̂D,†h − dD,†h

∥∥∥
1
≤ εmle.

We can obtain such estimates using Alg. 4 and Alg. 5, and a direct application of Lem. D.1

with union bound gives εmle = O

(√
log(H|F|/δ)

n

)
, and similarly Thm. E.1 states that εwreg =

O

(√
log(H|W|/δ)

n

)
.

Next, recall that

∇̂J̃(π) = 1

|Dgrad
h |

H−1∑
h=0

∑
(s,a,s′)∈Dgrad

h

ŵπh(s
′)Rh(s

′)ĝπh(s
′).

The expected value over draws of Dgrad is

EDgrad
h

[
∇̂J̃(π)

]
=
∑
h

Es′∼dD,†
h−1

[ŵπh(s
′)Rh(s

′)ĝπh(s
′)] .

25

First we bound the statistical error from using samples to approximate ∇J̃(π), given the gradient
estimate. Fix the other datasets, then∥∥∥∇̂J̃(π)− EDgrad

[
∇̂J̃(π)

]∥∥∥
≤ √pmax

p∈[p]

∑
h

∣∣∣Ês′∼dD,†
h−1

[ŵπh(s
′)Rh(s

′)ĝπh(s
′)]− Es′∼dD,†

h−1
[ŵπh(s

′)Rh(s
′)ĝπh(s

′)]
∣∣∣

≤ √p

(∑
h

Cs
hC

a
h

)
max

p∈[p],h∈[H]

∣∣∣Ês′∼dD,†
h−1

[ĝπh(s
′)]− Es′∼dD,†

h−1
[ĝπh(s

′)]
∣∣∣

≤ √p

(∑
h

Cs
hC

a
h

)
εstat (12)

where εstat = HG
√

log(8pH/δ)
2n is obtained by using Hoeffding’s with δ′ = δ/4, since the random-

ness in ŵ and ĝ are fixed. Then for any p ∈ [p],∥∥∥EDgrad
h

[
∇̂J̃(π)

]
−∇J̃(π)

∥∥∥
≤
∑
h

∥∥∥∥∥∑
s′

dD,†h−1(s
′)Rh(s

′)
(
ŵπh(s

′) · ĝπh(s′)− wπh(s′) · ∇ log d̃πh(s
′)
)∥∥∥∥∥

≤
∑
h

∥∥∥∥∥∑
s′

dD,†h−1(s
′)Rh(s

′)wπh(s
′)
(
ĝπh(s

′)−∇ log d̃πh(s
′)
)∥∥∥∥∥+

∥∥∥∥∥∑
s′

dD,†h−1(s
′)Rh(s

′)ŷπh(s
′) (ŵπh(s

′)− wπh(s′))

∥∥∥∥∥
≤ √p

∑
h

(
hG ‖ŵπh − wπh‖1,dD,†

h−1
+max
p∈[p]

∥∥∥[ĝπh]p −∇ log d̃πh

∥∥∥
1,d̃πh

)
(13)

The first term is bounded by Thm. E.1. For the second term, we use the following decomposition,
which is proved at the end of this section.

Lemma C.3 (Gradient estimation error decomposition). Let εmle and εw be such that for all h ∈ [h]
and π ∈ ΠΘ, we have

‖d̂Dh − dDh ‖1, ‖d̂
D,†
h − dD,†h ‖1 ≤ ε

mle
h and ‖ŵπh − w̃πh‖1,dD,†

h−1
≤ εwh .

Then under Asm. 2.1 and Asm. 4.1, for any p ∈ [p], ĝπh from Alg. 2 satisfies∥∥∥ĝπ,ph −∇p log d̃πh
∥∥∥
1,d̃πh

≤ 6hCs
h−1C

a
h−1LσG εmle

h−1 (data distribution estimation error)

+ 3hLσG εwh−1 (occupancy estimation error)

+
∥∥∥ĝπ,ph − [ED,ρ̂h−1(∇ log π̃h−1 + ĝh−1)]

p
∥∥∥
1,d̃πh

(statistical regression error)

+ ‖ĝπ,ph−1 −∇
p log d̃πh−1‖1,d̃πh−1

(recursive term)

From Lem. C.4, we have∥∥∥[ED,ρ̂h−1ĝh−1]
p − ĝπ,ph

∥∥∥
1,d̃πh

≤
√

2
(
1 + Cs

h−1ε
mle
h−1

)
εregh + 2hG

(
2Cs

h−1ε
mle
h−1 + εwh−1

)
where εregh = O(

√
dGCs

h−1C
a
h−1h

2G2 log(npH/δ)

n). Then plugging the above into the decomposition
in Lem. C.3, we have∥∥∥ĝph −∇p log d̃πh∥∥∥

1,d̃πh

≤ 10Cs
h−1C

a
h−1hGLσ ε

mle
h−1 + 5hGLσ ε

w
h−1

+
√

2
(
1 + Cs

h−1ε
mle
h−1

)
εregh + ‖ĝph−1 −∇

p log d̃πh−1‖1,d̃πh−1

26

Unrolling through timesteps, we have∥∥∥ĝph −∇p log d̃πh∥∥∥
1,d̃πh

≤ 10h2GLσ
∑
g<h

Cs
gC

a
g ε

mle
g + 5h2GLσ

∑
g<h

εwg +
∑
g≤h

√
2(1 + Cs

gε
mle
g)εregg

≤ 10H2GLσ

(∑
h

Cs
hC

a
h

)
εmle + 5H3GLσε

w
H +

∑
h

εregh

(√
2 + Cs

hε
mle
)

Since εwH ≤ (
∑
h C

s
hC

a
h + 2

∑
h C

s
h) ε

mle +
√
2 (
∑
h C

s
hC

a
h) ε

wreg,∥∥∥ĝph −∇p log d̃πh∥∥∥
1,d̃πh

≤ 25H3GLσ

(∑
h

Cs
hC

a
h

)
εmle + 5

√
2H3GLσ

(∑
h

Cs
hC

a
h

)
εwreg +

∑
h

εregh

(√
2 + Cs

hε
mle
)

Finally, combining with Eq. (12) and upper bounding εreg further, we have∥∥∥∇J̃(π)− ∇̂J̃(π)∥∥∥
≤ √p

(∑
h

Cs
hC

a
h

)(
εstat + 25H3GLσε

mle + 5
√
2H3GLσε

wreg
)
+
√
p

(
H
√
2 + εmle

∑
h

Cs
h

)(
max
h

εregh

)
,

Combining inequalities and plugging in the expression for each ε, we have

∥∥∥∇J̃(π)− ∇̂J̃(π)∥∥∥ ≲ c

√
dGpH6G2 (

∑
h C

s
hC

a
h)

2
L2
σ log(|W||F|/δ)

n
.

Additional results Lastly, we state and prove the helper lemmas used above.

Proof of Lem. C.3. First from Lem. C.1, the population minimizer of Eq. (10) given ρ̂π, ŷπh−1 is
gπh = ζπh/f

π
h , where

ζπh := Eρ̂h−1

(
∇ log π̃ + ŷπh−1

)
fπh := Eρ̂h−1 (1)

Below, we use superscript p to select the p-th parameter of a gradient object. We first separate out
the statistical regression error by decomposing∥∥∥∇p log d̃πh − ĝπ,ph ∥∥∥

1,d̃πh

≤ ‖gπ,ph − ĝπ,ph ‖1,d̃πh +
∥∥∥∇p log d̃πh − gπ,ph ∥∥∥

1,d̃πh

The first term appears as the regression error in Lem. C.3. Since ∇ log d̃πh = ∇d̃πh/d̃πh , for any
p ∈ [p] we have∥∥∥∇p log d̃πh − gπ,ph ∥∥∥

1,d̃πh

=

∥∥∥∥∥d̃πh ζπ,ph

fπh
− d̃πh

∇pd̃πh
d̃πh

∥∥∥∥∥
1

≤
∥∥∥∥(d̃πh − fπh) ζπ,ph

fπh

∥∥∥∥
1

+
∥∥∥ζπ,ph −∇pd̃πh

∥∥∥
1

≤ ‖Gh‖∞ ‖d̃πh − fπh ‖1 + ‖ζ
π,p
h −∇pd̃πh‖1

≤ 2Cs
h−1‖Gh‖∞

∥∥∥d̂Dh−1 − dDh−1

∥∥∥
1
+ ‖Gh‖∞

∥∥∥d̂πh−1 − d̃πh−1

∥∥∥
1

+ ‖ζπ,ph −∇pd̃πh‖1 (14)

The error ‖d̃πh − fπh ‖1 bounded by Lem. C.5, and ‖gπ,ph ‖∞ ≤ ‖Gh‖∞ is bounded by Lem. C.2.

27

We will bound the second term above. Letting yπh−1 := ∇ log σ
(
d̃πh−1, C

s
h−1d

D
h−1

)
be the (true)

regression target and using the gradient Bellman equation for ∇ log d̃πh in Lem. 4.2, we have

‖ζπ,ph −∇pd̃πh‖1

=
∥∥∥Eρ̂h−1

(
∇p log π̃ + ŷπ,ph−1

)
−Eρ̃

π

h−1

(
∇p log π̃ + yπ,ph−1

)∥∥∥
1

≤
∥∥∥∥σ(d̂πh−1,C

s
h−1d̂

D
h−1)

d̂Dh−1

π̃h−1

πD
h−1

dDh−1π
D
h−1

(
∇p log π̃ + ŷπ,ph−1

)
− σ

(
d̃πh−1, C

s
h−1d

D
h−1

)
π̃h−1

(
∇p log π̃ + yπ,ph−1

)∥∥∥∥
1

≤
∥∥∥σ (d̂πh−1, C

s
h−1d̂

D
h−1

) (
∇p log π̃ + ŷπ,ph−1

)
− σ

(
d̃πh−1, C

s
h−1d

D
h−1

) (
∇p log π̃ + yπ,ph−1

)∥∥∥
1

+ Cs
h−1

(
G+

∥∥ŷπ,ph−1

∥∥
∞

)
‖dDh−1 − d̂Dh−1‖1

≤
∥∥∥σ (d̂πh−1, C

s
h−1d̂

D
h−1

)
ŷπ,ph−1 − σ

(
d̃πh−1, C

s
h−1d

D
h−1

)
yπ,ph−1

∥∥∥
1

+G
∥∥∥σ (d̂πh−1, C

s
h−1d̂

D
h−1

)
− σ

(
d̃πh−1, C

s
h−1d

D
h−1

)∥∥∥
1
+ Cs

h−1 (G+ ‖Gh−1‖∞) ‖dDh−1 − d̂Dh−1‖1

≤
∥∥∥σ (d̂πh−1, C

s
h−1d̂

D
h−1

)
ŷπ,ph−1 − σ

(
d̃πh−1, C

s
h−1d

D
h−1

)
yπ,ph−1

∥∥∥
1

+G‖d̂πh−1 − d̃πh−1‖1 + Cs
h−1 (2G+ ‖Gh−1‖∞) ‖dDh−1 − d̂Dh−1‖1 (15)

Now consider the first term above, where

ŷπh−1 = ĝπh−1 � 1̃
(
d̂πh−1, C

s
h−1d̂

D
h−1

)
and yπh−1 = ∇ log dπh−1 � 1̃

(
d̃πh−1, C

s
h−1d

D
h−1

)
.

Then plugging this into the first line from the previous block, we have∥∥∥σ (d̂πh−1, C
s
h−1d̂

D
h−1

)
ŷπ,ph−1 − σ

(
d̃πh−1, C

s
h−1d

D
h−1

)
yπ,ph−1

∥∥∥
1

=
∥∥∥σ (d̂πh−1, C

s
h−1d̂

D
h−1

)
1̃
(
d̂πh−1, C

s
h−1d̂

D
h−1

)
ĝπ,ph−1 − σ

(
d̃πh−1, C

s
h−1d

D
h−1

)
1̃
(
d̃πh−1, C

s
h−1d

D
h−1

)
∇p log dπh−1

∥∥∥
1

≤
∥∥ĝπ,ph−1 −∇

p log dπh−1

∥∥
1,d̃πh−1

+ ‖Gh−1‖∞
∥∥∥σ (d̂πh−1, C

s
h−1d̂

D
h−1

)
1̃
(
d̂πh−1, C

s
h−1d̂

D
h−1

)
− σ

(
d̃πh−1, C

s
h−1d

D
h−1

)
1̃
(
d̃πh−1, C

s
h−1d

D
h−1

)∥∥∥
1
,

(16)

where we add and subtract σ
(
d̃πh−1, C

s
h−1d

D
h−1

)
1̃
(
d̃πh−1, C

s
h−1d

D
h−1

)
ĝπ,ph−1 to obtain the inequal-

ity. The first error is the recursive term, so it remains to bound the second, for which we will use the
smoothness properties of 1̃ (x, c) from Asm. 4.1.∥∥∥σ (d̂πh−1, C

s
h−1d̂

D
h−1

)
1̃
(
d̂πh−1, C

s
h−1d̂

D
h−1

)
− σ

(
d̃πh−1, C

s
h−1d

D
h−1

)
1̃
(
d̃πh−1, C

s
h−1d

D
h−1

)∥∥∥
1

≤
∥∥∥σ (d̃πh−1, C

s
h−1d

D
h−1

)(
1̃
(
d̂πh−1, C

s
h−1d

D
h−1

)
− 1̃

(
d̃πh−1, C

s
h−1d

D
h−1

))∥∥∥
1

+
∥∥∥σ (d̂πh−1, C

s
h−1d̂

D
h−1

)(
1̃
(
d̂πh−1, C

s
h−1d̂

D
h−1

)
− 1̃

(
d̂πh−1, C

s
h−1d

D
h−1

))∥∥∥
1

+
∥∥∥(σ (d̃πh−1, C

s
h−1d

D
h−1

)
− σ

(
d̂πh−1, C

s
h−1d̂

D
h−1

))
1̃
(
d̂πh−1, C

s
h−1d

D
h−1

)∥∥∥
1

≤ Lσ
∥∥∥∥σ(d̃πh−1,C

s
h−1d

D
h−1)

Cs
h−1d

D
h−1

(
d̂πh−1 − d̃πh−1

)∥∥∥∥
1

+ Lσ

∥∥∥∥σ(d̂πh−1,C
s
h−1d̂

D
h−1)

d̂πh−1

(
d̂Dh−1 − dDh−1

)∥∥∥∥
1

+
∥∥∥(σ (d̃πh−1, C

s
h−1d

D
h−1

)
− σ

(
d̂πh−1, C

s
h−1d̂

D
h−1

))∥∥∥
1

≤ (Lσ + 1)
∥∥∥d̂πh−1 − d̃πh−1

∥∥∥
1
+
(
Lσ + Cs

h−1

) ∥∥∥d̂Dh−1 − dDh−1

∥∥∥
1

(17)

Lastly, ∥∥∥d̂πh − d̃πh∥∥∥
1
≤ CsCa

∥∥∥d̂D,†h−1 − d
D,†
h−1

∥∥∥
1
+ ‖ŵπh − w̃πh‖1,dD,†

h−1
(18)

28

Finally, after combining Eq. (14), Eq. (15), Eq. (16), Eq. (17), and Eq. (18), we have∥∥∥∇p log d̃πh − ĝπ,ph ∥∥∥
1,d̃πh

≤
∥∥ĝπ,ph−1 −∇

p log dπh−1

∥∥
1,d̃πh−1

+ ‖ζπ,ph − ĝπ,ph ‖1,d̃πh
+ (G+ (Lσ + 1)‖Gh−1‖∞ + ‖Gh‖∞) ‖ŵπh−1 − w̃πh−1‖1,dD,†

h−1

+ Cs
h−1C

a
h−1 (G+ (Lσ + 1)‖Gh−1‖∞ + ‖Gh‖∞)

∥∥∥d̂D,†h−1 − d
D,†
h−1

∥∥∥
1

+
(
2Cs

h−1G+ (Lσ + Cs
h−1)‖Gh−1‖∞ + ‖Gh‖∞

)
‖d̂Dh−1 − dDh−1‖1

Plugging in ‖Gh‖∞ ≤ hG and consolidating terms, gives the result.

Lemma C.4. With probability ≥ 1− δ, for all h ∈ [H] and a fixed π we have∥∥∥ĝπh −ED,ρ̂
π

h−1 (∇ log π̃h−1 + ĝπh−1)
∥∥∥
1,d̃πh

≤
√
2
(
1 + Cs

h−1ε
mle
h−1

)
εregh + 2hG

(
2Cs

h−1ε
mle
h−1 + εwh−1

)
(19)

Proof. Let fπh (s
′) =

∑
s,a P (s

′|s, a)ρ̂π(s, a)dDh−1(s)π
D(a|s) be the data distribution reweighted

by ρ̂π . For short, we use yπ,ph = [ED,ρ̂
π

h−1 (∇ log π̃h−1 + ĝπh−1)]
p. For any p ∈ [p],

‖ĝπ,ph − yπ,ph ‖1,d̃πh ≤ ‖ĝ
π,p
h − yπ,ph ‖1,fπ

h
+ ‖ĝπ,ph − yπ,ph ‖∞ ·

∥∥∥fπh − d̃πh∥∥∥
1

≤
∥∥∥√fπh ∥∥∥

2
· ‖ĝπ,ph − yπ,ph ‖2,fπ

h
+ 2hG

∥∥∥fπh − d̃πh∥∥∥
1
,

where in the second line we use Cauchy-Schwarz on the first term and Lem. C.2 on the second term.
Consider the first term. One can loosely bound∥∥∥√fπh ∥∥∥2

2
=
∑
s,a,s′

P (s′|s, a)ρ̂πh−1(s, a)π
D
h−1(a|s)dDh−1(s)

≤ Cs
h−1

∑
s,a,s′

P (s′|s, a)π̃h−1(a|s)dDh−1(s) ≤ Cs
h−1,

or a get a tighter result with∥∥∥√fπh ∥∥∥2
2
=
∑
s,a,s′

P (s′|s, a)ρ̂πh−1(s, a)π
D
h−1(a|s)dDh−1(s)

=
∑
s,a,s′

P (s′|s, a)
σ
(
d̃πh−1(s), C

s
h−1d

D
h−1(s)

)
d̂Dh−1(s)

π̃h−1(a|s)
(
dDh−1(s)− d̂Dh−1(s)

)
+
∑
s,a,s′

P (s′|s, a)π̃h−1(a|s)σ
(
d̃πh−1(s), C

s
h−1d

D
h−1(s)

)
≤ Cs

h−1

∥∥∥dDh−1 − d̂Dh−1

∥∥∥
1
+ 1

Next we bound ‖ĝπ,ph − yπ,ph ‖2,fπ
h

. Define

Lph−1(g; y, ρ) = Ê(s,a,s′)∼Dh−1

[
ρ(s, a) (gp(s′)− (∇ log π̃h−1(a|s) + yp(s)))

2
]

to be the p-th parameter version of Eq. (10). Recall the regression target ŷπh−1, then we have

‖ĝπ,ph − yπ,ph ‖
2

2,fπ
h
= E

[
Lph−1(ĝ

π
h ; ŷ

π
h−1, ρ̂

π
h−1)

]
− E

[
Lph−1(y

π
h ; ŷ

π
h−1, ρ̂

π
h−1)

]
≤ 2

(
Lph−1(ĝ

π
h ; ŷ

π
h−1, ρ̂

π
h−1)− L

p
h−1(y

π
h ; ŷ

π
h−1, ρ̂

π
h−1)

)
+ 2εregh (Lem. F.2)

29

≤ 2εregh (yπh ∈ Gh, Asm. 4.2)

Then

‖ŷph − y
p
h‖1,d̃πh ≤

√
2
(
1 + Cs

h−1

∥∥∥dDh−1 − d̂Dh−1

∥∥∥
1

)
εregh + 2hG

∥∥∥fπh − d̃πh∥∥∥
1

Plugging in the bound from Lem. C.5 for ‖fπh − d̃πh‖1 gives the result.

Lemma C.5. For any π and estimates {d̂πh}, {d̂Dh }, let ρ̂π be defined as in Alg. 2, and for any
h ∈ [H] and s′ ∈ S define

fπh (s
′) :=

∑
s,a

P (s′|s, a)ρ̂π(s, a)πDh−1(a|s)dDh−1(s),

to be the next-state marginal distribution induced by reweighting dD with ρ̂. We have∥∥∥fπh − d̃π∥∥∥
1
≤ 2Cs

h−1

∥∥∥d̂Dh−1 − dDh−1

∥∥∥
1
+
∥∥∥d̂πh−1 − d̃πh−1

∥∥∥
1

Proof. Using the definition of ρ̂π , we first rewrite fπh (s
′) =∑

s,a P (s
′|s, a)π̃h−1(a|s)

σ(d̂πh−1(s),C
s
h−1d̂

D
h−1(s))

d̂Dh−1(s)
dDh−1(s). Then∥∥∥fπh − d̃πh∥∥∥

1

≤

∥∥∥∥∥∥
σ
(
d̂πh−1, C

s
h−1d̂

D
h−1

)
d̂Dh−1

dDh−1 − σ
(
d̃πh−1, C

s
h−1d

D
h−1

)∥∥∥∥∥∥
1

≤

∥∥∥∥∥∥
σ
(
d̂πh−1, C

s
h−1d̂

D
h−1

)
d̂Dh−1

(
d̂Dh−1 − dDh−1

)∥∥∥∥∥∥
1

+
∥∥∥σ (d̂πh−1, C

s
h−1d̂

D
h−1

)
− σ

(
d̃πh−1, C

s
h−1d

D
h−1

)∥∥∥
1

≤ 2Cs
h−1

∥∥∥d̂Dh−1 − dDh−1

∥∥∥
1
+
∥∥∥d̂πh−1 − d̃πh−1

∥∥∥
1

where in the last inequality we use Asm. 4.1 to bound the second term.

C.4 Local convergence of OFF-OCCUPG

We demonstrate that OFF-OCCUPG can converge to a ε-stationary point. In order to establish this
result, we will need the guarantee in Thm. 4.1 to hold for all possible policies, i.e., ‖∇̂J̃(π) −
∇J̃(π)‖ ≤ ε for all π ∈ ΠΘ. This is because the fixed offline data is reused throughout the
algorithm, which introduces additional correlations between iterations. In the online setting it was
sufficient to simply union bound over iterations, and not functions in our function classes, because
we drew fresh trajectories for each policy iterate.

Since G and ΠΘ are continuous function classes, we will start our result in terms of their covering
numbers, defined below. We handle this in the simplest manner by using ℓ∞ coverings, and leave
a more refined analysis to future work. Def. C.1 is a covering on the clipped policy ratio over πD.
For example, the direct policy parameterization with πθ = θ has ND

∞(γ,ΠΘ) ≤ (maxh C
a
h/γ)

HSA

(Lem. C.10). In the below definition, we overload the definition of π (the clipped policy in Lem. 4.1)
temporarily.

Definition C.1 (Policy ratio γ-cover). Let ΠΘ be an ℓ∞ covering of ΠΘ such that for any π ∈ ΠΘ

there exists π ∈ ΠΘ with ‖σ(π,C
a
hπ

D
h)

πD
h

− σ(πh,C
a
hπ

D
h)

πD
h

‖∞ ≤ γ. Let ND
∞(γ,ΠΘ) denote its minimum

cardinality.
Definition C.2 (Gradient function class γ-cover). Denote N∞(γ,G) to be the ℓ∞ covering number
of {Gh} with resolution γ.

30

Next, we state the stationary convergence guarantee in terms of these function class complexities, the
offline coverage coefficient determined by input clipping constants {Cs

h, C
a
h}, andLσ that represents

the second-order smoothness of σ.
Corollary C.1. Suppose Asm. 3.2 holds. Then under the preconditions of Thm. 4.1,

1

T

∑
t

E
[
‖Gη(π(t),∇J̃(π(t)))‖2

]
≤ ε

when

T = Õ

(
βH

ε

)
n = Õ

(
pH6G2 (

∑
h C

s
hC

a
h)

2
L2
σ log(N∞(ε,G)ND

∞(ε,ΠΘ)|W||F|)
ε

)
.

Proof of Cor. C.1 First, we invoke a union-bounded version of the offline regression estimation
guarantee in Lem. F.2. For any π, g : S → Rp, reweighting function ρ : S × A → R+, and target
function y : S → Rp, define the p-th parameter squared loss for a fixed policy to be

Lπ,ph (g; y, ρ) = Ê(s,a,s′)∈Dh

[(
gp(s′)− (∇p log π̃h(a|s) + yp(s)))

2
)]

Then from Lem. F.3, With probability at least 1 − δ′, for all h ∈ [H], p ∈ [p], g ∈ Gh+1, and ρ, y
induced by F ,W (see preconditions of Lem. F.3 for more exact statement), we have∣∣E[Lπ,ph (g; y, ρ)− Lπ,ph (g∗h+1; y, ρ)]− L

π,p
h (g; y, ρ)− Lπ,ph (g∗h+1; y, ρ)

∣∣
≤ 1

2
E[Lπ,ph (g; y, ρ)− Lπ,ph (g∗h+1; y, ρ)] + (εregh+1)

2,

where g∗h+1 = ED,ρh [∇ log π̃h+yh] and εregh = O

(√
Cs

h−1C
a
h−1h

2G2 log(N∞(n−1,G)pH|Wh||Fh|/δ′)
n

)
.

To complete the regression part of the analysis we need to take a union bound over the result in
Lem. F.3 for all π ∈ ΠΘ. For any π ∈ ΠΘ, let π ∈ ΠΘ of Def. C.1 be its ℓ∞ cover. We need to
bound the covering approximation error Lπ,ph (g; y, ρ) − Lπ,ph (g; y, ρ). Consider a fixed (h, s, a, s′)
and fix the inputs (g, ρ, y, π), for which

Lπ,ph (g; y, ρ)[s, a, s′]− Lπ,ph (g; y, ρ)[s, a, s′]

= ρ(s)
σ(π(a|s),Ca

hπ
D
h (a|s))

πD
h (a|s)

(
gp(s′)− 2(∇p log π̃(a|s) + yp(s)) + g∗,ph+1(s

′)
) (
gp(s′)− g∗,ph+1(s

′)
)

Then∣∣∣E[Lπ,ph (g; y, ρ)− Lπ,ph (g; y, ρ)]− (Lπ,ph (g; y, ρ)− Lπ,ph (g; y, ρ))
∣∣∣

≤ 8Csh2G2

∥∥∥∥σ(π,Ca
hπ

D
h)

πD
h

− σ(π,Ca
hπ

D
h)

πD
h

∥∥∥∥
∞

+ 8CsCahGmax
s,a
‖∇ log π̃(a|s)−∇ log [̃π](a|s)‖∞

≤ 8(CsCah2G2 + CsCahGLσβ)ε

where we get smoothness of the gradient portion using Asm. 4.1 and Asm. 3.2. Then by setting
ε = (8(CsCah2G2 + CsCahGLσβ))n

−1 and combining the above errors with Lem. F.3, we have
that with probability at least 1− δ for all π ∈ ΠΘ that∣∣E[LpDh

(ρh, gh+1, yh, π)− LpDh
(ρh, g

∗
h+1, yh, π)]− L

p
Dh

(ρh, gh+1, yh, π)− LpDh
(ρh, g

∗
h+1, yh, π)

∣∣
≤ 1

2
E[LpDh

(ρh, gh+1, yh, π)− LpDh
(ρh, g

∗
h+1, yh, π)]

+ c

√
Cs
h−1C

a
h−1h

2G2 log(ND
∞(n−1,ΠΘ)N∞(n−1,G)pH|Wh||Fh|/δ)

n
:= εregh ,

for some absolute constant c. The remainder of the proof is identical to the proof of Thm. 4.1 using
the above εregh , which is then combined with Lem. G.1 to give the result.

31

C.5 Global convergence of OFF-OCCUPG

We now turn our attention to analyzing gradient domination of the offline objective J̃(π). The
preconditions of our result are written in terms of the smooth-clipped analog of the pessimistic
value function Q̄π (Prop. 4.1), induced by the smooth-clipped occupancy gradient ∇d̃π . For each
(h, s, a), define

Q̃πh(s, a) := ∂xσ
(
π(a|s), Ca

hπ
D
h (a|s)

)∑
s′

P (s′|s, a)
(
R(s′)

+ ∂xσ
(
d̃πh+1(s

′), Cs
h+1d

D
h+1(s

′)
)
Q̃πh+1(s

′, π̃h+1)
)
.

Lem. C.6 shows that the optimality gap of a policy for the smooth-clipped objective J̃(π) is bounded
by a measure of its gradient magnitude, as well as a coverage coefficient. This is because our trick
with exploratory µ in Lem. 3.2 isn’t applicable, as it is not covered by the data in D0 supported on
S0. Without this, our offline gradient domination guarantee in Lem. C.6 has a coverage coefficient
that resembles the first inequality of Lem. B.3 when µ = d0, the original initial state distribution.

Lemma C.6. For any π and π′, define B̃π(π′) :=
∑
h,s,a d̃

π
h(s)π̃

′(a|s)Q̃πh(s, a). Suppose that
∀π ∈ ΠΘ,

1. (Policy completeness) There exists π+ ∈ ΠΘ such that π+ ∈ argmaxπ′ B̃π(π′).

2. (Gradient domination) maxπ′∈ΠΘ
B̃π(π′)− B̃π(π) ≤ mmaxθ′∈Θ

〈
∇B̃π(π), θ′ − θ

〉
.

Then for any comparator policy πE and πθ ∈ ΠΘ, we have

J̃(πE)− J̃(πθ) ≤ m

max
h

∥∥∥∥∥∥
σ
(
d̃π

E

h , Cs
hd
D
h

)
σ
(
d̃πθ

h , C
s
hd
D
h

)
∥∥∥∥∥∥
∞

max
θ′∈Θ

〈∇J̃(πθ), θ′ − θ〉.

Compared to Lem. 3.2, the first precondition of Lem. C.6 may be stronger because π+ can be a
stochastic policy, whereas deterministic policies suffice in the online setting. The second precondi-
tion is of similar strength. More importantly—as we have previously discussed— coverage coeffi-
cients of the form in Lem. C.6 are not ideal because they involve πθ in the denominator, which are
variable over the learning process.

Offline data as an exploratory initialization Since all occupancies are clipped to some constant
of the offline data, however, we might wonder if the offline data distribution itself might serve as an
exploratory initial distribution to use with OFF-OCCUPG (in some sense, this, or some reweighted
version of it, is the only thing available to us in the offline setting). Prop. C.2 shows that this is indeed
possible when the offline data is exploratory enough, and we use clipping for simplicity. Notably, the
coverage coefficient present in the gradient domination bound is the input clipping constant

∑
h C

s
h.

This can be seen as an offline analog of Cπ∗
in Lem. 3.2, since all occupancies are clipped to have

this ratio over the offline data.
Proposition C.2. Given {dDh }, define a new data distribution where dD

′

h = 1
H

∑H−1
g=0 dDg , ∀h ∈ [H].

Then for any π, use {dD′

h }, σ = ∧, and clipping constants {Cs′

h , C
a′

h } to define [d̃πh]
′ according to

Def. 4.3. Let J̃ ′(π) =
∑
h〈[d̃πh]′, R〉.

For any π and π′, recall B̃π(π′) :=
∑
h,s,a[d̃

π
h]

′(s)π̃′(a|s)[Q̃π]′h(s, a). Suppose that ∀π ∈ ΠΘ,

1. (Policy completeness) There exists π+ ∈ ΠΘ such that π+ ∈ argmaxπ′ B̃π(π′).

2. (Gradient domination) maxπ′∈ΠΘ B̃
π(π′)− B̃π(π) ≤ mmaxθ′∈Θ

〈
∇B̃π(π), θ′ − θ

〉
.

Then if {Cs′

h , C
a′

h } are such that [d̃πθ

h]′ ≤ Cs′

h d
D′

h , ∀h, for any πθ ∈ ΠΘ, we have

max
π

J̃(π)− J̃(πθ) ≤ mH

(∑
h

Cs
h

)
max
θ′∈Θ
〈∇J̃ ′(πθ), θ

′ − θ〉.

32

In practice, we can easily generate a new dataset D′ satisfying Prop. C.2 by first splitting each
Dh into H equal parts {Dih}Hi=1, then setting D′

h = ∪Hg=1Dhg . The sample complexity of running
Alg. 2 on D′ will then scale with

∑
h C

s
h, which are input parameters, instead of the coefficient

in Lem. C.6, which is θ-dependent and cannot be controlled. In exchange, it requires all-policy
coverage w.r.t the new [d̃π]′, which, while strong, was insufficient for optimality in Lem. C.6. One
justification (formalized in the hardness result of Prop. C.3) is that the exploratory initialization can
cause policies to exceed coverage thresholds on reward-generating states, despite being covered on
(the original) d0. Clipping causes gradient signals to vanish, so a stationary policy might be far
off-support, instead of optimal. While everything works out conceptually if {Cs

h, C
a
h} are set to be

high enough, it’s unclear whether doing this will require exponentially large coefficients in the worst
case.

Lastly, we combine the above gradient domination claims with the stationary convergence guarantee
in Cor. C.1 to state the following global convergence result. Cor. C.2 is stated for J̄(π), our original
offline optimization objective, and therefore takes into the account of approximating the clipping
function with its smooth-clipped version.

Corollary C.2. Suppose J̃(π) satisfies Asm. 3.2. If Alg. 2 with D′ as defined in Prop. C.2
satisfies the preconditions of Prop. C.2, then set CC = H

∑
h C

s
h. Otherwise, define CC =

maxπ∈ΠΘ
maxh

∥∥∥σ (d̃π∗

h , Cs
hd
D
h

)
/σ
(
d̃πh, C

s
hd
D
h

)∥∥∥
∞

and assume the preconditions of Lem. C.6.
Then under Def. C.1 and the preconditions of Thm. 4.1, Alg. 2 satisfies

E

[
1

T

∑
t

{
max
π

J̄(π)− J̄(π(t))
}]
≤ ε+ 2H2Dσ

when T = Õ
(
B2m2(CC)2βH

ε2

)
and

n = Õ

(
B2m2(CC)2pH6G2(

∑
h C

s
hC

a
h)

2
L2

σ log(N∞(ε,G) ND
∞(ε,ΠΘ)|F||W|)

ε2

)
.

Though we optimize J̃(π), the guarantee in Cor. C.2 is with respect to our target offline objective
J̄(π), which implies that the learned policy competes with the best policy fully covered by offline
data. Generally Lσ and Dσ trade-off between ease of convergence (smoothness) and approximation
error, respectively. For example, instantiating the bound with σ from Prop. 4.3 with b ∝ ε results in
a final ε−1/4 rate.

C.6 Proofs for App. C.5

Proof of Lem. C.6 We will use superscript h to refer to sh ∈ Sh, the set of states visitable at
timestep h, and drop Cs

h below to reduce clutter. By the performance difference upper bound for the
smooth-clipped objective in Lem. C.8, we have

J̃(π∗)− J̃(πθ) ≤
H−1∑
h=0

∑
s,a

σ
(
d̃π

∗

h (s), dDh (s)
)
(π̃∗(a|s)− π̃θ(a|s)) Q̃πθ

h (s, a)

=

H−1∑
h=0

∑
sh,ah

σ
(
d̃π

∗

h (sh), dDh (s
h)
) (
π̃∗(ah|sh)− π̃θ(ah|sh)

)
Q̃πθ

h (sh, ah)

since dDh (s) > 0 only if s ∈ Sh. Now define π+ such that for any s, π̃+(·|s) =

argmaxπ∈∆(A)

〈
π̃, Q̃πθ

h (s, ·)
〉

. Then

J̃(πE)− J̃(πθ)

≤
H−1∑
h=0

∑
sh,ah

σ
(
d̃π

E

h (sh), dDh (s
h)
) (
π̃E(ah|sh)− π̃θ(ah|sh)

)
Q̃πθ

h (sh, ah)

≤
H−1∑
h=0

∑
sh,ah

σ
(
d̃π

E

h (sh), dDh (s
h)
) (
π̃+(ah|sh)− π̃θ(ah|sh)

)
Q̃πθ

h (sh, ah) (20)

33

≤ max
h

∥∥∥∥∥∥
σ
(
d̃π

E

h , Cs
hd
D
h

)
σ
(
d̃πθ

h , C
s
hd
D
h

)
∥∥∥∥∥∥
∞

H−1∑
h=0

∑
sh,ah

σ
(
d̃πθ

h (sh), dDh (s
h)
) (
π+(ah|sh)− πθ(ah|sh)

)
· 1̃
(
πθ(a

h|sh), Ca
hπ

D(ah|sh)
)
Q̃πθ

h (sh, ah)

≤ max
h

∥∥∥∥∥∥
σ
(
d̃π

E

h , Cs
hd
D
h

)
σ
(
d̃πθ

h , C
s
hd
D
h

)
∥∥∥∥∥∥
∞

H−1∑
h=0

∑
sh,ah

σ
(
d̃πθ

h (sh), dDh (s
h)
) (
π̃+(ah|sh)− π̃θ(ah|sh)

)
Q̃πθ

h (sh, ah)

= max
h

∥∥∥∥∥∥
σ
(
d̃π

E

h , Cs
hd
D
h

)
σ
(
d̃πθ

h , C
s
hd
D
h

)
∥∥∥∥∥∥
∞

max
π+

(
B̃π

+

(πθ)− B̃πθ (πθ)
)

= max
h

∥∥∥∥∥∥
σ
(
d̃π

E

h , Cs
hd
D
h

)
σ
(
d̃πθ

h , C
s
hd
D
h

)
∥∥∥∥∥∥
∞

max
πθ′∈ΠΘ

(
B̃πθ′ (πθ)− B̃πθ (πθ)

)

Proof of Prop. C.2 Under all-policy coverage, we can apply the result in Lem. 3.2, noting that
d′0 = 1

H d
D
h , and dπ

∗

h ≤ Cs
hd
D
h .

S

X

Y Z

P(X |S, a) = ϵ

+1/ϵ +1 +0

Figure 3: Example in Prop. C.3

Proposition C.3 (Vanishing gradient from clipping with exploratory data). Consider the MDP in
App. C.6, and the data distribution where dD(X) = 1/2 and dD(Y) = ϵ and dD(Z) = (1−ϵ)/2 for
some ϵ ∈ [0, 1]. For any C, we have all-policy coverage, i.e., dπh ≤ Chd

D
h for all h and all policies

π. Let π be the stationary (and in this case, optimal) policy of running Alg. 2 with D′ described in
Prop. C.2. Then

J(π∗)− J(π) = (1− ϵ) (1− 2CY ϵ) .

If ϵ is exponentially small, J(π∗)− J(π) = O(1) unless CY is exponentially large.

Proof. The example boils down to a simple bandit problem of choosing either L or R in state X .
π(L|X) = CY d

D(Y)
dD(X)

= 2CY ϵ, and π(R|X) = 1 − π(L|X). In comparison, π∗(L|X) = 1. Then

J̃(π) = J(π) = CY d
D(Y)

dD(X)
+ ϵ(1− π(L|X)). In comparison, J(π∗) = 1, so

J(π∗)− J(π) = (1− ϵ) (1− 2CY ϵ)

For reasonable choices ofCZ (say, 2 or 3), CY must be proportional to ϵ−1 for the suboptimality gap
to shrink, and in particular if ϵ is exponentially small then CY must be exponentially large, which
blows up the RHS of the bound.

34

Proof of Cor. C.2 The first step follows the proof of Cor. 3.2. Combining Thm. 4.1 with Lem. G.5
and plugging in above, we have

E

[
1

T

∑
t

J̃(π∗)− J̃(π(t))

]

≲ BmCC

√βH

T
+

√
pH6G2 (

∑
h C

s
hC

a
h)

2
L2
σ log(N∞(ε,G) ND

∞(ε,ΠΘ)|F||W|)
n


Then we also have

E

[
1

T

∑
t

J̄(π∗)− J̄(π(t))

]

≤ E

[
1

T

∑
t

J̃(π∗)− J̃(π(t))

]
+ 2H2Dσ (Prop. 4.4)

≲ 2H2Dσ +BmCC

√βH

T
+

√
pH6G2 (

∑
h C

s
hC

a
h)

2
L2
σ log(N∞(ε,G) ND

∞(ε,ΠΘ)|F||W|)
n


Additional results Helper lemmas are stated and proved below.

Lemma C.7. Suppose σ satisfies Parts 1 and 2 of Asm. 4.1. Then for J̃(π) =
∑
h

∑
s d̃

π
h(s)Rh(s),

∇J̃(π) =
H−1∑
h=0

∑
s,a

σ
(
d̃πh(s), C

s
hd
D
h (s)

)
∇π̃h(a|s)Q̃πh(s, a),

where

Q̃πh(s, a) =
∑
s′

Ph(s
′|s, a)

(
Rh+1(s

′) +
∑
a′

π̃h+1(a
′|s′) ∂xσ

(
d̃πh+1(s

′), Cs
h+1d

D
h+1(s

′)
)
Q̃πh+1(s

′, a′)

)
.

Proof of Lem. C.7. For notational clarity we omit Cs
h below. Expanding ∇d̃π , we have

∇d̃πh(sh) =
∑

sh−1,ah−1

P (sh|sh−1, ah−1)
(
∇π̃h−1(ah−1|sh−1)σ

(
d̃πh−1(sh−1), d

D
h−1(sh−1)

)
+ π̃h−1(ah−1|sh−1) ∂xσ

(
d̃πh−1(sh−1), d

D
h−1(sh−1)

)
∇d̃πh−1(sh−1)

)
=
∑
g<h

∑
(sh−1,ah−1,...,sg,ag)

[
h−1∏
t=g+1

P (st+1|st, at)π̃t(at|st) ∂xσ
(
d̃πt (st), d

D
t (st)

)]

· P (sg+1|sg, ag)σ
(
d̃πg (sg), d

D
g (sg)

)
∇π̃g(ag|sg)

For short, define

P̃π̃(sh|sg, ag) :=
∑

(sh−1,ah−1,...,sg+1,ag+1)

[
h−1∏
t=g+1

P (st+1|st, at)π̃t(at|st) ∂xσ
(
d̃πt (st), d

D
t (st)

)]
P (sg+1|sg, ag)

observing if π̃h = πh and ∂xσ
(
d̃πh, d

D
h

)
= 1 for all h, we have P̃π̃(sh|sg, ag) = Pπ(sh|sg, ag), the

standard transition kernel from (sg, ag) → sh. This occurs, for example, when σs is hard clipping
and π is fully covered by data. Then using the above definition, we have

∇d̃πh(sh) =
∑
g<h

∑
sg,ag

σ
(
d̃πg (sg), d

D
g (sg)

)
∇π̃g(ag|sg)P̃π̃(sh|sg, ag). (21)

35

Plugging this expression into ∇J(π), we obtain

∇J(π) =
∑
h

∑
sh

∇d̃πh(sh)R(sh)

=
∑
h

∑
sh

h−1∑
g=0

∑
sg,ag

σ
(
d̃πg (sg), d

D
g (sg)

)
∇π̃g(ag|sg)P̃π̃(sh|sg, ag)

R(sh)

=

H−1∑
g=0

∑
sg,ag

σ
(
d̃πg (sg), d

D
g (sg)

)
∇π̃g(ag|sg)

 H∑
h=g+1

∑
sh

P̃π̃(sh|sg, ag)R(sh)


=

H−1∑
g=0

∑
sg,ag

σ
(
d̃πg (sg), d

D
g (sg)

)
∇π̃g(ag|sg)Q̃π(sg, ag)

where we have defined

Q̃πg (sg, ag) :=

H∑
h=g+1

∑
sh

P̃π̃(sh|sg, ag)R(sh)

=
∑
sg+1

P (sg+1|sg, ag)

R(sg+1) +
∑
ag+1

π̃g+1(ag+1|sg+1) ∂xσ
(
d̃πg+1(sg+1), d

D
g+1(sg+1)

)
Q̃π̃g+1(sg+1, ag+1)



Lemma C.8. If σ is concave in its first argument, for any π′ and π we have

J̃(π′)− J̃(π) ≤
H−1∑
h=0

∑
s,a

σ
(
d̃π

′

h (s), dDh (s)
)
(π̃′
h(a|s)− π̃h(a|s)) Q̃πh(s, a),

where Q̃πh is defined in Lem. C.7.

Proof. This statement follows straightforwardly from plugging in Lem. C.9 and rearranging, similar
to the proof of Lem. C.7.

Lemma C.9. If σ is concave in its their first arguments, then for any h and π, π′

d̃π
′

h (s′)− d̃πh(s′)

≤
∑
g<h

∑
s,a

σ
(
d̃π

′

g (s), dDg (s)
) (
σ
(
π′
g(a|s), πDg (a|s)

)
− σ

(
πg(a|s), πDg (a|s)

))
P̃π(sh = s′|sg = s, ag = a),

where

P̃π(sh|sg, ag) :=
∑

sh−1:g+1,ah−1:g+1

[
h−1∏
t=g+1

P (st+1|st, at)π̃t(at|st) ∂xσ
(
d̃πt (st), d

D
t (st)

)]
P (sg+1|sg, ag).

Proof of Lem. C.9. Define πg = {π′
1, . . . , π

′
g−1, πg, . . . , πH−1}, i.e., a policy that starts playing π

at timestep g, and plays π′ for the timesteps before that.

d̃π
′

h (s′)− d̃πh(s′) = d̃π
′

h (s′)− d̃π
h−1

h (s′) + d̃π
h−1

h (s′)− d̃πh(s′)

For the first pair of terms, π′ and πh−1 only differ the policy used to take the action ah−1 (and both
play π′ before that), thus dπ

′

h−1 = dπ
h−1

h−1 and

d̃π
′

h (s′)− d̃π
h−1

h (s′)

=
∑
s,a

P (s′|s, a)
(
σ
(
π′
h−1(a|s), πDh−1(a|s)

)
− σ

(
πh−1(a|s), πDh−1(a|s)

))
σ
(
d̃π

′

h−1(s), d
D
h−1(s)

)

36

For the second pair of terms, πh−1 and π both play π at time h − 1, but the former uses π′ for
timesteps 1, . . . , h− 2:

d̃π
h−1

h (s′)− d̃πh(s′)

=
∑
s,a

P (s′|s, a)σ
(
πh−1(a|s), πDh−1(a|s)

) (
σ
(
d̃π

h−1

h−1 (s), dDh−1(s)
)
− σ

(
d̃πh−1(s), d

D
h−1(s)

))
=
∑
s,a

P (s′|s, a)σ
(
πh−1(a|s), πDh−1(a|s)

) (
σ
(
d̃π

′

h−1(s), d
D
h−1(s)

)
− σ

(
d̃πh−1(s), d

D
h−1(s)

))
≤
∑
s,a

P (s′|s, a)σ
(
πh−1(a|s), πDh−1(a|s)

)
∂xσ

(
d̃πh−1(s), d

D
h−1(s)

)(
d̃π

′

h−1(s)− d̃πh−1(s)
)

where the last inequality above uses the concavity of σs in the first argument (recall concave func-
tions f satisfy f(y) ≤ f(x) + f ′(x)(y − x)). Combining the above two inequalities, we have the
recursive relationship

d̃π
′

h (s′)− d̃πh(s′)

≤
∑
s,a

P (s′|s, a)

((
σ
(
π′
h−1(a|s), πDh−1(a|s)

)
− σ

(
πh−1(a|s), πDh−1(a|s)

))
σ
(
d̃π

′

h−1(s), d
D
h−1(s)

)
+ σ

(
πh−1(a|s), πDh−1(a|s)

)
∂xσ

(
d̃πh−1(s), d

D
h−1(s)

)(
d̃π

′

h−1(s)− d̃πh−1(s)
))

Unrolling through timesteps gives the lemma statement.

Lemma C.10. Let Ca = maxh C
a
h . Suppose ΠΘ is the direct policy parameterization, i.e.,

πθ(a|s) = θs,a, and σ is such that Dσ ≤ Ca for all h. Then for any γ ∈ (0, 1], in Def. C.1
we have ND

∞(γ,ΠΘ) ≤ (Ca/γ)SAH .

Proof of Lem. C.10. Typical gridding-style arguments discretize the range of π(a|s) for each (s, a).
Since we are concerned with creating a cover for the policy ratio, however, a naive argument will
incur 1/mins,a π

D(a|s) in the grid’s cardinality. Our solution is to grid ΠΘ adaptively according to
the magnitude of πD(a|s). Intuitively, we only need to grid up to the threshold

For each (h, s, a), define the adaptive gridding scale to be γ′hsa = γπDh (a|s). For any π ∈ ΠΘ, set
its cover π as follows.

πh(a|s) =

{⌊
π(a|s)
γ′
hsa

⌋
, if π(a|s) ≤ Ca

hπ
D
h (a|s),

Ca
hπ

D
h (a|s), otherwise.

Let ΠΘ = {π : π ∈ ΠΘ}. Then |ΠΘ| ≤ (maxh C
a
h/γ)

HSA. Further,∣∣(π(a|s) ∧ Ca
hπ

D
h (a|s)

)
−
(
πh(a|s) ∧ Ca

hπ
D
h (a|s)

)∣∣ ≤ γπDh (a|s),

thus ‖ (π∧C
a
hπ

D
h)−(πh∧Ca

hπ
D
h)

πD
h

‖∞ ≤ γ, and applying Lem. C.11 gives the result.

Lemma C.11. Suppose ΠΘ satisfies Def. C.1 with σxc = (x ∧ c). Then for any π ∈ ΠΘ, let
π ∈ ΠΘ be its cover. Under Asm. 4.1, we have∥∥∥∥σ(π,CπD)

πD − σ(π,CπD)
πD

∥∥∥∥
∞
≤ C(γ +Dσ).

Proof of Lem. C.11. If π(a|x) ≤ CπD(a|x), using the 1-Lipschitzness of σ we have

|σ
(
π(a|s), CπD(a|s)

)
− σ

(
π̄(a|s), CπD(a|s)

)
|

= |σ
((
π(a|s) ∧ CπD(a|s)

)
, CπD(a|s)

)
− σ

(
π̄(a|s), CπD(a|s)

)
|

≤ |
(
π(a|s) ∧ CπD(a|s)

)
− π̄(a|s)|

37

Algorithm 4 Maximum Likelihood Estimation
Input: datasets {Dh}, function class F

1: for h = 1, . . . , H do
2: Estimate marginal data distributions d̂Dh−1 and d̂D,†h−1 by MLE on dataset Dh−1

d̂Dh−1 = argmax
dh−1∈Fh−1

1

|Dh−1|
∑

(s,·,·)∈Dh−1

log (dh−1(s)) (22)

d̂D,†h−1 = argmax
dh∈Fh

1

|Dh−1|
∑

(·,·,s′)∈Dh−1

log (dh(s
′)) .

3: end for
Output: estimated data distributions {d̂Dh }h∈[H] and {d̂D,†h }h∈[H]

≤ CγπD(a|s).

If π(a|x) > CπD(a|x),

|σ
(
π(a|s), CπD(a|s)

)
− σ

(
π̄(a|s), CπD(a|s)

)
| ≤ CπD(a|s)− σ

(
π̄(a|s), CπD(a|s)

)
≤ CπD(a|s)− (1−Dσ)

(
π̄(a|s) ∧ CπD(a|s)

)
≤ C(Dσ + γ)πD,

using Asm. 4.1 in the second inequality. As a result,∣∣∣∣σ(π(a|s),CπD(a|s))
πD(a|s) − σ(π(a|s),CπD(a|s))

πD(a|s)

∣∣∣∣ ≤ C(γ +Dσ)

D Maximum Likelihood Estimation

Algorithm 4 displays the data distribution estimation procedure used in offline gradient estimation
(Algorithm 2), which is a direct application of MLE. The general formulation of the MLE problem
utilized in this paper is to estimate a probability distribution over the instance space S . Given an
i.i.d. sampled dataset D = {s(i)}ni=1 and a function class F , we optimize the MLE objective of the
form

f̂ = argmin
f∈F

1

|D|
∑
s∈D

log (f(s)) . (23)

We assume F is finite, and refer readers to [LNSJ23; HCJ23] for techniques for handling infinite
function classes. The general MLE guarantee is stated below, and is a well-established result (for
example, a proof can be found in Appendix E of [AKKS20]).

Lemma D.1 (MLE guarantee). Let D = {s(i)}ni=1 be a dataset, where s(i) are drawn i.i.d. from
some fixed probability distribution f∗ over S . Consider a function class F that satisfies: (i) f∗ ∈ F ,
and (ii) each function f ∈ F is a valid probability distribution over S (i.e., f ∈ ∆(S)) Then with
probability at least 1− δ, f̂ from Eq. (23) has ℓ1 error guarantee

‖f̂ − f∗‖1 ≤
√

2 log(|F|/δ)
n

.

The formal guarantee of Algorithm 4 is stated below, which is a straightforward application of
Lemma D.1 with union bound (over all functions in F , and over all timesteps).

Assumption D.1 (MLE Realizability). Suppose that ∀h ∈ [h], we have dDh , d
D,†
h−1 ∈ Fh for D

defined in Def. 4.1. Additionally, f ∈ ∆(S) is a valid distribution for all f ∈ Fh.

38

Algorithm 5 Fitted Occupancy Iteration with Smooth Clipping
Input: policy π, datasets {Dh}, function class W , clipping thresholds {Cs

h, C
a
h}, data estimates

{d̂Dh } and {d̂D,†h }.
1: Initialize d̂π0 = d̂D0 .
2: for h = 1, . . . , H do

3: Define LDh−1
(wh, wh−1, π̃h−1) := 1

|Dh−1|
∑

(s,a,s′)∈Dh−1

(
wh(s

′)− wh−1(s)
π̃h−1(a|s)
πD
h−1(a|s)

)2
,

and estimate

ŵπh = argmin
wh∈Wh

LDh−1

(
wh,

σ(d̂πh−1,C
s
h−1d̂

D
h−1)

d̂Dh−1

, σ
(
πh−1, C

a
h−1π

D
h−1

))
, (24)

4: Set the estimate d̂πh = ŵπh d̂
D,†
h−1.

5: end for
Output: estimated state occupancies {ŵπh}h∈[H].

Lemma D.2. Suppose {Fh} satisfies Asm. D.1. Then with probability at least 1− δ, for all h ∈ [H]

the outputs of Algorithm 4 satisfy
∥∥∥d̂Dh − dDh ∥∥∥

1
≤ εmle and

∥∥∥d̂D,†h − dD,†h

∥∥∥
1
≤ εmle, where

εmle :=

√
2 log(2H|F|/δ)

n
.

E Offline Density Estimation

The algorithm for offline density estimation is displayed in Alg. 5, and is directly copied from Algo-
rithm 1 of [HCJ23], but with two minor modifications. The first is that the densities are clipped
using a function σ, that can take clipping as a special case. The second is that it outputs the
learned weights instead of the learned densities. The weight function class completeness assump-
tion is shown Asm. E.1, and is satisfied in low-rank MDPs using linear-over-linear function classes
that have pseudo-dimension bounded by MDP rank. It can be seen as a 1-dimensional version of
Asm. 4.2 where ρ = 1 and in that sense strictly weaker.
Assumption E.1 (Weight function completeness). For any π ∈ ΠΘ and h ∈ [H], we have

ED,1h−1

(
σ(w·f ′,Cs

h−1f)
f

π̃h−1

πD
h−1

)
∈ Wh, ∀w ∈ Wh−1, ∀f, f ′ ∈ Fh−1,

Theorem E.1. Suppose σ satisfies Asm. 4.1 and W satisfies Asm. E.1. Let {d̂Dh }g and {d̂D,†h } be
such that ∀h ∈ [H], ∥∥∥d̂Dh − dDh ∥∥∥

1
≤ εmle and

∥∥∥d̂D,†h − dD,†h

∥∥∥
1
≤ εmle.

Then with probability at least 1− δ, the outputs {ŵπh} of Algorithm 5 satisfy for all h ∈ [H]

‖ŵπh − w̃πh‖1,dD,†
h−1
≤

 ∑
g<h−1

Cs
gC

a
g + 2

∑
g<h

Cs
g

 εmle +
√
2

∑
g<h

Cs
gC

a
g

 εwreg, (25)

where εwreg :=
√

c log(H|W|/δ)
nreg

for some absolute constant c.

Proof of Theorem E.1 We begin by stating the following decomposition on the error of ŵπh , which
is proved at the end of this section.
Lemma E.1. Suppose σ satisfies Assumption 4.1. Then for any h ∈ [H], the error between ŵπh and
the target w̃πh = d̃πh/d

D,†
h−1 can be recursively decomposed as

‖ŵπh − w̃πh‖1,dD,†
h−1
≤
∥∥ŵπh−1 − w̃πh−1

∥∥
1,dD,†

h−2

39

+ 2Cs
h−1

∥∥∥d̂Dh−1 − dDh−1

∥∥∥
1
+ Cs

h−2C
a
h−2

∥∥∥d̂D,†h−2 − d
D,†
h−2

∥∥∥
1

+
∥∥ŵπh −Eπ̄h−1

(
dDh−1 ω

π
h−1

)∥∥
2,dD,†

h−1

,

where ωπ :=
σ(d̂πh−1,C

s
h−1d̂

D
h−1)

d̂Dh−1

.

Applying Lem. E.2 with union bound over all h, we have∥∥ŵπh −Eπ̄h−1

(
dDh−1 ω

π
h−1

)∥∥2
2,dD,†

h−1

= E
[
LDreg

h−1

(
ŵπh , ω

π
h−1, π

)]
− E

[
LDreg

h−1

(
Eπ̄h−1

(
dDh−1 ω

π
h−1

)
, ωπh−1, π

)]
≤ 2

(
LDreg

h−1

(
ŵπh , ω

π
h−1, π

)
− LDreg

h−1

(
Eπ̄h−1

(
dDh−1 ω

π
h−1

)
, ωπh−1, π

))
+ 2

(
Cs
h−1C

a
h−1

)2
(εwreg)2,

Then unrolling Lemma E.1, for any h, we have for εwreg = c log(H|W|n/δ)
nreg

,

‖ŵπh − w̃πh‖1,dD,†
h−1
≤

 ∑
g<h−1

Cs
gC

a
g + 2

∑
g<h

Cs
g

 εmle +
√
2

∑
g<h

Cs
gC

a
g

 εwreg

Lastly, we state and prove the intermediate results below.
Lemma E.2 (Deviation bound for regression with squared loss from [HCJ23]). If {Wh} satisfies
Asm. E.1, then with probability ≥ 1 − δ, for any h ∈ [H], there exists a universal constant c such
that∣∣∣E [LDreg

h
(wh+1, wh, π)− LDreg

h
(Eπ̄wh, wh, π)

]
−
(
LDreg

h
(wh+1, wh, π)− LDreg

h
(Eπ̄wh, wh, π)

)∣∣∣
≤ 1

2
E
[
LDreg

h
(wh+1, wh, π)− LDreg

h
(Eπ̄hwh, wh, π)

]
+
c(Cs

hC
a
h)

2 log (H|W|/δ)
nreg

.

Proof of Lemma E.1. Decompose

‖ŵπh − w̃πh‖1,dD,†
h−1

≤

∥∥∥∥∥∥ŵπh −Eπ̄h−1

dDh−1

σ
(
d̂πh−1, C

s
h−1d̂

D
h−1

)
d̂Dh−1

∥∥∥∥∥∥
2,dD,†

h−1

+

∥∥∥∥∥∥w̃πh −Eπ̄h−1

dDh−1

σ
(
d̂πh−1, C

s
h−1d̂

D
h−1

)
d̂Dh−1

∥∥∥∥∥∥
1,dD,†

h−1

The first term is the statistical error of regression. The second term reflects the bias between the popu-
lation regression solution (involving plug-in estimates for the regression target) and our target weight
function. Since d̃πh = Ph−1

(
σ
(
d̃πh−1, C

s
h−1d

D
h−1

))
, then w̃πh = Eh−1

(
σ
(
d̃πh−1, C

s
h−1d

D
h−1

))
,

for the second term we have∥∥∥∥∥∥w̃πh −Eπ̄h−1

dDh−1

σ
(
d̂πh−1, C

s
h−1d̂

D
h−1

)
d̂Dh−1

∥∥∥∥∥∥
1,dD,†

h−1

=

∥∥∥∥∥∥Eh−1

(
σ
(
d̃πh−1, C

s
h−1d

D
h−1

))
−Eπ̄h−1

dDh−1

σ
(
d̂πh−1, C

s
h−1d̂

D
h−1

)
d̂Dh−1

∥∥∥∥∥∥
1,dD,†

h−1

=

∥∥∥∥∥∥Ph−1

(
σ
(
d̃πh−1, C

s
h−1d

D
h−1

))
−Pπ̄

h−1

dDh−1

σ
(
d̂πh−1, C

s
h−1d̂

D
h−1

)
d̂Dh−1

∥∥∥∥∥∥
1

≤

∥∥∥∥∥∥σ
(
d̃πh−1, C

s
h−1d

D
h−1

)
− dDh−1

σ
(
d̂πh−1, C

s
h−1d̂

D
h−1

)
d̂Dh−1

∥∥∥∥∥∥
1

40

≤ Cs
h−1

∥∥∥d̂Dh−1 − dDh−1

∥∥∥
1
+
∥∥∥σ (d̃πh−1, C

s
h−1d

D
h−1

)
− σ

(
d̂πh−1, C

s
h−1d̂

D
h−1

)∥∥∥
1

≤ 2Cs
h−1

∥∥∥d̂Dh−1 − dDh−1

∥∥∥
1
+
∥∥∥d̃πh−1 − d̂πh−1

∥∥∥
1

(Assumption 4.1)

Finally, since d̂πh−1 = ŵπh−1d̂
D,†
h−2,∥∥∥d̃πh−1 − d̂πh−1

∥∥∥
1
=
∥∥∥w̃πh−1d

D,†
h−2 − ŵ

π
h−1d̂

D,†
h−2

∥∥∥
1

≤ Cs
h−2C

a
h−2

∥∥∥dD,†h−2 − d̂
D,†
h−2

∥∥∥
1
+
∥∥w̃πh−1 − ŵπh−1

∥∥
1,dD,†

h−2

Combining the inequalities completes the proof.

F Probabilistic Tools

Definition F.1 (Pseudodimension). Suppose a function class F ⊆ RX , and xn1 = {xi}ni=1 ∈ Xn.
We say xn1 is pseudo-shattered by F if there exists v ∈ Rn such that for all y ∈ {−1,+1}n, there
exists f ∈ F such that sign(f(xn1 − c)) = y. The pseudo-dimension of F is defined as

dF = max{n ∈ N : ∃xn1 ∈ Xn s.t. xn1 is pseudo-shattered by F},

i.e., the cardinality of the largest set of points in X that F pseudo-shatters.
Lemma F.1 (Lemma 26 from [HCJ23]). For b ≥ 1, let H ⊆ (Z → [−b, b]) be a hypothesis class
and Zn = (z1, . . . , zn) ∈ Zn, where zi are iid samples drawn from a distribution supported on Z .
Then for any h ∈ H, we have

P

(∣∣∣∣∣E[h(z)]− 1

n

∑
i

h(zi)

∣∣∣∣∣ > ε

)
≤ 36N1

(
ε3

640b
,H, 40nb

2

ε2

)
exp

(
− nε2

128V[h(z)] + 512εb

)
Lemma F.2. Fix π. For any h ∈ [H], consider functions yh : S × A → [−hG, hG]p and ρh :

S × A → [0, Cs
hC

a
h] that depend only on the datasets Dmle

<h and DFORC
<h and Dgrad

<h . Let G = {Gh}
be function classes and with pseudo-dimension dG (Def. F.1). For any gh+1 ∈ Gh+1 and p ∈ [p],
define the loss function

Lπ,ph (gh+1; yh, ρh) =
1

n

∑
(s,a,s′)∈Dreg

h

ρh(s, a)
(
gph+1(s

′)− (∇ log π̃h(a|s) + yph(s, a))
)2
.

Then with probability at least 1− δ, for all gh+1 ∈ Gh+1 and p ∈ [p] and h ∈ [H], we have∣∣E[Lπ,ph (gh+1; yh, ρh)− Lπ,ph (g∗h+1; yh, ρh)]− L
π,p
h (gh+1; yh, ρh)− Lπ,ph (g∗h+1; yh, ρh)

∣∣
≤ 1

2
E[Lπ,ph (gh+1; yh, ρh)− Lπ,ph (g∗h+1; yh, ρh)] + (εregh+1)

2,

where g∗h+1 = ED,ρh (∇ log π̃h + yh) and for some absolute constant c,

εregh = c

√
dGCs

h−1C
a
h−1h

2G2 log(npH/δ)

n
. (26)

Proof. Fix Dmle
<h and DFORC

<h and Dgrad
<h . We first prove the stated bound conditioned on these

datasets, which means gπh and ρπh are fixed, and the randomness below comes from random draws of
Dgrad
h . Consider the following hypothesis class induced by Gh+1:

Z(ρh, gh+1, yh) =
{
ρh(s, a)

(
(gh+1(s

′)− yh(s, a))
2 −

(
g∗h+1(s

′)− yh(s, a)
)2)

: gh+1 ∈ Gh+1

}
.

and for any Z ∈ Z , we have |Z| ≤ 2Cs
hC

a
h

(
‖gh+1‖2∞ + ‖yh‖2∞

)
≤ 4Cs

hC
a
hh

2G2. We also have

E[Zp(ρ, gh+1, yh)] =
∥∥yph+1 − g

∗,p
h+1

∥∥2
2,fπ

h

. Further,

V [Zp(ρh, gh+1, yh)] ≤ E[Zp(ρh, gh+1, yh)
2]

41

= E
[
ρh(s, a)

2
((
gph+1(s

′)− yh(s, a)
)2 − (g∗,ph+1(s

′)− yh(s, a)
)2)2]

= E
[
ρh(s, a)

2
(
gph+1(s

′)− 2yh(s, a) + g∗,ph+1(s
′)
)2 (

gph+1(s
′)− g∗,ph+1(s

′)
)2]

≤ 16Cs
hC

a
hh

2G2E
[
ρh(s, a)

(
gph+1(s

′)− g∗,ph+1(s
′)
)2]

= 16Cs
hC

a
hh

2G2E[Zp(ρh, gh+1, yh)]

Next, we show that the uniform covering number of Z can be bounded by the uniform covering
number of G, since for any gh+1, g

′
h+1 ∈ Gh+1 we have∣∣Zp(ρh, gh+1, yh)− Zp(ρh, g′h+1, yh)
∣∣ = ρh(s, a)

∣∣(gh+1(s
′)− yh(s, a))2 − (g′h+1(s

′)− yh(s, a))2
∣∣

≤ 16Cs
hC

a
h(h+ 1)2G2|gh+1(s

′)− g′h+1(s
′)|

In other words, any γ/16Cs
h−1C

a
h−1h

2G2 covering of Gh is a covering of Zh. Then combining the
above with Lem. F.1, we have

P

(∣∣∣∣∣E[Zp(ρh−1, gh, yh−1)]−
1

n

∑
i

Zpi (ρh−1, gh, yh−1)

∣∣∣∣∣ > ε

)

≤ 36N1

(
ε3

10240Cs
hC

a
hh

2G2
,Z(Gh, ρh−1, yh−1),

640n(Cs
h−1C

a
h−1)

2h4G4

ε2

)
· exp

(
− nε2

2048Cs
h−1C

a
h−1h

2G2E[Zp(ρh−1, gh, yh−1, π)] + 2048εCs
h−1C

a
h−1h

2G2

)
≤ 36N1

(
ε3

163840(Cs
hC

a
h)

2h4G4
,Gh,

640n(Cs
h−1C

a
h−1)

2h4G4

ε2

)
· exp

(
− nε2

2048Cs
h−1C

a
h−1h

2G2E[Zp(ρh−1, gh, yh−1)] + 2048εCs
h−1C

a
h−1h

2G2

)
Define N := N1

(
ε3

163840(Cs
hC

a
h)

2h4G4 ,Gh,
640n(Cs

h−1C
a
h−1)

2h4G4

ε2

)
. Then setting the RHS equal to

δ′, this implies that

n =
2048Cs

h−1C
a
h−1h

2G2 (E[Zp(ρh−1, gh, yh−1)] + ε) log (36N/δ′)

ε2

and

ε ≤
√

2048Cs
h−1C

a
h−1h

2G2E[Zp(ρh−1, gh, yh−1)] log(36N/δ′)

n
+

2048Cs
h−1C

a
h−1h

2G2 log(36N/δ′)

n
.

Since n ≥ 2048Cs
h−1C

a
h−1h

2G2

ε , there exists an absolute constant c such that log(36N/δ′) ≤
cdG log(n/δ′). Then with probability at least 1− δ′,∣∣∣∣∣E[Zp(ρh−1, gh, yh−1)]−

1

n

∑
i

Zpi (ρh−1, gh, yh−1)

∣∣∣∣∣
≤
√

2048cdGh
Cs
h−1C

a
h−1h

2G2E[Zp(ρh−1, gh, yh−1)] log(n/δ′)

n
+

2048cdGC
s
h−1C

a
h−1h

2G2 log(n/δ′)

n

≤ 1

2
E[Zp(ρh−1, gh, yh−1)] +

3072cdGC
s
h−1C

a
h−1h

2G2 log(n/δ′)

n

Since the above bound holds for a fixed datasets, it also holds for the expectation over the datasets.
Applying the above bound for all p ∈ [p] and h ∈ [H] with δ′ = δ/Hp and taking the union bound,
then plugging in the definition of Zp, gives the result.

Lemma F.3. Fix h and denote the product class composed from G,W,F to be

Yh × Ph =

{
(y, ρ) : y = g � 1̃ (wf ′, Cs

hf) , ρ =
σ(wf ′,Cs

hf)
f , gh ∈ Gh, w ∈ Wh, f ∈ Fh+1, f

′ ∈ Fh
}
.

42

Fix π and p ∈ [p], and define the loss function

Lπ,ph (g; y, ρ) =
1

n

∑
(s,a,s′)∈Dh

ρ(s)
σ(π(a|s),Ca

hπ
D
h (a|s))

πD
h (a|s) (gp(s′)− (∇p log π̃(a|s) + yp(s)))

2
.

Then with probability at least 1 − δ, for all h ∈ [H], p ∈ [p] and g ∈ Gh+1, (y, ρ) ∈ Yh × Ph, we
have ∣∣E[Lπ,ph (g; y, ρ)− Lπ,ph (g∗h+1; y, ρ)]− L

π,p
h (g; y, ρ)− Lπ,ph (g∗h+1; y, ρ)

∣∣
≤ 1

2
E[Lπ,ph (g; y, ρ)− Lπ,ph (g∗h+1; y, ρ)] + (εregh+1)

2,

where g∗h+1 = ED,ρh (∇ log π̃h + yh) and εregh = O

(√
Cs

h−1C
a
h−1h

2G2 log(N∞(n−1,G)pH|W||F|/δ)
n

)
.

Proof of Lem. F.3. Use the same notation for Zp as in the proof of Lem. F.2. Using Bernstein’s
inequality with a union bound over allWh and Fh and the ℓ∞ covers of Gh,Gh+1, with probability
at least 1− δ we have∣∣∣∣∣E[Zp(ρh, gh+1, yh)]−

1

n

n∑
i=1

Zpi (ρh, gh+1, yh)

∣∣∣∣∣
≤
√

2V [Zp(ρh, yh+1, gh)] log(|W||F|N∞(ε,G)/δ)
n

+
4Cs

hC
a
hh

2G2 log(|W||F|N∞(ε,G)/δ)
3n

≤
√

32Cs
hC

a
hh

2G2E[Zp(ρh, yh+1, gh)] log(|W||F|N∞(ε,G)/δ)
n

+
4Cs

hC
a
hh

2G2 log(N∞(ε,G)|W||F|/δ)
3n

By accounting for the ℓ∞ covering error, we then have∣∣∣∣∣E[Zp(ρh, gh+1, yh)]−
1

n

n∑
i=1

Zpi (ρh, gh+1, yh)

∣∣∣∣∣
≤
√

32Cs
hC

a
hh

2G2E[Zp(ρh, gh+1, yh)] log(|W||F|N∞(ε,G)/δ)
n

+
4Cs

hC
a
hh

2G2 log(N∞(ε,G)|W||F|/δ)
3n

+ 16Cs
hC

a
hh

2G2ε

Using the AM-GM inequality with ε = O(1/Cs
hC

a
hh

2G2n) gives the result.

G Optimization Tools

Definition G.1 (Gradient mapping).

Gη(x, g) :=
1

η
(x− ProjX (x+ ηg)) (27)

Lemma G.1 (Stationary convergence of PGD). Suppose f : X → R is β-smooth over X , a
nonempty closed and convex set, and that we have access to a gradient oracle such that E[g(x)|x] =
∇f(x) and E[‖g(x)−∇f(x)‖2|x] ≤ ε2. Then if η = 1/β, we have

1

T

∑
t

E
[
‖Gη(x(t),∇f(x(t)))‖2

]
≤ 4β(f0 − f∗)

T
+ 6ε2

Proof. For any x, define x+ = ProjX (x− ηg(x)). Since x+ = prox·,IX (x− ηg(x)), where IX is
the indicator function for the set X , from Lem. G.2 we have〈

x− ηg(x)− x+, x− x+
〉
≤ 0.

43

Rearranging, this implies 〈
g(x), x+ − x

〉
+

1

η
‖x− x+‖2 ≤ 0.

Next, since f is β-smooth, for any x and x+ we have

f(x+) ≤ f(x) +
〈
∇f(x), x+ − x

〉
+
β

2

∥∥x− x+∥∥2
= f(x) +

〈
g(x), x+ − x

〉
+
〈
∇f(x)− g(x), x+ − x

〉
+
β

2

∥∥x− x+∥∥2
≤ f(x) + η 〈g(x)−∇f(x), Gη(x, g(x))〉+

(
η2β

2
− η
)
‖Gη(x, g(x))‖2

= f(x) + η 〈g(x)−∇f(x), Gη(x,∇f(x))〉+ η 〈g(x)−∇f(x), Gη(x, g(x))−Gη(x,∇f(x))〉

+

(
η2β

2
− η
)
‖Gη(x, g(x))‖2

where we substitute the definition of Gη(x, g(x)) = 1
η (x−x

+) in the the second to last line. Notice
that

〈g(x)−∇f(x), Gη(x, g(x))−Gη(x,∇f(x))〉 ≤ ‖g(x)−∇f(x)‖‖Gη(x, g(x))−Gη(x,∇f(x))‖
≤ ‖g(x)−∇f(x)‖2

from the non-expansion of the projection operator. Then we have

f(x+) ≤ f(x) + η 〈g(x)−∇f(x), Gη(x,∇f(x))〉+ η‖g(x)−∇f(x)‖2 +
(
η2β

2
− η
)
‖Gη(x, g(x))‖2

Next, we take the expectation of both sides conditioned on x.

E[f(x+)|x] ≤ f(x) + η 〈E[g(x)|x]−∇f(x), Gη(x,∇f(x))〉

+ ηE[‖g(x)−∇f(x)‖2|x] +
(
η2β

2
− η
)
E[‖Gη(x, g(x))‖2|x]

≤ f(x) + ηε2 +

(
η2β

2
− η
)
E[‖Gη(x, g(x))‖2|x]

Then unrolling the recursion through iterations and substituting η = 1/β, we have

1

T

∑
t

E[‖Gη(x(t), g(x(t)))‖2] ≤ 2β(f(x(0))− f(x(T)))

T
+ 2ε2 ≤ 2β(f(x(0))− f(x∗))

T
+ 2ε2

if f is nonnegative. Lastly,

1

T

∑
t

E[‖Gη(x(t),∇f(x(t)))‖2] = 1

T

∑
t

E[‖Gη(x(t), g(x(t))−Gη(x(t), g(x(t)) +Gη(x(t),∇f(x(t)))‖2]

≤ 2

T

∑
t

E[‖Gη(x(t), g(x(t))‖2 + 2

T

∑
t

E[‖Gη(x(t), g(x(t))−Gη(x(t),∇f(x(t)))‖2]

≤ 4β(f(x(0))− f(x∗))
T

+ 4ε2 +
2

T

∑
t

E[‖g(x(t))−∇f(x(t))‖2]

≤ 4β(f(x(0))− f(x∗))
T

+ 6ε2

Lemma G.2 (Theorem 6.39 from [Bec17]). Let g : E → (∞,∞] be a proper closed and convex
function. Then for any x, y ∈ E , the following three claims are equivalent:

1. y = proxg(x)

44

2. x− y ∈ ∂g(u)

3. 〈x− y, u− y〉 ≤ g(u)− g(y) for any u ∈ E
Lemma G.3. Suppose f is M -gradient dominated and β-smooth, and

1

T

∑
t

∥∥∥Gη(x(t),∇f(x(t)))∥∥∥2 ≤ ε2,
where Gη(x, g) is the gradient mapping defined in Def. G.1. Also, suppose ‖x − x′‖2 ≤ r for all
x, x′ ∈ X . Then

min
t∈[T]

{
f(x∗)− f(x(t))

}
≤ rM(ηβ + 1)ε. (28)

Proof of Lemma G.3. If f is gradient dominated, for any t ∈ [T] we have

f(x∗)− f(x(t)) ≤M max
x′∈X

〈
∇f(x(t)), x′ − x(t)

〉
.

Applying Lemma G.4 with −f , we have

∇f(x(t)) ∈ NX (x(t)) + B
(
(ηβ + 1)‖Gη(x(t−1),∇f(x(t−1)))‖

)
From the definition of the normal cone, we have

〈
v, x′ − x(t)

〉
≤ 0 for any v ∈ NX (x(t)) and

x′ ∈ X . Then for any x′ ∈ X ,〈
∇f(x(t)), x′ − x(t)

〉
≤ (ηβ + 1) ‖Gη(x(t−1),∇f(x(t−1)))‖ ‖x− x(t)‖ ≤ (ηβ + 1)r ‖Gη(x(t−1),∇f(x(t−1)))‖

Combining the above inequalities,

min
t∈[T]

{
f(x∗)− f(x(t))

}
≤ (ηβ + 1)Mr min

t∈[T]
‖Gη(x(t−1),∇f(x(t−1)))‖ ≤ (ηβ + 1)Mrε.

Lemma G.4 (Lemma 3 from [GL16]). Let f : Rd → (−∞,∞) be be β-smooth over a convex set
X For any t ∈ [T], consider x(t+1) = ProjX

(
x(t) − η∇f(x(t))

)
. Then

−∇f(x(t+1)) ∈ NX (x(t+1)) + B
(
(ηβ + 1)‖Gη(x(t),−∇f(x(t))‖

)
,

where NX is the normal cone of X and B(r) = {x ∈ Rd : ‖x‖2 ≤ r}.

Proof of Lemma G.4. Projected gradient descent can be equivalently written as [Bec17]

ProjX

(
x(t) − η∇f(x(t))

)
= argmin

x∈Rd

[
f(x(t)) +

〈
∇f(x(t)), x− x(t)

〉
+

1

2η
‖x− x(t)‖22 + IX (x)

]
,

where IX (x) = 0 if x ∈ X , and +∞ otherwise, is the indicator function for X . Then by the
subgradient optimality condition, we have

0 ∈ ∇f(x(t)) + 1
η (x

(t+1) − x(t)) +NX (x(t+1))

With some rearrangement, this implies that

−∇f(x(t+1)) ∈ NX (x(t+1)) +∇f(x(t))−∇f(x(t+1)) + 1
η (x

(t+1) − x(t))

which implies the lemma statement since

‖∇f(x(t))−∇f(x(t+1)) + 1
η (x

(t+1) − x(t))‖ ≤ β‖x(t) − x(t+1)‖+ 1
η‖x

(t) − x(t+1)‖

≤ (ηβ + 1)‖Gη(x(t),∇f(x(t)))‖

using the β-smoothness of f in the first inequality, and Definition G.1 in the second.

45

Lemma G.5. Suppose f is β-smooth and that at each iteration t, we have g(t) from a gradient
oracle such that E

[
g(t)|x(t)

]
= ∇f(x(t)) and E

[
‖∇f(x(t))− g(t)‖2|x(t)

]
≤ ε2 for all t ∈ [T].

Then gradient ascent using {g(t)} satisfies

1

T

T∑
t=1

E
[∥∥∥∇f(x(t))∥∥∥2] ≤ 2β(f0 − f∗)

T
+ ε2. (29)

Proof of Lem. G.5. From the β-smoothness of f ,

f(x(t+1)) ≤ f(x(t)) +
〈
∇f(x(t)), x(t+1) − x(t)

〉
+
β

2
‖x(t+1) − x(t)‖2

= f(x(t))− η
〈
∇f(x(t)), g(t)

〉
+
βη2

2
‖g(t)‖2

= f(x(t))− η
〈
∇f(x(t)),∇f(x(t))−∇f(x(t)) + g(t)

〉
+
βη2

2
‖∇f(x(t))−∇f(x(t)) + g(t)‖2

= f(x(t)) +

(
βη2

2
− η
)
‖∇f(x(t))‖2 +

(
βη2 − η

) 〈
∇f(x(t)), g(t) −∇f(x(t))

〉
+
βη2

2
‖∇f(x(t))− g(t)‖2

Taking the expectations of both sides conditioned on x(t) (prior histories), we have

E[f(x(t+1))|x(t)] ≤ f(x(t)) +
(
βη2

2
− η
)
‖∇f(x(t))‖2 + βη2ε2

2

Substituting η = 1/β, unrolling through iterations, and using the law of total expectation gives the
result.

46

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The introduction contains a list of our contributions and matches our theoret-
ical results. The abstract summarizes them.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We provide justifications for all of our assumptions, and discuss the ramifica-
tions of our theorems.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

47

Answer: [Yes]

Justification: We fully disclose all assumptions and discuss their strengths and weaknesses.
While theorems/lemmas in the main text are not cross-referenced with pointers to their
proofs in the appendix, the appendix is organized with a table of contents according to
section, and proofs are clearly labeled with the theorem or lemma they pertain to. We did
not have space to provide proof sketches in the main text, but, where possible, we attempted
to provide a brief intuition.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We do not have experimental results other than the graph in Figure 1, which
is a plot of 1-D functions that are fully disclosed in the caption and referenced proposition.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

48

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: We do not believe that Figure 1 constitutes as an experiment that requires
code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/

public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not

be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: Per our answer to the previous question, we do not have experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [NA]

Justification: Per the answer to the previous question, we do not have experiments with
statistical error.

Guidelines:

49

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: Per the previous answer, we do not have experiments requiring computational
resources.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We do not believe we deviate from the Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

50

https://neurips.cc/public/EthicsGuidelines

Justification: Our paper is purely theoretical, and we do not believe there is a societal
impact to be discussed. We do not see a direct path to negative applications.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not use data or train models.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: We do not have code, data, or models.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.

51

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]

Justification: There are no new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: We do not use human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: We do not use human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

52

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

53

	Introduction
	Preliminaries
	Online Occupancy-based PG
	Occupancy-based Policy Gradient
	Online policy gradient algorithm and analyses
	Optimization of general functionals

	Offline Occupancy-based PG
	Offline density-based policy gradient
	Smooth clipping
	Offline smooth-clipped gradient estimation

	Conclusion
	Related work
	Additional results and proofs for sec:online-pg
	Proofs for sec:online-gradient
	Proofs for sec:online-analysis : Estimation and local convergence
	Proofs for sec:online-analysis: Global convergence
	Examples of gradient function class G
	Policy optimization of general functionals

	Additional results and proofs for sec:offline-pg
	Proofs for sec:offline-clip
	Proofs for sec:offline-smoothclip
	Proofs for sec:offline-analysis
	Local convergence of Off-OccuPG
	Global convergence of Off-OccuPG
	Proofs for app:offline-optimality

	Maximum Likelihood Estimation
	Offline Density Estimation
	Probabilistic Tools
	Optimization Tools

