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ABSTRACT

How do two deep neural networks differ in how they arrive at a decision? Mea-
suring deep network similarity has been a long-standing open question. Most ex-
isting metrics provide a single number to measure the similarity of two networks
at a given layer, but give no insight into what makes them similar or dissimi-
lar. We introduce an interpretable representational similarity method (RSVC) to
compare two networks. We use RSVC to discover shared and unique visual con-
cepts between two models. We show that some aspects of model differences can
be attributed to unique concepts discovered by one model that are not well rep-
resented in the other. Finally, we conduct extensive evaluations across different
vision model architectures and training protocols to demonstrate its effectiveness.

1 INTRODUCTION

The accuracy of deep neural networks has steadily increased over the last few years thanks to im-
provements in model architectures, dataset size, and pretraining strategies. However, much less
is understood regarding how the representations of different models has changed to enable more
accurate decisions. Thus, there is growing interest in developing methods that allow practition-
ers to compare different networks. Comparing the activation matrices of two neural networks over
the same set of inputs underpins representational similarity methods e.g., CCA (Hotelling, 1936),
CKA (Kornblith et al., 2019), RSA (Kriegeskorte et al., 2008), Brain-score (Schrimpf et al., 2018).
While these approaches provide a score denoting the similarity between two different models, we
do not yet know how to identify the specifics of what makes two models’ computations similar or
dissimilar, and what aspects of a representation lead to differences in model decisions.

In parallel, methods for concept-based eXplainable AI (XAI) have improved our ability to under-
stand what features individual models use to arrive at decisions. Understanding these features is
critical for ensuring model fairness and identifying potential sources of bias (Kaminski & Urban,
2021; Kop, 2021). In general, XAI methods sacrifice model fidelity to produce explanations that are
simple enough for human interpretation Fel et al. (2023a); Cunningham et al. (2024). Thus, there
is a tension between model fidelity and human understanding. Reducing explanation complexity to
improve understandability may eventually lead to the same explanation for all models trained on the
same data.

We propose that contrasting two models is an effective way to identify and highlight what makes a
model unique, so that users can identify critical features that drive differences in model behavior. To
explore this idea we develop a tool that extends concept-based XAI methods to quantitatively mea-
sure representational similarity and provide interpretable insights into the differences between mod-
els. We name our method Representational Similarity via interpretable Visual Concepts (RSVC).
Our method builds on interpretability approaches in which the activations of a given layer are de-
composed into a coefficient matrix and a vector basis. These approaches group images that produce
similar activation patterns together. Thus, we define a visual concept to be the equivalence class of
images that produce a similar activation pattern. After computing visual concepts from each model,
our method checks whether the visual concepts from one model are also used by the other model.
We make three contributions:

• A novel method, RSVC, providing human-interpretable insights into model differences (Fig. 1 ).

• A validation strategy to link representational differences to model decisions.

• Demonstrations of RSVC to measure similarity at both coarse- and fine-grained levels.

1



054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

Under review as a conference paper at ICLR 2025

≈𝐴1 𝑊1Model 1 (𝑀1)
Concept Fitting (CRAFT) 𝑈1

𝑢1𝑎

𝑢1𝑎  (top 4)

Concept Regression

Model 2 (𝑀2) 𝐴2 𝑊2→1∗ = 𝑈2→1

𝑢2→1𝑎
Can Model 2 predict Model 1 concepts?

Concept Similarity

𝜌 
,=0.68 

𝑢1𝑏

𝑢2→1𝑏
𝜌 

,=0.83 

“bluejay tail” “sky background”

𝑢1𝑏  (top 4)

Concept 𝑢1𝑎 is “missing” in Model 2 (𝑀2) 

Figure 1: Representational Similarity via Interpretable Visual Concepts (RSVC). (Blue): First,
activations for a shared set of image patches, X c, are computed for each model (M1 and M2).
Second, the activation matrix for M1 is factorized into the concept coefficient matrix U1 and the
concept basis W1. Each entry in a column vector of the coefficient matrix U1 represents the strength
of a concept in an image. Concepts are visualized by the image patches that correspond to the top
n coefficients. In this figure, we highlight two concepts, ua

1
and ub

1
. The top four images for these

concepts indicate that ua
1

represents ‘bluejay tails’ and ub
1

represents ‘sky background’ associated
with this species of bird. (Green): To measure concept similarity, we learn a weight matrix W∗

2→1

to map A2 to the concept coefficient matrix U2. We denote the predicted coefficient matrix as
U2→1. (Orange): Finally, we compute the correlation between columns of U2→1 and U1. If A2

contains a concept in U1, then the predicted coefficient vector should be highly correlated to the real
coefficient vector. In this example, we see that the bluejay tail concept is poorly represented in M2,
but both models share the concept for the sky. A deeper exploration into the bluejay tail example is
provided in Fig. A1.

2 RELATED WORK

2.1 REPRESENTATIONAL SIMILARITY

Similarity methods attempt to quantify the similarity/dissimilarity between different pairs of mod-
els (Hotelling, 1936; Kornblith et al., 2019; Raghu et al., 2017; Li et al., 2015; Huh et al., 2024).
Models can be compared based on their functional (i.e., how their outputs differ) or their represen-
tational (i.e., how the features activations of intermediate layers differ) similarity (Klabunde et al.,
2023). While functional similarity can tell us about how model outputs vary, models can achieve
the same performance with significantly different representations. These differences matter, for ex-
ample, while two different forms of pretraining can achieve similar performance on certain datasets,
they may transfer poorly to others (Xie et al., 2023).

Representational similarity metrics have successfully been used to analyze the differences between
architectures (Nguyen et al., 2021; Raghu et al., 2021), analyze the effects of different kinds of pre-
training (Xie et al., 2023; Neyshabur et al., 2020; Park et al., 2024), develop novel strategies for effi-
cient ensembling (Zhang et al., 2020) or perform ensembling that is robust to distribution shifts (Lee
et al., 2023). Finally, some methods leverage representational similarity to build tools for text-to-
image generation (Rombach et al., 2020) or model-to-model translation (Dravid et al., 2023). In
neuroscience and cognitive science, representational similarity is used to measure how well models
are able to approximate the neural recordings of the brain and/or the behavior of humans (Schrimpf
et al., 2018; Muttenthaler et al., 2023; Fel et al., 2022b; Ahlert et al., 2024; Kriegeskorte et al.,
2008). In the disentanglement literature, representational similarity has been used to evaluate how
well the learned representation matches the ground truth latent factors. A popular approach that is
used in this domain is to use regularized linear predictors to map learned factors to ground truth
latent factors (Eastwood & Williams, 2018; Eastwood et al., 2023; Locatello et al., 2019; Roth et al.,
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2023; Duan et al., 2020). Most closely related to our work is that of (Schrimpf et al., 2018) and (Li
et al., 2015). We expand on these methods in Sec. 3.2.2.

Recently, Dravid et al. (2023) propose a method that uses correlated activation patterns across net-
works to mine for “Rosetta Neurons”. These neurons provide insights about features that re-occur
consistently in many models. In contrast to our proposed method, Rosetta Neurons do not quantify
the overall similarity between networks and do not identify neurons that explain model differences.

The primary limitation of most existing representational similarity methods is that they can quantify
how similar the representations of two models are, but can not tell users what makes the models
similar or dissimilar. We propose a new approach that aims to address this question. Our approach
leverages concept-based explainability as an intermediate step to measure representational similarity.

2.2 EXPLAINABLE AI (XAI)

XAI methods aim to answer the questions (1) what features did the model use to arrive at a decision
and (2) where in the input is the relevant information. Local explanation methods focus on pixel-
based attribution, in which a heatmap indicates the region of the image that is most relevant to the
model’s decision (Selvaraju et al., 2020; Ribeiro et al., 2016; Lundberg & Lee, 2017). While local
explanations are able to answer the where question, it can be challenging to interpret what is being
highlighted since attributions can be noisy.

To better address the “what” question, global, concept-based explanations are used (Kim et al.,
2018; Ghorbani et al., 2019; Zhang et al., 2021; Fel et al., 2023a; Kowal et al., 2024; Poeta et al.,
2023; Bau et al., 2020). These approaches discover groups of images (or image regions) that share
some visual feature that is relevant to the model’s decision making. Finally, several “glocal” methods
have been developed to answer both questions simultaneously (Schrouff et al., 2021; Fel et al.,
2023b; Achtibat et al., 2023; Kondapaneni et al., 2024).

Datamodels (Ilyas et al., 2022) take a different approach to explaining model decisions. In this
approach, linear surrogate models are trained to reproduce the output of a deep neural network.
Then, each image used during training is given a score that reflects how much it contributed to the
final weights of the learned model. In (Shah et al., 2023), the datamodel approach was extended
to analyze the differences between two models. This approach identifies the differences in training
images that each model relies on to arrive at different decisions. While our work also aims to
compare two models in an interpretable manner, our approach uses the activations of the original
model itself. This gives RSVC the advantage of being able to link representational changes to
functional model behavior.

3 METHOD

We propose a method to compare the representations of two models using concepts. Our approach is
closely related to methods for computing representational similarity, such as BrainScore (Schrimpf
et al., 2018) and the metric in (Li et al., 2015), and builds upon prior work in concept extrac-
tion (Fel et al., 2023b; Ghorbani et al., 2019; Fel et al., 2023a). We bridge approaches from these
two fields, resulting in an interpretable method to measure representational similarity for deep neural
networks (Fig. 1).

3.1 CONCEPT EXTRACTION

(Fel et al., 2023a) showed that many concept based explainability approaches can be generalized
as dictionary learning methods. In these approaches, a set of n input images X is used to compute
activations from a specific layer l of a neural network resulting in A = gl(X ) ∈ R

n×d. Then, a
dictionary learning algorithm can be used to approximate the activations as A ≈ UW. The row
vectors of the vector basis W ∈ R

k×d can be interpreted as a set of k concepts. Similarly, the
rows of the coefficient matrix U ∈ R

n×k represent the importance of a particular concept vector
in W for a given image. By visualizing the images that have the largest concept coefficients for a
given concept, we are able to understand what visual concepts the network has identified in the data.
The effectiveness of concept based XAI methods has been demonstrated via user studies in previous
works (Fel et al., 2023b; Ghorbani et al., 2019; Kim et al., 2018).
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Our goal is to develop a method to compare the representational similarity between two models, not
just in terms of a single numerical score, but via interpretable concepts. For each model, we use the
concept extraction approach proposed in CRAFT (Fel et al., 2023b). We denote the first model as
M1, and the second as M2. Importantly, we make no assumption that these two models are from the
same model family, e.g., one could be a CNN and the other a Vision Transformer. We outline the
concept extraction process for M1, but the same process is applied to M2.

For a specific object class c, we select the set of images Ic
1

that M1 predicted to contain class c. By
grouping images according to model predictions, as opposed to only the ground truth labels, we are
able to identify concepts used in all images that the model believes are part of class c. This allows the
method to provide better insight into both correct and incorrect predictions. Next, as visual features
are highly correlated, patches from each image are sampled to form a set X c

1
of “concept proposal”

images. These proposal images break down the image into simpler visual features that are less likely
to co-occur with other correlated features allowing the user to better understand what the network is
actually paying attention to.

Each concept proposal (patch) is resized to the model’s input resolution and passed through the
network. Note that all networks are trained with inception style cropping, such that patches are in
the domain of training images. We denote the activations from a specific layer l and class c as A1 ∈
R

|X c

1
|×d, where d is the dimension of the activations of the layer. We then use a dictionary learning

algorithm with k components to decompose A1 into a matrix U1 ∈ R|X c

1
|×k and W1 ∈ R

k×d, such
that A1 ≈ U1W1. We refer to U1 as the concept coefficient matrix and W1 as the concept basis.

We repeat this process for M2, resulting in U2 and W2. Intuitively, each row of a concept coeffi-
cient matrix U encodes the contribution of each concept vector in W to the activation vector of a
particular image in X .

3.1.1 SHARED CONCEPT PROPOSALS

To measure concept similarity between two models, we need to understand how each concept reacts
to the same set of images. For example, if both networks have discovered a concept that reacts to
the color red, they would both have an activation pattern that spikes when red objects are presented.
Following this logic, we propose that if two concept vectors are encoding the same information,
their concept coefficients over the same set of images should be correlated. To obtain a shared set of
images, we take the union over the image sets Ic

1
∪ Ic

2
to form Ic. As before, we patch the images

to generate a set X c of proposal images.

The proposals are passed through the model M1 to produce A1 for the shared concept set. Given the
concept basis W1 (which is specific to M1), we re-compute U1 over the shared set of images. We
repeat this process for M2 to compute U2. In practice, we use a non-negative least squares solver,
since we use non-negative (NNMF) and semi-nonnegative matrix factorization (SNMF) in this work
(see Appendix B).

3.2 CONCEPT SIMILARITY

Here we address the following question: in a specific pair of layers, does M1 encode the same
concepts as M2? In the following sections, we make use of A1, A2, U1 and U2 to compute
the similarity between concepts encoded in M1 and M2. We consider two different approaches
that trade-off computational cost and error. The first method is used to compute a coarse metric
across many layers of each model, while we use the second method for precise measurements in the
penultimate layer of each model.

3.2.1 CORRELATION

Each column of U contains the concept coefficients of a specific concept for each image. If the con-
cepts encode the same information, they should have highly correlated activation patterns since they
would react similarly to the same proposal images. Thus, we compute the correlation for each vector

ui
1
∈ Columns(U1) and u

j
2
∈ Columns(U2). We measure both Pearson and Spearman correlation

to form the correlation matrices Rρ ∈ R
k×k and RS ∈ R

k×k. Since concepts extracted from each
network do not have a direct correspondence, MCS measures the concept similarity between a con-
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Top-10 Real (R50) Concept Patches

hands and arms lifting barbell

over-sensitivity to weight equipment under-sensitivity to people + gym equipment

Top-10 (ViT-S) Overpredicted Concept Patches Top-10 (ViT-S) Underpredicted Concept Patches

Barbell | ViT-S (Predictor) → ResNet50 (Target)

Figure 2: Interpreting Low Similarity Concepts. In this example, we find a RN50 concept for
the barbell class that the ViT-S is not able to predict. Visualizing dis-similarity can be challenging,
therefore, RSVC inspects three distinct regions of the predicted vs. real coefficient scatterplot to help
understand various aspects of the differences between the two models (Sec. 3.4). (Green): RSVC
visualizes images corresponding to the top-10 real concept (RN50) coefficients. This allows the
user to understand what the real concept is encoding. (Blue): RSVC visualizes the image patches
with the largest (RN18) under-predicted coefficients. (Orange): RSVC visualizes the image patches
corresponding to the top-10 (RN18) over-predicted coefficients. To ensure sample diversity, we
enforce that we visualize one patch per image. We also exclude the top-10 real concept images when
selecting the over and under predicted points. In Fig. A1, we show several samples of interpretable
dissimilarities.

cept from M1 and all of the concepts from M2 and keeps the maximum. We compute the maximum
concept similarity (MCSc) over each dimension of the correlation matrix for each concept and class

MCSc
1
= max

i
Rij and MCSc

2
= max

j
Rij . (1)

MCS is fast to compute and can be done with relatively few image samples (Appendix B.2). Thus,
we use it to compute layerwise concept similarity which gives us coarse-grained insights into the
similarity between each layer of two different models. For layerwise concept similarity, we compute
the correlation matrix Rc between M1 and M2 at each pair of layers for every class c. Then, for each
correlation matrix we compute the mean maximum concept similarity (MMCS) over each dimension
and then take the average of the two matrices

MMCSm =
1

k · c

c
∑

c=1

k
∑

i=1

MCSc,i
m ,

MMCS = (MMCS1 + MMCS2)/2.

(2)

However, correlation based similarity can be affected by confounds from concept extraction. For
example, extracted concepts can entangle or disentangle visual features that are encoded by the
respective models. Suppose U1 encodes features for both ears and snouts of a dog together in
a single concept, but these two features are disentangled into two concepts in U2, the maximum
match between these concepts would be lower even though both networks are encoding the same
information. Additionally, extracted concepts do not contain all the information in the network since
there is some reconstruction error when learning the decomposition. Thus, correlation matrices can
tell us when two concepts are highly similar, but do not tell us if a concept is missing in a layer.
However, they can serve as a noisy lower bound for measuring concept similarity (Appendix A.7).
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3.2.2 REGRESSION

In order to more accurately measure similarity, we propose a regression based metric similar to
the strategy in (Li et al., 2015) and the BrainScore (Schrimpf et al., 2018) which was originally
introduced to compare artificial neural networks to biological neural networks. In (Li et al., 2015),
the outputs of a convolutional layer in one model are mapped to the outputs of a convolutional layer
in another network using a sparse weight matrix. The prediction error between the predicted outputs
and true outputs are used as a metric for the similarity between the two layers. In BrainScore, for
a set of n stimuli (e.g., images), the activations from a layer of the DNN are stored in a matrix
A ∈ R

n×d, where d is the dimensionality of the layer activations. For the same set of stimuli,
neural recordings are measured from an animal and processed forming a vector y ∈ R

n for each
target “neuroid”.

A linear mapping is introduced to predict the neural responses from the DNN activations, y =
Aw∗ + b, where w∗ are the weights of the regressor and b is the bias. The regression model is
trained on a set of training images and evaluated on held out test images where the predicted outputs
of the regressor are compared to the true neural responses using Pearson correlation, giving a score
between -1 and 1.

To compare two neural networks using these methods, each column of A2 would serve as prediction
targets for regression with A1 resulting in a similarity score for each column of A2. However,
visualizing and interpreting each neuron results in an explanation that is too complex for users.
Instead, a more interpretable result can be achieved by setting the coefficient matrix U2 as regression
targets for A1 (Fig. 1). Essentially, RSVC encodes similarity by measuring how well M1 can predict
the concept coefficients of M2 and vice-versa,

A1W
∗
1→2

= U1→2 and A2W
∗
2→1

= U2→1, (3)

where we learn W∗ such that the following regularized (L1) mean-squared error is minimized

min
W∗

1

n

n
∑

i=1

(AW∗ −U)
2
+ λ∥W∗∥1. (4)

L1 regularization guides the regression model to seek a sparse set of neurons in M1 that can be used
to predict U2 and reduces over-fitting to the regression training data. We also compute baselines for
each model from their own activation matrices, learning W∗

1→1
and W∗

2→2
. Finally, we compute the

Pearson and Spearman correlation between columns of the predicted coefficient matrix and columns
of the true coefficient matrix to get a similarity score for each concept between -1 and 1. When
computed across two models, we refer to the score as cross-model concept similarity (CMCS), and
when computed within the same model (baseline), as same-model concept similarity (SMCS).

Finally, we investigate whether similar or dissimilar concepts are more important to model decisions
by applying concept integrated gradients (Fel et al., 2023a). Concept integrated gradients measure
the contribution of each concept to the model’s decisions Appendix B.1.1.

3.3 REPLACEMENT TEST

To link differences in predicted concept coefficients and real concept coefficients to model behavior,
we conduct a “replacement test”.

1: for each i = 1 to K do
2: Ūi

2→1
= Copy U1

3: Ūi
2→1

[:, i] = U2→1[:, i]
4: Āi

2→1
= Ūi

2→1
W1

5: z̄i
2→1

= h(Āi
2→1

)
6: ȳi

2→1
= argmax(z̄i

2→1
)

7: end for

For each model comparison, we conduct a replacement op-
eration over each column of the coefficient matrix and keep
track of the resultant reconstructed activation matrix, model
logits, and model predictions (as seen in the pseudocode). We
perform the replacement operation using the same model pre-
dicted coefficients (baseline) U1→1 and also the cross-model
predicted coefficients U2→1. We measure the impact of re-
placement at three levels during classification. We denote h

as the classification head that produces logits (z) for each input image. We compute the mean l2-
distance between each row of Āi

2→1
and Āi

1→1
, the mean KL-divergence over the logits z̄i

2→1
and

z̄i
1→1

, and the match accuracy between ȳi
2→1

and ȳi
1→1

.
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3.4 INTERPRETING LOW SIMILARITY CONCEPTS

How should we visually compare predicted and real concepts? Concept based XAI methods like
CRAFT (Fel et al., 2023b) and CRP (Achtibat et al., 2023) visualize the n images with the largest
concept coefficient as representatives of the visual feature encoded by the concept. The same ap-
proach can be used to visualize similar concepts, since, by definition, similar concepts have highly
correlated activation patterns over the shared set of concept proposal images. However, this ap-
proach is misleading when low similarity concepts are discovered. When a concept is dissimilar it
may share the same top n images, but have entirely uncorrelated coefficients over the remaining im-
ages. This possibility is further amplified due to the mean squared error loss (MSE loss) used to train
the regression matrix W∗

1→2
. The MSE loss penalizes prediction error on the largest coefficients

disproportionately, leading to a higher chance the two models share the same top n images.

To address this, we develop a new approach to specifically visualize how two models are dissimilar
with respect to a concept. We start by visualizing the target concept by using the images correspond-
ing to the top n concept coefficients. The target concept is compared to the predicted concept by
visualizing the top n over-predicted coefficients and top n under-predicted coefficients. This allows
users to reason about visual features that one model entangles or disentangles with the target con-
cept, improving their overall understanding of the compared models. In Fig. 2, we demonstrate our
proposed approach for interpreting concept dissimilarity.

3.5 IMPLEMENTATION DETAILS

We choose a ResNet-18 (RN18), ResNet-50 (RN50) (He et al., 2016), ViT-S, ViT-L (Dosovit-
skiy, 2021), DINO ViT-B (DINO) (Caron et al., 2021), and MAE ViT-B (MAE) (He et al., 2022)
from the timm library (Wightman, 2019) for our experiments. All models were trained on Im-
ageNet (Deng et al., 2009). For our exploration with DINO and MAE, we finetune the models
on NABirds (Van Horn et al., 2015). We compare four pairs of models: RN18 vs. RN50, ViT-S
vs. ViT-L, RN50 vs. ViT-S, and DINO vs. MAE. Model performance on their respective datasets are
reported in Tab. A1. The first two pairs have a clear difference in performance, implying that there
are significant representational differences between the models. The second two pairs are roughly
equal in overall performance, allowing us to explore how representational differences may result in
different behavior even when overall performance is the same. We provide further details on the
concept extraction, concept comparison and computational cost in Appendix B.

4 RESULTS

4.1 CONCEPT SIMILARITY VS. CONCEPT IMPORTANCE

We start by exploring the relationship between concept similarity and importance in the penultimate
layers of each model. We compute the cross-model concept similarity (CMCS) and the concept
importance (CI) for every extracted concept. In Fig. 3, we plot the concept similarity from M1 to
M2 against the concept importance for M2 across all four pairs of models. In Appendix A.6, we
compare SMCS to CI. In both of these figures, a point with low similarity and high importance would
indicate that in layer l, M1 can not predict the coefficients of a concept that M2 finds important in
decision making. We use color to indicate the density of points in a region (warmer colors indicate
more density). As expected, we find that SMCS values are significantly higher than CMCS values,
since the model is predicting its own concepts.

In cross-model comparisons, we observe that models tend to have medium/high similarity for most
concepts, since dense regions in the plot tend to be above 0.6 similarity. We also notice that the
similarity scores from ViTs and ResNets have a different overall structure, with ResNets having a
longer tail of low similarity and low importance concepts. Finally, except for DINO vs. MAE we
find that there are several low/medium similarity concepts that also have a medium/high importance.
In Appendix A.3, we systematically vary the training protocol (seed and data) for a ResNet18 model
and measure the impact of the changes on model similarity. We find that changes in model training
lead to intuitive changes in similarity and use RSVC to reveal some concepts that suggest how the
two models differ (Fig. A7). In sum, we find two key results: (1) model differences are largely driven
by medium similarity, medium importance concepts, jointly contributing to significant changes in
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DC

A B
1 2

3

Figure 3: Concept Similarity vs. Concept Importance. We compare four pairs of models using
CMCS: (A) RN18 vs. RN50, (B) RN50 vs. ViT-S, (C) ViT-S vs. ViT-L, and (D) DINO vs. MAE. The
y-axis represents the concept importance (CI) measured using concept integrated gradients. Warmer
colors represent the density of points in a region. We highlight several regions in the plots: (1) This
region has low similarity and low importance concepts that are unique to a model but contribute little
to its decisions. (2) This region has high importance and high similarity concepts. These concepts
are shared across both models and also contribute greatly to decision making. (3) This region has
low similarity, high importance concepts. These are concepts that only one model has discovered,
but are very important to that model’s decisions.

model behavior and (2) some models do learn “unique” low similarity, high importance concepts.
In the following sections we explore both of these results further.

4.2 REPLACEMENT TEST

In order to better understand how variations in similarity impact model behavior we conduct a re-
placement test (described in Sec. 3.3). This test allows us to measure how changes in concept
similarity impacts the l2-distance of the activations, KL-divergence of the logits, and match accu-
racy of the predictions. We investigate this question because it is possible that changes in Pearson
correlation are due to changes in predicted coefficients on unimportant images for a particular con-
cept, leading to no change in model behavior. In Figs. 4, A10 and A11, we visualize the change
in Pearson correlation (∆Pearson) against the change in the three aforementioned metrics. We use
color to indicate concept importance (warmer colors are more important). Expectedly, we observe a
trend showing that l2-distance increases as similarity decreases. For the KL-divergence, we observe
two trends: (1) when the importance is sufficiently high, the KL-divergence increases as similarity
decreases and (2) when the importance is low, there is no effect on the model’s logits. Finally, we
observe a trend that shows that model predictions change as a function of both similarity and im-
portance. We find that these trends roughly hold for all models, although the structure of the plots
changes for ViTs (Figs. A10 and A11).

4.3 LOW SIMILARITY CONCEPTS

In Fig. 3, we find that model comparisons identify low similarity, high importance concepts. These
concepts are particularly interesting because they identify visual features that one model has con-
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Figure 4: Replacement Test. We explore if poorly predicted coefficients for concepts actually
impact model behavior (Sec. 4.2). We use color to represent the concept importance (warmer is
higher importance). We see that when ignoring low importance concepts, we see expected trends.
Decreases in similarity (∆Pearson) result in increases in the l2-distance, increases in KL-divergence
on the logits of the classifier, and decreases in model accuracy. Interestingly, the effect seems to
be scaled by importance and we also notice a threshold of importance that must be exceeded for
impacts on the KL-divergence.

structed that the other has not. In Fig. 2, we apply our proposed approach for understanding the
dissimilarity between predicted and real concepts (see Sec. 3.4). We analyze a ResNet-50 concept
used on the barbell class. This concept primarily reacts to images containing hands/arms near lifting
a barbell. When a regression model is trained on the ViT-S activations to predict the coefficients of
this concept, the model becomes over-sensitive to any image with a weight plates or gym equipment
and remains under-sensitive to images of people around gym equipment. This result suggests that
the ViT-S does not have a feature encoding the hands lifting the weights. In Fig. A1, we select sev-
eral examples of important low similarity concepts that are visually interpretable. We provide both
our interpretations (Appendix A.1) of the conceptual differences and a description of the differences
as perceived by a large language and vision model (Appendix A.5). Finally, in Appendix A.2, we
conduct an experiment in which we train M1 to use a toy concept and M2 to ignore it. We show that
RSVC is able to recover the known difference between two models.

4.4 LAYERWISE CONCEPT SIMILARITY

Finally, we explore how concept similarity arises across many layers of each network. We compute
the MMCS at each pair of layers and visualize the resulting matrix. For all models, we find that
concept similarity is highest at the early layers of each model and decays gradually as network depth
increases. In all model comparisons, we see a slight increase in similarity towards the final layers
relative to the preceding layers, suggesting that the way networks organize information converges as
the network get closer to producing a final decision. Interestingly, (Fel et al., 2022b) also found the
last layer to have better properties for concept extraction.

We also notice several properties unique to each comparison. When comparing different sized mod-
els with the same architecture, the similarity is related to the relative depth of the layer. For ResNets,
we notice that matrices show a pattern of increased similarity after residual blocks and lower simi-
larity for layers within blocks. For the ViT-S and ViT-L we find that there is a broad band of concept
similarity in the middle of each network in which the ViT-S layers 4 through 9 have higher similar-
ity to ViT-L layers 5 through 20. In addition, there is an increase in concept similarity between the
last layer of the ViT-S and the last three layers of the ViT-L. When comparing the RN50 to ViT-S
we find that concept similarity of layers 0 through 25 are most similar to layers 0 through 3. This
finding matches observations found in previous work, in which relatively earlier layers in the ViT

9
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Figure 5: Layerwise Mean-Max Concept Similarity. We compare four pairs of models across
many selected layers using Pearson correlation. Each entry in the matrix is the mean maximum
concept similarity (MMCS) between M1 and M2 at a particular pair of layers. Brighter colors
represent higher MMCS values. We see that, in general, conceptual similarity is highest in earlier
layers and decays as networks get deeper. We also notice that there is a slight increase in similarity
towards the final layers (Sec. 4.4).

match relatively later layers in the ResNet (Raghu et al., 2021). Finally, when comparing the MAE
to DINO, we see high concept similarity between the first 3 layers of DINO and the first 8 layers of
the MAE. However, this similarity decays significantly as the layer index of DINO increases. This
divergence in concept similarity may be due to differences between supervised and self-supervised
training, but further research is needed.

5 LIMITATIONS

We limit our analysis to computer vision models. In practice, there is nothing restricting the ap-
plication of the same core idea to large language models, but we leave this for future work. Our
work builds on concept-based XAI methods, and thus inherits the trade-off between fidelity and in-
terpretability. In particular, we note that the reconstruction error varies for each model, which may
explain some properties of concept similarity in our experiments. However, we are agnostic to the
precise concept extraction method used and thus our approach will benefit from advances in these
methods. For example, incorporating a recursive strategy like the one presented in CRAFT (Fel
et al., 2023b), may significantly improve the number of interpretable comparisons discovered. Out-
side of overly artificial settings whereby two models are trained on completely different datasets,
we note that it can be challenging to compare the representations of two models trained on the
same or similar datasets (e.g., ImageNet) as done in this work. However, we believe that this more
challenging setting is of most interest and relevance.

6 CONCLUSION

We introduced a new method for representational similarity via interpretable visual concepts
(RSVC). In contrast to existing representational similarity methods that simply provide a single
numerical score to denote similarity, our approach blends ideas from concept-based explainabil-
ity and shows us what visual concepts make two models similar or dissimilar. In particular, we
demonstrate that comparing models can be an effective path towards understanding what a model is
missing. In future work, this may be helpful in identifying sources of model failures. We presented
experiments on a range of different vision models and demonstrated that our approach is general
and can be applied across a variety of different backbone models, irrespective of the pretraining
objective used by the model. Finally, we emphasize the challenges of evaluating XAI methods and
suggest that explaining the functional differences in two models’ behavior could serve as a valuable
test bed for future XAI research. We hope that this work opens the door to future investigation into
how concepts are represented inside of deep networks.
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A ADDITIONAL EXPERIMENTS

A.1 COMPARING CONCEPTS

In Fig. A1 we display some more examples of dissimilar concepts found through RSVC. We also
provide interpretations of the dissimilarities between the concepts. Note that these dissimilarities
do not necessarily indicate worse performance on images from this class because there are many
possible correct strategies when trying to make a decision about an image.

Rugby Ball | RN18 → RN50. The RN50 has learned a visual concept that entangles the arms of a
rugby player and the rugby ball. We see in the under-predicted samples that the regression model
under-predicts samples with the players’ limbs and rugby balls together. When visualizing the over-
predicted samples we can see that the regression model increases sensitivity to both close-ups of
rugby balls and to the legs of the players. These results suggest that the RN18 encodes for the
legs of the rugby players independently of the rugby ball and the regression model is using these
independent features to try and reproduce the RN50’s concept. It also suggests that the RN18 is not
encoding the arms as an independent feature.

Grey Whale | ViT-S → ViT-L. It appears that the ViT-L has learned a visual concept for whales
surfacing parallel to the surface of the water. We can see that the regression model under-predicts
images of the whales back and also images of its eye in a horizontal orientation. The regression
model seems to have increased sensitivity to breaching whales, either raising their tails or their
heads. This suggests that the ViT-S has entangled calm whales floating at the surface with active
whales breaching the water.

Strawberry | RN50 → ViT-S. This concept is one of the lowest similarity concepts that causes a
meaningful change in model behavior (as seen by the KL-Divergence). We can see that the ViT-S has
learned a concept for mixed fruits that include strawberries. The under-predicted and over-predicted
samples show that the RN50 has no ability to reproduce this pattern, suggesting that it ignores mixed
fruits entirely.

Volleyball | RN18 → RN50. The RN50 has learned to encode volleyball players in a variety of ac-
tive positions. There seems to be an emphasis on hands and arms near or above the net. The RN18
under-predicts close-up images of volleyballs and players at the net and it tends to over-predict im-
ages containing balls high in the air and close-ups of nets/grids. This suggests that the regression
model is trying to reproduce the behavior of the RN50 concept using a variety of related features
learned by the RN18. We explore the top-6 neurons that most contribute to the regression model’s
prediction of this concept in Fig. A14. We compute the neuron contribution using permutation fea-
ture importance (Appendix B). We find that the regression model uses RN18 neurons that are highly
sensitive to volleyballs in the air, players near nets, and close-ups of nets qualitatively explaining
some of the differences between the predicted and real concept.

Bluejay | ViT-B MAE → ViT-B DINO. The DINO model has isolated the tail of the bluejay as an
important visual feature. The regression model under-predicts images with bluejay tails and over-
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predicts random images, suggesting that this concept is not independently encoded in the feature
space of the MAE.

A.2 DISCOVERING A “TOY” CONCEPT

In this work, we conduct experiments with real models and datasets. While understanding models in
this context is closely related to real-world use cases, it results in complex concepts that can be more
challenging to interpret. To better understand the properties of RSVC, we design an experiment in
which we train a model on images modified by a simple, “toy”, visual concept. In this experiment,
we are able to control what the model learns and explore how RSVC works in a more controlled
setting.

We train two ResNet-18 models on a modified NABirds dataset (Van Horn et al., 2015) from scratch.
The first model, Mps, is trained to make use of the toy concept in its decisions and the second, Mnc

is trained to become invariant to the toy concept. The toy concept is a 20px × 20px pink square
that is stochastically placed on the images at a random location. For Mps, the concept appears on
images from the Common Eider class with a 70% probability, giving the concept predictive power.
For Mnc, the concept appears on images from any class with a 50% probability, giving the concept
no predictive value. Thus, M1 should learn to attend to the visual concept while Mnc should learn
to ignore the concept, since it is simply noise. Finally, both models are tested on a dataset in which
the concept appears on images from the Common Eider class with a 100% probability. Provided
that Mnc successfully learns to ignore the concept, RSVC should have a low similarity score to any
concept in Mps that primarily fixates on the pink square. Recall that concepts are visualized using
image patches. This allows us to break the 100% correlation between the pink square and the image
during testing, such that only some patches contain the added concept. Both models achieve ∼34%
on the test set of NABirds.

In Figure A2, we visualize the similarity from Mnc to Concept 1 in Mps. We find that Mnc has a
near zero similarity to Concept 1 in Mps, which we visually identify to be a concept that fixates on
the pink square. Importantly, the modified training paradigm does not affect the similarity scores
between other concepts in the two models. In Fig. A3, we show that Mnc has high similarity to
two other concepts in Mps. Thus, we show that RSVC clearly identifies the primary conceptual
difference between the two models in this controlled experiment.

A.3 VARYING RESNET-18 TRAINING

Next, we conduct controlled variations of model training and measure how it effects model concept
similarity in the last layer. We train a ResNet-18 model on variations of the NABirds dataset.

We start by comparing two ResNet-18 models trained on NABirds with different seeds, 4834586
(R18 s483) and 87363356 (R18 s873). We find that, despite varying the seed during training, both
models discover highly similar concepts (Fig. A4A). Then, we train a ResNet-18 model on a mod-
ified version of the NABirds dataset in which waterbirds (169 classes) have been excluded during
training (R18 NAB-WB). After training, the backbone is frozen and just the classification head is
trained on the full dataset. We compare this model to R18 s483 trained on the full dataset (34%).
We find that training without waterbirds results in a significant decrease in performance (25%) and,
surprisingly, only a slight increase in dissimilar concepts (Fig. A4B).

We then explore if introducing novel features from an out-of-domain dataset would result in more
dissimilar concepts. In this experiment, we train one model (R18 NAB+SC) on a combined dataset
of NABirds and Stanford Cars (Krause et al., 2013) achieving 37% accuracy on the combined classi-
fication task. To compare to R18 s483, we freeze the backbone and re-train the model head on both
NABirds and Stanford Cars, achieving 26% accuracy. We find training the backbone on Stanford
Cars significantly increases concept dissimilarity (Fig. A4C). Interestingly, we find that the increase
in dissimilarity is bi-directional, both models are less able to predict the concepts of their contrasted
pair. In order to better understand the bi-directional nature of this dissimilarity, we visualize a few
concepts from each model in Figure A7. These concepts were selected by (1) filtering concepts
above the 75th percentile in delta KL-divergance, (2) visualizing the 15 lowest delta Pearson con-
cepts and (3) manually selecting concepts that were easiest to interpret. We find dissimilar concepts
from the R18 NAB+SC model that seem to be semantic concepts specific to car models. In contrast,
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Rugby Ball | ResNet18 → ResNet50

Grey Whale | ViT-S → ViT-L

Strawberry | ResNet50 → ViT-S

Bluejay | ViT-B MAE → ViT-B DINO

UnderpredictedTop-9 Concept Patches

Volleyball | ResNet18 → ResNet50

Overpredicted

Figure A1: Qualitative Samples. In each row, we show visualizations for selected concepts from
different model comparisons. In the first column of each row, we show scatter plots between real
and predicted concept coefficients. Colored points mark the top-9 images in different subregions of
the scatterplot. Each subregion indicates a different aspect of dissimilarity. (Green): Top-9 images
for the real concept. These images are used to help the user understand what the target concept pays
attention to. (Blue): Top-9 images that are underpredicted by the contrasted model. (Orange): Top-9
images that are over-predicted by the contrasted model. You may need to zoom in to best analyze
the image grids. We discuss possible interpretations of the concepts in Appendix A.1. See Fig. 2 for
a detailed breakdown of how to interpret these plots.
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Common Eider | Concept 1 | Mnc → 𝑀𝑝𝑠
Top-10 𝑀𝑝𝑠   Concept Patches

pink squares overlayed over water and tails

over-sensitivity to water without pink square under-sensitivity to pink squares 

Top-10 Overpredicted Concept Patches Top-10 Underpredicted Concept Patches

Figure A2: Adding and Discovering a Toy Concept. We train two ResNet-18 models. The
first model, Mps, is trained to associate a pink square with the Common Eider class. The sec-
ond model, Mnc, is trained to be invariant to the pink square concept. Training details are provided
in Appendix A.2. We explore three concepts from Mps and compute the similarity score from
Mnc → Mps. We first visualize Concept 1 from Mps. This concept clearly reacts strongly to the
pink square visual feature. Mnc, which was trained to be invariant to the pink square, has a similarity
score near 0.0, indicating that it is unable to predict Concept 1 from Mps.

we found no dissimilar car related concepts that met the criteria from R18 s483. Instead, we find
that concepts that meet this criteria are from NABirds classes and tend to be challenging to inter-
pret (Fig. A7). We then visualize R18 s483 concepts that result in the largest kl-divergence when
replaced by the predictions from R18 NAB+SC. When visualizing these concepts we find two car
related concepts that seem to be primarily driven by color, but not car model. These results match
the intuition that R18 NAB+SC should contain more complex, car model aligned concepts that can
be used to better classify images from Stanford Cars. However, it is not a complete explanation of
model behavior and further analysis is needed to make concrete statements about concept dissimi-
larity.

Finally, we compare a ResNet-18 trained on ImageNet and fine-tuned on NABirds to a NABirds
model (R18 ImgNet PT). Unsurprisingly, this results in the most dissimilar concepts (Fig. A4D). In
sum, we find that larger changes during training results in more dissimilar concepts.

A.4 DINO AND MAE SEED VARIATION EXPERIMENTS

In Section 4, we compared a DINO pretrained model and a MAE pretrained model that were fine-
tuned on the NABirds dataset. In those experiments, models were finetuned with the seed set
to 4834586. In this section, we explore comparisons to models finetuned with a different seed,
87363356. The models finetuned with the new seed are denoted as DINO s873 and MAE s873. We
compare two pairs of models, DINO s873 to MAE s873 and DINO s483 to DINO s873. In Fig-
ure A5, we show that changing the seed does change the concepts learned, but that the general
relationship between the different pretraining strategies is preserved. In particular, we find that com-
paring DINO models finetuned with different seeds results in a higher average similarity (∼0.89)
than models with different pretraining strategies (∼0.80), indicating that the seed has a smaller im-
pact on finetuning than the initialization.
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Common Eider | Concept 2 | Mnc → 𝑀𝑝𝑠
Top-10 𝑀𝑝𝑠  Concept Patches

black and white color pattern of Common Eider

light blue ocean background

Top-10 𝑀𝑝𝑠  Concept Patches

Common Eider | Concept 3 | Minv → 𝑀𝑝𝑠

Figure A3: Specificity of Toy Concept. In Fig. A2, we showed that Mnc is not able to predict the
pink square concept from Mps. In this figure, we show that the toy concept does not impact the
similarity between other concepts learned by the networks. We visualize the top-10 patches from
Concept 2 and Concept 3 of Mps in the same class (Common Eider). These concepts correspond to
the white and black color pattern of the bird and a water background. Note that these models have
been trained from scratch on NABirds resulting in a relatively low 38% accuracy. This leads to
noisier concepts that are more challenging to interpret. Importantly, we can see that Mnc still has a
very high similarity score for these two concepts, highlighting the specificity of RSVC.

A.5 LLVM GENERATED CONCEPT DIFFERENCE ANALYSIS

In Appendix A.1 we provided a manual analysis of the difference between the concepts of two
different models. In this experiment we use an LLVM (ChatGPT-4o) to analyze image collages from
selected concepts and describe them. The input and output structure for this experiment is provided
in Fig. A6. We do not emphasize differences in the system prompt, instead asking for the model to
describe both similarities and differences. In this experiment, we provide the top-k image collage
(IC1) and the over-predicted image collage (IC2) to simplify the inputs for the LLVM. Outputs are
presented below. We find that the LLVM descriptions are similar to the manual annotations.

Rugby Ball | RN18 → RN50.

IC1: A collage featuring various close-ups of players holding rugby balls during gameplay, empha-
sizing hands and ball contact. IC2: A collage with mixed shots of rugby gameplay, focusing on
players’ lower bodies, shorts, and action involving the rugby ball from different perspectives. Sim-
ilarity: Both collages depict scenes from rugby games and include elements of players and rugby
balls in action. Difference: IC1 focuses on hand interactions with the rugby ball, while IC2 em-
phasizes lower body dynamics and broader gameplay elements. Semantically different: [Yes] IC1
highlights ball handling, whereas IC2 portrays physical movement and positioning.
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Figure A4: Effect of Seed and Dataset on ResNet-18 Similarity. We compare several pairs of
ResNet-18 models while varying their training protocols. We use the same base model in all com-
parisons, a ResNet-18 model trained with the seed set to 4834586 (R18 s483). (A) We compare
the base model to a model trained with seed 87363356 (R18 s873) and find that the two models are
highly similar despite the change in seed. (B) We train a ResNet-18 on a modified dataset where we
exclude 169 classes that belong to the coarse category of waterbirds (R18 NAB-WB). When compar-
ing to the seed variation experiment, we see a slight increase in the number of dissimilar concepts.
(C) We train a ResNet-18 on a combined dataset of NABirds and Stanford Cars (R18 NAB+SC). To
compare to the base model, we freeze the base model’s backbone and re-train the linear classifier
on this combined dataset. We find that introducing Stanford Cars results in a significant increase in
dissimilar concepts. (Right) Finally, we compare to a model pre-trained on ImageNet and fine-tuned
on NABirds (R18 ImgNet PT). We find that training on ImageNet introduces many novel concepts
that are dissimilar to the features of the base model.
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Figure A5: DINO and MAE Seed Variation. We explore the effects of varying seed on finetuning
a DINO and MAE model on the NABirds dataset. (Left): We show layerwise and last layer com-
parisons of MAE s483 vs. DINO s483. These plots are reproductions from the main text. The black
line denotes the average concept similarity. For this comparison, the average similarity for in both
directions is 0.80. (Center): We compare DINO s873 vs. MAE s873. We see a similar layerwise
matrix and last layer similarity to DINO s483 vs. MAE s483. The average similarity for both mod-
els is, once again, 0.80. (Right): We compare DINO s483 vs. DINO s873 and find that there is a
better layer-to-layer mapping in the layerwise comparison matrix. In addition, the average similarity
in both directions is 0.89, higher than comparisons across the different pretraining strategies. Taken
together, these results indicate that individual concepts change due to different seeds, but the global
structure of the relationship between these models is not affected by seed.

Grey Whale | ViT-S → ViT-L.

IC1: A collage featuring close-up views of whales, focusing on surface water interaction and de-
tailed textures of their bodies. IC2: A collage showing whales from various perspectives, including
body parts like tails, heads, and fins, with more diverse settings and details. Similarity: Both col-
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I am going to ask you to analyze image collages. You will receive two image collages and your 
task is to: (1) provide one sentence to describe each image collage. (2) Provide one sentence to 
describe similarities between the image collages and one sentence to describe the differences 
between the image collages. (3) Make a judgement on whether the two collages convey 
different semantic information and summarize it in a few words. The format of your output 
should be organized as follows: 

IC1: desc 
IC2: desc 

Similarity: desc 
Difference: desc 

Semantically different: (Boolean Answer) - desc

Base 
Prompt

Input

Output

Figure A6: LLVM Concept Difference Analysis. We use ChatGPT-4o to analyze concept differ-
ences. We provide a general system prompt asking the LLVM to describe the collages, provide a
description of the similarities and differences between the collages, and provide a final judgement on
whether there is a semantic difference between the collages. We provide an example for the rugby
ball class. The LLVM receives the image collage (IC) corresponding the top-k concept images (IC1)
and the over-predicted concept images (IC2), see Fig. 2 for more details on image collages. Here,
the LLVM notices that IC1 focuses on hands and ball contact, whereas the IC2 focuses more on
lower bodies. The described difference matches the manual annotations provided in Appendix A.1.

lages depict whales and highlight different parts of their bodies in aquatic environments. Difference:
IC1 emphasizes close-up textures and water interaction, while IC2 provides broader views of whales,
showing distinct body parts and their environment. Semantically different: [Yes] IC1 focuses on
textures and surface detail, while IC2 captures a wider perspective of whale features and behaviors.

Strawberry | RN50 → ViT-S.

IC1: A collage featuring various fruits, with a focus on strawberries along with other fruits like
grapes, blueberries, and kiwi, emphasizing vibrant colors and diversity. IC2: A collage entirely
centered on strawberries, showing detailed close-ups of their textures and seeds in different lighting
and angles. Similarity: Both collages prominently showcase strawberries and their textures. Dif-
ference: IC1 includes a mix of other fruits alongside strawberries, while IC2 exclusively focuses
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on strawberries and their intricate details. Semantically different: [Yes] IC1 presents a broader
context of mixed fruits, whereas IC2 isolates strawberries as the sole subject.

Barbell | ViT-S → RN50.

IC1: A collage of people engaging in strength training exercises, with a focus on lifting dumbbells,
barbells, and performing weightlifting movements. IC2: A collage showcasing gym equipment and
weights, with some emphasis on exercises involving barbells and dumbbells but with fewer people
depicted. Similarity: Both collages center on weightlifting and gym-related activities, featuring
equipment and exercises. Difference: IC1 highlights people actively performing weightlifting exer-
cises, while IC2 primarily focuses on the gym equipment and setup with minimal human involve-
ment. Semantically different: [Yes] IC1 emphasizes the activity of weightlifting, whereas IC2
focuses more on the tools and environment of the gym.

Bluejay | ViT-B MAE → ViT-B DINO.

IC1: A collage of close-up views of blue jay feathers, primarily showcasing the distinctive blue and
black patterns on their wings and tails. IC2: A collage of blue jays in various settings, including
full-body shots, close-ups of their heads, and natural habitats like branches and foliage. Similarity:
Both collages feature blue jays and focus on their unique physical features and natural environment.
Difference: IC1 highlights detailed patterns on blue jay feathers, while IC2 captures a broader
context of the bird’s appearance and behavior in its habitat. Semantically different: [Yes] IC1
emphasizes feather patterns, whereas IC2 provides a holistic view of blue jays in their environment.

Volleyball | RN18 → RN50.

IC1: A collage depicting volleyball gameplay, focusing on players’ hands, the volleyball, and inter-
actions around the net during action-packed moments. IC2: A collage showing volleyball gameplay
as well but with a wider variety of scenes, including players near the net, different environments, and
more casual setups. Similarity: Both collages revolve around volleyball and the central theme of
gameplay near the net. Difference: IC1 emphasizes action shots with players and the ball in dynamic
moments, while IC2 includes a mix of gameplay contexts and less action-oriented scenes. Seman-
tically different: [Yes] IC1 focuses on the intensity and dynamics of volleyball action, whereas IC2
portrays a broader variety of volleyball scenarios and contexts.

A.6 SAME MODEL CONCEPT SIMILARITY VS. CONCEPT IMPORTANCE

In this section, we validate the feasibility of the regression task. Due to the reconstruction error in-
herent in decomposition methods, it is not possible to perfectly predict the concept coefficients from
the activation matrix. However, in Fig. A8, we show that the regression models do well when trying
to do same-model concept regression and significantly better than cross-model concept regression.

A.7 COMPARING MCS (PEARSON) TO LASSO REGRESSION (PEARSON)

In Sec. 3.2.1, we claimed that MCS (Pearson) could serve as a noisy lower bound to better measure-
ments of similarity like CMCS (Pearson). This is because MCS is computed over concepts extracted
by the decomposition method, which introduces its own entanglements, disentanglements, and re-
construction error. In Fig. A9, we compare the penultimate layers of the four pairs of models and
compute both MCS (Pearson) and the CMCS (Pearson). We find that MCS is correlated to CMCS,
but, as expected, under-predicts the concept similarity. For this experiment only, due to the fact
that we computed Pearson correlation over images in the training set of the deep neural network,
we compare to the mean similarity score that is computed from the held-out folds of the five lasso
regression models. The held-out folds are not part of the training set for the regression models, but
were part of the training set of the deep neural network. However, this comparison is more fair, since
we compare the two methods on the same set of images.

A.8 ADDITIONAL REPLACEMENT TESTS

In Figs. A10 and A11 we visualize the replacement tests for the three pairs of models not presented
in the main text. We see the same effects as before, with a decrease in similarity corresponding to
increasing changes in model behavior. Notably, although DINO and MAE models (finetuned on
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NABirds) have high similarity relative to the other models, they show stronger changes in model
behavior for smaller changes in similarity. However, it is not clear whether these differences are due
to changes in dataset or changes in pretraining.
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B ADDITIONAL IMPLEMENTATION DETAILS

B.1 CONCEPT EXTRACTION

For each model considered in this study, we provide information about concept extraction in Tab. A2.
First, images are resized to 224x224 and then processed into 16 evenly spaced 64x64 pixel patches.
Patches are then resized back to the image resolution of the network. We sample 100 images per
model for concept extraction. All models taken from the timm library were trained with Inception
style random cropping. Custom trained models were trained using random resized cropping with
horizontal flipping. This ensures that the resized patches are in-domain for the network. To pro-
duce an activation matrix A that can be decomposed, the outputs of the network are processed. The
ResNets (He et al., 2016) produce outputs with a batch b, channel c, height h and width w dimen-
sion. To create a matrix that can be decomposed, we use global average pooling over the h and w
dimensions. The ViTs (Dosovitskiy, 2021) produce outputs with a batch b, sequence s, and feature
dimension d. We select the class token from the sequence dimension resulting in a two-dimensional
matrix. We use NNMF for ResNets since they contain ReLU layers and can produce positive only
activations. NNMF restricts the U and W matrix to be positive. For, ViT models, we use Semi-
NMF (Ding et al., 2008) which allows for both positive and negative values in the W matrix, but
requires positive values in the U matrix. We use a non-negative least squares solver to fit coefficients
to a new set of data points:

min
U1

∥A1 −U1W1∥
2

2
,

subject to U1 ≥ 0.
(5)

B.1.1 CONCEPT INTEGRATED GRADIENTS

Integrated gradients measures the importance of each pixel by averaging the gradients of the input
image, as the input image is varied from a baseline value to its true value (Sundararajan et al.,
2017). To compute concept integrated gradients the formulation is modified. Let h1 represent the
head of M1, i.e., the final layer(s), and A1 be the output activations from the layer preceding h1. As
described earlier, we factorize A1 ≈ U1W1. We denote row vectors of U1 as ri

1
∈ Rows(U1), such

that ri
1
∈ R

1×d. To link model predictions to learned concepts, we compute model predictions as

ẑi
1
= h1(r

i
1
W1), (6)

where ẑi
1
∈ R

1×d is a row vector of prediction probabilities. Then, to compute concept integrated
gradients, we average over the gradients as we linearly step from a baseline vector rb = 0 to ri

1

ϕ(ri
1
) = (ri

1
− rb)×

∫

1

0

∇ri
1

h1

((

αrb + (1− α)(ri
1
− rb

))

W)dα. (7)

Thus, for each class and concept we have a single value that represents the importance of that concept
to model decisions. We implement concept integrated gradients based on the implementation in the
xplique library (Fel et al., 2022a). For all experiments we integrate over 30 steps.

B.2 CONCEPT SIMILARITY

Correlation. Pearson and Spearman are computed using scikit-learn (Pedregosa et al., 2011). We
use 50 images for each class from the training set of the model. Images are resized to 224×224. We
use a patch size of 64×64 resulting in 16 patches per image. Thus, Pearson and Spearman correlation
is computed using 800 total patches per class. The patches are resized and passed through the model
to generate activations at a given layer.

Regression. We use lasso-regression (Tibshirani, 1996) with a 0.1 weight on the L1 penalty. We
visualize the effect of this parameter on similarity in Fig. A12. Regression models are trained on the
activations from at least 5 images (80 patches) and at most 200 images (3200 patches) sourced from
the original training split of the dataset. For each concept and class, we train five lasso-regression
models on different equally sized folds. The regression model weights are averaged and then the
model is evaluated on images from the validation/test split of the original dataset. The inputs and
targets are standardized to have a mean of zero and a standard deviation of one. The regression is
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trained using the Celer library (Massias et al., 2018). Finally, the predicted coefficients are unnor-
malized before the Pearson and Spearman correlation are computed. To compute feature importance
scores for regression models, we use the permutation feature importance implementation from scikit-
learn (Pedregosa et al., 2011). We use the default parameters with 5 repeats and the random state set
to 0.

Layerwise Comparisons. We list all of the layers used in the layerwise comparisons in Tab. A4.

Spearman Correlation. In all experiments, we found Spearman correlation to be very similar to
Pearson correlation, thus we have excluded these results.

Visualizing Dis-similar Concepts We select one patch per image in order of maximum concept
coefficient. The top n patches for the real images are excluded from the pool of images used to
visualize the under-predicted and over-predicted coefficients.

B.3 COMPUTATIONAL COST

All experiments were conducted using on a machine with an AMD Ryzen 7 3700X 8-Core Processor
and a single GEFORCE RTX 4090 GPU. In Table A3, we detail the computational cost of each step
of our proposed method. For a comparison between a ResNet-18 and a ResNet-50 on all 1000
classes of ImageNet, RSVC and MCS take approximately 20 hours.
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NAB R18 (s483) → NAB+SC R18

OverpredictedUnderpredictedTop-9 Concept Patches

NAB+SC R18 → NAB R18 (s483)

Figure A7: Impact of Training on Stanford Cars. In each row, we show visualizations for selected
concepts from comparing R18 NAB+SC to R18 s483. In the first two rows, we visualize two R18
NAB+SC concepts that R18 s483 cannot reproduce. The first concept is a racing stripe that is
associated with the Shelby Mustang. The R18 s483 model appears to sometimes entangle this
concept with a blue color, irrespective of the car model. The second concept appears to be common
features associated with Mercedes cars. For this concept, the difference between the two models is
more abstract and challenging to interpret. We visualize NAB R18 s483 concepts in the next three
rows. In the third row, we show a R18 s483 concept that R18 NAB+SC is unable to predict. We see
that this concept is very abstract without a clear pattern, but is generally related to sandy textures.
We were not able to find any low similarity car related concepts that had significant impact on model
decisions. Instead, we visualize two car-related concepts from R18 s483 that are largely predicable
by the R18 NAB+SC, but minor error in prediction leads to a significant behavioral change (kl-div)
during the replacement test. We find that these concepts are sensitive to the combination of the
presence of a car and a specific color. For the orange car concept, the R18 NAB+SC makes small
over-predictions with different shades of orange. For the yellow car concept, the over-predicted
group shows a different shade of yellow and a specific style of car. A discussion of these results is
available in Appendix A.3.
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A B

C D

Figure A8: SMCS vs CI. We visualize same-model concept similarity (SMCS) against the concept
importance. We find that reconstructing more important concepts tends to be easier for ResNets.
However, for some ViT models, there can be important learned concepts that are hard to predict.
Importantly, SMCS is significantly higher than CMCS indicating that the regression task is feasible.

Figure A9: MCS (Pearson) vs. Lasso Regression. We see that the most points lie above the red-
line. This means that lasso regression (followed by Pearson correlation on the predicted and real
coefficients) usually predicts a higher similarity value than the MCS values directly on the columns
of the coefficient matrix. Thus, we experimentally validate that the Pearson correlation acts as a
noisy lower bound on concept similarity.
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Figure A10: Replacement Test for DINO vs. MAE (NABirds). We find that for the DINO
vs. MAE comparison. As Pearson correlation decreases the l2-distance increases, KL-divergence
increases, and the match accuracy decreases. Notably, the Pearson correlation decreases a smaller
amount than for the other three pairs of models, but the change in the three metrics is on the same
order as the other comparisons. This suggests that these two models are more sensitive to changes
in a concept.
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Figure A11: Replacement Test for ViT-S vs. ViT-L and RN50 vs. ViT-S. We find that for these
model comparisons, as Pearson correlation decreases the l2-distance increases, KL-divergence in-
creases, and the match accuracy decreases.
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λ: 0.5

λ: 0.1

Figure A12: Impact of Regularization on Regression. Here we vary the λ for the L1 penalty
on the regression model. We use the first 200 classes of ImageNet for these visualizations. In the
left column, we visualize the distribution of similarity values for each value of λ. In the center,
we visualize the number of non-zero coefficients. In the right column, we visualize the similarity
vs. importance plots for λ = 0.1 and λ = 0.5. We find that, as expected, increasing the L1 penalty
reduces similarity by decreasing the number of non-zero coefficients. In all experiments in the paper,
we use an L1 penalty of 0.1.

k = 20

k = 10

Figure A13: Impact of Number of Concepts on Similarity. Here we vary k, the number of con-
cepts in the dictionary and explore the impact on the similarity distribution. We use the first 200
classes of ImageNet for these visualizations. In the left column, we plot the distribution of similarity
scores for 5, 10, 15, and 20 concepts. In the center column, we visualize the distribution of recon-
struction errors for different number of concepts. As expected, increasing the number of concepts
results in lower reconstruction errors. In the right column, we visualize similarity vs. importance for
10 and 20 concepts. We observe that increasing the number of concepts disproportionately increases
the number of dissimilar concepts. For all results in the paper we use 10 concepts.
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Volleyball | ResNet18 → ResNet50

Neuron 465 | Imp: 0.10 Neuron 340 | Imp: 0.08 Neuron 297 | Imp: 0.05

Neuron 33 | Imp: 0.02 Neuron 203 | Imp: 0.02 Neuron 355 | Imp: 0.01

ResNet18 Neurons

Figure A14: Neuron Analysis For Volleyball Concept Difference In Fig. A1 we visualized a RN50
concept for the volleyball class that the RN18 did not contain. In this figure, we explore the top-6
neurons used by the regression model to predict the RN50 concept. We find that Neuron 465 is
sensitive to edges between a volleyball net and the background. It seems to mistake some grid-like
textures for nets as well (image [1, 0], [1, 1], and [2, 0]). In addition, it seems to be sensitive to
volleyballs high in the air. Neuron 340 seems to activate for athletes in indoor gyms and seems
partial to lower bodies. Neuron 297 is sensitive to close-ups of nets with hands or arms in the frame.
In summary, these neuron visualizations help to explain some of the images over-predicted by the
regression model.
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Table A1: Model performance.

Model timm Model ImageNet
Accuracy

NaBirds
Accuracy

ResNet-18 resnet18.a2 in1k 70.6% −
ResNet-50 resnet50.a2 in1k 79.8% −
ViT-S vit small patch16 224.augreg in21k ft in1k 81.3% −
ViT-L vit large patch16 224.augreg in21k ft in1k 85.8% −
DINO ViT-B vit base patch16 224.dino − 71.2%
MAE ViT-B vit base patch16 224.mae − 71.2%

Table A2: Concept extraction.

Model Layer Post-
processing

Method Number of
Concepts

Patch Size Recon.
Error (Last

Layer)

ResNet-18 GAP NNMF 10 64 176.2
ResNet-50 GAP NNMF 10 64 205.5
ViT-S Class Token Semi-NMF 10 64 926.9
ViT-L Class Token Semi-NMF 10 64 1650.8
DINO ViT-B Class Token Semi-NMF 10 64 191.0
MAE ViT-B Class Token Semi-NMF 10 64 656.5

Table A3: Computational Cost for ResNet18 vs. ResNet-50 on ImageNet

Step sec/it Total Time

Activation Extraction (RN50) 1.50 25m
Concept Extraction (RN50) 2.00 33m
Concept Comparison (RSVC) Last Layer 9.00 2h30m
Concept Comparison (MCS) All Layers 14.56 4h
Concept Int. Grad 41.56 11h 30m
Regression Evaluation 2.30 38m
Total Time - 19h36m
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Table A4: Selected layers.

Model Layers

ResNet-18 act1, layer1.0.act1, layer1.0.act2, layer1.1.act1, layer1.1.act2, layer2.0.act1,
layer2.0.act2, layer2.1.act1, layer2.1.act2, layer3.0.act1, layer3.0.act2,
layer3.1.act1, layer3.1.act2, layer4.0.act1, layer4.0.act2, layer4.1.act1,
layer4.1.act2

ResNet-50 act1, layer1.0.act1, layer1.0.act2, layer1.0.act3, layer1.1.act1, layer1.1.act2,
layer1.1.act3, layer1.2.act1, layer1.2.act2, layer1.2.act3, layer2.0.act1,
layer2.0.act2, layer2.0.act3, layer2.1.act1, layer2.1.act2, layer2.1.act3,
layer2.2.act1, layer2.2.act2, layer2.2.act3, layer2.3.act1, layer2.3.act2,
layer2.3.act3, layer3.0.act1, layer3.0.act2, layer3.0.act3, layer3.1.act1,
layer3.1.act2, layer3.1.act3, layer3.2.act1, layer3.2.act2, layer3.2.act3,
layer3.3.act1, layer3.3.act2, layer3.3.act3, layer3.4.act1, layer3.4.act2,
layer3.4.act3, layer3.5.act1, layer3.5.act2, layer3.5.act3, layer4.0.act1,
layer4.0.act2, layer4.0.act3, layer4.1.act1, layer4.1.act2, layer4.1.act3,
layer4.2.act1, layer4.2.act2, layer4.2.act3

ViT-S block0, block1, block2, block3, block4, block5, block6, block7, block8, block9,
block10, block11

ViT-L block0, block1, block2, block3, block4, block5, block6, block7, block8, block9,
block10, block11, block12, block13, block14, block15, block16, block17,
block18, block19, block20, block21, block22, block23

DINO ViT-B block0, block1, block2, block3, block4, block5, block6, block7, block8, block9,
block10, block11

MAE ViT-B block0, block1, block2, block3, block4, block5, block6, block7, block8, block9,
block10, block11
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