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Abstract001

Large Language Models (LLMs) excel in many002
areas but continue to face challenges with com-003
plex reasoning tasks, such as Multi-Hop Ques-004
tion Answering (MHQA). MHQA requires in-005
tegrating evidence from diverse sources while006
managing intricate logical dependencies, of-007
ten leads to errors in reasoning. Retrieval-008
Augmented Generation (RAG), widely em-009
ployed in MHQA tasks, faces challenges in010
effectively filtering noisy data and retrieving011
all necessary evidence, thereby limiting its ef-012
fectiveness in addressing MHQA challenges.013
To address these challenges, we propose RISE:014
Reasoning Enhancement via Iterative Self-015
Exploration, a novel framework designed to016
enhance models’ reasoning capability through017
iterative self-exploration. Specifically, RISE018
involves three key steps in addressing MHQA019
tasks: question decomposition, retrieve-then-020
read, and self-critique. By leveraging con-021
tinuous self-exploration, RISE identifies accu-022
rate reasoning paths, iteratively improving the023
model’s capability to integrate evidence, main-024
tain logical consistency, and enhance perfor-025
mance in MHQA tasks. Extensive experiments026
on multiple MHQA benchmarks demonstrate027
that RISE significantly improves reasoning ac-028
curacy and task performance.029

1 Introduction030

Large language models (LLMs) demonstrate out-031

standing capabilities in natural language under-032

standing and generation (Brown et al., 2020; Zhang033

et al., 2022; Zeng et al., 2022; Chowdhery et al.,034

2023; Touvron et al., 2023). However, LLMs still035

face challenges with complex Multi-Hop Question036

Answering (MHQA) tasks. MHQA requires mod-037

els to integrate evidence from multiple sources038

and manage intricate logical relationships. This039

involves both retrieving and combining various040

pieces of evidence and constructing coherent rea-041

soning chains. Prompt-based methods, such as042

Sub Question: 
When was The Book Of Eli released?

Sub Answer: 2015Sub Answer: 1990

Final Answer (ERROR): 
According to the evidences provided, The 
Book of Eli was released in 2009, while 
Fire Birds was released on Blu-ray in 
2015. Therefore, Fire Birds was released 
more recently than The Book of Eli.

Final Answer (CORRECT): 
According to the evidences provided, The
Book of Eli was released in 2010, while

Fire Birds was released in 1990. Therefor
e, The Book of Eli was released more rec
ently than Fire Birds.

Sub Answer: 2009Sub Answer: 2010
… …

Question:Which film was released more recently, The Book Of Eli or Fire Birds?

Reference 1: Fire Birds released on Blu-ray this week on Kino Lorber’s Studio Classics 
line. (A previous edition, now out-of-print, was released by Mill Creek in 2015).
Reference 2: … Fire Birds Released on May 25, 1990. Directed by David Green. … 
Filmed on location in Texas and Arizona. Released on video in 1990.
…
Reference N: …

Sub Question:
What is the production year of 
The Book Of Eli ?

Reference 1: ... 
Reference 2: …Principal photography 
began in February 2009 and took place 
in New Mexico. …
…
Reference N: …

Reference 1: ... The Book of Eli is a 2010
American post-apocalyptic, dystopia, 
neo ...
Reference 2: …
…
Reference N: …

Sub Question: When was Fire Birds released?

Decomposition

Decomposition

Generation Generation

Retrieve

RetrieveRetrieve

Decomposition

Generation Generation

Figure 1: The upper part of the figure (blue) illustrates
an Evidence Aggregation Error, where the Blu-ray re-
lease year of Fire Birds (2015) is mistaken for its theatri-
cal release year. The lower part (green and red) shows
a Reasoning Decomposition Error. The incorrect path
formulates the sub-question as the production year of
The Book of Eli (2009) instead of its release year (2010).

Chain-of-Thought (CoT) (Wei et al., 2022b; Wang 043

et al., 2023a; Yu et al., 2023), are employed to 044

address MHQA by split complex problems into 045

smaller, thereby harnessing the reasoning poten- 046

tial of LLMs. However, these methods often lack 047

external knowledge, resulting in key evidence be- 048

ing overlooked and generate hallucinations (Rawte 049

et al., 2023; Ji et al., 2023; Ye et al., 2023). 050

Retrieval-Augmented Generation (RAG) meth- 051

ods (Guu et al., 2020; Lewis et al., 2020; Izac- 052

ard et al., 2022; Nakano et al., 2021; Asai et al., 053

2023; Ma et al., 2023; Yu et al., 2024; Shi et al., 054

2024a) have been proposed to address the afore- 055
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mentioned challenges. By incorporating external056

knowledge, RAG effectively mitigates hallucina-057

tion phenomena and achieves significant results in058

MHQA tasks through multiple retrievals. However,059

RAG is constrained by the performance of the re-060

trievers, inevitably introducing noise. Additionally,061

the multi-round retrieval process may lead to error062

propagation, resulting in two main types of errors:063

Evidence Aggregation Errors and Reasoning De-064

composition Errors. As illustrated in Figure 1, Ev-065

idence Aggregation Errors occur when the model066

fails to accurately integrate evidence from multiple067

evidences, leading to hallucinations. Reasoning068

Decomposition Errors arise when problem decom-069

position phase generates sub-questions that do not070

align with original question’s intent. These issues071

are particularly pronounced in smaller models with072

weaker reasoning capabilities.073

Distillation and fine-tuning (Uesato et al., 2022;074

Luo et al., 2023; Shridhar et al., 2023) effectively075

enhance the reasoning capabilities of LLMs by076

leveraging large-scale models or high-quality, man-077

ually annotated data to improve performance. How-078

ever, biases brought by human subjective anno-079

tations may undermine the performance of fine-080

tuning (Casper et al., 2023; Lightman et al., 2023),081

and these methods are costly, requiring substan-082

tial human or computational resources. Mean-083

while, self-iteration methods (Yuan et al., 2024;084

Wang et al., 2024; Madaan et al., 2024) demon-085

strate tremendous potential in complex reasoning086

tasks. Unlike approaches that depend on large-087

scale models and manual annotations, self-iteration088

methods enable models to generate and learn from089

their own data, achieving outstanding results in090

complex tasks such as code generation and intel-091

ligent agents (Jiang et al., 2023; Ni et al., 2024;092

Qiao et al., 2024). Nevertheless, research on com-093

bination self-iteration methods with RAG remains094

limited. The integration of these two approaches095

has the potential to improve performance in com-096

plex reasoning tasks and leads to cost reduction.097

In this paper, we introduce an innovative frame-098

work, RISE (Reasoning Enhancement via Iterative099

Self-Exploration), which combines the paradigms100

of RAG and self-iteration to address key chal-101

lenges in MHQA tasks. Specifically, RISE de-102

fines three core actions: question decomposition,103

retrieve-then-read, and self-critique. By repeatedly104

executing these actions, the model autonomously105

explores accurate reasoning paths for problems.106

During this process, RISE accumulates experience107

datasets for the three actions and updates the model 108

based on this experience. Through multiple iter- 109

ations, RISE significantly enhances the model’s 110

reasoning capabilities in MHQA tasks. Experi- 111

mental results demonstrate that RISE outperforms 112

baseline methods on several MHQA benchmark 113

datasets, strongly validating its effectiveness in 114

solving MHQA tasks while offering lower usage 115

costs. Our main contributions are as follows: 116

• We propose RISE, which combines RAG and 117

self-iteration to address two key challenges in 118

MHQA tasks: Evidence Aggregation Errors 119

and Reasoning Decomposition Errors. 120

• We design self-exploration mechanism, con- 121

verts MHQA in RAG into multi-objective op- 122

timization problem, thus improving model’s 123

reasoning capability and reducing costs. 124

• We integrate self-iteration paradigm with 125

RAG, bridging gap in applying self-iteration 126

strategies within MHQA RAG framework. 127

2 Methods 128

2.1 Overview 129

In this section, we provide a detailed and com- 130

prehensive description of RISE. Traditional RAG 131

frameworks typically rely on manual interventions 132

or guidance from more advanced models to en- 133

hance model capabilities. In contrast, the RISE 134

framework aims to fully exploit the model’s intrin- 135

sic potential, enabling iterative self-exploration to 136

achieve continuous capability improvement. 137

As illustrated in Figure 2, RISE begins with a 138

dataset Qi containing multi-hop questions as input. 139

The model M i performs self-exploration for each 140

question q. This process is driven by the model’s in- 141

herent capabilities and involves iterative execution 142

of three core operations: question decomposition, 143

retrieve-then-read, and self-critique. Through these 144

operations, the model progressively explores an- 145

swers to the given questions. Each result generated 146

during this process is stored as historical experience 147

D. The detailed description of the self-exploration 148

mechanism is provided in Section 2.2. 149

Upon completing the exploration of all ques- 150

tions, the accumulated independent yet interrelated 151

experiences are used to synchronously optimize 152

the three core capabilities of M i, resulting in an 153

enhanced model M i+1. Subsequently, M i+1 per- 154

forms question expansion based on seed question, 155
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Figure 2: Overview of the RISE Framework. a) Self-Exploration: Model M i decomposes complex questions
q0 into simpler sub-questions, generates sub-answers using retrieve-then-read, and evaluates the validity of each
sub-question and sub-answer pair, culminating in a final answer a0. Interactions are stored as historical data D. b)
Iterative Optimization: RISE optimizes M i with D, create an enhanced model M i+1, which generate new questions
Qi+1 for the next self-exploration cycle, iteratively improves model performance.

generating a new dataset Qi+1, which serves as156

input to initiate a new round of self-exploration.157

2.2 Self-Exploration Mechanism158

The self-exploration mechanism constitutes the159

core of our framework, enabling the model to ad-160

dress complex problems through iterative reason-161

ing. This mechanism encompasses three fundamen-162

tal tasks: question decomposition, retrieve-then-163

read, and self-critique, which collectively form a164

structured pathway for exploration, as illustrated in165

Algorithm 1. The related prompts can be found in166

the Appendix A.1.1. By facilitating a fine-grained167

exploration process, the self-exploration mecha-168

nism systematically enhances the model’s capabil-169

ity to handle complex problem-solving tasks.170

Question Decomposition. Prior works(Press et al.,171

2023a; Li et al., 2024) have shown that models172

can iteratively generate simple sub-questions to173

solve complex questions. In this task, model in-174

crementally decomposes the initial complex ques-175

tion into finer-grained sub-questions. Specifi-176

cally, at the t-th exploration node, the model uti-177

lizes previously explored sub-questions and an-178

swers as historical information, denoted as H =179

{(subq1, suba1), · · · , (subqt−1, subat−1)}. The180

original question q0 is combined with H and in-181

put into model M to generate next sub-question. If 182

model determines that historical information is suf- 183

ficient to answer the original question, it generates 184

the final answer, marking the end of the exploration. 185

Formally, this process is represented as Formula 1: 186

subqt = Fd(M,H, q0) (1) 187

a0 = M(q0,H), if H is sufficient. (2) 188

Additionally, all decomposition steps, includ- 189

ing the original question and generated sub- 190

questions, are recorded to form the dataset Dd = 191{
{q0,H, subq}np

i=1

}Nq . By leveraging this fine- 192

grained and structured dataset, the model learns 193

the logical dependencies and relationships between 194

questions and sub-questions, thereby improving its 195

ability to decompose complex problems. 196

Retrieve-then-Read. This task adopts a standard 197

RAG paradigm to provide evidence-based answers 198

for generated sub-questions. At t-th exploration 199

node, we utilize a retriever to obtain relevant frag- 200

ments rt based on sub-question. M then generates 201

the corresponding answer with retrieved evidence: 202

subat = Fg(M, subqit, rt) (3) 203
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Each sub-question and its answer form an ex-204

ploration node (subqi, subai), which is added205

to the historical information Ht+1 = Ht ∪206

{(subqi, subai)}. All exploration nodes are207

recorded to construct the dataset: Dr =208 {
{subq, r, suba}np

i=1

}Nq . Training on this dataset209

enables the model to effectively integrate evidence210

into the reasoning process, improving the accuracy211

of generated answers and the reliability of the ex-212

ploration process.213

Self-Critique. In this task, the model’s critique ca-214

pability is incorporated into the exploration process,215

where it critiques each exploration node through a216

binary assessment. Specifically, after completing217

the question decomposition and retrieve-then-read218

tasks at the t-th exploration node, the model M219

critiques the relevance and utility of the node for220

solving the original question and outputs a binary221

decision. If the node is critiqued as True, it is re-222

tained, and the exploration proceeds to the next223

step. If critiqued as False, the node is temporar-224

ily stored, and the process reverts to the preceding225

valid node to generate a new node. Formally, this226

process is represented as Formula 4:227

σt = Fc(M, subqt, subat), σt ∈ {0, 1} (4)228

By recording these critiques, the dataset Dc229

is constructed: Dc =
{
{⟨subq, suba⟩, σ}np

i=1

}Nq .230

This dataset is designed to enhance the model’s self-231

critique capabilities, ensuring logical consistency232

and relevance within the exploration path.233

2.3 Iterative Optimization234

Multi-Objective Optimization. In Section 2.2, the235

three datasets, Dd, Dr, and Dc, are interconnected236

and mutually influential. To reflect this interde-237

pendence in the model’s capabilities, we employ a238

multi-objective optimization approach to train our239

model. The multi-objective optimization approach240

integrates the objectives of different training tasks241

into a unified objective. We posit that stronger de-242

composition capabilities can enable the model to243

generate more precise questions, thereby improv-244

ing the accuracy of the generation task. Addition-245

ally, enhanced critique capabilities can assist the246

model in decomposing more relevant sub-questions.247

To achieve this, we defined three loss functions cor-248

responding to the three tasks and integrated them249

into a unified objective. The overall loss function250

is formulated as Formula 5:251

Algorithm 1 Self-Exploration Mechanism
Require: Model M , Retriever R
Initialize: History H = null

1: Input: Original question q0
2: while Additional information H is needed to

answer q0 do
3: M generates a sub-question subq based on

the current H
4: R retrieves relevant references r from ex-

ternal knowledge using subq
5: M generates a sub-answer suba for subq

using references r
6: M critiques the pair (subq , suba) to pro-

duce a confidence score σ
7: if σ == 1 then
8: Add (subq , suba) to H
9: end if

10: end while
11: M generates the final answer a0 based on the

accumulated H
12: Output: Final answer a0 , History H

L = αLd + βLr + γLc (5) 252

where α, β, and γ are the weights for the three 253

tasks. Through experimentation, we observed that 254

different datasets exhibit varying levels of depen- 255

dency on the three capabilities. By adjusting the 256

loss weights, the model’s reliance on each capabil- 257

ity can be fine-tuned accordingly. 258

Question Expansion and Iteration. After com- 259

pleting the multi-objective optimization, we use 260

data from the previous questions as seed data for 261

M i+1 to perform question expansion, enabling the 262

acquisition of more training data for the next iter- 263

ation. The question expansion method is inspired 264

by (Wang et al., 2023c), which employs multiple 265

rounds of in-context learning to enhance the diver- 266

sity of the training dataset. 267

To prevent the model from experiencing catas- 268

trophic forgetting, we record the decomposition 269

task datasets Dd after each iteration. During subse- 270

quent iterations, these datasets are incorporated as 271

review data Dreview to reinforce the model’s rea- 272

soning ability for complex problems. In summary, 273

the formula for each iteration is Formula 6: 274

M i+1 = Fupdate

(
M i,Di

d,Di
r ,Di

c,Dreview
)

(6) 275
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3 Experiments Setup276

Datasets: For the main experiments, we use three277

QA datasets: 2WikiMultiHopQA (2WIKI) (Ho278

et al., 2020), HotpotQA (Hotpot) (Yang et al.,279

2018), and MuSiQue (MSQ) (Trivedi et al., 2022),280

which provide diverse reasoning challenges to eval-281

uate the robustness of our framework. Addition-282

ally, for the analysis experiments, we include Nat-283

ural Questions (NQ) (Kwiatkowski et al., 2019),284

Web Questions (WebQ) (Berant et al., 2013) and285

TriviaQA (Joshi et al., 2017) to assess the model’s286

performance on open-domain Question Answering287

tasks, further extending the evaluation scope.288

Models and Methods: In our experiments, we289

use LLaMA-3.1-8B (Dubey et al., 2024) as the290

base model for our method in main experiments.291

Similarly, most of the reproduced methods are292

also implemented using LLaMA-3.1-8B. Addi-293

tionally, based on the characteristics of MHQA294

tasks, we select and reproduce a variety of methods,295

categorized into non-retrieval-based methods and296

retrieval-based methods. Non-retrieval-based meth-297

ods include Naive LLM (LLaMA-3.1-8B, GPT-4-298

turbo, GPT-3.5-turbo), CoT (Wei et al., 2022b),299

CoT-SC (Wang et al., 2023a) and GenRead (Yu300

et al., 2023), while the retrieval-based methods con-301

sist of Naive RAG, Self-Ask (Press et al., 2023b),302

WebGLM (Liu et al., 2023), Self-RAG (Asai et al.,303

2023), RRR (Ma et al., 2023), and GenGround (Shi304

et al., 2024a). In the analysis experiments, we em-305

ploy GPT-4o1 as the evaluation model, combining306

subjective analysis with specific metrics to compre-307

hensively assess model performance.308

Retrieval: We adopt a two-stage retrieval frame-309

work (Liu et al., 2023), consisting of coarse-grained310

web search (via Chrome) followed by fine-grained311

LLM-enhanced retrieval. We consistently use the312

same retrieval method to reproduce results for other313

approaches that incorporate retrievers.314

Evaluation Metrics: We assess performance using315

Accuracy (Acc), F1 score (F1), and Exact Match316

(EM) to evaluate QA quality. Additionally, we317

evaluate the quality of the reasoning chains from318

the perspectives of chain length and four subjective319

dimensions: conciseness, rationality, sequencing,320

and goal orientation.321

We provide comprehensive experimental details322

in Appendix A.2, including implementation details,323

datasets, and other relevant information.324

1We use GPT models accessed via the OpenAI API: https:
//openai.com/api/.
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Figure 3: Figure illustrates the changes in model ac-
curacy (a) and reasoning length (b) across multiple
datasets after three iterations. Accuracy consistently
improves across all datasets, while reasoning length,
despite some fluctuations, shows an overall decreasing
trend. Notably, the average reasoning length remains
below 3, with accuracy continuing to improve, demon-
strating the effectiveness of the RISE.

4 Results and Analysis 325

In this section, we evaluate RISE from three as- 326

pects. First, we validate effectiveness of multiround 327

self-iterative and compare RISE with mainstream 328

MHQA methods. Second, we conduct an in-depth 329

analysis of the performance of question decomposi- 330

tion, retrieve-then-read, and self-critique using ob- 331

jective metrics and AI-based evaluations. Finally, 332

we conduct ablation studies to verify the impor- 333

tance of different tasks in enhancing performance. 334

4.1 Overall Performance 335

RISE Outperforms Other Methods: Table 1 336

presents the experimental results across three 337

MHQA datasets. We observe that retrieval enhance- 338

ment is crucial for MHQA tasks, without external 339

knowledge support, non-retrieval methods gener- 340

ally achieve lower accuracy compared to most RAG 341

approaches under the same model. RISE outper- 342

forms other methods on most datasets, even sur- 343

passing CoT-SC and RRR with GPT-3.5. Notably, 344

RISE achieves 45.97% accuracy on 2WIKI, demon- 345

5
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Method Model 2WIKI HotpotQA MuSiQue
Acc F1 EM Acc F1 EM Acc F1 EM

Without Retrieval
Naive LLM LLaMA-3.1-8B 32.26 7.13 0.00 26.94 5.28 0.28 7.30 2.01 0.00

GPT-3.5-turbo-0125 44.62 12.88 0.54 41.67 17.50 5.28 15.68 6.52 0.00
GPT-4-turbo-2024-0409 58.87 7.40 0.00 53.61 7.24 0.00 30.00 3.73 0.00

CoT (Wei et al., 2022b) LLaMA-3.1-8B 35.75 2.74 0.00 37.78 2.39 0.00 15.14 1.39 0.00
CoT-SC* (Wang et al., 2023a) GPT-3.5-turbo-0125 20.97 24.31 17.20 30.56 39.59 29.72 8.92 15.36 7.30
GenRead (Yu et al., 2023) LLaMA-3.1-8B 15.59 17.22 12.10 28.06 34.81 25.83 6.22 10.38 4.32

With Retrieval
Naive RAG LLaMA-3.1-8B 37.90 5.62 0.27 37.50 12.42 4.44 11.89 3.26 0.54
Self-Ask (Press et al., 2023b) LLaMA-3.1-8B 21.77 23.58 15.59 31.39 38.45 26.11 10.00 15.78 6.76
WebGLM (Liu et al., 2023) LLaMA-3.1-8B 38.17 9.37 0.00 38.05 7.78 0.00 10.27 3.04 0.00
Self-RAG* (Asai et al., 2023) LLaMA2-7B 31.99 18.55 7.80 32.22 23.93 9.72 8.65 6.79 0.81

LLaMA2-13B 29.03 19.15 9.14 31.11 21.47 6.94 9.19 7.16 1.08
RRR (Ma et al., 2023) LLaMA-3.1-8B 20.43 4.80 0.00 7.50 2.38 0.00 0.27 1.32 0.00

GPT-3.5-turbo-0125 28.23 13.70 3.23 29.72 16.76 2.22 8.65 6.08 0.27
GenGround (Shi et al., 2024a) LLaMA-3.1-8B 38.98 36.30 26.08 33.61 35.54 23.33 8.11 10.94 5.41
RISE (Ours) LLaMA-3.1-8B 45.97 41.15 31.18 38.06 40.47 28.06 13.78 15.46 7.30

Table 1: Comparison of RISE with other methods on the 2WikiMultiHopQA, HotpotQA, and MuSiQue, including
no-retrieval and retrieval-based approaches. Methods marked with asterisk (*) involve specific considerations:
CoT-SC uses GPT-3.5 due to LLaMA-3.1’s limitations in adhering to instructions, and Self-RAG employs publicly
released model weights because its dataset is unavailable. All other methods are reproduced with LLaMA-3.1-8B.

strating performance comparable to GPT-3.5-turbo.346

Furthermore, our method excels in F1 and EM met-347

rics, demonstrating both accuracy and efficiency.348

In summary, RISE performs exceptionally well in349

MHQA tasks.350

Steady Performance Improvement: Meanwhile,351

as shown in Figure 3 (a) Accuracy per Iteration, we352

illustrate how the model’s accuracy evolves over353

three iterations on multiple datasets. The results354

demonstrate a consistent upward trend in accuracy355

with each iteration, further validating the effective-356

ness of our proposed self-training method in im-357

proving the model’s overall performance.358

4.2 Analysis Experiments359

Question Decomposition Capability: To evaluate360

improvement in the model’s decomposition capa-361

bility for MHQA tasks, we analyze the changes in362

reasoning length. As shown in Figure 3 (b) Rea-363

soning Length per Iteration, accuracy steadily im-364

proves, while reasoning length initially increases365

and then decreases, ultimately showing downward366

trend. This trend reflects model’s decomposition367

ability progressively improves over iterations.368

To further analyze changes in decomposition369

ability, we conduct second set of experiments using370

GPT-4o as a judge to evaluate the model’s query371

decomposition across four dimensions (including372

conciseness, rationality, sequencing and goal orien-373

tation, see Appendix A.1.2 for more details.). As374

illustrated in Figure 5, we compare the performance375

of the model across iterations and observe newer 376

model consistently outperforms the previous itera- 377

tion. These findings demonstrate that self-training 378

not only improves reasoning paths but also signifi- 379

cantly enhances the rationality of decomposition. 380

Retrieve-then-Read Capability: In MHQA tasks, 381

models often struggle to integrate logical informa- 382

tion from extensive evidence, especially in filtering 383

irrelevant content. To evaluate the changes in the 384

model’s summarization capability over iterations, 385

we disable the decomposition functionality and in- 386

stead allow the model to perform single-round re- 387

trieval and direct question-answering. To ensure ro- 388

bustness in the experiments, we introduce relatively 389

simpler datasets such as NQ, WebQ, and TriviaQA 390

(Figure 5 (a) Simple Questions) while retaining the 391

more complex datasets from the main experiments 392

(Figure 5 (b) Complex Questions). The experimen- 393

tal results show that, as iterations progress, RISE 394

consistently improves its performance across six 395

datasets, including simple and complex tasks. This 396

demonstrates the significant advantage of RISE in 397

MHQA tasks and its effectiveness in conventional 398

QA tasks, further validating its generalizability. 399

Self-Critique Capability: To evaluate the changes 400

in the model’s self-critique capability, we designed 401

a third set of experiments. In this experiment, 402

both our model and GPT-4o assess the same set 403

of decomposition results, with GPT-4o serving as 404

a reference. By analyzing the consistency between 405

our model and GPT-4o evaluations, we measure 406
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0 20 40 60 80 100

Round 1 vs. Round 0

Round 2 vs. Round 1

Round 3 vs. Round 2

48.4% 20.3% 31.3%

49.8% 16.2% 34%

47.6% 23.0% 29.4%

Win Tie Loss

Figure 4: Evaluating the win rates between the current and previous iterations using GPT-4o to assess model’s
question decomposition capability. Results indicate that each new iteration consistently outperforms the previous
one in subjective effectiveness, demonstrating RISE’s continuously enhance the model’s decomposition capability.
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Figure 5: Changes in the model’s retrieve-then-read capability. (a) Results on simpler datasets (NQ, TriviaQA,
WebQ), (b) Results on more complex datasets (2Wiki, HotpotQA, MSQ), where accuracy shows consistent growth
with each iteration, even in challenging scenarios.

the improvement in the model’s self-critique ca-407

pability. As shown in Table 2, the consistency408

between our model and GPT-4o steadily increases409

with each iteration. This indicates that the iterative410

process in RISE effectively enhances the model’s411

self-criticism capability. (For more experiment de-412

tails see Appendix A.2.3.)413

4.3 Ablation Study414

To evaluate the impact of each synthesized training415

dataset on the model’s performance, we conduct an416

ablation study. As shown in Table 3, the experiment417

uses the same three MHQA datasets as before and418

the three training datasets generated in the round1,419

with accuracy as the primary evaluation metric.420

Removing the question decomposition dataset421

leads to accuracy drop of 3.5% on 2Wiki, highlight-422

ing its importance in enabling effective multi-hop423

reasoning. Excluding the retrieve-then-read dataset424

causes accuracy declines on HotpotQA (2.77%)425

and Musique (2.43%), highlighting the importance426

of this dataset in synthesizing evidence from di- 427

verse sources to mitigate the impact of noise. Fur- 428

thermore, the removal of the self-critique dataset 429

results in consistent accuracy reductions across 430

all three datasets, emphasizing its pivotal function 431

in refining reasoning paths processes. These re- 432

sults demonstrate the complementary and indis- 433

pensable contributions of the question decomposi- 434

tion, retrieve-then-read, and self-critique datasets 435

to the model’s overall performance. 436

5 Related Works 437

Multi-hop Question Answering: MHQA tasks ad- 438

dress questions that require integrating information 439

from multiple sources and performing multi-step 440

reasoning to produce a complete answer (Zhang 441

et al., 2024; Li and Du, 2023). Question decom- 442

position has been a pivotal approach for under- 443

standing and solving multi-hop questions, some 444

works (Wei et al., 2022a; Wang et al., 2023b; Zhou 445

7



Consistency with GPT-4o (%)
2WIKI HotpotQA MSQ

Round 1 74.30 64.70 60.00
Round 2 72.67 66.30 76.00
Round 3 79.67 77.33 79.33

Table 2: Consistency analysis with GPT-4o across three
rounds training on datasets (2WIKI, HotpotQA, and
MSQ). The results show progressive improvements in
consistency with GPT-4o, highlighting the model’s en-
hanced self-critique ability through iterative training.

et al., 2023; Shi et al., 2024b) leverage LLMs to446

divide complex questions into simpler single-hop447

sub-questions that are solved sequentially. Self-448

Ask (Press et al., 2023b) uses LLMs to generate449

and resolve follow-up sub-questions with an exter-450

nal search engine. However, the effectiveness of451

these approaches depends significantly on LLM’s452

inherent question decomposition capabilities, and453

is further constrained by hallucinations.454

Retrieval-Augmented Generation for MHQA:455

RAG (Guu et al., 2020; Lewis et al., 2020; Izac-456

ard et al., 2022; Nakano et al., 2021; Asai et al.,457

2023; Ma et al., 2023; Yu et al., 2024; Shi et al.,458

2024a) integrates retrieval with generation to solve459

knowledge-intensive tasks (Zhu et al., 2024; Feng460

et al., 2024). The original RAG framework excels461

at single-hop QA but faces significant challenges462

in handling multi-hop QA and complex reasoning463

tasks (Lewis et al., 2020; Xu et al., 2024).464

To address these challenges, various methods465

have been proposed. Chain of Thought (CoT) (Wei466

et al., 2022b) and Tree of Thought (ToT) (Yao467

et al., 2024) are integrated with RAG to enable468

multi-step reasoning and iterative retrieval (Press469

et al., 2023b; Yao et al., 2023; Zhou et al., 2023;470

Khattab et al., 2023), allowing the model to incor-471

porate a broader range of external knowledge and472

improve its reasoning capabilities. However, ex-473

isting retrieval-augmented systems are inevitably474

affected by the limitations of retrievers, often intro-475

ducing irrelevant or noisy information (Yin et al.,476

2023; Xu et al., 2024; Ma et al., 2023). Enhancing477

the model’s reasoning capabilities to filter noise and478

focus on critical evidence is essential for accurate479

summaries, which our method achieves through480

reasoning decomposition, improving both logical481

reasoning and QA performance.482

Self-Improvement in Large Language Models:483

Self-improvement refers to the process by which484

models generate and utilize their own output data485

2WIKI Hotpot MSQ
Acc Acc Acc

w/o Decomp 37.63 33.89 11.08
w/o R-t-R 40.59 33.06 9.46
w/o Critique 38.98 33.89 10.27
RISE 41.13 35.83 11.89

Table 3: Ablation study results on 2WIKI, HotpotQA,
and MSQ, showing the impact of removing Question
Decomposition (w/o Decomp), Retrieve-then-Read (w/o
R-t-R), and Self-Critique (w/o Critique) datasets.

to enhance performance (Zelikman et al., 2024; 486

Singh et al., 2024; Gülçehre et al., 2023). Exist- 487

ing approaches, such as self-training (Du et al., 488

2021) and self-play (Yuan et al., 2024; Chen et al., 489

2024), leverage pseudo-label generation and itera- 490

tive policy optimization to improve the utilization 491

of unlabeled data and enhance decision-making 492

capabilities. Self-Rewarding (Yuan et al., 2024) 493

employs the LLM-as-Judge paradigm to strengthen 494

reasoning abilities, while Self-Refine (Madaan 495

et al., 2024) iteratively optimizes generated out- 496

puts through self-feedback mechanisms. 497

In complex tasks like code generation and agent- 498

based learning, self-improvement proves effective. 499

Methods such as Self-Evolve (Jiang et al., 2023), 500

NExT (Ni et al., 2024), and AutoAct (Qiao et al., 501

2024) leverage self-feedback, self-guided track- 502

ing, and self-planning to enhance performance. 503

However, the application of self-iterative tech- 504

niques in RAG scenarios remains underexplored. 505

Our method addresses this gap by integrating self- 506

exploration into RAG to generate diverse training 507

data, enabling continuous model evolution and en- 508

hancing performance in complex tasks. 509

6 Conclusion 510

We propose RISE, a framework that addresses two 511

key errors in MHQA tasks: Evidence Aggrega- 512

tion and Reasoning Decomposition. Through self- 513

exploration, RISE continuously enhances reason- 514

ing capabilities. Additionally, RISE integrates self- 515

iterative paradigm with RAG framework, bridg- 516

ing the gap in applying self-iterative strategies to 517

MHQA scenarios without requiring manual inter- 518

vention or reliance on large models, thereby offer- 519

ing a cost-effective solution. Experimental results 520

on MHQA benchmarks demonstrate significant im- 521

provements in reasoning accuracy and task perfor- 522

mance, highlighting RISE’s robustness and adapt- 523

ability in tackling complex reasoning challenges. 524
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Limitation525

While RISE achieves strong performance in com-526

plex reasoning tasks, there remain opportunities527

for further enhancement. The current framework528

relies on external retrieval mechanisms without529

explicit optimization, which may limit the qual-530

ity of evidence for downstream reasoning. Future531

work could explore self-improvement across the532

entire pipeline—spanning question decomposition,533

retrieval, generation, and reflection—to achieve534

more seamless integration and efficiency.535
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A Appendix888

A.1 Prompts889

A.1.1 Self-Exploration Prompts890

We designed detailed prompts for the three tasks891

in the self-exploration phase: question decompo-892

sition 6, retrieve-then-read 7, and self-critique 8.893

The examples used in the decomposition prompt894

are inspired by self-ask (Press et al., 2023b).895

A.1.2 Self-Decomposition Evaluation Prompt896

In this paper, the evaluation of the question decom-897

position capability is conducted using GPT-4o with898

prompt as shown in Figure 9. The analysis involves899

assessing and scoring the decomposition results of900

different iterations across multiple dimensions, ulti-901

mately leading to a comparative analysis of the two902

models. The dimensions of the analysis include:903

• Conciseness: Whether the decomposition904

avoids redundancy while ensuring comprehen-905

siveness.906

• Rationality: Whether the decomposed sub-907

problems are closely related to the original908

problem.909

• Sequencing: Whether the decomposition of910

sub-problems follows a logical order and fa-911

cilitates the problem-solving process.912

• Goal Orientation: Whether the decompo-913

sition is clearly centered around addressing914

the main problem’s objective. Are the sub-915

problems closely aligned with the core goal916

of the main problem? Does it avoid redundant917

issues that deviate from the primary objective?918

A.2 Experiment detail919

A.2.1 Implementation Details920

We conduct all experiments on a server equipped921

with four NVIDIA A800 80G GPUs. For the ex-922

perimental setup, we use the following hyperpa-923

rameters: learning rate of 1× 10−4, batch size of924

64,and cut-off length of 8192. Furthermore, for the925

weighting parameters α, β, andγ in the overall loss926

function, values of 1 were uniformly adopted in927

this research.928

A.2.2 Datasets929

The cold-start dataset Q0 consists of 800 randomly930

sampled instances from the training sets of 2Wiki-931

MultiHopQA, HotpotQA, and MuSiQue, totaling932

Datasets Dd Dr Dc

Round1 3276 2501 3925
Round2 8309 6311 8074
Round3 4858 2106 2312

Table 4: Number of samples in datasets Dd, Dr, and Dc

for each training iteration round.

2WIKI HotpotQA MSQ
Round1 223 194 180
Round2 218 199 228
Round3 239 232 238

Total 300 300 300

Table 5: Number of instances in each round’s self-
critique capability evaluation that aligned with GPT-4o

2,400 cold-start samples. Table 4 provides detailed 933

information on the training datasets constructed 934

during each round of self-exploration.The evalua- 935

tion datasets comprise 372 examples from 2Wiki- 936

MultiHopQA, 360 examples from HotpotQA, and 937

370 examples from MuSiQue. 938

A.2.3 Self-Critique Capability Experiments 939

Details 940

To demonstrate the improvement in the self-critique 941

capability of the model across iterations, we sam- 942

pled 300 instances from the generated Dc at each 943

round and compared them with GPT-4o. The re- 944

sponses from GPT-4o were used as ground truth to 945

calculate the self-critique accuracy of our model. 946

In Table 5, we present the number of instances in 947

each round’s self-critique capability evaluation that 948

aligned with GPT-4o. 949
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Decomposition Prompt

Instruction: Please answer the following questions according to the given format. Strictly follow
each format specification, as this will ensure consistency and clarity in your response.

- Only add follow-up questions if additional details are needed to arrive at the final answer.
- For each follow-up question, use exactly this format: ’Follow up: question’
- Ensure each follow-up question is direct and structured to be easily searchable, focusing on key
information for efficient search engine retrieval.
- For each answer to a follow-up question, use exactly this format: ’Intermediate answer: answer’
- Do not repeat or alter any previously generated follow-up questions or intermediate answers.
- Conclude with the final answer using this exact format: ’So the final answer is: final answer’ if
no further questions are needed.

Use the examples below to understand the expected structure, and follow this format
without deviating from these instructions.

Question: Who lived longer, Muhammad Ali or Alan Turing?
Are follow up questions needed here: Yes.
Follow up: How old was Muhammad Ali when he died?
Intermediate answer: Muhammad Ali was 74 years old when he died.
Follow up: How old was Alan Turing when he died?
Intermediate answer: Alan Turing was 41 years old when he died.
So the final answer is: Muhammad Ali.

Question: When was the founder of craigslist born?
Are follow up questions needed here: Yes.
Follow up: Who was the founder of craigslist?
Intermediate answer: Craigslist was founded by Craig Newmark.
Follow up: When was Craig Newmark born?
Intermediate answer: Craig Newmark was born on December 6, 1952.
So the final answer is: December 6, 1952.
... ...
—
Now, **continue the response** using the following question and information provided below.
Only add follow-up questions if necessary to reach the final answer.
**Ensure all follow-up questions are optimized for search engine queries, making each question
concise, direct, and easily searchable. Avoid modifying or repeating any existing content.**
—

Question (ORIGINAL): {question}
Are follow up questions needed here: Yes.

Figure 6: Decomposition prompt template.
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Generation Prompt

#Question-Answering-in-Reference-Task#

Instruction:
- Use the references provided to answer the question as specifically and completely as possible.
- If the references do not directly answer the question, combine relevant information from multiple
references to create a well-supported answer.
- When references are Null or insufficient, use your own knowledge to provide a clear and relevant
answer.
- When a direct answer cannot be determined, list any information in the references that could be
relevant or provide partial insights related to the question. Avoid responses such as ’I don’t know’
or ’more information is needed.’
- Always prioritize specificity and relevance in your answer, providing helpful context or details
that approach a complete answer.

Reference [1]
Reference [2]
...

Question: {question}

Figure 7: Generation prompt template.
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Self-Critique Prompt

Main Question: {question}
Below is a list of previously generated subquestions and their intermediate answers, created as part
of a multi-step reasoning process to answer the main question.
Your task is to evaluate whether the information in the current subquestion is necessary and
contributes incrementally towards solving the main question.

Previously generated subquestions and answers:
{previous subquestions}

Current subquestion and answer candidate:
{subquestion and intermediate answer }

Instruction:
- Step 1: Check for Redundancy. Check if the current subquestion or answer repeats information
already provided in previous subquestions. If it does, return ’flag = False’ as this information is
redundant.
- Step 2: Assess Relevance. If the information is not a duplicate, analyze its relevance to the main
question. Determine whether it provides new, relevant information that helps move closer to
solving the main question, even if it only provides indirect context or background.
Note that information does not need to directly answer the main question to be considered relevant;
it can also support understanding or provide necessary context. Mark it as ’flag = True’.
- Step 3: Based on your analysis, provide a final judgment in the following format:

**Final Judgment**: [flag = True or flag = False]

Examples:

Main Question: “Who lived longer, Muhammad Ali or Alan Turing?”
• Follow up: “How old was Muhammad Ali when he died?” (Flag = True, relevant for lifespan
comparison.)
• Follow up: “How old was Alan Turing when he died?” (Flag = True, completes lifespan
comparison.)
• Redundant Example: “How old was Muhammad Ali when he passed?” (Flag = False, redundant
with earlier subquestion.)
Main Question: “Are both the directors of Jaws and Casino Royale from the same country?”
• Follow up: “Who directed Jaws?” (Flag = True, needed for director identification.)
• Follow up: “Where is Steven Spielberg from?” (Flag = True, relevant to nationality check.)
• Irrelevant Example: “What is Steven Spielberg’s favorite genre?” (Flag = False, not relevant to
nationality.)

Reminder: Use “flag = True” for any subquestion that provides useful information or
context toward solving the main question, even if indirectly. Set “flag = False” only if it is
redundant or entirely irrelevant.

Figure 8: Self-Critique prompt template.
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Self-Decomposition Evaluation Prompt

You are given two problem decomposition results for the same complex problem. Your task is to
compare these results from Conciseness, Rationality, Sequencing and Goal Orientation. Analyze
the two decomposition results using the criteria above. Clearly explain which approach is more
effective for solving the problem and why, while highlighting the strengths and weaknesses of
each approach in detail.

# Scoring Criteria:
- Score each dimension on a scale of 1-5, where:
- 1: Poor
- 2: Needs Improvement
- 3: Average
- 4: Good
- 5: Excellent
# The output follows the format below. Do not add any additional text: {
"Conciseness": {
"Result 1 Score": X,
"Result 2 Score": Y,
"Explanation": "How effectively does each decomposition avoid unnecessary complexity while
still addressing all relevant aspects of the problem? Is the explanation clear and straightforward?"
},
"Rationality": {
"Result 1 Score": X,
"Result 2 Score": Y,
"Explanation": "Are the identified components logical and directly related to the problem? Do the
solutions align well with the identified components?"
},
"Sequencing": {
"Result 1 Score": X,
"Result 2 Score": Y,
"Explanation": "Is the order of steps or components logical and easy to follow? Does the sequence
facilitate efficient problem-solving?"
},
"Goal Orientation": {
"Result 1 Score": X,
"Result 2 Score": Y,
"Explanation": "Do the sub-questions stay aligned with the core goal of the main problem? Are
there any redundant sub-questions that deviate from the primary objective?"
},
"Result": "Decomposition Results 1 Decomposition Results 2 Tie"
}
# Problem:
{problem} # Decomposition Results to Compare:
- Decomposition Results 1:
{result1}
- Decomposition Results 2:
{result2} # Output:

Figure 9: GPT-4o decomposition prompt template.
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