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Abstract

Impressive performance in natural language processing tasks has been
achieved for many languages by transfer learning from large pretrained
Multilingual Language Models (MLLM). However, unavailability of large
corpora for most languages currently poses a significant hurdle. Thus it
is important for MLLMs to extract the most out of existing corpora. In
this regard, script diversity presents a challenge to MLLMs by reducing
lexical overlap between closely related languages. Therefore, transliterat-
ing closely related languages that use different writing scripts to a common
script may improve the downstream task performance of MLLMs. In this
paper, we empirically measure the effect of transliteration on the perfor-
mance of MLLMs by focusing on the Indo-Aryan language family, which
has the highest script diversity. We pretrain two ALBERT models from
scratch, where one is pretrained with original scripts and the other after
transliterating to a common script. Afterward, we evaluate the models on
the IndicGLUE benchmark. We perform Mann-Whitney U test on the per-
formance metrics of the models to rigorously verify whether the effect of
transliteration is significant or not. We find that transliteration benefits
the low-resource languages without negatively affecting the comparatively
high-resource languages. We also measure the cross-lingual representation
similarity (CLRS) of the models using centered kernel alignment (CKA) on
parallel sentences of eight languages from the FLORES-101 dataset. We
find that the hidden representations of the transliteration-based model have
higher and more stable CLRS scores.

1 Introduction

In the last few years, we have seen impressive advances in many NLP tasks. These advances
have been primarily led by the availability of large representative corpora and improvement
in the architecture of large language models. While improving model architectures, training
methods, regularization techniques, etc., can help advance the state of NLP in general, the
unavailability of large, diverse corpora is the bottleneck for most languages (Joshi et al.,
2020). However, creating representative and inclusive corpora is an ongoing process and is
not always possible for many low-resource languages. Thus to inclusively advance the state
of NLP across languages, it is crucial to develop techniques for training MLLMs that can
extract the most out of existing multilingual corpora.
Here we focus on the issue of diverse writing scripts used by closely related languages that
may prevent MLLMs from learning good cross-lingual representations. For example, the
Indo-Aryan family of languages uses at least six different scripts among them. Previous
papers (Pfeiffer et al., 2021) have noted that low-resource languages that use unique scripts
tend to have very few tokens representing them at the tokenizer. As a result, these lan-
guages tend to have more UNKnown tokens, and the words in these languages tend to be
more split up by sub-word tokenizers. While this issue is evident for Indian languages,
there are other examples of closely related languages separated by different scripts such
as Serbian and Croatian. Often we can easily transliterate from one script to another us-
ing rule-based systems. For example, there are established standards that can be used to
transliterate Greek (ISO 843), Cyrillic (ISO 9), Indic scripts (ISO 15919), and Thai (ISO
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11940) to the Latin script. In this paper, We focus on the Indo-Aryan language family and
empirically measure the effect of transliteration on the downstream performance of MLLMs.
The linguistic relatedness in the Indo-Aryan language family is discussed in appendix A.1.
First, we pretrain two ALBERT base (Lan et al., 2020) models from scratch on the Indo-
Aryan languages of the OSCAR corpus (Ortiz Su’arez et al., 2019), where one is pretrained
with original scripts and the other after transliterating to a common script. Then, we eval-
uate the models on four diverse downstream tasks from the IndicGLUE benchmark dataset,
which are Wikipedia Section Title Prediction (WSTP), News Category Classification (NCC),
Named Entity Recognition (NER), and Cloze-Style Question Answering (CSQA). Addition-
ally, we evaluate the models on five different public datasets spanning three different tasks,
Article Genre Classification (AGC), Sentiment Analysis (SA), and Discourse Mode Classifi-
cation (DMC). We use nine random seeds on all downstream finetuning tasks. To rigorously
compare the two models, we perform the Mann-Whitney U test (MWU) between the uni-
script model (group 1) and the multi-script model (group 2). MWU test lets us verify
whether the performance differences of the two models are significant or not. Apart from
statistical significance, we also report three different effect sizes to conclusively determine
whether the magnitude of improvement due to transliteration is useful in practice. Using the
MWU test, we conclude that transliteration significantly benefits the low-resource languages
without negatively affecting the comparatively high-resource languages.
We also measure the tokenizer quality and the cross-lingual representation similarity (CLRS)
to understand why the uni-script model performs better than the multi-script model. To
measure tokenization quality, we use subword fertility and unbroken ratio (Ács, 2019; Rust
et al., 2021). To measure the CLRS, we use the centered kernel alignment (CKA) (Kornblith
et al., 2019) similarity score. We measure the CKA similarity score between the hidden
representations of the models on the parallel sentences of eight Indo-Aryan languages from
the FLORES-101 dataset(Goyal et al., 2021). We find that, compared to the multi-script
model, the uni-script model achieves a higher CKA score and it is more stable throughout
the hidden layers of the uni-script model. Based on this, we conclude that the uni-script
model learns better cross-lingual representation than the multi-script model.
In summary, our contributions are primarily three-fold:

1. We find that transliteration significantly benefits the low-resource languages without
negatively affecting the comparatively high-resource languages.

2. We establish this finding through rigorous experiments and show the statistical
significance along with the effect size of transliteration using the Mann-Whitney U
test.

3. Using CKA on the FLORES-101 dataset, we show that transliteration helps MLLMs
learn better cross-lingual representation.

2 Motivation and Background

In their study, Joshi et al. (2020) showed the resource disparity between low-resource and
high-resource languages, and (Ruder, 2020) discussed the necessity of working with low-
resource languages. A large body of work suggests that language-relatedness can help
MLLMs achieve better performance on low-resource languages by leveraging related high-
resource languages. For instance, (Pires et al., 2019) found that lexical overlap improved
mBERT’s multilingual representation capability even though it learned to capture multi-
lingual representations with zero lexical overlaps. (Dabre et al., 2017) showed that transfer
learning in the same or linguistically similar language family gives the best performance for
NMT. (Lauscher et al., 2020) found that language relatedness is crucial for POS-tagging
and dependency parsing tasks. Although, corpus size is much more important for tasks
like NLI and Question Answering. (Wu & Dredze, 2020) demonstrated bilingual BERT can
outperform monolingual BERT on low-resource languages when the bilingual languages are
linguistically closely related. Nevertheless, mBERT outperforms bilingual BERT when it
comes to low-resource languages. However, one of the major challenges in leveraging transfer
between high-resource and low-resource languages is overcoming the script barrier. Script
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barrier exists when multiple closely related languages use different scripts. (Anastasopou-
los & Neubig, 2019) found that for morphological inflection, script barrier between closely
related languages impedes cross-lingual learning. However, transliteration and phoneme-
based techniques have been proposed to solve this issue. For example, (Murikinati et al.,
2020) expanded upon (Anastasopoulos & Neubig, 2019) and showed that both translit-
eration and grapheme to phoneme (g2p) conversion removes script barrier and improves
cross-lingual morphological inflection and (Rijhwani et al., 2019) showed that pivoting low-
resource languages to their closely related high-resource languages results in better zero shot
entity linking capacity and used phoneme-based pivoting to overcome the script barrier.
(Bharadwaj et al., 2016) showed that phoneme representation outperformed orthographic
representations for NER. (Chaudhary et al., 2018) also used phoneme representation to
resolve script barrier and adapt word embeddings to low-resource languages. (Goyal et al.,
2020) and (Song et al., 2020) both utilized transliteration and showed that language related-
ness was required for improving performance on NMT. (Amrhein & Sennrich, 2020) studied
how transliteration improved NMT and came to the conclusion that transliteration offered
significant improvement for low-resource languages with different scripts. (Khemchandani
et al., 2021) showed on Indo-Aryan languages that language relatedness could be exploited
through transliteration along with bilingual lexicon-based pseudo-translation and aligned
loss to incorporate low-resource languages into pretrained mBERT. (Muller et al., 2021a)
showed that for unseen languages, script barrier hindered transfer between low-resource and
high-resource languages for MLLMs and transliteration removed this barrier. They showed
that transliterating Uyghur, Buryat, Erzya, Sorani, Meadow Mari, and Mingrelian to Latin
script and finetuning mBERT on the respective corpus with masked language modeling ob-
jective improved their downstream POS performance significantly. (Dhamecha et al., 2021)
showed that transliterating Indo-Aryan languages improved multilingual language model
performance. In contrast, (K et al., 2020) and (Artetxe et al., 2020) seem to show that
multilingual BERT can learn cross-lingual representations without any lexical overlap, a
shared vocabulary, or joint training. However, these works focus on zero shot cross-lingual
transfer learning where the models are finetuned on one language and evaluated on another.
From the literature, it can be seen that apart from g2p, many in the community believe
transliteration to be a potential solution for script barriers. However, most of the work shows
the benefits of transliteration for NMT. Nevertheless, there is no solid empirical analysis of
the effects of transliteration for MLLMs apart from (Dhamecha et al., 2021; Muller et al.,
2021a), which are our contemporary studies. Hence, the motivation behind this paper is to
provide a solid empirical analysis of the effect of transliteration for MLLMs with statistical
analysis and determine if it helps models learn better cross-lingual representation.
Several techniques have recently been used to study the hidden representations of multilin-
gual language models. (Kudugunta et al., 2019) study CLRS of NMT models using SVCCA
(Raghu et al., 2017). (Singh et al., 2019) used PWCCA (Morcos et al., 2018) to study the
CLRS of mBERT and found that it drastically falls with depth. (Wu et al., 2020) have used
CKA to study the CLRS of bilingual BERT models. They found that similarity is highest
in the first few layers and drops moderately with depth. (Muller et al., 2021b) used CKA
to study CLRS of mBERT before and after finetuning on downstream tasks. They found
in all cases that CLRS increases steadily in the first five layers, then it decreases in the
later layers. From this, they conclude that mBERT learns multilingual alignment in the
early layers and preserves it throughout finetuning. A contemporary work (Del & Fishel,
2021) has applied various similarity measures to understand CLRS of various multilingual
masked language models. Their results also show that CLRS increases in the first half of
the models, while in the later layers, this similarity steadily falls.

3 Experiment and Results

3.1 Dataset

We pretrained two ALBERT base models from scratch on a subset of the OSCAR corpus.
OSCAR corpus is a large multilingual corpus extracted from Common Crawl that contains
hundreds of different languages. We use the unshuffled deduplicated version of OSCAR
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corpus available via Huggingface datasets library (Lhoest et al., 2021). We pretrain on Pan-
jabi, Hindi, Bangla, Oriya, Assamese, Gujarati, Marathi, Sinhala, Nepali, Sanskrit, Goan
Konkani, Maithili, Bihari, and Bishnupriya portion of the OSCAR corpus. The pretraining
dataset details are given in appendix A.5.
We evaluate the models on four downstream tasks from IndicGLUE, which are NCC, WSTP,
CSQA, and NER (Kakwani et al., 2020). In addition, we evaluate the models on other pub-
licly available datasets. Specifically, on BBC Hindi News Classification, Soham Bangla News
Classification, iNLTK Headlines Classification, IITP Movie, and Product Review Sentiment
Analysis(Akhtar et al., 2016), and MIDAS Discourse Mode Classification(Dhanwal et al.,
2020) datasets.

3.2 Pretraining

Corpus Preparation: Since the OSCAR corpus contains raw text from the Web, we
apply a few filtering and normalization. First, we discard entries where the dominant
script does not match the language tag provided by the OSCAR corpus. Then we use the
IndicNLP normalizer(Kunchukuttan, 2020) to normalize the raw text. For XLM-Indic, we
then transliterate all the text to ISO-15919 format using the Aksharamukha(Rajan, 2015)
library.

Tokenizer Training: Next, we train two SentencePiece tokenizers (Kudo & Richardson,
2018) on the transliterated and the non-transliterated corpus with a vocabulary size of
50,000. Then we use the trained tokenizer and the sentence-splitter from the IndicNLP
library to split long entries from the corpus at sentence boundaries so that no entry may
have more than 512 tokens. Finally, we discard short entries (<512 characters) to improve
the training efficiency.

ALBERT Model Training: We first pretrained an ALBERT base model from scratch on
the non-transliterated corpus as our baseline. Afterward, we pretrained another ALBERT
base from scratch on the transliterated corpus. We chose the ALBERT base model due
to computing constraints. We trained the models on a single TPUv3 VM. Both models
were trained using the same hyperparameters. We followed the hyperparameters used in
(Lan et al., 2020) except for batch size and learning rate. The pretraining objective is
also the same ase (Lan et al., 2020). The hyperparameter values and details are presented
in the appendix A.3. Each model took about 7.5 days to train. We use the ALBERT
implementation from the Huggingface Transformers Library (Wolf et al., 2020). Henceforth,
unless mentioned otherwise, the non-transliteration or multi-script model will be called the
baseline model, and the transliteration or uni-script model will be called XLM-Indic.

3.3 Statistical Analysis

We perform statistical analysis to determine if the performance differences between base-
line and XLM-Indic are significant. In short, the statistical analysis tells us the effect of
transliteration on model performance. For this purpose, we perform Mann–Whitney U test
(MWU) (Mann & Whitney, 1947; Wilcoxon, 1945). MWU is a non-parametric hypothesis
test between two groups/populations. MWU is chosen because it has weak assumptions.
The only assumptions of MWU are that the samples of the two groups are independent
of each other, and the samples are ordinal. Under the MWU, our null hypothesis or h0
is that the performances of XLM-Indic (group 1) and baseline (group 2) are equivalent,
and the alternative hypothesis or ha is that the performances (groups) are non-equal. We
set our confidence interval α at 0.05 and reject the h0 for p-values < α. We also report
three test statistics as p-value only give statistical significance, which can be misleading at
times(Sullivan & Feinn, 2012).
The test statistics are three different effect sizes that convey three different information.
These test statistics are absolute effect size (δ), common language effect size (ρ ), and
standardized effect size. The absolute effect size δ is the difference between the mean of the
models’ performance metric, which is given as,
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δ = µXLM-Indic-µBaseline

for any given task and language. For any given task, if the h0 is rejected, a positive δ
indicates XLM-Indic is better, and a negative δ indicates the baseline is better. ρ gives us
the probability of superiority of one group being better performing between given two groups.
That is the probability that a random performance sample of XLM-Indic is greater than a
random performance sample of the baseline. The last test statistics is standardized effect
size which indicates the magnitude of difference between the performance values of XLM-
Indic (group 1) and baseline (group 2). Standardized effect size shows us how realistically
significant the performance differences are between models even if the performance difference
is statistically significant. It gives us a value between 0 to 1. and its ranges are: small
effect ( 0 ≤ std. effect ≤ 0.3) , medium effect ( 0.3 < std. effect ≤ 0.5) and large
effect (0.5 < std. effect). We show the standardized effect size only on public datasets. We
performed MWU on all downstream tasks except CSQA. On CSQA, we only report the δ.
The MWU is performed using the SciPy library (Virtanen et al., 2020), and the results are
further validated using (2017, 2017).

3.4 Downstream Finetuning

We finetune the models on each downstream task independently. The hyperparameters are
selected based on the recommendations in (Mosbach et al., 2021). The specific hyperpa-
rameters used for each task are reported in the appendix A.4. On all tasks, we finetune
with nine random seeds and report the average and standard deviation of the metrics. In
Table 1 and Table 3, we report the performances on IndicGLUE benchmark tasks and in
Table 2 on other publicly available datasets. Here we discuss each of the tasks and com-
pare the performance of XLM-Indic with the baseline model. We show the results from
IndicBERT(Kakwani et al., 2020) and (Dhamecha et al., 2021) as independent baselines.
On some tasks, the performance of XLM-Indic is observably better than the baseline. For
WSTP and NER, XLM-Indic shows improvement by several percentage points over the
baseline on all languages. Conversely, on other tasks, the difference is nuanced, and it is
not clear whether XLM-Indic is actually performing better or not. An example of this can
be seen in the iNLTK Gujarati News Classification task shown in Table 2. We discuss these
nuanced results in-depth in the latter part of this section under our statistical analysis.

Wikipedia Section Title Prediction This is a multiple-choice question-answer task from
IndicGLUE. On this task, we predict the title of a Wikipedia article section from four
choices. However, we train a sequence classification model instead of a multiple-choice
question-answer model for simplicity. This task is the same across all languages. Thus
we simultaneously finetune the model on all these languages. In Table 1, we report the
test set accuracy of different models on this task. Here, XLM-Indic performs significantly
better than the baseline. A ρ value of 1 for all languages indicates that XLM-Indic will
always perform better than the baseline. The δ value of Oriya (7.12), Gujarati (6.02), and
Assamese (5.04) indicates that transliteration helps comparatively low-resource languages
more compared to Hindi (4.06) and Bengali (3.02).

News Category Classification: This is a collection of news article classification tasks
from the IndicGLUE benchmark on five languages. The dataset sizes vary widely. For
example, the Oriya dataset is about ten times the Gujarati dataset. Thus this task helps
us test the finetuning capability of the models on classification tasks with different dataset
sizes. In Table 1, we report the test set accuracy of different models on this task. We see
our first failure to reject the null hypothesis case for the Bengali and Marathi classification
tasks. Even though the δ is negative, we can not reject the null hypothesis for Bengali and
Marathi as the p-values are 0.181 and 0.1683, respectively. The ρ for these two tasks show
that XLM-Indic can outperform the baseline only 31% of the time. For Panjabi (δ of 1.07)
and Oriya (δ of 0.68), the ρ, indicates that XLM-Indic can always outperform baseline.
However, for Gujarati (δ of 0.60), XLM-Indic can outperform the baseline 80% of the time.
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Table 1: Results on Classification Tasks from IndicGLUE Benchmark

Model pa hi bn or as gu mr avg

Wikipedia Section Title Prediction
Independent Baseline
mBERT (Dhamecha et al., 2021) 76.48 80.81 82.85 28.29 - 78.58 84.38 71.90
XLM-R (Kakwani et al., 2020) 70.29 76.92 80.91 68.25 56.96 27.39 77.44 65.45
IndicBERT base (Kakwani et al., 2020) 67.39 74.02 80.11 57.14 65.82 68.79 72.56 69.40
IndicBERT large (Kakwani et al., 2020) 77.54 77.80 82.66 68.25 56.96 52.23 77.44 70.41

Ours
Baseline 74.33±0.83 78.18±0.33 81.18±0.28 74.35±1.2 76.70±0.83 76.37±0.53 79.10±0.84 77.17
XLM-Indic 77.55±0.61 82.24±0.18 84.38±0.29 81.47±0.99 81.74±0.82 82.39±0.27 82.74±0.52 81.78

Test statistics
δ 3.22 4.06 3.20 7.12 5.04 6.02 3.64 4.61
p-value 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 -
ρ 1 1 1 1 1 1 1 -

News Category Classification
Independent Baseline
XLM-R (Kakwani et al., 2020) 94.87 - 98.29 97.07 - 96.15 96.67 96.61
mBERT (Kakwani et al., 2020) 94.87 - 97.71 69.33 - 84.62 96.67 88.64
IndicBERT base (Kakwani et al., 2020) 97.44 - 97.14 97.33 - 100.00 96.67 97.72
IndicBERT large (Kakwani et al., 2020) 94.87 - 97.71 97.60 - 73.08 95.00 91.65

Ours
Baseline 96.83±0.19 - 98.14±0.14 98.09±0.16 - 98.80±0.43 99.58±0.25 98.30
XLM-Indic 97.90±0.17 - 97.99±0.22 98.77±0.12 - 99.40±0.54 99.47±0.21 98.70

Test statistics
δ 1.07 - -0.15 0.68 - 0.60 -0.18 0.40
p-value 0.0003 - 0.181 0.0004 - 0.03084 0.1683 -
ρ 1 - 0.31 1 - 0.80 0.31 -

NER (F1-Score)
Independent Baseline
mBERT (Dhamecha et al., 2021) 50.00 86.56 91.81 19.05 92.31 68.04 91.27 71.29
XLM-R (Kakwani et al., 2020) 17.86 89.62 92.95 25.00 66.67 55.32 87.86 62.18
IndicBERT base (Kakwani et al., 2020) 21.43 90.30 93.39 8.69 41.67 54.74 88.71 56.69
IndicBERT large (Kakwani et al., 2020) 44.44 86.81 91.85 35.09 43.48 70.21 87.73 65.66

Ours
Baseline 76.69±1.5 91.80±0.42 96.39±0.19 84.18±1.8 75.45±1.8 69.10±2.9 88.72±0.40 83.19
XLM-Indic 85.42±1.9 92.93±0.21 97.31±0.22 93.54±0.58 89.06±2.2 80.16±0.15 90.56±0.44 89.85

Test statistics
δ 8.73 1.13 0.92 9.36 13.61 11.06 1.84 6.66
p-value 0.0004066 0.0004066 0.0003983 0.0004038 0.000401 0.0004066 0.0004095 -
ρ 1 1 1 1 1 1 1 -

orange indicates baseline and XLM-Indic are equal and blue indicates XLM-Indic is better

Named Entity Recognition: We use the balanced Wikiann dataset from Rahimi et al.
(2019) for this task. Similar to WSTP, we simultaneously finetune the models on all lan-
guages. In Table 1, we report the F1-scores of different models. As per the p-value, XLM-
Indic’s improvement over baseline is statistically significant. We specifically see that as per
δ, XLM-Indic makes significant improvements on Panjabi, Oriya, Assamese, and Gujarati
NER. The ρ for all languages indicate that XLM-Indic can always outperform the baseline
on all Indo-Aryan family of languages. Similar to WSTP, the δ values show that transliter-
ation helps low-resource languages more. For instance, the δ for Panjabi, Oriya, Assamese,
and Gujarati are 8.73, 9.36, 13.61, and 11.06, respectively. We can also see improvement on
Hindi (1.13), Bengali (0.92), and Marathi (1.84) NER.

Table 2: Results on Public Datasets

Language Dataset IndicBERT-base Baseline XLM-Indic Test Statistics
Accuracy F1-score Accuracy F1-Score δ p-value ρ Standardized effect size F1-score

Article Genre Classification
hi BBC News 74.60 77.28±1.5 46.47±4.6 79.14±0.60 48.59±0.27 2.12 0.4363 0.62 0.19
bn Soham News Article Classification 78.45 93.22±0.49 91.12±0.85 93.89±48 91.75±0.73 0.63 0.05031 0.78 0.46
gu INLTK Headlines 92.91 90.41±0.69 88.82±0.73 90.73±0.75 89.14±0.88 0.32 0.5457 0.59 0.15
mr INLTK Headlines 94.30 92.21±0.23 89.23±0.54 92.04±0.47 89.09±0.78 -0.14 0.6665 0.43 0.10

Sentiment Analysis
hi IITP Product Reviews 71.32 76.33±0.84 74.04±0.99 77.18±0.77 74.53±0.98 0.49 0.3865 0.63 0.21
hi IITP Movie Reviews 59.03 65.91±2.2 65.26±2.2 66.34±0.16 65.87±1.6 0.61 0.5457 0.59 0.15

Discourse Mode Classification
hi MIDAS Discourse 78.44 78.39±0.33 47.26±6.2 78.54±0.91 63.80±3.2 16.54 0.00004 1 0.83

orange indicates baseline and XLM-Indic are equal and blue indicates XLM-Indic is better
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Article Genre, Sentiment & Discourse Mode Classification: We evaluate the models
on publicly available sequence classification datasets. Most of these classification tasks are
highly skewed. Thus we report F1 scores in addition to accuracy on these tasks. We
encourage others to do so in the future. As stated earlier, apart from δ and ρ, we also
report standardized effect size on these datasets as their difference were not as pronounced
as the IndicGLUE tasks. These tasks show one of the major reasons why multi-
seeded results along statistical analysis are imperative. We present our results in
Table 2. We only show the test statistics for the F1-score here. The test statistics for
accuracy are provided in appendix A.6. For BBC News classification, we can see that even
though the δ for Hindi is 2.12, there is no statistically significant difference in the models’
performance. The null hypothesis can not be rejected due to the p-value being 0.4363, and
the standardized effect size is small (0.19). Both of these are due to the standard deviation of
the baseline model, which is (±4.6). However, ρ indicates that XLM-Indic would outperform
the baseline 62% of the time. The Soham Articles classification, a Bengali news classification
task with six classes, is marginally rejected due to the p-value being 0.05031. Nevertheless,
the standardized effect size is medium (0.46), and as per ρ, XLM-Indic outperforms the
baseline 78% of the time. For INLTK Headline classification task, we see that both models
are equivalent for Gujarati and Marathi with a p-value of 0.5457 and 0.6665, respectively.
Both of them have a small effect size (Gujarati 0.15 and Marathi 0.10). The ρ indicates
that XLM-Indic outperforms the baseline 59% of times for Gujarati and 43% of times for
Marathi. On sentiment analysis tasks, we see a similar trend. Both models are equivalent
performance wise with a p-value of 0.3865 for IITP Product Review and 0.5457 for IITP
Movie review. The standardized effect size for the tasks is 0.21 and 0.15, respectively, which
indicates that the standardized effect is small for both tasks. Apart from that, as per ρ,
XLM-Indic outperforms the baseline 63% of times for IITP Product review and 59% of
the time for IITP Movie review. Lastly, for Discourse Mode Classification, we see that
XLM-Indic outperforms the baseline with a δ value of 16.54 and a p-value of 0.00004. The
standardized effect is large (0.83) and ρ indicates that XLM-Indic will always outperform
the baseline.

Effect of Transliteration: In general, we can see that the effect of transliteration is
mostly positive. However, it does not hurt the model’s performance either, as we can see
that the models performed equivalently in all the tasks where the null hypothesis could
not be rejected. Transliteration mostly helps the comparatively low-resource languages
(Panjabi, Oriya, Assamese), while high-resource languages also (Hindi, Bengali) see good
improvements as seen in WSTP and NER tasks. As for transliteration not hurting model
performance, we can see that in Table 2 excluding Discourse Mode Classification, in all
other tasks, XLM-Indic performance was equivalent to the baseline. While Discourse Mode
Classification had a statistically significant performance difference.

3.5 Zero Shot Capability Testing

We use the CSQA task to test the zero shot capability of the models as we can use the
pretrained masked language models without finetuning on this task. On CSQA, we are given
four entities to choose from to fill in a masked entity in a sentence. This task is designed
to test whether language models can be used as knowledge bases (Petroni et al., 2019). In
Table 3 we report the results. We see that XLM-Indic performs better on all languages.
The δ is particularly impressive in Gujarati (10.36), Assamese (3.44), and Marathi (3.39).
This indicates that XLM-Indic is better at representing entity knowledge than the baseline
model. This is not surprising as many entity names have the same spelling regardless of the
script used. XLM-Indic maps these to the same token, which helps it to construct better
knowledge representation. We found some issue with IndicBERT evaluation code for this
task. We discuss this issue in appendix A.2. We evaluate IndicBERT with our code and
report the results in Table 3.
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Table 3: Test accuracy on CSQA
Model pa hi bn or as gu mr avg

Cloze-style QA (Zero Shot)
Independent Baseline
IndicBERT base (Our Evaluation) 29.33 30.76 28.45 30.38 29.98 81.50 29.71 37.16

Ours
Baseline 31.04 36.72 35.19 34.63 33.92 59.86 36.14 38.21
XLM-Indic 32.77 38.52 36.38 36.00 37.36 70.22 39.53 41.54
δ 1.73 1.8 1.19 1.37 3.44 10.36 3.39 3.33

orange indicates baseline and XLM-Indic are equal and blue indicates XLM-Indic is better than baseline

4 Why Transliteration Works

In this section, we analyze why XLM-Indic performs better than the baseline model from
two perspectives, tokenization quality, and CLRS.

4.1 Tokenizer Quality Analysis

As discussed in 1 and 2, we expect the transliteration model to exploit better tokenization
across the languages. Whereas the same word written in six different scripts gets mapped
to six different tokens in the baseline model, these get mapped to the same token in the
transliteration model. Thus we expect the tokenizer to more efficiently tokenize a given
text in the case of the transliteration model.. Following (Ács, 2019) and (Rust et al., 2021),

(a) Subword Fertility. (b) Unbroken Ratio.
Figure 1: Subword fertility (lower is better) and unbroken ratio (higher is better)

we measure the subword fertility (average number of tokens per word) and the ratio of
words unbroken by the tokenizer. From figure 1, we can see that transliteration reduces the
splitting of words. This indicates that many words that were represented by different tokens
in the baseline model are represented by a single token in the transliteration model.

4.2 Cross-lingual Representation Similarity

Following (Muller et al., 2021b), (Wu et al., 2020) and (Del & Fishel, 2021) we apply CKA to
measure CLRS. We use the CKA implementation from the Ecco library (Alammar, 2021).
We use parallel sentences on eight Indo-Aryan languages from the FLORES-101 (Goyal
et al., 2021) dataset. This is a dataset of professionally translated parallel sentences on 101
languages. We only consider Panjabi, Hindi, Bengali, Oriya, Assamese, Gujarati, Marathi,
and Nepali sentences from the FLORES-101 dataset as these are the only ones present in
the pretraining corpus.
First, we extract the hidden state representations of the models on these parallel sentences.
Then for each language pair, we calculate the CKA similarity score between the hidden state
representations of the corresponding layers. For example, we calculate the CKA similarity
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(a) Baseline (b) XLM-Indic
Figure 2: CKA Similarity Score for the baseline model and XLM-Indic

score between layer eight hidden state representations of Bengali and Hindi parallel sen-
tences. Then for each language, we average its CKA similarity scores with other languages
per layer. In Figure 2 we plot this average CKA similarity for each layer of the models for
each language. We see that XLM-Indic retains high CLRS score throughout the model. On
the other hand, the CLRS score drops in the middle and end layers of the baseline model.
Overall the CLRS score of XLM-Indic is more stable. This indicates that XLM-Indic has
learned better cross-lingual representations. We show the individual similarity figures for
all language pairs in appendix A.9.

5 Conclusion and Future Work

In this paper, we found that transliterating closely related languages to a common script
improves MLLM performance and leads to learning better CLRS. We established this by
conducting rigorous empirical and statistical analysis to quantify the statistical significance
and effect size of transliteration on MLLM for Indo-Aryan languages which have the largest
script diversity. We found that transliteration especially improved the performance of com-
paratively low-resource languages and did not hurt the performance of high-resource lan-
guages. This findings are in agreement with contemporary literature (Dhamecha et al.,
2021; Muller et al., 2021a). Our results indicate that in other scenarios where closely re-
lated languages from a language family use different scripts, transliteration can be used to
improve MLLM performance. For example, the Dravidian, South Slavic, and Turkic Family
of languages present similar scenarios. We would also like to implore our peers to include
more hypothesis tests in their studies against a strong baseline. Non-parametric tests like
MWU are easy to use and have a high level of interpretability. In future, we would like to
measure the impact of transliteration on larger models and more languages. Also, character-
based models hold more potential to exploit the lexical overlap enabled by transliteration.
Efficient Transformer models that can efficiently handle long sequences can be used to train
these character-level models.

6 Reproducibility Statement

We have taken great care to ensure our results are reproducible. The dataset details are pro-
vided in subsection 3.1, and the data processing steps and pretraining details are described
in 3.2. The MWU implementation details are provided in 3.3. Finetuning hyperparameters
are provided in appendix A.4. We have also provided our code as supplementary material.
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A Appendix

A.1 Linguistic relatedness in Indo-Aryan family

Many South Asian and Southeast Asian languages are intimately connected linguistically,
historically, phonologically(Littell et al., 2017) and phylogenetically. However, due to dif-
ferent scripts, it is difficult for MLLMs to fully exploit this shared information. Among the
languages we considered in this study we encounter six different scripts. These are shown
in Table 5. Nevertheless, these scripts have shared ancestry from ancient Brahmic script
(Hockett et al., 1997; Coningham et al., 1996) and have similar structures that we can easily
use to transliterate them to a common script. The ISO-15919 standard has been designed to
perform this transliteration. Also, many of these languages heavily borrow from Sanskrit,
and due to its influence, many words are shared among these languages. Therefore, due to
their relatedness and highly diverse script barrier, this family of languages presents a unique
opportunity to analyze the effects of transliteration on MLLMs.

A.2 Cloze Style QA IndicBERT Evaluation Issue

Since a word can be tokenized to multiple tokens by the subword tokenizer, correctly eval-
uating the model on this task requires special care. Specifically, we have to use the same
number of mask tokens as the number of subword tokens that a word gets split into. Then
we calculate the probability for the word by multiplying the probability of the subword to-
kens predicted by the masked language model. We found that on the IndicBERT evaluation
code, only a single mask token was used irrespective of the number of subword tokens that a
word gets split into. We do not think this is the correct way to evaluate a masked language
model on this task.
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A.3 Pretraining Hyperparameters

We used a batch size of 256, which is the highest that fits into TPU memory, whereas the
ALBERT paper used a batch size of 4096. As our batch size is 1/16th of the ALBERT
paper, we use a learning rate of 1e-3/8, which is approximately 1/16th of the learning rate
used in the ALBERT paper (1.76e-2). Additionally, we use the Adam optimizer(Kingma
& Ba, 2015) instead of the LAMB optimizer. The rest of the hyperparameters were the
same as the ALBERT paper. Specifically, we use a sequence length of 512 with absolute
positional encoding, weight decay of 1e-2, warmup steps of 5000, max gradient norm of 1.0,
and Adam epsilon of 1e-6. The models were trained for 1M steps.

A.4 Downstream Hyperparameters

All of our hyperparameters for downstream tasks are presented in Table 4. The batch size
was chosen to be the maximum that fits in memory. This was done so that each batch
contains approximately the same number of tokens. Otherwise the hyperparameters were
chosen following the recommendations of (Mosbach et al., 2021). On the highly IITP Movie
Review, IITP Product Review and MIDAS Discourse we found that this default setting
resulted in worse performance compared to the independent baselines. So we finetuned the
learning rate and classifier dropout on the validation set of these tasks.

Table 4: Hyperparameters for all tasks

Task TPU Batch Size Learning Rate Weight Decay Dropout Epochs Warmup Ratio

News Category Classification False 16 2e-5 0.01 0.1 20 0.10
Wikipedia Section-Title Prediction True 256 2e-5 0.01 0.1 3 0.10
Named Entity Recognition True 512 2e-5 0.01 0.1 20 0.10
BBC Hindi News Classification False 16 2e-5 0.01 0.1 20 0.10
Soham Bangla News Classification False 16 2e-5 0.01 0.1 8 0.10
iNLTK Headlines Classification False 256 2e-5 0.01 0.1 20 0.10
IITP Movie Review False 64 5e-5 0.01 0.25 20 0.10
IITP Product Review False 16 5e-5 0.01 0.5 20 0.10
MIDAS Discourse Mode False 32 2e-5 0.01 0.5 20 0.10

A.5 Dataset Details

Here we provide the corpus size details.

Table 5: Pretraining dataset details

Language Pretraining corpus size in GB Language Sub-family Script
hi 8.9 Central Indo-Aryan Devanagari
bn 5.8 Eastern Indo-Aryan Bengali-Assamese
mr 1.4 Southern Indo-Aryan Devanagari
ne 1.2 Northern Indo-Aryan Devanagari
si 0.783 Insular Indo-Aryan Sinhala
gu 0.705 Western Indo-Aryan Gujarati
pa 0.449 Northwestern Indo-Aryan Gurmukhi
or 0.18 Eastern Indo-Aryan Oriya
as 0.069 Eastern Indo-Aryan Bengali-Assamese
sa 0.036 Sanskrit Devanagari
bpy 0.0017 Eastern Indo-Aryan Bengali-Assamese
gom 0.0017 Southern Indo-Aryan Devanagari
bh 0.000034 Eastern Indo-Aryan Devanagari
mai 0.000011 Eastern Indo-Aryan Devanagari
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A.6 Public datasets accuracy test statistics

The MWU p-values and test statistics for public datasets accuracy is given in Table 6. We
can see that for BBC News (p-value 0.0088) and Soham Articles Classification (p-value
0.0090) XLM-Indic is better than the baseline with a δ of 1.86 and 0.67, respectively. Both
tasks have large standardized effect size (0.62 for both). However, as per ρ, XLM-Indic
outperforms the baseline 87% of the time. Whereas, the ρ for Soham News Article Classifi-
cation is 0.57. As for INLTK Headlines, XLM-Indic and the baseline perform equivalently.
On INLTK Headlines, the p-value for Gujarati (δ of 0.32) is 0.6249 and Marathi (δ of -0.17)
is 0.3503. On IITP Product Reviews, XLM-Indic outperforms the baseline with a δ of 0.85,
p-value of 0.4099 and ρ of 0.79.However, the standardized effect size is medium (0.48) for
the task. In contrast, on IITP Movie Reviews, both models are equivalent performance wise
with a δ of 0.15, p-value of 0.8941, ρ of 0.52 and a small (0.031) standardized effect. Finally,
we can see that both models performing equally on Discourse Mode Classification. The δ is
0.15 with a p-value of 0.7561 and a small (0.073) standardized effect size. However, as per
the ρ, XLM-Indic outperforms the baseline 45% of the time.

Table 6: Public datasets test statistics of accuracy

Language Dataset Test Statistics
δ p-value ρ Standardized effect size

Article Genre Classification
hi BBC News 1.86 0.0088 0.87 0.62
bn Soham News Article Classification 0.67 0.0090 0.57 0.62
gu INLTK Headlines 0.32 0.6249 0.57 0.12
mr INLTK Headlines -0.17 0.3503 0.36 0.22

Sentiment Analysis
hi IITP Product Reviews 0.85 0.04099 0.79 0.48
hi IITP Movie Reviews 0.15 0.8941 0.52 0.031

Discourse Mode Classification
hi MIDAS Discourse 0.15 0.7561 0.45 0.073

orange indicates baseline and XLM-Indic are equal and blue indicates XLM-Indic is better

A.7 Case Study on Soham Bangla News Classification:

In order to better understand the contrast between classification decision of XLM-Indic and
baseline model, using the Layer Integrated Gradients method (Sundararajan et al., 2017) as
a local self-explaining method, we performed multiple out of distribution adversarial exam-
ples to check the input features attribution difference between XLM-Indic and the baseline.
The experiments were performed using Soham Bangla News Classification finetuned mod-
els. Soham Bangla News Classification was chosen due to it being a multi-class classification
task. It has six classes which are ‘entertainment’, ‘international’, ‘kolkata’, ‘national’, ‘sport’
and ‘state’. The adversarial examples were created by mixing class dependant words. For
example, “They won the award for their acting performance.” should be classified as enter-
tainment. However, “They won the penalty by acting injured.” should be classified as sports
instead of entertainment. In our experiments, XLM-Indic tended to perform better com-
pared to baseline and capture more correct class dependant words instead of the adversarial
ones. However, providing certain class dependant keyword (i.e. ‘police’, ‘political, ‘actor’,
‘footballer’) let the baseline model fix its missclassification. We provide one such example
below.
We used the example, “েস রাস্তার পােশ উন্মােদর অিভনয় করেতা িকন্তু রাত হেল সুেযাগ েপেলই ডাকািত কর-
েতা।”, which translates to, “He used to act insane on the side of the road; however, he would
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Figure 3: Feature importance for baseline

Figure 4: Feature importance for XLM-Indic

rob whenever he got the chance at night.”. The true label for this example under Soham
News Classification should be ‘state’. Which is label 2 in the dataset. Here act is used as a
class dependant adversarial word to deviate the models towards ‘entertainment’. Whereas,
we would like the models to attribute ‘rob’, which is the the correct word . Figure 4 shows
the word attributions for the baseline model. We can see that the baseline classified the
sentence as ‘entertainment’ (label 4) and put positive attribution on অিভনয় , which means
act. On the other hand it put negative attribution on ডাকািত, which means rob. However,
XLM-Indic correctly classified the sentence and puts the expected positive and negative
attributions on ‘rob’ and ‘act’ respectively. Nevertheless, as stated earlier, allowing certain
class dependant keywords fixes the baselines misclassification. For example, we found that
adding ‘Police report states that’ in front of our provided example fixed the baseline models
prediction to the correct class.

A.8 Pretraining loss curves

Our pretraining loss curve is provided in figure 5

Figure 5: Pretraining loss: Baseline vs Transliteration model
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A.9 Cross-lingual Similarity of All Language Pairs

(a) Baseline PA-X (b) XLM-Indic PA-X

(c) Baseline HI-X (d) XLM-Indic HI-X

(e) Baseline BN-X (f) XLM-Indic BN-X

(g) Baseline OR-X (h) XLM-Indic OR-X
Figure 6: CKA of Baseline and XLM-Indic on all language pairs for pa, hi,bn and or
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(a) Baseline AS-X (b) XLM-Indic AS-X

(c) Baseline GU-X (d) XLM-Indic GU-X

(e) Baseline MR-X (f) XLM-Indic MR-X

(g) Baseline NE-X (h) XLM-Indic NE-X
Figure 7: CKA of Baseline and XLM-Indic on all language pairs
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