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ABSTRACT

Deep Reinforcement Learning (RL) is well known for being highly sensitive to
hyperparameters, requiring practitioners substantial efforts to optimize them for
the problem at hand. This also limits the applicability of RL in real-world scenar-
ios. In recent years, the field of automated Reinforcement Learning (AutoRL) has
grown in popularity by trying to address this issue. However, these approaches
typically hinge on additional samples to select well-performing hyperparameters,
hindering sample-efficiency and practicality. Furthermore, most AutoRL meth-
ods are heavily based on already existing AutoML methods, which were orig-
inally developed neglecting the additional challenges inherent to RL due to its
non-stationarities. In this work, we propose a new approach for AutoRL, called
AdaptiveQ-Network (AdaQN), that is tailored to RL to take into account the non-
stationarity of the optimization procedure without requiring additional samples.
AdaQN learns several Q-functions, each one trained with different hyperparam-
eters, which are updated online using the Q-function with the smallest approx-
imation error as a shared target. Our selection scheme simultaneously handles
different hyperparameters while coping with the non-stationarity induced by the
RL optimization procedure and being orthogonal to any critic-based RL algorithm.
We demonstrate that AdaQN is theoretically sound and empirically validate it in
MuJoCo control problems and Atari 2600 games, showing benefits in sample-
efficiency, overall performance, robustness to stochasticity and training stability.

1 INTRODUCTION

Deep Reinforcement Learning (RL) has proven effective at solving complex sequential decision
problems in various domains (Mnih et al., 2015; Haarnoja et al., 2018; Silver et al., 2017). De-
spite their success in many fields, deep RL algorithms suffer from brittle behavior with respect to
hyperparameters (Mahmood et al., 2018; Henderson et al., 2018). For this reason, the field of au-
tomated Reinforcement Learning (AutoRL) (Parker-Holder et al., 2022) has gained popularity in
recent years. AutoRL methods aim to optimize the hyperparameter selection so that practitioners
can avoid time-consuming hyperparameter searches. AutoRL methods also seek to minimize the
number of required samples to achieve reasonable performances so that RL algorithms can be used
in applications where a limited number of interactions with the environment is possible. AutoRL is
still in its early stage of development, and most existing methods adapt techniques that have been
shown to be effective for automated Machine Learning (AutoML) (Hutter et al., 2019; Falkner et al.,
2018). However, RL brings additional challenges that have been overlooked till now, despite notori-
ously requiring special care (Igl et al., 2021). For example, due to the highly non-stationary nature of
RL, it is unlikely that a static selection of hyperparameters works optimally for a given problem and
algorithm (Mohan et al., 2023). This has led to the development of several techniques for adapting
the training process online to prevent issues like local minima (Nikishin et al., 2022; Sokar et al.,
2023), lack of exploration (Klink et al., 2020), and catastrophic forgetting (Kirkpatrick et al., 2017).
In this work, we focus on the line of work in the AutoRL landscape that aims at dynamically chang-
ing the hyperparameters during training to achieve good performances from scratch as opposed to
approaches that aim at finding promising static hyperparameters to use in a sub-sequent training.

We introduce a novel approach for AutoRL to improve the effectiveness of learning algorithms by
coping with the non-stationarities of the RL optimization procedure. Our investigation stems from
the intuition that the effectiveness of each hyperparameter selection changes dynamically after each
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Figure 1: Left: Each line represents a training of Q-Network (QN) with different hyperparameters.
Right: At the ith target update, Adaptive Q-Network (AdaQN) selects the network Qi (highlighted
with a crown) that is the closest to the previous target ΓQ̄i−1, where Γ is the Bellman operator.

training update. Building upon this observation, we propose to adaptively select the best-performing
hyperparameters configuration to carry out Bellman updates. To highlight this idea, we call our ap-
proach AdaptiveQ-Network (AdaQN). In practice, AdaQN uses an ensemble ofQ-functions, trained
with different hyperparameters, and selects the one with the smallest approximation error (Schaul
et al., 2015; D’Eramo & Chalvatzaki, 2022) to be used as a shared target for each Bellman update.
By doing this, our method considers several sets of hyperparameters at once each time the station-
arity of the optimization problem breaks, i.e., at each target update (Figure 1). In the following,
we provide a theoretical motivation for our selection mechanism and then, we empirically validate
AdaQN in MuJoCo control problems and Atari 2600 games, showing that it has several advantages
over carrying out individual runs with static hyperparameters. Importantly, by trading off different
hyperparameters configurations dynamically, AdaQN not only can match the performance of the
best hyperparameter selection at no cost of additional samples, but can also reach superior overall
performance than any individual run. Finally, we compare AdaQN against strong AutoRL baselines
and evince AdaQN’s superiority in finding good hyperparameters in a sample-efficient manner.

2 PRELIMINARIES

We consider discounted Markov decision processes (MDPs) defined as M = ⟨S, A, P , R, γ⟩,
where S and A are measurable state and action spaces, P : S × A → ∆(S)1 is a transition
kernel, R : S × A → R is a reward function, and γ ∈ [0, 1) is a discount factor (Puterman,
1990). A policy is a function π : S → ∆(A), inducing an action-value function Qπ(s, a) ≜
Eπ [

∑∞
t=0 γ

tR(st, at)|s0 = s, a0 = a] that gives the expected discounted cumulative return execut-
ing action a in state s, following policy π thereafter. The objective is to find an optimal policy
π∗ = argmaxπ V

π( · ), where V π( · ) = Ea∼π( · )[Qπ( · , a)]. Approximate value iteration (AVI)
and approximate policy iteration (API) are two paradigms to tackle this problem (Sutton & Barto,
1998). While AVI aims at estimating the optimal action-value function Q∗, i.e., the action-value
function of the optimal policy, API is a two-step procedure that alternates between Approximate
policy evaluation (APE), a method to evaluate the action-value function Qπ of the current policy π,
and policy improvement, which updates the current policy by taking greedy actions on Qπ .

Both AVI and APE aim to solve a Bellman equation, whose solution is Q∗ for AVI and Qπ for APE.
Those solutions are the fixed point of a Bellman operator Γ, where Γ is the optimal Bellman operator
Γ∗ for AVI, and the Bellman operator Γπ for APE. For a Q-function Q, a state s and an action a,
Γ∗Q(s, a) = r+γEs′∼P(s,a)[maxa′ Q(s′, a′)] and ΓπQ(s, a) = r+γEs′∼P(s,a),a′∼π(s′)[Q(s′, a′)].
Γ∗ and Γπ are γ-contraction mapping in the infinite norm. Because of this, these two methods re-
peatedly apply their respective Bellman operator, starting from a randomQ-function. The fixed point
theorem ensures that each iteration is closer to the fixed point of the respective Bellman equation.
Hence, the more Bellman iterations are performed, the closer the Q-function will be to the desired
one. In model-free RL, Γ∗ and Γπ are approximated by their empirical version that we note Γ̂ with-
out distinguishing between AVI and APE since the nature of Γ̂ can be understood from the context.
We denote Θ, the space ofQ-functions parameters. In commonQ-Network (QN) approaches, given
a fixed vector of parameters θ̄ ∈ Θ, another vector of parameters θ is learned to minimize

LQN(θ|θ̄, s, a, r, s′) = (Γ̂Qθ̄(s, a)−Qθ(s, a))2 (1)
for a sample (s, a, r, s′). Qθ̄ is usually called the target Q-function because it is used to compute the
target Γ̂Qθ̄ whileQθ is called the onlineQ-function. We refer to this step as the projection step since

1∆(X ) denotes the set of probability measures over a set X .
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the Bellman iteration ΓQθ̄ is projected back into the space ofQ-functions that can be represented by
our function approximations. The target parameters θ̄ are regularly updated to the online parameters
θ so that the following Bellman iterations are learned. This step is called the target update. We note
θ̄i the target parameters after the ith target update. In this work, at each timestep t, we aim at finding
the best agent of a population of size K where each element θkt is learned with a hyperparameter ζkt ,

max
k

J(θkt ) s.t. ∀k ∈ {1, ..,K}, θkt ∈ argmin
θ

f(θ; ζkt ), (2)

where J is the cumulative discounted return and f is the objective function of the learning process.

3 RELATED WORK

Methods for AVI or APE (Mnih et al., 2015; Dabney et al., 2018; Haarnoja et al., 2018; Bhatt et al.,
2024) are highly dependent on hyperparameters (Henderson et al., 2018; Andrychowicz et al., 2020;
Engstrom et al., 2019). AutoRL tackles this limitation by searching for effective hyperparameters.

We follow the categorization of AutoRL methods presented in Parker-Holder et al. (2022) to posi-
tion our work in the AutoRL landscape. Contrary to AdaQN, many approaches consider optimizing
the hyperparameters through multiple trials. A classic approach is to cover the search space with a
grid search or a random search (Hutter et al., 2019; Bergstra & Bengio, 2012). Some other methods
use Bayesian optimization to guide the search in the space of hyperparameters (Chen et al., 2018;
Falkner et al., 2018; Nguyen et al., 2020; Shala et al., 2022), leveraging the information collected
from individual trials. Those methods tackle the problem of finding the best set of hyperparameters
but do not consider changing the hyperparameters during a single trial, which would be more ap-
propriate for handling the non-stationarities inherent to the RL problem. To this end, evolutionary
approaches have been developed (Stanley et al., 2009; Jaderberg et al., 2019; Awad et al., 2021),
where the best elements of a population of agents undergo genetic modifications during training. As
an example, in SEARL (Franke et al., 2021), a population of agents is first evaluated in the environ-
ment. Then, the best-performing agents are selected, and a mutation process is performed to form the
next generation of agents. Finally, the samples collected during evaluation are taken from a shared
replay buffer to train each individual agent, and the loop repeats. Even if selecting agents based on
their performance in the environment seems reasonable, we argue that it hinders sample-efficiency
since exploration in the space of hyperparameters might lead to poorly performing agents. More-
over, if poorly performing agents are evaluated, low-quality samples will then be stored in the replay
buffer and used later for training, which could lead to long-term negative effects. This is why we
propose to base the selection mechanism on the approximation error, which does not require addi-
tional interaction with the environment. Other methods have considered evaluating the Q-functions
offline (Tang & Wiens, 2021). Most approaches consider the Bellman error ∥ΓQi −Qi∥ instead of
the approximation error ∥ΓQi−1 −Qi∥, where Qi is the Q-function obtained after i Bellman itera-
tions (Farahmand & Szepesvári, 2011; Zitovsky et al., 2023). However, this approach considers the
empirical estimate of the Bellman error which is a biased estimate of the true Bellman error (Baird,
1995). Lee et al. (2022) propose to rely on the approximation error to choose between two different
classes of functions in an algorithm called ModBE. AdaQN differs from ModBE since ModBE does
not adapt the hyperparameters at each Bellman iteration but instead performs several training steps
before comparing two classes of functions. Furthermore, the use of the approximation error can be
theoretically justified by leveraging Theorem 3.4 from Farahmand (2011), as shown in Section 4.

Meta-gradient reinforcement learning (MGRL) also optimizes the hyperparameters during train-
ing (Finn et al., 2017; Zahavy et al., 2020; Flennerhag et al., 2021). However, while MGRL fo-
cuses on tuning the target to ease the optimization process, AdaQN uses diverse online networks
to overcome optimization hurdles. This shift in paradigm leads AdaQN to avoid some of MGRL’s
shortcomings: AdaQN can work with discrete hyperparameters (e.g., optimizer, activation function,
losses, or neural architecture), only requires first-order approximation, and does not suffer from non-
stationarities when hyperparameters are updated since each online network is trained with respect to
its own hyperparameters (Xu et al., 2018). Finally, AdaQN fits best in the ”Blackbox Online Tun-
ing” cluster even if most methods in this cluster focus on the behavioral policy (Schaul et al., 2019;
Badia et al., 2020) or build the hyperparameters as functions of the state of the environment (Sutton
& Singh, 1994; White & White, 2016). For example, Riquelme et al. (2019) develop a method called
adaptive TD that selects between the TD-update or the Monte-Carlo update depending on whether
the TD-update belongs to a confidence interval computed from several Monte-Carlo estimates.
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4 ADAPTIVE TEMPORAL-DIFFERENCE TARGET SELECTION

Notoriously, when the AVI/APE projection step described in Section 2 is carried out for non-linear
function approximation together with off-policy sampling, convergence to the fixed point is no
longer guaranteed. Nevertheless, well-established theoretical results in AVI relate the approxima-
tion error ∥ΓQθ̄i−1

− Qθ̄i∥ at each target update i to the performance loss ∥Q∗ − QπN ∥, i.e., the
distance between the Q-function at timestep N during the training and the optimal one Q∗. For a
fixed number of Bellman iterations N , Theorem 3.4 from Farahmand (2011), stated in Appendix A,
demonstrates that the performance loss is upper bounded by a term that decreases when the sum of
approximation errors

∑N
i=1 ∥ΓQθ̄i−1

−Qθ̄i∥ decreases, i.e., every projection step improves. Hence,
minimizing the sum of approximation errors is crucial to get closer to the fixed point. However, due
to the complexity of the landscape of the empirical loss LQN (Mohan et al., 2023), using fixed hy-
perparameters to minimize each approximation error ∥ΓQθ̄i−1

−Qθ̄i∥ is unlikely to be effective and
can, in the worst case, lead to local minima (Nikishin et al., 2022; Sokar et al., 2023) or diverging
behaviors (Baird, 1995).

In this work, we tackle this problem by introducing a method that can seamlessly handle multiple
hyperparameters in a single AVI/APE training procedure to speed up the reduction of the perfor-
mance loss described above, compared to a fixed hyperparameter selection. This method, which we
call Adaptive Q-Network (AdaQN), learns several online networks trained with different hyperpa-
rameters. Crucially, to cope with the non-stationarity of the RL procedure, at each target update,
the online network with the lowest approximation error and thus the lowest performance loss, is
selected as a shared target network used to train all the online networks. This results in moving all
the networks of the ensemble towards the one that is currently the closest to the fixed point, thus
benefiting from the heterogeneous ensemble to speed up learning.

We denote (θk)Kk=1 the parameters of the online networks and θ̄i the parameters of the shared target
network after the ith target update. To minimize the ith approximation error, the optimal choice for
θ̄i given θ̄i−1, is the index of the closest online network from the target ΓQθ̄i−1

:

θ̄i ← θψ where ψ = argmin
k∈{1,...,K}

∥ΓQθ̄i−1
−Qθk∥22,ν , (3)

where ν is the distribution of state-action pairs in the replay buffer. Note that Equation (3) contains
the true Bellman operator Γ which is not known. Instead, we propose to rely on the value of the
empirical loss to select the next target network:

θ̄i ← θψ where ψ = argmin
k∈{1,...,K}

∑
(s,a,r,s′)∈D

LQN(θ
k|θ̄i−1, s, a, r, s

′), (4)

where D is the replay buffer. Theorem 4.1 shows under which condition the selected index in
Equation (4) is the same as the one in Equation (3). Importantly, this condition is valid when the
dataset is infinite and the samples are generated from the true distribution. Indeed, the empirical
Bellman operator is unbiased w.r.t. the true Bellman operator. The proof, inspired by the bias-
variance trade-off in supervised learning, can be found in Appendix A.
Theorem 4.1. Let (θk)Kk=1 ∈ ΘK and θ̄ ∈ Θ be vectors of parameters representing K + 1 Q-
functions. Let D = {(s, a, r, s′)} be a set of samples. Let ν be the distribution represented by the
state-action pairs present in D. We note Ds,a = {(r, s′)|(s, a, r, s′) ∈ D},∀(s, a) ∈ D.

If for every state-action pair (s, a) ∈ D, E(r,s′)∼Ds,a

[
Γ̂Qθ̄(s, a)

]
= ΓQθ̄(s, a), then we have

argmin
k∈{1,...,K}

||ΓQθ̄ −Qθk ||22,ν = argmin
k∈{1,...,K}

∑
(s,a,r,s′)∈D

LQN(θ
k|θ̄, s, a, r, s′).

Key to our approach is that each vector of parameters θk can be trained with a different optimizer,
learning rate, architecture, activation function, or any other hyperparameter that only affects its train-
ing. By cleverly selecting the next target network from a set of diverse online networks, AdaQN has
a higher chance of overcoming the typical challenges of optimization presented earlier. Importantly,
we prove that AdaQN is guaranteed to converge to the optimal action-value function with probability
1 in a tabular setting in Appendix A.1.
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Algorithm 1 Adaptive Deep Q-Network (AdaDQN). Modifications to DQN are marked in purple.

1: Initialize K online parameters (θk)Kk=1, and an empty replay buffer D. Set ψ = 0 and θ̄ ← θψ

the target parameters. Set the cumulative losses Lk = 0, for k = 1, . . . ,K.
2: repeat
3: Set ψb ∼ U{1, . . . ,K} w.p. ϵb and ψb = ψ w.p. 1− ϵb.
4: Take action at ∼ ϵ-greedy(Q

θψb
(st, ·)); Observe reward rt, next state st+1.

5: Update D ← D
⋃
{(st, at, rt, st+1)}.

6: every G steps
7: Sample a mini-batch B = {(s, a, r, s′)} from D.
8: Compute the shared target y ← r + γmaxa′ Qθ̄(s

′, a′).
9: for k = 1, ...,K do

10: Compute the loss w.r.t θk, LkQN =
∑

(s,a,r,s′)∈B (y −Qθk(s, a))
2.

11: Update Lk ← Lk + LkQN.

12: Update θk using its specific optimizer and learning rate from∇θkLkQN.
13: every T steps
14: Update ψ ← argmink Lk; Lk ← 0, for k ∈ {1, . . . ,K}.
15: Update the target network with θ̄ ← θψ .

4.1 ALGORITHMIC IMPLEMENTATION

Multiple algorithms can be derived from our formulation. Algorithm 1 shows an adaptive version
of Deep Q-Network (DQN, Mnih et al. (2015)) that we call Adaptive Deep Q-Network (AdaDQN).
Similarly, Adaptive Soft Actor-Critic (AdaSAC), presented in Algorithm 2, is an adaptive version of
Soft Actor-Critic (SAC, Haarnoja et al. (2018)). In SAC, the target network is updated using Polyak
averaging (Lillicrap et al., 2015). Therefore, we consider K target networks (θ̄k)Kk=1. Each target
network θ̄k is updated from its respective online network θk, as shown in Line 11 of Algorithm 2.
However, each online network is trained w.r.t. a shared target chosen from a single target that comes
from the set of K target networks. Similarly to the strategy presented in Equation (4), after the ith
target update, the shared target network is chosen as

θ̄i ← θ̄ψ where ψ = argmin
k∈{1,...,K}

∑
(s,a,r,s′)∈D

LQN(θ
k|θ̄i−1, s, a, r, s

′). (5)

Multiple online networks enable to choose which network to use to sample actions in a value-based
setting (see Line 3 of Algorithm 1) and which network is selected to train the actor in an actor-
critic setting (see Line 13 of Algorithm 2). This choice is related to the behavioral policy, thus, we
choose the same strategy in both settings. Intuitively, the optimal choice would be to pick the best-
performing network; however, this information is not available. More importantly, only exploring
using the best-performing network could lead the other online networks to learn passively (Sec-
tion 5.1). This would make the performances of the other networks drop (Ostrovski et al., 2021),
making them useless for the rest of the training. Inspired by ϵ-greedy policies commonly used in
RL for exploration, we select a random network with probability ϵb and select the online network
corresponding to the selected target network (as a proxy for the best-performing network) with prob-
ability 1 − ϵb. We use a linear decaying schedule for ϵb. Finally, at each target update, the running
loss accumulated after each gradient step is used instead of the loss computed over the entire dataset.

5 EXPERIMENTS

We first evaluate our method when hyperparameters are selected from a finite space. This setting is
relevant when the RL practitioner has a good understanding of most hyperparameters and only hes-
itates among a few ones. We compare AdaQN to an exhaustive grid search where both approaches
have access to the same sets of hyperparameters. This allows us to see how AdaQN performs com-
pared to the best static set of hyperparameters. Additionally, we focus on sample efficiency; thus,
the environment steps used for tuning the hyperparameters are also accounted for when reporting
the results. This is why, for reporting the grid search results, we multiply the number of interactions
of the best achieved performance by the number of individual trials, as advocated by Franke et al.
(2021). We also report the average performance over the individual runs as the performance that
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Figure 2: On-the-fly architecture selection on Lunar Lander. All architectures contain two hidden
layers. The number of neurons in each layer is indicated in the legend. Left: AdaDQN yields a
better AUC than every DQN run. Right: Ablation on the behavioral policy and on the strategy to
select the target network used to compute the target. Each version of AdaDQN uses the 4 presented
architectures. The strategy presented in Equation (4) outperforms the other considered strategies.

a random search would obtain in expectation. Then, we evaluate our method in a second setting
for which the hyperparameter space is infinite. This setting corresponds to the more general case
where the RL practitioner has to select hyperparameters for a new environment, having limited in-
tuitions for most hyperparameters. We compare AdaQN to SEARL (Franke et al. (2021) presented
in Section 3), which is specifically designed for this setting, DEHB (Awad et al., 2021), which is
a black box optimizer that has been shown to be effective for RL (Eimer et al., 2023), and random
search, which remains a very challenging baseline for hyperparameter optimization. In both settings,
the remaining hyperparameters are kept unchanged. Appendix B describes all the hyperparameters
used for the experiments along with the description of the environment setups and evaluation proto-
cols. The code is based on the Stable Baselines implementation (Raffin et al., 2021) and Dopamine
RL (Castro et al., 2018)2.

Performance metric. As recommended by Agarwal et al. (2021), we show the interquartile mean
(IQM) along with shaded regions showing pointwise 95% percentile stratified bootstrap confidence
intervals. IQM trades off the mean and the median where the tail of the score distribution is removed
on both sides to consider only 50% of the runs. We argue that the final score is not enough to
properly compare RL algorithms since methods that show higher initial performances are better
suited for real-world experiments compared to methods that only show higher performances later
during training. This is why we also analyze the performances with the Area Under the Curve (AUC)
that computes the integral of the IQM along the training. We also report the worst-performing seed
to analyze the robustness of AdaQN w.r.t. stochasticity and highlight AdaQN’s stability against
hyperparameter changes. We use 20 seeds for Lunar Lander (Brockman et al., 2016), 9 seeds for
MuJoCo (Todorov et al., 2012), and 5 seeds for Atari (Bellemare et al., 2013).

5.1 A PROOF OF CONCEPT

We consider 4 different architectures for AdaDQN and compare their performances to the individ-
ual runs in Figure 2 (left). The 4 architectures are composed of two hidden layers, with the number
of neurons indicated in the legend. Interestingly, AdaDQN outperforms the best individual archi-
tecture, meaning that by selecting different architectures during the training, AdaDQN better copes
with the non-stationarities of the optimization procedure. Figure 2 (right) shows the performances
for AdaDQN along with a version of AdaQN where ϵb = 0 during the training (AdaDQN ϵb = 0),
i.e. actions are always sampled for the online network that was chosen for computing the target.
This variant of AdaQN performs similarly to the best individual run but underperforms compared to
AdaDQN because it suffers from passive learning as explained in Section 4.1. Additionally, we eval-
uate a version where the target network is selected randomly from the set of online networks, calling
this variant RandDQN. This version is similar to the way the target is computed in REDQ (Chen
et al., 2020). While sampling uniformly from similar agents yields better performance, as shown in
Chen et al. (2020), this strategy suffers when one agent is not performing well. In our case, DQN
[25, 25] harms the overall performance. Finally, taking the maximum instead of the minimum to
select the target (AdaDQN-max) performs as badly as the worst available agent (i.e., DQN [25, 25]).

2The code is available in the supplementary material and will be made open source upon acceptance.
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Figure 3: Distribution of the selected hyperparameters for the target network (top) and for the be-
havioral policy (bottom) across all seeds. Left: AdaDQN mainly selects the hyperparameter that
performs best when evaluated individually. Middle: AdaDQN with ϵb = 0 also focuses on the best
individual architecture but does not use all available networks for sampling actions, which lowers
its performance. Right: AdaDQN-max is a version of AdaDQN where the minimum operator is
replaced by the maximum operator for selecting the following target network.
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Figure 4: On-the-fly hyperparameter selection on MuJoCo. The 16 sets of hyperparameters are
the elements of the Cartesian product between the learning rates {0.0005, 0.001}, the optimizers
{Adam, RMSProp}, the critic’s architectures {[256, 256], [512, 512]} and the activation functions
{ReLU, Sigmoid}. Left: AdaSAC is more sample-efficient than random search and grid search.
Right: AdaSAC yields a better AUC than every SAC run while having a greater final score than 13
out of 16 SAC runs. The shading of the dashed lines indicates their ranking for the AUC metric.

In Figure 3 (top), we analyze the distribution of the selected hyperparameters for the target network
across all seeds along the training. Importantly, AdaDQN does not always select the architecture that
performs the best when trained individually, as the network DQN [100, 100] is sometimes chosen in-
stead of DQN [200, 200]. On the right, AdaDQN-max mainly selects DQN [25, 25], which explains
its poor performance. The gap in performance between AdaDQN and AdaDQN with ϵb = 0 can be
understood by the bottom row of the figure. It shows the distribution of the selected hyperparameters
for sampling the actions. Setting ϵb = 0 forces the networks not selected for computing the target
to learn passively (the top and bottom bar plots are the same for AdaDQN with ϵb = 0). On the
contrary, AdaDQN benefits from a better exploration at the beginning of the training (the bottom bar
plot is more diverse than the top one at the beginning of the training).

5.2 CONTINUOUS CONTROL: MUJOCO ENVIRONMENTS

We evaluate AdaSAC for a wider choice of hyperparameters on 6 MuJoCo environments. We con-
sider selecting from 16 sets of hyperparameters. Those sets form the Cartesian product between
the learning rates {0.0005, 0.001}, the optimizers {Adam, RMSProp}, the critic’s architectures
{[256, 256], [512, 512]} and the activation functions {ReLU, Sigmoid}. This sets K to 24 = 16.
The values of the hyperparameters were chosen to be representative of common choices made when
tuning by hand a SAC agent. In Figure 4 (left), we compare AdaSAC with a grid search per-
formed on the 16 set of hyperparameters. AdaSAC is an order of magnitude more sample efficient
than grid search and outperforms random search all along the training. Notably, AdaSAC’s worst-
performing seed performs on par with the random search approach while greatly outperforming the
worst-performing seed of the grid search. In Figure 4 (right), we show AdaSAC’s performance
along with the individual performance of each set of hyperparameters. AdaSAC yields the highest
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Figure 5: Per environment IQM return when AdaSAC and RandSAC select from the 16 sets of
hyperparameters described in Figure 4. Below each performance plot, a bar plot presents the dis-
tribution of hyperparameters selected for the target network across all seeds. AdaSAC outperforms
RandSAC and most individual run by designing non-trivial hyperparameter schedules.

AUC metric while outperforming 13 out of the 16 individual runs in terms of final performance.
Interestingly, AdaSAC reaches the performance of vanilla SAC in less than half of the samples. We
also show the performance of RandSAC, for which a random target network is selected to compute
the target instead of following the strategy presented in Equation (5). For clarity, the labels of the 16
individual runs are not shown. They are available in Figure 11 of Appendix D.1.

We now analyze which set of hyperparameters AdaSAC selects to compute the target. For each envi-
ronment, we show in Figure 5 the performances of each hyperparameter when trained individually,
AdaSAC and RandSAC performances. Below each performance plot, we report the distribution of
hyperparameters selected to compute the target across all seeds. Overall, the selected networks are
changing during the training, which indicates that the loss is not always minimized by the same set of
hyperparameters. This supports the idea of selecting the target network based on Equation (4). Fur-
thermore, the selected networks are not the same across the different environments. This shows that
AdaSAC designs non-trivial hyperparameter schedules that cannot be handcrafted. On Humanoid,
selecting the network corresponding to the best-performing agent leads to similar performances to
the best-performing agents when trained individually. On HumanoidStandup, the selection strategy
avoids selecting the worst-performing agents. This is why AdaSAC outperforms RandSAC, which
blindly selects agents. HalfCheetah is the only environment where RandSAC slightly outperforms
AdaSAC. AdaSAC still yields a better final performance than 6 of the individual runs. Finally, on
Hopper and Walker2d, AdaSAC outperforms every individual run for the AUC metric by mainly
selecting hyperparameters that are not performing well when trained individually. The ability of
AdaSAC to adapt the hyperparameters at each target update enables it to better fit the targets, which
yields better performances.

Ablations. We evaluate AdaSAC against random search and grid search in 4 different scenarios
where only one hyperparameter changes. The results presented in Appendices D.2, D.3, D.4, and
D.5 show that AdaSAC is robust to variations of the hyperparameters. We first give 4 architectures
of different capacities as input. Then, we run AdaSAC with 3 different learning rates, and we also
run another study where AdaSAC is given 3 different optimizers. In each case, AdaSAC matches
the best-performing individual runs while successfully ignoring the worst-performing sets of hy-
perparameters. Finally, we evaluate AdaSAC with 3 different activation functions given as input.
This time, AdaSAC outperforms 2 out of the 3 individual runs. Interestingly, RandSAC seems to
suffer more in that setting by only outperforming the worst-performing individual run. This further
demonstrates that the strategy presented in Equation (4) is effective.

5.3 VISION-BASED CONTROL: ATARI 2600

We provide an additional experiment on 3 games of the Atari benchmark. Similarly to the ablation
study made on the MuJoCo benchmark, we conclude, in light of Figure 6, that AdaDQN performs on
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Figure 6: On-the-fly hyperparameter selection on 3 Atari games. AdaDQN performs similarly to
the best individual hyperparameters when selecting from 3 activation functions (left), 3 architectures
(middle), or 3 different values of Adam’s epsilon parameter (right). Below each performance plot, a
bar plot presents the distribution of the hyperparameters selected for computing the target.
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Figure 7: On-the-fly hyperparameter selection on 6 Atari games. Each method has to find well-
performing hyperparameters in a very challenging hyperparameter space composed of 18 activation
functions, 24 optimizers, 4 losses, a wide range of learning rates, and fully parameterizable archi-
tectures. Left: AdaDQN outperforms SEARL, random search, and grid search in the limited budget
of 40M frames and keeps increasing its performance afterward. Right: AdaDQN is robust to hyper-
parameter changes. Each axis of the radar plot shows the performances at 40M frames.

par with the best-performing hyperparameter when the space of hyperparameters is composed of dif-
ferent activation functions (left), architectures (middle) or different values of Adam’s epsilon param-
eter (right). This means that random search and grid search underperform compared to AdaDQN.
Importantly, the common hyperparameters used for DQN (in orange) are not the best-performing
ones in all settings, which motivates using Auto RL. Below each performance plot, we report the
distribution of the hyperparameters selected for computing the target. Remarkably, AdaDQN never
selects Sigmoid activations, which perform poorly when evaluated individually. Interestingly, for
the ablation study on the architecture and Adam’s epsilon parameter, AdaDQN uses all available hy-
perparameters when they perform equally well. We note that, despite not being often tuned, Adam’s
epsilon parameter plays a role in yielding high returns as observed in Obando-Ceron et al. (2024).
Figure 20 reports the decomposition of Figure 6 into the 3 considered Atari games.

5.4 INFINITE HYPERPARAMETER SPACES

We now focus on a setting in which the space of hyperparameters is infinite. We design a wide space
of hyperparameters to come closer to the goal of removing the need for prior knowledge about the
algorithm and environment. The hyperparameter space, presented in Table 4, comprises 18 acti-
vation functions, 24 optimizers, 4 losses, a wide range of learning rates, and fully parameterizable
architectures. We let SEARL and AdaDQN train 5 neural networks in parallel. Figure 9 shows how
AdaDQN and SEARL differ. To generalize AdaQN to infinite hyperparameter spaces, we replace
the RL training step in SEARL’s pipeline with the one described in Section 4, and the approximation
errors are used as fitness values instead of the online evaluation of each network. The exploitation
and exploration steps remain identical. We fix a budget of 40M frames on 6 games of the Atari
benchmark. We reduce the budget to 30M frames for random search to favor more individual trials,
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Figure 8: On-the-fly discount factor selection on 2 Atari games. AdaDQN and Meta-gradient DQN
perform similarly. On the right of each performance plot, we report the evolution of the discount
factor selected by AdaDQN and Meta-gradient DQN.

6 in total, as the hyperparameter space is large. Finally, we let DEHB benefit from its multi-fidelity
component by allowing a varying budget from 20M to 40M frames. We report the maximum return
observed since the beginning of the training for each seed of random search and DEHB. As every
network is evaluated in SEARL, we report the maximum and minimum return observed at each
evaluation step (SEARL - max and SEARL - min).

In Figure 7 (left), at 40M frames, AdaDQN outperforms SEARL and matches the end performance
of random search and DEHB. When trained for longer, AdaDQN continues to increase its perfor-
mance and outperforms random search and DEHB before reaching 100M frames. We argue that
SEARL’s low performance is largely explained by the fact that many environment iterations are
wasted by poorly performing networks (see SEARL - min), which also affects the other networks as
the replay buffer is shared among them. Instead, AdaDQN only uses the networks that have a low
training loss. Random search and DEHB usually require many environment interactions to perform
well. We believe that having a wide hyperparameter space exacerbates this phenomenon. Figure 7
(right) highlights AdaDQN’s robustness w.r.t. its hyperparameters. Notably, AdaDQN reaches a
higher IQM return than SEARL in the 4 considered settings at 40M frames. Figure 21 and 22 show
the individual game performances. Figure 23 reports the evolution of the hyperparameters during
AdaDQN’s training for one seed on Pong. Interestingly, the performances increase (green back-
ground) when the network trained on the Huber loss with ReLU activations and Adam optimizer is
selected as target network.

AdaQN can also be used to select the target hyperparameters. We propose to select from differ-
ent discount factors sampled in [0.985, 0.995]. We consider K = 5 online networks and com-
pare AdaDQN against Meta-gradient reinforcement learning (MGRL, Xu et al. (2018)). The cross-
validated discount factor of MGRL is set at 0.99, and the same discount factor is considered when
selecting the next target network in AdaQN. Figure 8 shows that the two approaches reach similar
performances on 2 Atari games. Nevertheless, we recall that AdaQN differs from MGRL in many
points (see Section 3). Crucially, it is not limited to continuous and differentiable hyperparameters.

6 DISCUSSION AND CONCLUSION

We have introduced AdaptiveQ-Network (AdaQN), a new method that trains an ensemble of diverse
Q-networks w.r.t. a shared target, selected as the target network corresponding to the most accurate
online network. We demonstrated that AdaQN is theoretically sound and we devised its algorithmic
implementation. Our experiments show that AdaQN outperforms competitive AutoRL baselines in
terms of sample efficiency, final performance, and robustness.
Limitations. Our work focuses on the agent’s hyperparameters; thus, environment’s properties,
e.g., reward, cannot be handled by AdaQN. Nevertheless, an off-the-shelf AutoRL algorithm can be
combined with AdaQN to handle these properties. Moreover, since AdaQN considers multiple Q-
functions in the loss, the training time and memory requirements increase. We provide an analysis in
Appendix C to show that this increase remains reasonable compared to the gain in performance and
sample-efficiency. We stress that, in theory, the computations can be parallelized so that the adaptive
version of an algorithm requires the same amount of time as its original algorithm. The additional
”for loop” in Line 9 of Algorithm 1 and the one in Line 7 of Algorithm 2 can be run in parallel as
long as enough parallel processing capacity is available, as it is common in modern GPUs. Finally,
instead of selecting one Q-function for computing the target, future works could consider a mixture
of Q-functions learned with different hyperparameters as presented in Seyde et al. (2022).
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A THEOREM STATEMENTS AND PROOFS

Theorem 3.4 from Farahmand (2011). Let N ∈ N∗, and ρ, ν two probability measures on S ×A.
For any sequence (θ̄i)

N
i=0 ∈ ΘN+1 where Rγ depends on the reward function and the discount

factor, we have

∥Q∗ −QπN ∥1,ρ ≤ CN,γ,Rγ + inf
r∈[0,1]

F (r;N, ρ, γ)

(∑N
i=1 α

2r
i ∥Γ∗Qθ̄i−1

−Qθ̄i∥
2
2,ν

) 1
2

where CN,γ,Rγ , F (r;N, ρ, γ), and (αi)
N
i=0 do not depend on (θ̄i)

N
i=0. πN is a greedy policy com-

puted from QθN .

Theorem 4.1. Let (θk)Kk=1 ∈ ΘK and θ̄ ∈ Θ be vectors of parameters representing K + 1 Q-
functions. Let D = {(s, a, r, s′)} be a set of samples. Let ν be the distribution represented by the
state-action pairs present in D. We note Ds,a = {(r, s′)|(s, a, r, s′) ∈ D},∀(s, a) ∈ D.

If for every state-action pair (s, a) ∈ D, E(r,s′)∼Ds,a

[
Γ̂Qθ̄(s, a)

]
= ΓQθ̄(s, a), then we have

argmin
k∈{1,...,K}

||ΓQθ̄ −Qθk ||22,ν = argmin
k∈{1,...,K}

∑
(s,a,r,s′)∈D

LQN(θ
k|θ̄, s, a, r, s′).

Proof. Let (θk)Kk=1 ∈ ΘK and θ̄ ∈ Θ be vectors of parameters representing K+1Q-functions. Let
D = {(s, a, r, s′)} be a set of samples. Let ν be the distribution of the state-action pairs present in
D. In this proof, we note Γ̂ as Γ̂r,s′ to stress its dependency on the reward r and the next state s′. For
every state-action pair (s, a) in D, we define the set Ds,a = {(r, s′)|(s, a, r, s′) ∈ D} and assume
that E(r,s′)∼Ds,a [Γ̂r,s′Qθ̄(s, a)] = ΓQθ̄(s, a). Additionally, we note M the cardinality of D, Ms,a

the cardinality of Ds,a and D̊ the set of unique state-action pairs in D. We take k ∈ {1, . . . ,K} and
write∑
(s,a,r,s′)∈D

LQN(θ
k|θ̄, s, a, r, s′) =

∑
(s,a,r,s′)∈D

(
Γ̂r,s′Qθ̄(s, a)−Qθk(s, a)

)2

=
∑

(s,a,r,s′)∈D

(
Γ̂r,s′Qθ̄(s, a)− ΓQθ̄(s, a) + ΓQθ̄(s, a)−Qθk(s, a)

)2

=
∑

(s,a,r,s′)∈D

(
Γ̂r,s′Qθ̄(s, a)− ΓQθ̄(s, a)

)2

+
∑

(s,a,r,s′)∈D

(ΓQθ̄(s, a)−Qθ̄k(s, a))
2

+2
∑

(s,a,r,s′)∈D

(
Γ̂r,s′Qθ̄(s, a)− ΓQθ̄(s, a)

)
(ΓQθ̄(s, a)−Qθk(s, a)).

The second last equation is obtained by introducing the term ΓQθ̄(s, a) and removing it. The last
equation is obtained by developing the previous squared term. Now, we study each of the three
terms:

•
∑

(s,a,r,s′)∈D

(
Γ̂r,s′Qθ̄(s, a)− ΓQθ̄(s, a)

)2

is independent of θk

•
∑

(s,a,r,s′)∈D (ΓQθ̄(s, a)−Qθk(s, a))
2 equal to M × ||ΓQθ̄−Qθk ||22,ν by definition of ν.
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• ∑
(s,a,r,s′)∈D

(
Γ̂r,s′Qθ̄(s, a)− ΓQθ̄(s, a)

)
(ΓQθ̄(s, a)−Qθk(s, a))

=
∑

(s,a)∈D̊

 ∑
(r,s′)∈Ds,a

(
Γ̂r,s′Qθ̄(s, a)− ΓQθ̄(s, a)

)
(ΓQθ̄(s, a)−Qθk(s, a))

 = 0

since, for every (s, a) ∈ D̊,∑
(r,s′)∈Ds,a

(
Γ̂r,s′Qθ̄(s, a)− ΓQθ̄(s, a)

)
=Ms,a

(
E(r,s′)∼Ds,a [Γ̂r,s′Qθ̄(s, a)]− ΓQθ̄(s, a)

)
= 0,

the last equality holds from the assumption.

Thus, we have∑
(s,a,r,s′)∈D

LQN(θ
k|θ̄, s, a, r, s′) = constant w.r.t θk +M × ||ΓQθ̄ −Qθk ||22,ν

This is why

argmin
k∈{1,...,K}

∑
(s,a,r,s′)∈D

LQN(θ
k|θ̄, s, a, r, s′) = argmin

k∈{1,...,K}
||ΓQθ̄ −Qθk ||22,ν .

A.1 CONVERGENCE OF ADAQN

In this section, we consider a tabular version of AdaQN in a finite MDP where the discount fac-
tor γ < 1. Our goal is to prove the convergence of AdaQN to the optimal action-value function
by adapting the proof of Theorem 2 in Lan et al. (2020). Without modification, the Generalized
Q-learning framework (Lan et al., 2020) does not comprise AdaQN. Indeed, while the target com-
putation of the Generalized Q-learning framework (Equation (3) in Lan et al. (2020)) only depends
on a fixed history length, AdaQN’s target computation (Equation (4)) depends on ψ, the index of the
selected network used for computing the target, which is defined from the entire history of the algo-
rithm. This is why, in the following, we first present the modifications brought to the Generalized
Q-learning framework before proving the convergence.

We color in blue the modifications brought to the Generalized Q-learning framework. Using the
same notation as in Equations (15) and (16) in Lan et al. (2020), for a state s, an action a, and at
timestep t, the new update rule is

Qis,a(t+ 1)← Qis,a(t) + αis,a(t)
[
Fs,a(Q(t), ψ(t))−Qis,a(t) + ωs,a(t)

]
,∀i ∈ {1, .., N}, (6)

where ψ(t) ∈ {1, .., N} is F(t)-measurable and

ωs,a(t) = rs,a − E[rs,a] + γ
(
Q
GQ,ψ(t)
f(s,a) (t)− E[QGQ,ψ(t)f(s,a) (t)|F(t)]

)
. (7)

We recall that in Lan et al. (2020), Q ∈ RmnNK where m is the cardinality of S, n the cardinality
of A, N is the population size, and K is the history length where Qi,js,a(t) is the component corre-
sponding to the ith element of the population at timestep t − j for state s and action a. F(t) is the
σ-algebra representing the history of the algorithm during the first t iterations. αis,a(t) is the step
size and f(s, a) is a random successor state starting from state s after executing action a. We define,
for i ∈ {1, .., N}, Fs,a(Q, i) = E[rs,a] + γE[QGQ,if(s,a)], where QGQ,is = G(Qs, i).

For AdaQN, ψ(t) represents the index of the selected target at timestep t. Following Equa-
tion (4), ψ(t) = argmini ∥E[rs,a] + γE[QGQ,ψ(t−1)

f(s,a) ] − Qi,0∥2, with ψ(0) = 0, and for i ∈
{1, .., N}, G(Qs, i) = maxaQ

i,0
s,a. It is clear that ψ(t) is F(t)-measurable.
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We now verify that Assumptions 1, 2, 3, 4, and 6 in Lan et al. (2020), needed to prove the con-
vergence according to Theorem 5 in Lan et al. (2020), hold for AdaQN. Assumption 1 holds as
∀Q,Q′ ∈ RnNK , ι, ι′ ∈ {1, .., N}, we have |G(Q, ι) − G(Q′, ι′)| ≤ maxa,i,j |Qi,ja − Q′i,j

a |. As-
sumptions 3, 4, and 6 also hold as the modification of the target computation does not influence their
validity. We point out that the constraint that ψ(t) is F(t)-measurable is used to verify that ωs,a(t)
is F(t+ 1)-measurable for all state s and action a. This validates Assumption 4 (ii). Therefore, by
defining the step sizes such that Assumption 2 holds, AdaQN converges to the optimal action-value
function with probability 1.

B ALGORITHMS AND HYPERPARAMETERS

Algorithm 2 Adaptive Soft Actor-Critic (AdaSAC). Modifications to SAC are marked in purple.

1: Initialize the policy parameters ϕ, K online parameters (θk)Kk=1, and an empty replay buffer D.
For k = 1, . . . ,K, set the target parameters θ̄k ← θk and the cumulative losses Lk = 0. Set
ψ1 = 0 and ψ2 = 1 the indices to be selected for computing the target.

2: repeat
3: Take action at ∼ πϕ(·|st); Observe reward rt, next state st+1; D ← D

⋃
{(st, at, rt, st+1)}.

4: for UTD updates do
5: Sample a mini-batch B = {(s, a, r, s′)} from D.
6: Compute the shared target

y ← r + γ

(
min

k∈{ψ1,ψ2}
Qθ̄k(s

′, a′)− α log πϕ(a
′|s′)

)
,where a′ ∼ πϕ(·|s′).

7: for k = 1, ...,K do
8: Compute the loss w.r.t θk, LkQN =

∑
(s,a,r,s′)∈B (y −Qθk(s, a))

2.
9: Update Lk ← (1− τ)Lk + τLkQN.

10: Update θk using its specific optimizer and learning rate from∇θkLkQN.
11: Update the target networks with θ̄k ← τθk + (1− τ)θ̄k.
12: Set ψ1 and ψ2 to be the indexes of the 2 lowest values of L.
13: Set (ψb1, ψ

b
2) ∼ DistinctU{1, . . . ,K} w.p ϵb and (ψb1, ψ

b
2) = (ψ1, ψ2) w.p 1− ϵb.

14: Update ϕ with gradient ascent using the loss

min
k∈{ψb1,ψb2}

Qθk(s, a)− α log πϕ(a|s), a ∼ πϕ(·|s)

B.1 EXPERIMENTAL SETUP

All environments are generated from the Gymansium library (Brockman et al., 2016). For the Atari
experiments, we mimic the implementation choices made in Dopamine RL (Castro et al., 2018) since
it is the only one to use the evaluation metric recommended by Machado et al. (2018). Namely, we
use the game over signal to terminate an episode instead of the life signal. The input given to the neu-
ral network is a concatenation of 4 frames in grayscale of dimension 84 by 84. To get a new frame,
we sample 4 frames from the Gym environment configured with no frame-skip, and we apply a max
pooling operation on the 2 last grayscale frames. We use sticky actions to make the environment
stochastic (with p = 0.25). The performance is the one obtained during training. We consider a dif-
ferent behavioral policy for the experiment with an infinite hyperparameter space. Instead of taking
an ϵ-greedy policy parameterized by ϵb as explained in Section 4.1, we sample each action from a
probability distribution that is inversely proportional to the current loss value. That way, the problem
of passive learning is further mitigated since the second or third most accurate networks will have a
higher probability of being selected to sample actions. Importantly, when AdaDQN selects between
different losses, the comparison is made between the values of the L2 losses even if the backprop-
agation is performed with another loss. The 3 Atari games in the experiments of Section 5.3 are
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Figure 9: AdaDQN and SEARL pipelines. AdaDQN and SEARL share the same exploitation and
exploration strategies. They only differ in the way the Q-functions are trained and in the nature of
the fitness value fi. In both algorithms, the exploitation and exploration phase is performed every
M steps. It is referred to as the hyperparameter frequency (HP freq) in Figures 7 and 22.

chosen from the 5 games presented in Aitchison et al. (2023). The 6 Atari games in the experiments
of Section 5.4 are chosen from Franke et al. (2021).

AdaQN - SEARL comparison. The exploitation strategy of SEARL and AdaDQN is based on a
tournament selection with elitism (Miller et al., 1995). The tournament comprises K − 1 steps for
a population of K networks. At each step, 3 networks are sampled uniformly without replacement,
and the network with the best fitness value fi is qualified to populate the next generation. The last
spot is reserved for the network with the best fitness value across the entire population. Then, every
network present more than twice in the population undergoes a mutation operation. This is the
exploration phase. One mutation operation out of the 5 operations we consider (architecture change,
activation function change, loss change, optimizer change, and learning rate change) is chosen with
equal probability. When the architecture is changed, one of the following operations is selected {±1
CNN layer, ±4 CNN channels, ±1 kernel size, ±1 CNN stride, ±1 MLP layer, ±16 MLP neurons}
with probability [0.1, 0.43 ,

0.4
3 ,

0.4
3 , 0.1, 0.4]. Those probabilities are not tuned. They are set by hand

so that the number of layers of the CNN and MLP do not change too often. If the hyperparameter
goes outside the search space described in Table 4, the value is clipped to the boundary. In every
case, the network weights are preserved as much as possible. This means that when the architecture
changes, only the new weights that were not present before the mutation operation are generated.
We choose to reset the optimizer each time a network undergoes a genetic modification. Instead of
an elitism mechanism, we investigated, on Lunar Lander, a truncation mechanism (Jaderberg et al.,
2023) where the 20% most accurate networks are selected for the next generation. The performances
are similar to the ones obtained with the elitism mechanism. We also tried to reset the weights after
each generation. This did not lead to performance improvements. Therefore, we kept the proposed
pipeline as close to SEARL as possible.

SEARL evaluates each network’s return empirically to estimate its performance. We set the min-
imum number of environment steps to evaluate each network to M divided by the number of net-
works in the population so that at least M new samples are collected in the replay buffer. This
also synchronizes the frequency at which the hyperparameters are updated with AdaDQN. SEARL
network weights are updated every 4 training step, similarly to AdaDQN (G = 4 in Table 4).

AdaQN - Meta-gradient RL comparison. The experiment comparing AdaDQN to Meta-gradient
DQN is made with the default hyperparameters of DQN. Each network of AdaDQN is trained with
a different discount factor, and the comparison between online networks is made by computing the
approximation error parameterized by a cross-validated discount factor γ̄. The optimizer used for the
outer loss of Meta-gradient DQN is Adam with a learning rate of 0.001 as in the original paper (Xu
et al., 2018). Similarly to Xu et al. (2018), we set the size of the discount factor’s embedding space
to 16.
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B.2 EVALUATION PROTOCOL

The reported performance of the individual runs of DQN and SAC as well as AdaDQN, AdaDQN
with ϵb = 0, RandDQN, AdaDQN-max, AdaSAC, RandSAC, and Meta-Gradient DQN are the
raw performance obtained during training aggregated over seeds and environments. The reported
performances of the other methods require some post-processing steps to account for the way they
operate. In the following, for a hyperparameter k and after t environment steps, we refer to the IQM
as pk(t) and note sik(t) the return obtained during training. Additionally, we note K the number
of hyperparameters considered for the specific setting. For the finite search space setting, we first
compute all possible individual runs (Figure 4 (right)) and, in Figure 4 (left), we derive:

• Grid search as the IQM of the best individual run horizontally scaled to the right by the
number of individual runs to account for the environment steps taken by all individual runs.
The IQM of grid search is reported as pgrid search(t×K) = maxk∈{1,..,K} pk(t).

• Random search as the empirical average over all individual runs. The IQM of random
search is reported as prandom search(t) = 1

K

∑
k∈{1,..,K} pk(t). This corresponds to the ex-

pected performance of what a random search would look like if only one individual trial
were used. We chose to add this metric to show that AdaSAC is a better algorithm than
simply picking a random hyperparameter.

In the infinite search space setting (Figure 7 (left)), we report the following algorithm:
• Random search: we compute the best performance observed before a given timestep as

the current performance before computing the IQM over the seeds. In detail, the score used
for computing the IQM is maxt′≤t s

i
random search(t

′).
• DEHB: the same protocol as a random search is used. The average return over the last

epoch is given to the hyperparameter optimizer as a metric to be maximized.
• SEARL: SEARL has the specificity of periodically evaluating every Q-network of its pop-

ulation. Each time every Q-network is evaluated, we use the best return to compute the
IQM of SEARL-max

(
maxk∈{1,..,K} s

i
k(t)

)
and the worst return to compute the IQM of

SEARL-min
(
mink∈{1,..,K} s

i
k(t)

)
.

Table 1: Summary of all fixed hyperparameters
used for the Lunar Lander experiments (see Sec-
tion 5.1).

Shared across all algorithms
Discount factor γ 0.99
Horizon 1000
Initial replay buffer size 1000
Replay buffer size 104

Batch Size 32
Target update frequency T 200
Training frequency G 1
Activation function ReLU
Learning rate 3× 10−4

Optimizer Adam
Loss L2
Starting ϵ 1
Ending ϵ 0.01
Linear decay duration of ϵ 1000

AdaDQN
Starting ϵb 1
Ending ϵb 0.01
Linear decay duration of ϵb Until end

Table 2: Summary of all fixed hyperparame-
ters used for the MuJoCo experiments (see Sec-
tion 5.2).

Shared across all algorithms
Discount factor γ 0.99
Horizon 1000
Initial replay buffer size 5000
Replay buffer size 106

Batch Size 256
Target update rate τ 0.005
UTD 1
Actor’s activation function ReLU
Actor’s learning rate 0.001
Actor’s optimizer Adam
Actor’s architecture 256, 256
Policy delay 1

Vanilla SAC
Critic’s activation function ReLU
Critic’s learning rate 0.001
Critic’s optimizer Adam
Critic’s architecture 256, 256

AdaSAC
Starting ϵb 1
Ending ϵb 0.01
Linear decay duration of ϵb Until end
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Table 3: Summary of all fixed hyperparame-
ters used for the Atari experiments with a fi-
nite hyperparameter space (see Section 5.3).

Shared across all algorithms
Discount factor γ 0.99
Horizon 27000
Full action space No
Reward clipping clip(−1, 1)
Initial replay buffer size 20000
Replay buffer size 106

Batch Size 32
Target update frequency T 8000
Training frequency G 4
Learning rate 5× 10−5

Optimizer Adam
Loss L2
Starting ϵ 1
Ending ϵ 0.01
Linear decay duration of ϵ 250000

Vanilla DQN
Activation function ReLU
ϵAdam 1.5× 10−4

CNN n layers 3
CNN channels [32, 64, 64]
CNN kernel size [8, 4, 3]
CNN stride [4, 2, 1]
MLP n layers 1
MLP n neurons 512

AdaDQN
Starting ϵb 1
Ending ϵb 0.01
Linear decay duration of ϵb Until end

Table 4: Summary of all hyperparameters used for
the Atari experiments with an infinite hyperparameter
space (see Section 5.4).

Shared across all algorithms
Discount

0.99factor γ
Horizon 27000
Full action Nospace
Reward clip(−1, 1)clipping
Initial replay

20000buffer size
Replay

106buffer size
Batch Size 32
Training

4frequency G
Starting ϵ 1
Ending ϵ 0.01
Linear decay

250000duration of ϵ
Hyperparameter space

Activation
function

{CELU, ELU, GELU,
Hard Sigmoid, Hard SiLU,

Hard tanh, Leaky ReLU,
Log-Sigmoid, Log-Softmax,

ReLU, SELU, Sigmoid,
SiLU, Soft-sign, Softmax,

Softplus, Standardize, Tanh}
Learning rate

[10−6, 10−3](in log space)

Optimizer

{AdaBelief, AdaDelta,
AdaGrad, AdaFactor,

Adam, Adamax,
AdamaxW, AdamW,
AMSGrad, Fromage,

Lamb, Lars, Lion,
Nadam, NadamW,

Noisy SGD, Novograd,
Optimistic GD, RAdam,

RMSProp, RProp,
SGD, SM3, Yogi}

Loss {Huber, L1, L2, Log cosh}
CNN n layers J1, 3K
CNN n channels J16, 64K
CNN kernel size J2, 8K
CNN stride J2, 5K
MLP n layers J0, 2K
MLP n neurons J25, 512K

Different Settings
High target freq T = 8000
Low target freq T = 4000
High HP freq M = 80000
Low HP freq M = 40000
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C TRAINING TIME AND MEMORY REQUIREMENTS

We address time complexity by reporting the performances obtained in Section 5.2 and 5.4 with the
clock time as the horizontal axis in Figure 10. On the left, AdaSAC still outperforms grid search
but is slower than random search as AdaQN carries out several networks in parallel. We stress
that this experiment is designed to demonstrate the capabilities of AdaSAC when a high number of
hyperparameters is considered. When the number of network decreases to 5, AdaQN becomes more
competitive against random search as Figure 10 (right) testifies. In this case, AdaDQN outperforms
all baselines in terms of training time and sample efficiency. We point out that Meta-gradient DQN,
evaluated in Section 5.4, is 4% slower to run than AdaDQN. Finally, we recall that, in this work, the
main focus is on sample-efficiency, as it is the predominant bottleneck in practical scenarios.

Concerning the memory requirements, AdaSAC uses an additional 300Mb from the vRAM for the
MuJoCo experiments presented in Section 5.2 compared to SAC. AdaDQN uses 200Mb more from
the vRAM than random search for the Atari experiments presented in Section 5.4. We argue that
those increases remain small compared to the benefit brought by AdaQN.
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Figure 10: Performances observed in Section 5.2 (left) and Section 5.4 (right) according to the train-
ing time. When evaluated with a high number of hyperparameters to consider in parallel, AdaQN
suffers from a slower training time but is still faster than grid search. When the number of hyperpa-
rameters is reasonable (≈ 5), AdaQN is competitive against all baselines.

D ADDITIONAL EXPERIMENTS

D.1 ON-THE-FLY HYPERPARAMETER SELECTION ON MUJOCO

SAC learning rate: 0.001, optimizer: Adam, architecture: 512, 512, activation fn: ReLU
SAC learning rate: 0.0005, optimizer: Adam, architecture: 256, 256, activation fn: ReLU
SAC learning rate: 0.001, optimizer: Adam, architecture: 512, 512, activation fn: Sigmoid
SAC learning rate: 0.0005, optimizer: Adam, architecture: 512, 512, activation fn: ReLU
SAC learning rate: 0.001, optimizer: Adam, architecture: 256, 256, activation fn: Sigmoid
SAC learning rate: 0.0005, optimizer: Adam, architecture: 512, 512, activation fn: Sigmoid
SAC learning rate: 0.0005, optimizer: RMSProp, architecture: 256, 256, activation fn: ReLU
SAC learning rate: 0.0005, optimizer: RMSProp, architecture: 512, 512, activation fn: ReLU
SAC learning rate: 0.001, optimizer: RMSProp, architecture: 512, 512, activation fn: Sigmoid
SAC learning rate: 0.0005, optimizer: Adam, architecture: 256, 256, activation fn: Sigmoid
SAC learning rate: 0.001, optimizer: RMSProp, architecture: 256, 256, activation fn: ReLU
vanilla SAC learning rate: 0.001, optimizer: Adam, architecture: 256, 256, activation fn: ReLU
SAC learning rate: 0.001, optimizer: RMSProp, architecture: 256, 256, activation fn: Sigmoid
SAC learning rate: 0.001, optimizer: RMSProp, architecture: 512, 512, activation fn: ReLU
SAC learning rate: 0.0005, optimizer: RMSProp, architecture: 512, 512, activation fn: Sigmoid
SAC learning rate: 0.0005, optimizer: RMSProp, architecture: 256, 256, activation fn: Sigmoid

Figure 11: Exhaustive legend of Figure 4 showing the ranking by AUC of the 16 considered sets
of hyperparameters. Interestingly, the ranking does not follow a predictable order, as there is no
clear ordering between each hyperparameter. Importantly, the ranking changes between MuJoCo
environments, justifying the usage of AdaSAC, which adapts the hyperparameter schedule for each
environment and each seed.
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D.2 ON-THE-FLY ARCHITECTURE SELECTION ON MUJOCO
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Figure 12: On-the-fly architecture selection on MuJoCo. All architectures contain hidden layers
with 256 neurons. The architectures are indicated in the legend. Left: AdaSAC is more sample-
efficient than grid search. Right: AdaSAC yields similar performances as the best-performing
architectures. RandSAC and AdaSAC are on par.
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Figure 13: Per environment return of AdaSAC and RandSAC when 4 different architectures are
given as input. Below each performance plot, a bar plot presents the distribution of the hyperpa-
rameters selected for computing the target across all seeds. AdaSAC effectively ignores the worst-
performing architecture (256) while actively selecting the best-performing architecture. Interest-
ingly, in HumanoidStandup, despite not performing well, AdaSAC selects the architecture 256, 256,
which is the best-performing-architecture.
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D.3 ON-THE-FLY LEARNING RATE SELECTION ON MUJOCO
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SAC learning rate: 0.001 SAC learning rate: 0.0005 SAC learning rate: 0.005

Figure 14: On-the-fly learning rate selection on MuJoCo. The space of hyperparameters is com-
posed of 3 different learning rates. Left: AdaSAC is more sample-efficient than random search and
grid search. Right: AdaSAC yields performances slightly above the best-performing learning rate.
RandSAC and AdaSAC are on par.
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Figure 15: Per environment return of AdaSAC and RandSAC when 3 different learning rates are
given as input. Below each performance plot, a bar plot presents the distribution of the hyperpa-
rameters selected for computing the target across all seeds. AdaSAC creates a custom learning rate
schedule for each environment and each seed. Interestingly, this schedule seems to choose a low
learning rate at the beginning of the training before increasing it later during the training.
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D.4 ON-THE-FLY OPTIMIZER SELECTION ON MUJOCO
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Figure 16: On-the-fly optimizer selection on MuJoCo. The space of hyperparameters is com-
posed of 3 different optimizers. Left: AdaSAC is more sample-efficient than random search
and grid search. Right: AdaSAC yields similar performances as the best-performing optimizer
(AdamW, Loshchilov & Hutter (2018)). RandSAC and AdaSAC are on par.
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Figure 17: Per environment return of AdaSAC and RandSAC when 3 different optimizers are given
as input. Below each performance plot, a bar plot presents the distribution of the hyperparameters
selected for computing the target across all seeds. AdaSAC effectively ignores RMSProp, which
performs poorly in most environments.
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D.5 ON-THE-FLY ACTIVATION FUNCTION SELECTION ON MUJOCO
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Figure 18: On-the-fly activation function selection on MuJoCo. The space of hyperparameters is
composed of 3 different activation functions. Left: AdaSAC is more sample-efficient than random
search and grid search. Right: AdaSAC performs slightly below the best-performing activation
function. In this setting, RandSAC suffers from the fact that a network with Tanh activation functions
is selected as the target network one-third of the time.
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Figure 19: Per environment return of AdaSAC and RandSAC when 3 different activation functions
are given as input. Below each performance plot, a bar plot presents the distribution of the hy-
perparameters selected for computing the target across all seeds. Remarkably, AdaSAC selects the
Sigmoid activation function in environments where this activation function seems beneficial (Ant,
HalfCheetah, and Walker2d), while it does not select the Sigmoid activation function in environ-
ments where the individual run performs poorly (Humanoid and HumanoidStandup).
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D.6 ON-THE-FLY HYPERPARAMETER SELECTION ON ATARI

On-The-Fly activation function selection on Atari
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Figure 20: AdaDQN performs similarly to the best individual hyperparameters when selecting from
3 activation functions (left), 3 architectures (middle), or 3 different values of Adam’s epsilon param-
eter (right). Below each performance plot, a bar plot presents the distribution of the hyperparameters
selected for computing the target.
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Figure 21: Per game performances of AdaDQN and the baselines when the space of hyperparameters
is infinite. We believe that the wide range of returns is due to the fact that the hyperparameter space
is large. Nevertheless, AdaDQN reaches higher IQM returns than SEARL on all games except on
BattleZone, where only one seed performs well.
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Figure 22: Per game performances of AdaDQN and SEARL at 40M frames for different algorithm’s
hyperparameter values. As each online network is evaluated in SEARL, we report the maximum
and minimum observed return (SEARL - min and SEARL - max). Remarkably, AdaDQN’s per-
formances are always above the minimum performances of SEARL. In 4 out of the 6 considered
games, AdaDQN outperforms SEARL maximum return on all considered settings. High target freq
corresponds to T = 8000 and low target freq corresponds to T = 4000. HP freq is noted M in
Figure 9, the high value is M = 80000 and the low value is M = 40000.
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Figure 23: Evolution of AdaDQN’s hyperparameters along the training for one seed on Pong. While
the online networks explore a vast portion of the hyperparameter space, the target network focuses
on a few values.
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