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ABSTRACT

Fine-tuning from pre-trained ImageNet models has been a simple, effective, and
popular approach for various computer vision tasks. The common practice of fine-
tuning is to adopt a default hyperparameter setting with a fixed pre-trained model,
while both of them are not optimized for specific tasks and time constraints. More-
over, in cloud computing or GPU clusters where the tasks arrive sequentially in
a stream, faster online fine-tuning is a more desired and realistic strategy for sav-
ing money, energy consumption, and CO2 emission. In this paper, we propose a
joint Neural Architecture Search and Online Adaption framework named NASOA
towards a faster task-oriented fine-tuning upon the request of users. Specifically,
NASOA first adopts an offline NAS to identify a group of training-efficient net-
works to form a pretrained model zoo. We propose a novel joint block and macro
level search space to enable a flexible and efficient search. Then, by estimat-
ing fine-tuning performance via an adaptive model by accumulating experience
from the past tasks, an online schedule generator is proposed to pick up the most
suitable model and generate a personalized training regime with respect to each
desired task in a one-shot fashion. The resulting model zoo1 is more training effi-
cient than SOTA NAS models, e.g. 6x faster than RegNetY-16GF, and 1.7x faster
than EfficientNetB3. Experiments on multiple datasets also show that NASOA
achieves much better fine-tuning results, i.e. improving around 2.1% accuracy
than the best performance in RegNet series under various time constraints and
tasks; 40x faster compared to the BOHB method.

1 INTRODUCTION

Fine-tuning using pre-trained models becomes the de-facto standard in the field of computer vision
because of its impressive results on various downstream tasks such as fine-grained image classifi-
cation (Nilsback & Zisserman, 2008; Welinder et al., 2010), object detection (He et al., 2019; Jiang
et al., 2018; Xu et al., 2019) and segmentation (Chen et al., 2017; Liu et al., 2019). Kornblith et al.
(2019); He et al. (2019) verified that fine-tuning pre-trained networks outperform training from
scratch. It can further help to avoid over-fitting (Cui et al., 2018) as well as reduce training time
significantly (He et al., 2019). Due to those merits, many cloud computing and AutoML pipelines
provide fine-tuning services for an online stream of upcoming users with new data, different tasks
and time limits. In order to save the user’s time, money, energy consumption, or even CO2 emission,
an efficient online automated fine-tuning framework is practically useful and in great demand. Thus,
in this work, we propose to explore the problem of faster online fine-tuning.

The conventional practice of fine-tuning is to adopt a set of predefined hyperparameters for training
a predefined model (Li et al., 2020). It has three drawbacks in the current online setting: 1) The
design of the backbone model is not optimized for the upcoming fine-tuning task and the selection
of the backbone model is not data-specific. 2) A default setting of hyperparameters may not be
optimal across tasks and the training settings may not meet the time constraints provided by users.
3) With the incoming tasks, the regular diagram is not suitable for this online setting since it cannot
memorize and accumulate experience from the past fine-tuning tasks. Thus, we propose to decouple
our faster fine-tuning problem into two parts: finding efficient fine-tuning networks and generating
optimal fine-tuning schedules pertinent to specific time constraints in an online learning fashion.

1The efficient training model zoo (ET-NAS) has been released at: https://github.com/NAS-OA/
NASOA
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Recently, Neural Architecture Search (NAS) algorithms demonstrate promising results on discover-
ing top-accuracy architectures, which surpass the performance of hand-crafted networks and saves
human’s efforts (Zoph et al., 2018; Liu et al., 2018a;b; Radosavovic et al., 2019; Tan et al., 2019b;
Real et al., 2019a; Tan & Le, 2019; Yao et al., 2020). However, those NAS works usually focus
on inference time/FLOPS optimization and their search space is not flexible enough which cannot
guarantee the optimality for fast fine-tuning. In contrast, we resort to developing a NAS scheme
with a novel flexible search space for fast fine-tuning. On the other hand, hyperparameter optimiza-
tion (HPO) methods such as grid search (Bergstra & Bengio, 2012), Bayesian optimization (BO)
(Strubell et al., 2019a; Mendoza et al., 2016), and BOHB (Falkner et al., 2018) are used in deep
learning and achieve good performance. However, those search-based methods are computationally
expensive and require iterative “trial and error”, which violate our goal for faster adaptation time.

In this work, we propose a novel Neural Architecture Search and Online Adaption framework named
NASOA. First, we conduct an offline NAS for generating an efficient fine-tuning model zoo. We de-
sign a novel block-level and macro-structure search space to allow a flexible choice of the networks.
Once the efficient training model zoo is created offline NAS by Pareto optimal models, the online
user can enjoy the benefit of those efficient training networks without any marginal cost. We then
propose an online learning algorithm with an adaptive predictor to modeling the relation between
different hyperparameter, model, dataset meta-info and the final fine-tuning performance. The final
training schedule is generated directly from selecting the fine-tuning regime with the best predicted
performance. Benefiting from the experience accumulation via online learning, the diversity of the
data and the increasing results can further continuously improve our regime generator. Our method
behaves in a one-shot fashion and doesn’t involve additional searching cost as HPO, endowing the
capability of providing various training regimes under different time constraints.

Extensive experiments are conducted on multiple widely used fine-tuning datasets. The searched
model zoo ET-NAS is more training efficient than SOTA ImageNet models, e.g. 5x training faster
than RegNetY-16GF, and 1.7x faster than EfficientNetB3. Moreover, by using the whole NASOA,
our online algorithm achieves superior fine-tuning results in terms of both accuracy and fine-tuning
speed, i.e. improving around 2.1% accuracy than the best performance in RegNet series under
various tasks; saving 40x computational cost comparing to the BOHB method.

In summary, our contributions are summarized as follows:

• To the best of our knowledge, we make the first effort to propose a faster fine-tuning pipeline that
seamlessly combines the training-efficient NAS and online adaption algorithm. Our NASOA can
effectively generate a personalized fine-tuning schedule of each desired task via an adaptive model
for accumulating experience from the past tasks.

• The proposed novel joint block/macro level search space enables a flexible and efficient search.
The resulting model zoo ET-NAS is more training efficient than very strong ImageNet SOTA mod-
els e.g. EfficientNet, RegNet. All the ET-NAS models have been released to help the community
skipping the computation-heavy NAS stage and directly enjoy the benefit of NASOA.

• The whole NASOA pipeline achieves much better fine-tuning results in terms of both accuracy
and fine-tuning efficiency than current fine-tuning best practice and HPO method,e.g. BOHB.

2 RELATED WORK

Neural Architecture Search (NAS). The goal of NAS is to automatically optimize network ar-
chitecture and release human effort from this handcraft network architecture engineering. Most
previous works (Liu et al., 2018b; Cai et al., 2019b; Liu et al., 2018a; Tan et al., 2019a; Xie et al.,
2019; Howard et al., 2019) aim at searching for CNN architectures with better inference and fewer
FLOPS. Baker et al. (2017); Cai et al. (2018); Zhong et al. (2018) apply reinforcement learning to
train an RNN controller to generate a cell architecture. Liu et al. (2018b); Xie et al. (2019); Cai et al.
(2019b) try to search a cell structure by weight-sharing and differentiable optimization. Tan & Le
(2019) use a grid search for an efficient network by altering the depth/width of the network with a
fixed block structure. On the contrary, our NAS focuses creating an efficient training model zoo for
fast fine-tuning. Moreover, the existing search space design cannot meet the purpose of our search.

Generating Hyperparameters for Fine-tuning. HPO methods such as Bayesian optimization
(BO) (Strubell et al., 2019a; Mendoza et al., 2016), BOHB (Falkner et al., 2018) achieves very
promising result but require a lot of computational resources which is contradictory to our original
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Figure 1: Overview of our NASOA. Our faster task-oriented online fine-tuning system has two parts: a) Offline
NAS to generate an efficient training model zoo with good accuracy and training speed; b) An online fine-tuning
regime generator to perform a task-specific fine-tuning with a suitable model under user’s time constraint.

objective of efficient fine-tuning. On the other hand, limited works discuss the model selection and
HPO for fine-tuning. Kornblith et al. (2019) finds that ImageNet accuracy and fine-tuning accuracy
of different models are highly correlated. Li et al. (2020); Achille et al. (2019) suggest that the
optimal hyperparameters and model for fine-tuning should be both dataset dependent and domain
similarity dependent (Cui et al., 2018). HyperStar (Mittal et al., 2020) is a concurrent HPO work
demonstrating that a performance predictor can effectively generate good hyper-parameters for a
single model. However, those works don’t give an explicit solution about how to perform fine-
tuning in a more practical online scenario. In this work, we take the advantage of online learning
(Hoi et al., 2018; Sahoo et al., 2017) to build a schedule generator, which allows us to memorize the
past training history and provide up-and-coming training regimes for new coming tasks on the fly.
Besides, we introduce the NAS model zoo to further push up the speed and performance.

3 THE PROPOSED APPROACH

The goal of this paper is to develop an online fine-tuning pipeline to facilitate a fast continuous
cross-task model adaption. By the preliminary experiments in Section 4.1, we confirm that the
model architectures and hyperparameters such as the learning rate and frozen stages will greatly
influence the accuracy and speed of the fine-tuning program. Thus, our NASOA includes two parts
as shown in the Figure 1: 1) Searching a group of neural architectures with good accuracy and fast
training speed to create a pretrained model zoo; 2) Designing an online task-oriented algorithm to
generate an efficient fine-tuning regime with the most suitable model under user’s time constraint.

3.1 CREATING AN EFFICIENT TRAINING MODEL ZOO (ET-NAS) BY NAS
The commonly used hand-craft backbones for fine-tuning including MobileNet (Sandler et al.,
2018), ResNet (He et al., 2016), and ResNeXt (Xie et al., 2017). Recently, some state-of-the-art
backbone series such as RegNet (Radosavovic et al., 2020), and EfficientNet (Tan et al., 2019b) are
developed by automated algorithms for higher accuracy and faster inference speed. However, the
objective of our NAS is to find a group of models with good model generalization ability and training
speed. Suggested by Kornblith et al. (2019), the model fine-tuning accuracy (model generalization
ability) has a strong correlation between ImageNet accuracy (r = 0.96). Meanwhile, the training
speed can be measured by the step time of each training iteration. Thus, our NAS can be formulated
by a multi-objective optimization problem (MOOP) on the search space S given by:

max
A∈S

(acc(A),−Ts(A)) subject to Ts(A) ≤ Tm (1)

whereA is the architecture, acc(.) is the Top-1 accuracy on ImageNet, Ts(.) is the average step time
of one iteration, and Tm is the maximum step time allowed. The step time is defined to be the total
time of one iteration, including forward/backward propagation, and parameter update.

Search Space Design is extremely important (Radosavovic et al., 2020). As shown in Figure 2,
to enable an efficient model, we propose a novel flexible joint block-level and macro-level search
space to enable simple to complex block design and fine adjustment of the computation allocation
on each stage. Unlike existing topological cell-level search space such as DARTS (Liu et al., 2018b),
AmoebaNet(Real et al., 2019a), and NASBench101(Dong & Yang, 2019), ours is more compact and
avoids redundant skip-connections which have great memory access cost (MAC). Our block-level
search space is more flexible to adjust the width, depth (for each stage), when to down-sample/raise
the channels. In contrast, EfficientNet only scales up/down the total width and depth by a fixed
allocation ratio, and RegNet cannot change the number/type of operations in each block.
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Figure 2: Our joint block/macro-level search space to find efficient training networks. Our block-level search
space covers many popular designs such as ResNet, ResNext, MobileNet Block. Our macro-level search space
allows small adjustment of the network in each stage thus the resulting models are more flexible and efficient.

Block-level Search Space. We consider a search space based on 1-3 successive nodes of 5 different
operations. Three skip connections with one fixed residual connection are searched. Element-wise
add or channel-wise concat is chosen to combine the features for the skip-connections. For each
selected operation, we also search for the ratio of changing channel size: ×0.25, ×0.5, ×1, ×2, ×4.
Note that it can cover many popular block designs such as Bottleneck (He et al., 2016), ResNeXt
(Xie et al., 2017) and MB block (Sandler et al., 2018). It consists of 5.4× 106 unique blocks.

Macro-level Search Space. Allocation computation over different stages is crucial for a backbone
(Liang et al., 2020). Early-stage feature maps in one backbone are larger which captures texture
details, while late-stage feature maps are smaller which are more discriminative (Li et al., 2018).
Therefore, for macro-level search space, we design a flexible search space to find the optimal channel
size (width), depth (total number of blocks), when to down-sample, and when to raise the channels.
Our macro-level structure consists of 4 flexible stages. The spatial size of the stages is gradually
down-sampled with factor 2. In each stage, we stack a number of block architectures. The positions
of the doubling channel block are also flexible. This search space consists of 1.5 × 107 unique
architectures. Details of the search space and its encodings can be found in Appendix B.1.

Multi-objective Searching Algorithm. For MOOP in Eq 1, we define architecture A1 dominates
A2 if (i) A1 is no worse than A2 in all objectives; (ii) A1 is strictly better than A2 in at least one
objective. A∗ is Pareto optimal if there is no otherA that dominateA∗. The set of all Pareto optimal
architectures constitutes the Pareto front. To solve this MOOP problem, we modify a well-known
method named Elitist Non-Dominated sorting genetic algorithm (NSGA-II) (Deb et al., 2000) to
optimize the Pareto front Pf . The main idea of NSGA-II is to rank the sampled architectures by
non-dominated sorting and preserve a group of elite architectures. Then a group of new architectures
is sampled and trained by mutation of the current elite architectures on thePf . The algorithm can be
paralleled on multiple computation nodes and lift the Pf simultaneously. We modify the NSGA-II
algorithm to become a NAS algorithm: a) To enable parallel searching on N computational nodes, we
modify the non-dominated-sort method to generate exactly N mutated models for each generation,
instead of a variable size as the original NSGA-II does. b) We define a group of mutation operations
for our block/macro search space for NSGA-II to change the network structure dynamically. c) We
add a parent computation node to measure the selected architecture’s training speed and generate
the Pareto optimal models. Details of our NSGA-II can be found in Appendix B.2.2.

Efficient Training Model Zoo Zoo (ET-NAS). By the proposed NAS method, we then create an
efficient-training model zoo Zoo named ET-NAS which consists of K Pareto optimal modelsA∗i on
Pf . Then A∗i are pretrained by ImageNet. Details of our NAS and A∗i can be found in Appendix B.

3.2 ONLINE TASK-ORIENTED FINE-TUNING SCHEDULE GENERATION

With the help of efficient training Zoo, the marginal computational cost of each user is minimized
while they can enjoy the benefit of NAS. We then need to decide a suitable fine-tuning schedule
upon the user’s upcoming tasks. Given user’s datasetD and fine-tuning time constraint Tl, an online
regime generator G(., .) is desired:

[RegimeFT,A∗i ] = G(D,Tl), such that Acc(AFineTune
i , Dval) is maximized, (2)

where the RegimeFT includes all the hyperparameters required, i.e., lr schedule, total training steps,
and frozen stages. G(., .) also needs to pick up the most suitable pretrained model A∗i from Zoo.
Note that existing search-based HPO methods require huge computational resources and cannot fit
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in our online one-shot training scenario. Instead, we first propose an online learning predictor AccP
to model the accuracy on the validation set Acc(AFT

i , Dval) by the meta-data information. Then we
can use the predictor to construct G(., .) to generate an optimal hyperparameter setting and model.

3.2.1 ONLINE LEARNING FOR MODELING Acc(AFT
i , Dval)

Recently, Li et al. (2020) suggest that the optimal hyperparameters for fine-tuning are highly related
to some data statistics such as domain similarity to the ImageNet. Thus, we hypothesis that we can
model the final accuracy by a group of predictors, e.g., model information, meta-data description,
data statistics stat(D), domain similarity, and hyperparameters. We list the variables we considered
to predict the accuracy result as follows:

ModelA∗i name (one-hot dummy variable) ImageNet Acc. of theA∗i
Domain Similiarity to ImageNet (EMD) (Cui et al., 2018) #.Classes Number of Iteration

Average #. images per class Std #. images per class Learning Rate Frozen Stages

Those variables can be easily calculated ahead of the fine-tuning. One can prepare offline training
data by fine-tuning different kinds of dataset and collect the accuracy correspondingly and apply a
Multi-layer Perceptron Regression (MLP) offline on it. However, online learning should be a more
realistic setting for our problem. In cloud computing service or a GPU cluster, a sequence of fine-
tuning requests with different data will arrive from time to time. The predictive model can be further
improved by increasing the diversity of the data and the requests over time.

Using a fixed depth of MLP model in the online setting may be problematic. Shallow networks
maybe more preferred for small number of instances, while deeper model can achieve better perfor-
mance when the sample size becomes larger. Inspired by Sahoo et al. (2017), we use an adaptive
MLP regression to automatically adapt its model capacity from simple to complex over time. Given
the input variables, the prediction of the accuracy is given by:

AccP (A∗i ,RegimeFT, stat(D)) =

L∑
l=1

αlfl, where l = 0, ..., L (3)

fl = hlWl, hl = RELU(Φlhl−1), h0 = [A∗i ,RegimeFT, stat(D)].

The predicted accuracy is a weighted sum of the output fl of each intermediate fully-connected layer
hl. The Wl and Φl are the learnable weights of each fully-connected layer. The αl is a weight vector
assigning the importance to each layer and ‖α‖ = 1. Thus the predictor AccP can automatically
adapt its model capacity from simple to complex along with incoming tasks. The learnable weight
αl controls the importance of each intermediate layer and the final predicted accuracy is a weighted
sum of fl of them. The network can be updated by a Hedge Backpropagation (Freund & Schapire,
1999) in which αl is updated based on the loss suffered by this layer l as follows:

α′l ← αlβ
L(fl,Accgt), W ′l ←Wl − ηαl∇WlL(fl, Accgt)

Φ′l ← Φ′l − η
L∑

j=l

αj∇WlL(fj , Accgt), α
′′
l ←

α′l∑
α′l

where β ∈ (0, 1) is the discount rate, the weight α′l are re-normalized such that ‖α‖ = 1, and η is
the learning rate. Thus, during the online update, the model can choose an appropriate depth by αl

based on the performance of each output at that depth. By utilizing the online cumulative results,
our generator gains experience that helps future prediction.

Generating Task-oriented Fine-tuning Schedule. Our schedule generator G then can make use of
the performance predictor to find the best training regime:

G(D,Tl) = arg maxA∈Zoo,RegimeFT∈SFT
AccP (A, RegimeFT , stat(D)).

Once the time constraint Tl is provided, the max number of iterations for different A∗i can be cal-
culated by an offline step-time lookup table for Zoo. The corresponding meta-data variables can be
then calculated for the incoming task. The optimal selection of model and hyperparameters is ob-
tained by ranking the predicted accuracy of all possible grid combinations. The Detailed algorithm
can be found in the Appendix B.6.
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Table 1: Datasets and their statistics used in this paper. Datasets in bold are used to construct the online
learning training set. The rest are used to test our NASOA. It is commonly believed that Aircrafts, Flowers102
and Blood-cell deviate from the ImageNet domain.

DataSets #.Class Task #.Train #.Test DataSets #.Class Task #.Train #.Test

Flowers102(Nilsback & Zisserman, 2008) 102 Fine-Grained 6K 2K Stanford-Car(Krause et al., 2013) 196 Fine-Grained 8K 8K

CUB-Birds(Welinder et al., 2010) 200 Fine-Grained 10K 2K MIT67(Quattoni & Torralba, 2009) 67 Scene cls. 5K 1K

Caltech101(Fei-Fei et al., 2006) 101 General 8K 1K Food101(Bossard et al., 2014) 101 Fine-Grained 75K 25K

Caltech256(Griffin et al., 2007) 257 General 25K 6K FGVC Aircrafts(Maji et al., 2013) 100 Fine-Grained 7K 3K

Stanford-Dog(Khosla et al., 2011) 120 Fine-Grained 12K 8K Blood-cell(Singh et al., 2020) 4 Medical Img. 10K 2K

4 EXPERIMENTAL RESULTS

4.1 PRELIMINARY EXPERIMENTS

We conduct a complete preliminary experiment to justify our motivation and model settings. Details
can be found in the Appendix A. According to our experiments, we find that for an efficient fine-
tuning, the model matters most. The suitable model should be selected according to the task and
time constraints. Thus constructing a model zoo with various sizes of training-efficient models and
picking up suitable models should be a good solution for faster fine-tuning. We also verify some
existing conclusions: Fine-tuning performs better than training from scratch (Kornblith et al., 2019)
so that our topic is very important for efficient GPU training; Learning rate and frozen stage are
crucial for fine-tuning (Guo et al., 2019), which needs careful adjustment.

4.2 OFFLINE NAS AND MODEL ZOO RESULTS

Table 2: Comparsion of our ET-NAS models
and SOTA ImageNet models. Inference time
and training step time are measured in ms on
single Nvidia V100, with bs = 64.

Model Name
Top-1 Inf Training Step

Acc. Time (ms) Time (ms)

RegNetY-200MF 70.40 14.25 62.30

ET-NAS-C 71.29 8.94 26.28
RegNetY-400MF 74.10 20.57 90.61

ET-NAS-D 74.46 14.54 36.30
RegNetY-600MF 75.50 22.15 90.11

MobileNet-V3-Large 75.20 16.88 71.65

OFANet 76.10 17.81 73.10

Amoebanet 75.70 28.39 141.45

ET-NAS-E 76.87 25.34 61.95
EfficientNet-B0 77.70 24.30 120.29

RegNetY-800MF 78.00 45.59 170.96

ET-NAS-F 78.80 33.83 93.04
EfficientNet-B2 80.40 58.78 277.60

RegNetY-16GF 80.40 192.78 677.68

ET-NAS-G 80.41 53.08 133.97
ET-NAS-H 80.92 76.80 193.40

EfficientNet-B3 81.50 97.33 455.86

ET-NAS-I 81.38 94.60 265.13
ET-NAS-J 82.08 131.92 370.28

ET-NAS-L 82.65 191.89 542.52

During the NAS, we directly search on the ImageNet
dataset(Russakovsky et al., 2015). We first search for a
group of efficient block structure, then use those block
candidates to conduct the macro-level search. We use
a short training setting to evaluate each architecture. It
takes about 1 hour on average for evaluating one archi-
tecture for the block-level search and 6 hours for the
macro-level search. Paralleled on GPUs, it takes about
one week on a 64-GPU cluster to conduct the whole
search (5K+1K arch). Implementation details and in-
termediate results can be found in the Appendix B.

Faster Fine-tuning Model Zoo (ET-NAS). After iden-
tifying the A∗i from our search, we fully train those
models on ImageNet following common practice. Note
that all the models including ET-NAS-L can be eas-
ily pretrained on a regular 8-card GPU node since our
model is training-efficient. We are confident to re-
lease our models for the public to reproduce our re-
sults from scratch2 and let the public to save their
energy/CO2/cost. Due to the length of the paper, we
put the detailed encoding and architectures of the final
searched models in the Appendix B.4. Surprisingly, we
found that smaller models should use simpler structures
of blocks while bigger models prefer complex blocks.
Comparing our searched backbone to the conventional
ResNet/ResNeXt, we find that early stages in our models are very short which is more efficient since
feature maps in an early stage are very large and the computational cost is comparably large. This
also verified our findings in Appendix B.4.1.

Comparison with the state-of-the-art ImageNet models. We compare the training/inference ef-
ficiency of our searched ET-NAS with the SOTA ImageNet models such as MobileNetV3 (Howard
et al., 2019), RegNet series (Radosavovic et al., 2020), and EfficientNet series (Tan & Le, 2019)

2The efficient training model zoo (ET-NAS) has been released at: https://github.com/NAS-OA/
NASOA
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Figure 3: Comparison of the training and inference efficiency of our searched models (ET-NAS) with SOTA
models on ImageNet. Our searched models are considerably faster, e.g., ET-NAS-G is 6x training faster than
RegNetY-16GF, and ET-NAS-I is 1.5x training faster than EfficientNetB3. Although our models are optimized
for fast training, the inference speed is comparable to EfficientNet and better than RegNet series.

as shown in Table 2 and Figure 3. Overall, our searched models outperform other SOTA Ima-
geNet models in terms of training accuracy and training speed from Figure 3 (left). Specifically,
ET-NAS-G is about 6x training faster than RegNetY-16GF, and ET-NAS-I is about 1.5x training
faster than EfficientNetB3. Our models are also better than mobile setting models such as Mo-
bileNetV2/V3(Howard et al., 2019) and RegNetY-200MF. Although our model is optimized for fast
training, we also compare the inference speed in Figure 3(right). Our models still have a very strong
performance in terms of inference speed, outperforming RegNet series and achieving comparable
performance with EfficientNet. In Figure 3 (mid), our method is more training efficient than other
NAS results, e.g.some evolution-based NAS methods such as AmoebaNet, OFANet.
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Figure 4: Comparison of the training efficiency of
our searched models (ET-NAS) with 8 other NAS re-
sults on ImageNet. It can be found that our method
is more training efficient than some recent evolution-
based NAS methods such as AmoebaNet, OFANet be-
cause of our effective search space.

What makes our network training efficient?
To answer this, we define an efficiency score
and conduct a statistical analysis of different
factors for efficient-training (Details can be
found in Appendix B.4.1). We have the fol-
lowing conclusions: a) By observing optimal
A∗i , smaller models should use simpler blocks
while bigger models prefer complex blocks.
Using the same block structure for all sizes of
models (Tan & Le, 2019; Radosavovic et al.,
2020) may not be optimal. b) Adding redun-
dant skip-connections which have great mem-
ory access cost will decrease the training ef-
ficiency of the model thus existing topologi-
cal cell-level search space such as DARTS (Liu
et al., 2018b), AmoebaNet (Real et al., 2019a),
and NASBench101 (Dong & Yang, 2019) is not
efficient. c) The computation allocation on dif-
ferent stages is crucially important. Simply in-
creasing depth/width to expand the model as
Tan & Le (2019) may not be optimal will down-
grade the performance. To conclude our novel
joint search space contributes most to the training efficiency.

4.3 RESULTS FOR ONLINE ADAPTIVE PREDICTOR AccP

Experimental Settings. We evaluate our online algorithm based on ten widely used image classifi-
cation datasets, that cover various fine-tuning tasks as shown in Table 1. Five of them (in bold) are
chosen to be the online learning training set (meta-training dataset). 30K samples are collected by
continually sampling a subset of each dataset and fine-tuning with a randomized hyperparameters
on it. Each subset varies from #. classes and #. images. The variables in Section 3.2.1 are calculated
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accordingly. The fine-tuning accuracy is then evaluated on the test set. Then 30K sample is split
into 24K meta-training samples and 6K meta-validation samples.

Table 3: Online error rate of our method and fixed MLP.
Our adaptive MLP with hedge backpropagation is better in
the online setting of predicting the fine-tuning accuracy.

All Cumulative Err. Segment 20-40% Segment 80-100%

Models MAE MSE MAE MSE MAE MSE

Fixed MLP (L=3) 10.07% 1.94% 8.99% 1.56% 7.99% 1.21%

Fixed MLP (L=6) 9.12% 1.71% 9.03% 1.62% 7.16% 1.04%

Fixed MLP (L=10) 8.45% 1.59% 8.46% 1.53% 6.68% 0.96%

Fixed MLP (L=14) 11.24% 2.91% 8.34% 1.54% 4.62% 0.46%

Adaptive MLP w Hedge-BP 7.51% 1.36% 7.55% 1.11% 3.73% 0.28%

Then an adaptive MLP regression in Eq
3 are used to fit the data and predict the
Acc(AFT

i , Dval). We use L = 10 with 64
units in each hidden layer. We use a learn-
ing rate of 0.01 and β = 0.99. As base-
lines, we also compare the results of us-
ing fixed MLP with plain backpropagation
with different layers(L = 3, 6, 10, 14).
MAE (mean absolute error) and MSE
(mean square error) are performance met-
rics to measure the cumulative error with
different segments of the tasks stream.

Comparison of online learning method. The cumulative error obtained by all the baselines and
the proposed method to predict the fine-tuning accuracy is shown in Table 4. It can be seen that
our adaptive MLP with hedge backpropagation is better than fixed MLP in terms of the cumulative
error of the predicted accuracy. Our method enjoys the benefit from the adaptive depth which allows
faster convergence in the initial stage and strong predictive power in the later stage.

4.4 FINAL NASOA RESULTS
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Figure 5: Comparison of the final fine-tuning results under four time constraints for the testing dataset. Red
square lines are the results of our NASOA in one-shot. The dots on the other solid line are the best performance
of all the models in that series can perform. The model and training regime generated by our NASOA can
outperform the upper bound of other methods in most cases. Our methods can improve around 2.1%˜7.4%
accuracy than the upper bound of RegNet/EfficientNet series on average.

Table 4: Comparison of the final NASOA results with other
HPO methods. “HPO only” means only optimizing the hy-
perparameters with RegNetY-16GF. Other HPO methods opti-
mize both selecting hyperparameters and model from RegNet
series models. “OA only” is our online schedule generator
with RegNet series models. “Our Zoo” means using our ET
models zoo to find suitable model. “Fixed MLP Predictor” is
the offline baseline with fixed MLP predictor. “Our NASOA”
is the our whole pipeline with both training efficient model zoo
and online adaptive scheduler. Without additional search cost
(x40), NASOA can reach similar performance of BOHB.

Methods Search Cost Aircrafts MIT67 Sf-Car Sf-Dog

Random Search (HPO only) x40 63.07% 75.60% 67.47% 86.25%

BOHB (HPO only) x40 72.70% 77.61% 70.94% 87.41%

Random Search x40 81.07% 79.93% 88.99% 89.06%

BOHB x40 82.34% 79.85% 89.01% 89.49%

Our Zoo with Random Search x40 83.71% 80.97% 87.84% 92.75%

Our Zoo with BOHB x40 84.67% 82.34% 89.03% 93.74%

Our OA only x1 81.22% 79.33% 84.56% 89.70%

Our Zoo with Fixed MLP Predictor (Offline) x1 81.31% 75.97% 88.81% 88.58%

Our final NASOA x1 82.54% 80.30% 88.20% 92.30%

To evaluate the performance of our whole
NASOA, we select four time constraints
on the testing datasets and use AccP (.)
to test the fine-tuning accuracy. The
testing datasets are MIT67, Food101,
Aircrafts, Blood-cell, and Stanford-Car.
The shortest/longest time constraint are
the time of fine-tuning 10/50 epochs
for ResNet18/ResNet101. The rest are
equally divided into the log-space. For
our NASOA, we generate the fine-tuning
schedules by maximizing the predicted
accuracy in Eq 2. We also conduct fine-
tuning on various candidates of baselines
such as ResNet (R18 to R152), RegNet
(200MF to 16GF), and EfficientNet (B0
to B3) with the default hyperparameter
setting in Li et al. (2020).

Comparison of the final fine-tuning re-
sults with the SOTA networks. We plot
the time versus accuracy comparison in
Figure 5. As can be seen, the model and
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training regime generated by our NASOA can outperform the upper bound of other methods in
most cases. On average, our methods can improve around 2.1%/7.4% accuracy than the best model
of RegNet/EfficientNet series under various time constraints and tasks. It is noteworthy that our
NASOA performs better especially in the case of short time constraint, which demonstrates that
our schedule generator is capable provide both efficient and effective regimes for fast fine-tuning.

Table 5: . This ablative study calculates the aver-
age fine-tuning accuracy over 5 tasks.

Methods
Fixed Existing NAS Adaptive Comp Avg. Fine-tuning

Model Models Models Scheduler Cost Accuracy

BOHB[10] � x40 77.17%

+ Our Zoo � x40−0× 87.45%+10.28%

Our OA � � x1−40× 83.70%+6.54%

NASOA � � x1−40× 85.84%+8.67%

Comparison of the final fine-tuning results
with the HPO methods. In Table 4, we com-
pare our method with the HPO methods which
optimizing the hyperparameters and picking up
models in ResNet, RegNetY, and EfficientNet
series. “HPO only” means the method only op-
timizes the hyperparameters with a fixed model
RegNetY-16GF.“OA only” is our online sched-
ule generator with RegNet series models. “Our
Zoo” means using our ET models zoo to find
suitable model. “Fixed MLP Predictor” is
the offline baseline with fixed MLP predictor
(L=10) with our model zoo. “Our NASOA” is
the our whole pipeline with both training effi-
cient model zoo and online adaptive scheduler. Comparing to the offline baseline with our NASOA,
our online adaption module can boost the average performance by 2.17%. It can also be found that
our method can save up to 40x computational cost compared to HPO methods while reaching similar
performance. With more computational budget, our model zoo with BOHB search can reach even
higher accuracy (+avg. 10.28%).

Ablative interpretation of performance superiority. Table 5 calculates the average fine-tuning
accuracy over tasks. Our NAS model zoo can greatly increase the fine-tuning average accuracy
from 77.17% to 87.45%, which is the main contribution of the performance superiority. Using our
online adaptive scheduler instead of BOHB can significantly reduce the computational cost (-40x).

5 CONCLUSION

We propose the first efficient task-oriented fine-tuning framework aiming at saving the resources
for GPU clusters and cloud computing. The joint NAS and online adaption strategy achieve much
better fine-tuning results in terms of both accuracy and speed. The searched architectures are more
training-efficient than very strong baselines such as RegNet and EfficientNet. Our experiments on
multiple datasets show our NASOA achieves 40x speed-up comparing to BOHB. The proposed
NASOA can be well adapted to more tasks such as detection and segmentation in the future.

REFERENCES

Alessandro Achille, Michael Lam, Rahul Tewari, Avinash Ravichandran, Subhransu Maji, Char-
less C Fowlkes, Stefano Soatto, and Pietro Perona. Task2vec: Task embedding for meta-learning.
In Proceedings of the IEEE International Conference on Computer Vision, pp. 6430–6439, 2019.
2

Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. Designing neural network architec-
tures using reinforcement learning. In ICLR, 2017. 2

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. JMLR, 2012.
1

Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101–mining discriminative compo-
nents with random forests. In ECCV, 2014. 4.1

Han Cai, Tianyao Chen, Weinan Zhang, Yong Yu, and Jun Wang. Efficient architecture search by
network transformation. In AAAI, 2018. 2

Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. Once-for-all: Train one
network and specialize it for efficient deployment. arXiv preprint arXiv:1908.09791, 2019a. 10

9



Under review as a conference paper at ICLR 2021

Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural architecture search on target task
and hardware. In ICLR, 2019b. 2

Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L Yuille.
Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and
fully connected crfs. TPAMI, 2017. 1

Yin Cui, Yang Song, Chen Sun, Andrew Howard, and Serge Belongie. Large scale fine-grained
categorization and domain-specific transfer learning. In CVPR, 2018. 1, 2, 3.2.1

Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, and Tanaka Meyarivan. A fast elitist non-dominated
sorting genetic algorithm for multi-objective optimization: Nsga-ii. In International conference
on parallel problem solving from nature, pp. 849–858. Springer, 2000. 3.1, B.2.2

Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the scope of reproducible neural architecture
search. In International Conference on Learning Representations, 2019. 3.1, 4.2

Stefan Falkner, Aaron Klein, and Frank Hutter. BOHB: robust and efficient hyperparameter opti-
mization at scale. In ICML, 2018. 1, 2

Li Fei-Fei, Rob Fergus, and Pietro Perona. One-shot learning of object categories. TPAMI, 2006.
4.1

Yoav Freund and Robert E Schapire. Adaptive game playing using multiplicative weights. Games
and Economic Behavior, 29(1-2):79–103, 1999. 3.2.1

Gregory Griffin, Alex Holub, and Pietro Perona. Caltech-256 object category dataset. 2007. 4.1

Yunhui Guo, Honghui Shi, Abhishek Kumar, Kristen Grauman, Tajana Rosing, and Rogerio Feris.
Spottune: transfer learning through adaptive fine-tuning. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 4805–4814, 2019. 4.1, A.2

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, 2016. 3.1, 3.1

Kaiming He, Ross B. Girshick, and Piotr Dollár. Rethinking imagenet pre-training. In ICCV, 2019.
1

Steven CH Hoi, Doyen Sahoo, Jing Lu, and Peilin Zhao. Online learning: A comprehensive survey.
arXiv preprint arXiv:1802.02871, 2018. 2

Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun
Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for mobilenetv3. In CVPR,
2019. 2, 4.2

Chenhan Jiang, Hang Xu, Xiangdan Liang, and Liang Lin. Hybrid knowledge routed modules for
large-scale object detection. In NeurIPS, 2018. 1

Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng Yao, and Li Fei-Fei. Novel dataset for fine-
grained image categorization. In Workshop on Fine-Grained Visual Categorization, CVPR, 2011.
4.1

Simon Kornblith, Jonathon Shlens, and Quoc V Le. Do better imagenet models transfer better? In
CVPR, 2019. 1, 2, 3.1, 4.1, A.2

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
categorization. In 4th International IEEE Workshop on 3D Representation and Recognition
(3dRR-13), Sydney, Australia, 2013. 4.1

Hao Li, Pratik Chaudhari, Hao Yang, Michael Lam, Avinash Ravichandran, Rahul Bhotika, and
Stefano Soatto. Rethinking the hyperparameters for fine-tuning. In ICLR, 2020. 1, 2, 3.2.1, 4.4,
A.1, A.1

Zeming Li, Chao Peng, Gang Yu, Xiangyu Zhang, Yangdong Deng, and Jian Sun. Detnet: A
backbone network for object detection. In ECCV, 2018. 3.1

10



Under review as a conference paper at ICLR 2021

Feng Liang, Chen Lin, Ronghao Guo, Ming Sun, Wei Wu, Junjie Yan, and Wanli Ouyang. Compu-
tation reallocation for object detection. In ICLR. OpenReview.net, 2020. 3.1

Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan
Yuille, Jonathan Huang, and Kevin Murphy. Progressive neural architecture search. In ECCV,
2018a. 1, 2

Chenxi Liu, Liang-Chieh Chen, Florian Schroff, Hartwig Adam, Wei Hua, Alan L. Yuille, and Fei-
Fei Li. Auto-deeplab: Hierarchical neural architecture search for semantic image segmentation.
In CVPR, 2019. 1

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. In
ICLR, 2018b. 1, 2, 3.1, 4.2

Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained
visual classification of aircraft. arXiv preprint arXiv:1306.5151, 2013. 4.1

Hector Mendoza, Aaron Klein, Matthias Feurer, Jost Tobias Springenberg, and Frank Hutter. To-
wards automatically-tuned neural networks. In Workshop on Automatic Machine Learning, pp.
58–65, 2016. 1, 2

Gaurav Mittal, Chang Liu, Nikolaos Karianakis, Victor Fragoso, Mei Chen, and Yun Fu. Hyperstar:
Task-aware hyperparameters for deep networks. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 8736–8745, 2020. 2

Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
of classes. In 2008 Sixth Indian Conference on Computer Vision, Graphics & Image Processing,
pp. 722–729. IEEE, 2008. 1, 4.1

Ariadna Quattoni and Antonio Torralba. Recognizing indoor scenes. In CVPR, 2009. 4.1

Ilija Radosavovic, Justin Johnson, Saining Xie, Wan-Yen Lo, and Piotr Dollár. On network design
spaces for visual recognition. In ICCV, pp. 1882–1890, 2019. 1

Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr Dollár. Designing
network design spaces. arXiv preprint arXiv:2003.13678, 2020. 3.1, 3.1, 4.2, 4.2

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image
classifier architecture search. In AAAI, 2019a. 1, 3.1, 4.2

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image
classifier architecture search. In Proceedings of the aaai conference on artificial intelligence,
volume 33, pp. 4780–4789, 2019b. 10

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. IJCV, 115(3):211–252, 2015. 4.2

Doyen Sahoo, Quang Pham, Jing Lu, and Steven CH Hoi. Online deep learning: Learning deep
neural networks on the fly. In IJCAI, 2017. 2, 3.2.1

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In CVPR, pp. 4510–4520, 2018. 3.1, 3.1

Ishpreet Singh, Narinder Pal Singh, Harnoor Singh, Saharsh Bawankar, and Alioune Ngom. Blood
cell types classification using cnn. In International Work-Conference on Bioinformatics and
Biomedical Engineering, pp. 727–738. Springer, 2020. 4.1

Emma Strubell, Patrick Verga, Daniel Andor, David Weiss, and Andrew McCallum. Linguistically-
informed self-attention for semantic role labeling. In EMNLP, pp. 5027–5038. Association for
Computational Linguistics, 2018. B.5

Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for deep
learning in NLP. In ACL, 2019a. 1, 2

11



Under review as a conference paper at ICLR 2021

Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for deep
learning in nlp. arXiv preprint arXiv:1906.02243, 2019b. B.5

Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling for convolutional neural
networks. In ICML, volume 97 of Proceedings of Machine Learning Research, pp. 6105–6114.
PMLR, 2019. 1, 2, 4.2, 4.2, B.4.1

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and
Quoc V. Le. Mnasnet: Platform-aware neural architecture search for mobile. In CVPR, 2019a. 2

Mingxing Tan, Ruoming Pang, and Quoc V Le. Efficientdet: Scalable and efficient object detection.
arXiv preprint arXiv:1911.09070, 2019b. 1, 3.1

P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Belongie, and P. Perona. Caltech-UCSD
Birds 200. Technical Report CNS-TR-2010-001, California Institute of Technology, 2010. 1, 4.1

Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual trans-
formations for deep neural networks. In CVPR, 2017. 3.1, 3.1

Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. Snas: stochastic neural architecture search.
In ICLR, 2019. 2

Hang Xu, Lewei Yao, Wei Zhang, Xiaodan Liang, and Zhenguo Li. Auto-fpn: Automatic network
architecture adaptation for object detection beyond classification. In ICCV, 2019. 1

Lewei Yao, Hang Xu, Wei Zhang, Xiaodan Liang, and Zhenguo Li. SM-NAS: Structural-to-modular
neural architecture search for object detection. 2020. 1

Zhao Zhong, Junjie Yan, Wei Wu, Jing Shao, and Cheng-Lin Liu. Practical block-wise neural
network architecture generation. In CVPR, 2018. 2

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures
for scalable image recognition. In CVPR, 2018. 1

A PRELIMINARY EXPERIMENTS

A.1 EXPERIMENTS SETTINGS

The preliminary experiments aim at figuring out what kinds of factors impact the speed and accuracy
of fine-tuning. We fine-tune several ImageNet pretrained backbones on various datasets as shown
in Table 6 (right) and exam different settings of hyperparameters by a grid search such as: learn-
ing rate (0.0001, 0.001, 0.01, 0.1), frozen stages (-1,0,1,2,3), and frozen BN (-1,0,1,2,3). Frozen
stages/frozen BN= k means 1 to kth stage’s parameters/BN statistics are not updated during train-
ing. The training settings most follow Li et al. (2020) and we report the Top-1 validation accuracy
and training time. Its detailed experiment settings are hyperparameters are listed as follows:

Comparing fine-tuning and training from scratch. We use ResNet series (R-18 to R-50) to evalu-
ate the effect of fine-tuning and training from scratch. Following Li et al. (2020), we train networks
on Flowers102, CUB-Birds, MIT67 and Caltech101 datasets for 600 epochs for training from scratch
and 350 epochs for fine-tuning to ensure all models converge on all datasets. We use SGD optimizer
with an initial learning rate 0.01, weight decay 1e-4, momentum 0.9. The learning rate is decreased
by factor 10 at 400 and 550 epoch for training from scratch and 150, 250 epoch for fine-tuning.

Optimal learning rate and frozen stage. We perform a simple grid search on Flowers102,
Stanford-Car, CUB-Birds, MIT67, Stanford-Dog, and Caltech101 datasets with ResNet50 to find
optimal learning rate and frozen stage on different datasets with the default fine-tune setting in Li
et al. (2020). The hyperparameters ranges are: learning rate (0.1, 0.01, 0.001, 0.0001), frozen stage
(-1, 0, 1, 2, 3).

Comparing different frozen stages and networks along time. We fix different stages of ResNet50
to analyze the influence of different frozen stages to the accuracy and along the training time on
Flowers102, Stanford-Car, CUB-Birds, MIT67, Stanford-Dog, and Caltech101 datasets. We pick
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Table 6: Comparison of Top-1 accuracy and training time (min) on different datasets. Comparing to training
from scratch, fine-tuning shows superior results in terms of both accuracy and training time.

Dataset Method
ResNet18 ResNet34 ResNet50

Acc. Time (min) Acc. Time (min) Acc. Time (min)

Flowers102
From Scratch 94.4% 11 93.8% 19 90.7% 38
Fine-tuning 98.3% 7 98.5% 11 98.8% 22

Stanford-Car
From Scratch 80.6% 14 81.9% 24 81.5% 47
Fine-tuning 87.6% 8 89.6% 14 91.1% 28

CUB-Birds
From Scratch 51.6% 11 53.6% 18 44.6% 35
Fine-tuning 69.2% 6 71.9% 10 74.9% 21

MIT67
From Scratch 67.8% 22 69.2% 37 66.0% 73
Fine-tuning 76.4% 13 76.9% 21 78.1% 43

Stanford-Dog
From Scratch 60.6% 21 62.6% 35 55.2% 70
Fine-tuning 69.7% 12 73.3% 20 75.0% 41

Caltech101
From Scratch 82.5% 12 78.1% 20 75.7% 40
Fine-tuning 90.8% 7 91.8% 12 91.8% 23

Table 7: Fine-tuning on R50, the optimal learning rate and optimal frozen stage found by grid search are
different and should be optimized individually.

DataSet #.Class #.Images
Optimal Optimal

Best Acc.
LR Frozen Stage

Flowers102 102 8K 0.01 0 99.3%
Stanford-Car 196 16K 0.1 1 91.8%
CUB-Birds 200 12K 0.01 2 81.3%

MIT67 67 16K 0.01 -1 80.8%
Stanford-Dog 120 21K 0.01 3 83.7%
Caltech101 101 8K 0.001 -1 96.4%
Caltech256 257 31K 0.01 3 85.6%

the training curves on CUB-Birds and Caltech101 to in the main text of this paper. We also com-
pare the fine-tune results along time with various networks on these datasets as shown in Figure 7.
On Caltech101, ResNet50 dominates the training curve at the very beginning. However, on other
datasets, ResNet18 and ResNet34 can perform better then ResNet50 when the training time is short.

A.2 FINDINGS OF THE PRELIMINARY EXPERIMENTS

With those preliminary experiments, we summarize our findings as follows. Some of the findings
are also verified by some existing works.

• Fine-tuning performs always better than training from scratch. As shown in Table 6, fine-
tuning shows superior results than training from scratch in terms of both accuracy and training time
for all the datasets. This finding is also verified by Kornblith et al. (2019). Thus, fine-tuning is the
most common way to train a new dataset and our framework can be generalized to applications.
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Figure 6: (Left) Fine-tuning ResNet101 with different weight-frozen stages. “Freeze: k” means 0 to k stage’s
parameters are not updated during training. The number of frozen stage will effect both training time and accu-
racy. Its optimal frozen setting varies with datasets. (Right) Comparison of accuracy/time different fine-tuning
models. Different models should be selected upon the request of different datasets and training constraints.
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Figure 7: Fine-tune results along time with various networks on these datasets. It can be seen that if
the time constraints is short, we should choose a smaller network.

• We should the optimize learning rate and frozen stage for each dataset. From Table 7, it
seems that the optimal learning rate and optimal frozen stage found by grid search are different for
various datasets. Figure 6also shows that the number of the frozen stages will affect both training
time and final accuracy. Guo et al. (2019) also showed that frozen different stages are crucial for
fine-tuning task. Those two hyperparameters should be optimized for different datasets.

• Model matters most. Suitable model should be selected according to the task and time con-
straints. Figure 6 (right) suggests that always choosing the biggest model to fine-tune may not
be an optimal choice, smaller model can be better than the bigger model if the training time is
limited. On the other hand, it is also important to consider the training efficiency of the model
since a better model can be converged faster by a limited GPU budget. For example, Figure 7
shows that if the time constraint is short, we should choose a smaller network i.e. ResNet18 here.
Thus, it is urgent to construct a training-efficient model zoo.

• BN running statistics should not be frozen during fine-tuning. We found that frozen BN has a
very limited effect on the training time (less than ±5%), while not freezing BN will lead to better
results in almost all the datasets. Thus, BN is not frozen all experiments for our NASOA.

B DETAILS OF THE OFFLINE NAS

B.1 SEARCH SPACE ENCODINGS

The search space of our architectures is composed of block and macro levels, where the former
decides what a block is composed of, such as operators, number of channels, and skip connections,
while the latter is concerned about how to combine the block into a whole network, e.g., when to do
down-sampling, and where to change the number of channels.

B.1.1 BLOCK-LEVEL ARCHITECTURE

Figure 8: Block structure and two block samples.
(a) shows a three-node graph. (b) is an example with
encoding “031-”, and (c) is “02031-a02”.

Block-level design. A block consists of at
most three operators, each of which is divided
into 5 species and has 5 different number of
output channels. Each kind of operator is de-
noted by an op number, and the output chan-
nel of the operator is decided by the ratio be-
tween it and that of the current block. Details
are shown in Table B.1.1. By default, there is
a skip connection between the input and out-
put of the block, which sums their values up.
In addition to that, at most 3 other skip con-
nections are contained in a block, which ei-
ther adds or concatenates the values between
them. Each operation is followed by a batch
normalization layer, and after all the skip con-
nections are calculated, a ReLU layer is trig-
gered.

Block-level encoding. The encoding of each block-level architecture is composed of two parts
separated by ‘-’, which considers the operators and skip connections respectively.
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For the first part (operators part), each operator is represented by two numbers: op number and ratio
number (shown in Table B.1.1). As the output channel of the last operation always equals to that of
the current block, the ratio number of this operator is removed. Therefore, the encoding of a block
with n operators always has length 2n− 1 for the first part of block-level encoding.

For the second part (skip connections part), every skip connection consists of one letter for addition
(‘a’) / concatenation (‘c’), and two numbers for place indices. n operators separate the block to n+1
parts, which are indexed with 0, 1, 2, . . . , n. Thus ‘a01’ means summing up the value before and
after the first operator. Since the skip connection between the beginning and end of the block always
exists, it is not shown in the encoding. Thus this part has length 3k − 3 (possibly 0) when there is k
skip connections. Some of the encoding examples are shown in Figure 8.

B.1.2 MACRO-LEVEL ARCHITECTURE

Macro-level design. We only consider networks with exactly 4 stages. The first block of each stage
(except Stage 1) reduces the resolution of both width and height by half, where the stride 2 is added
to the first operator that is not conv1x1. Other blocks do not change the resolution. One block’s
output channel is either the same, or an integer multiple of the input channel.

Macro-level encoding. The 4 stages are divided apart by 3 ‘-’ signs. For every stage, each block is
represented by an integer, which shows the ratio between output and input channel for this block.

B.1.3 ENCODING AS A WHOLE

Thus the whole backbone can be encoded by simply concatenating the block and macro encoding.
The encoding of the whole network is formatted as:

{Block ENCODING} {First CHANNEL} {Macro ENCODING}
Some common architectures, including ResNet and Wide ResNet can be accurately represented by
our encoding scheme, which is shown in Table B.1.3.

B.2 NAS SEARCH ALGORITHM

B.2.1 NON-DOMINATED SORTING ALGORITHM

Non-dominated sorting is mainly used to sort the solutions in population according to the Pareto
dominance principle, which plays a very important role in the selection operation of many multi-
objective evolutionary algorithms. In non-dominated sorting, an individual A is said to dominate
another individual B, if and only if there is no objective of A worse than that objective of B and
there is at least one objective of A better than that objective of B. Without loss of generality, we
assume that the solutions of a population S can be assigned to K Pareto fronts Fi, i = 1, 2, . . . ,K.
Non-dominated sorting first selects all the non-dominated solutions from population S and assigns
them to F1 (the rank 1 front); it then selects all the non-dominated solutions from the remaining
solutions and assigns them to F2 (the rank 2 front); it repeats the above process until all individuals
have been assigned to a Pareto front.

B.2.2 NSGA-II: ELITIST NON-DOMINATED SORTING GENETIC ALGORITHM

To solve the problem in Eq. 1, Elitist Non-Dominated sorting genetic algorithm (NSGA-II) (Deb
et al., 2000) is adopted to optimize the Pareto front Pf as shown in Algorithm 1. In this paper,

Table 8: The operations and channel changing ratios considered in our paper. Encoding for operators
and ratios. c stands for the channels of the current block.

op number operator(Input c) ratio number ratios

0 conv3x3 0 ×1/4
1 conv1x1 1 ×1/2
2 conv3x3, group=2 2 ×1
3 conv3x3, group=4 3 ×2
4 conv3x3, group=c 4 ×4
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Table 9: ResNets and Wide ResNets are represented by our encoding scheme. Basic Block is repre-
sented as ‘020-’, as the two operators are both conv3x3 (denoted as ‘0’), and the output channel of
the first operator equals to that of the block output (represented as ‘2’), and no other skip connection
except the one connecting input and output; the macro-arch of ResNet 18 is encoded as ‘11-21-21-
21’, as each stage contains two blocks, where the first block in Stage 2, 3, 4 doubles the number of
channels.

model encoding
ResNet18 020- 64 11-21-21-21
ResNet34 020- 64 111-2111-211111-211
ResNet50 10001- 64 411-2111-211111-211

Wide ResNet50 11011- 64 411-2111-211111-211

we choose this kind of sample-based NAS algorithm instead of many popular parameter-sharing
NAS method. This is because we want to further analysis of the sampled architectures and achieve
insights and conclusions of the efficient training. The main idea of NSGA-II is to rank the sampled
architectures by non-dominated sorting and preserve a group of elite architectures. Then a group
of new architectures is sampled and trained by mutation of the current elite architectures on the Pf

. The algorithm can be paralleled on multiple computation nodes and lift the Pf simultaneously.
The mutation in the block-level search space includes adding new skip-connection, modifying the
current operations and ratios. Meanwhile, the mutation in the macro-level search space includes
randomly adding or deleting one block in one stage, exchanging the position of doubling channel
block with its neighbor, and modifying the base channels. This well-known NSGA-II is easy to
implement and we can easily monitor the improvement of each iteration. The stop criterion depends
on the time limit or the computation cost constraints.

Algorithm 1 Our modified NSGA-II Searching Algorithm
Input Stop criterion, Search Space, number of computation nodes N.

1: t = 0
2: Pt ← Random(A), generate a group of initial architectures.
3: Evaluate Pt

4: while not stop criterion do
5: Apply non-dominated sorting to Pt to obtain non-dominated fronts A∗i
6: Sort A∗i by Crowding distance and left top-N A∗j as Parents
7: Create new generation Qt by mutation on current A∗j
8: Train the Qt on N computation nodes and Evaluate the accuracy of Qt.
9: Pt+1 ← Qt ∪ Pt

10: t = t+ 1
11: end while

Output The Pareto Optimal Front A∗i

B.3 NAS IMPLEMENTATION DETAILS

B.3.1 BLOCK-LEVEL SEARCH

In the phase of block-level search, a proxy task of ImageNet is created, which is a subset sampled
fromits training set. This subset constitutes 100 labels, each of which has 500 images as the training
set, and 100 as the validation set. We call this dataset ImageNet-100 in the following parts of this
paper.

To avoid interference with macro architecture, the macro-level architecture is fixed to be the same as
that of ResNet50. Each model is trained by ImageNet-100 with a batch size of 32 for 90 epochs and
learning rate 0.1, which takes 3˜10 hours on a single NVIDIA Tesla-V100 GPU. We do a random
search at first, which uniformly samples all the valid blocks in the search space. Evolutionary
Algorithm (EA) is then performed with three kinds of mutations: 1) replace one operator with
another; 2) change the output channel of one layer; 3) Add/remove/modify a skip connection. We
keep updating the Pareto Front between step time and accuracy during the whole process. As a
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Table 10: The searched optimal efficient training models ”ET-NAS” found by our NAS search. ‘Acc’
means the accuracy evaluated on the ImageNet; inference time and step time are measured in ms
on single Nvidia V100, with a batch size of 64. By observing the optimal model, smaller models
should use simpler blocks while bigger models prefer complex blocks.

Model Name Encoding MParam Gmac MAct
Top-1 inf time Training step

Acc (ms) time (ms)

ET-NAS-A 2- 32 2-11-112-1121112 2.6 0.23 1.3 62.06 5.30 14.74

ET-NAS-B 031- 32 1-1-221-11121 3.9 0.39 1.3 66.92 5.92 15.78

ET-NAS-C 011- 32 2-211-2-111122 7.1 0.58 2.0 71.29 8.94 26.28

ET-NAS-D 031- 64 1-1-221-11121 15.2 1.55 2.6 74.46 14.54 36.30

ET-NAS-E 011- 64 21-211-121-11111121 21.4 2.61 4.7 76.87 25.34 61.95

ET-NAS-F 10001- 64 4-111-11122-1111111111111112 28.4 2.31 6.8 78.80 33.83 93.04

ET-NAS-G 211- 64 41-211-121-11111121 49.3 5.68 8.4 80.41 53.08 133.97

ET-NAS-H 10001- 64 4-111111111-211112111112-11111 44.0 5.33 10.9 80.92 76.80 193.40

ET-NAS-I 02031-a02 64 111-2111-21111111111111111111111-211 72.4 13.13 14.6 81.38 94.60 265.13

ET-NAS-J 211- 64 411-2111-21111111111111111111111-211 103.0 18.16 15.9 82.08 131.92 370.28

ET-NAS-K
02031-a02 64 1121-111111111111111111111111111

87.3 27.51 31.3 82.42 185.75 505.00
-21111111211111-1

ET-NAS-L
23311-a02c12 64 211-2111

130.4 23.46 19.4 82.65 191.89 542.52
-21111111111111111111111-211

result, 10 blocks are selected as the candidates for the following rounds. Practically, during our
search, the performance of early stop models aligns well with the fully-train accuracy. We checked
the Spearman Rank Correlation for 103 architectures: ρ = 96.6%. Thus, using early stop can greatly
reduce the search cost by around 90% while keeping our NAS effective.

B.3.2 MACRO-LEVEL SEARCH

Figure 9: Results of the block-level search in
ImageNet-100. The y-axis denotes the accuracy and x-
axis denotes the latency. Blue dots are models searched
in this step, while the red ones are Basic Block with
first channel 64, 128, 192; Inverted Bottleneck Block
(expansion rate 4) with first channel 64, 128; Bottle-
Neck Block (expansion rate 4) with first channel 256,
320. It can be found that our algorithm can find more
efficient block in the block-level search.

We search the block-level architectures
with the 10 blocks attained by block-level
search. Random search is adopted at first,
where the number of blocks is chosen ran-
domly between 10 and 50, and the first and
last channel is drawn from {32, 64, 128}
and {512, 1024, 2048} respectively. EA
search is then applied, where the muta-
tions allowed are: 1) Add a ‘1’; 2) Remove
a ‘1’; 3) Swap two different adjacent num-
bers. Similar to block-level search, Pareto
Front between step time and accuracy is
also kept updated.

Different from the previous phase, the
whole ImageNet dataset is utilized for
training. Each model is trained with a
batch size of 1024 and a learning rate of
0.2 for 40 epochs.

B.4 ET-NAS: MODEL ZOO
INFORMATION AND THEIR ENCODINGS

After the NAS process done in Section
B.3, 12 models are selected as our model
zoo ET-NAS of fine-tuning. Details of these models are shown in Table B.4. The inference time and
step time are measured in ms on a single Nvidia V100, with batch size of 64. The resolution follows
the standard setting of ImageNet: 224x224. By observing the optimal model in the table, smaller
models should use simpler blocks while bigger models prefer complex blocks.
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Figure 10: Comparison of the training and inference efficiency of our searched models (ET-NAS) with SOTA
NAS models on ImageNet. We further compared our models with 8 other NAS results. It can be found that our
method is more training efficient than some recent evolution-based NAS methods such as AmoebaNet (Real
et al., 2019b), OFANet (Cai et al., 2019a) because of our effective search space.

Table 11: Regression Analysis: what makes a network efficient-training? We exam the effect of each
component of network on the efficiency score. “Coef” and “SE Coef” are the estimated regression
coefficient and standard error. “T-Value”/“P-Value” shows the significance of the variables.

Block-level Regression Analysis n=5500 R-sq=56% Macro-level Regression Analysis n=1200 R-sq=71%

Terms Coef SE Coef T-Value P-Value Terms Coef SE Coef T-Value P-Value

OP1 Channel Change Ratio -0.183 0.010 -28.57 0.06 Channel Size -0.210 0.023 -9.26 0.00

OP2 Channel Change Ratio -0.168 0.010 -27.75 0.02 Double Channel Position 1 -0.110 0.026 -4.17 0.00

Num of skip connection (add) -0.272 0.018 -15.12 0.00 Double Channel Position 2 0.035 0.030 1.15 0.25

Num of skip connection (concat) -0.362 0.018 -19.93 0.00 Double Channel Position 3 -0.016 0.030 -0.54 0.59

Output channel -0.539 0.010 -53.57 0.00 Double Channel Position 4 0.224 0.025 9.14 0.00

conv3x3 (ref) 0.000 - - - Double Channel Position 5 0.036 0.022 1.62 0.11

conv1x1 -0.037 0.033 -0.72 0.08 Num block in Stage-1 -0.562 0.023 -24.69 0.00

conv3x3, w group=2 0.190 0.035 5.49 0.00 Num block in Stage-2 -0.139 0.023 -6.04 0.00

conv3x3, w group=4 0.295 0.034 8.77 0.00 Num block in Stage-3 0.044 0.024 1.88 0.06

Separable conv3x3 -0.200 0.034 -5.91 0.00 Num block in Stage-4 -0.010 0.024 -0.42 0.67

Figure 10 shows the comparison of our ET-NAS models with other SOTA ImageNet models. Infer-
ence time and training step time are measured in ms on a single Nvidia V100, with bs = 64. Our
ET-NAS series show superior performance comparing to RegNet, EfficientNet series. Comparing
to some EA-based NAS methods such as OFANet and Amoebanet, our method is also efficient in
terms of training. We found that there exists a performance ranking gap between inference time and
training step time in Figure 10. This is mainly due to the depth and the main type of operation of the
models. We found that deeper networks with separable conv such as EfficientNet/MobileNet have
a larger training-step-time/inference-time ratio comparing to our models (shallower&more common
conv).

B.4.1 WHAT MAKES A NETWORK EFFICIENT-TRAINING?

To answer this question, we first need to define a score for the efficiency of the searched modelsA. In
MOOP, the goodness of a solution is determined by dominance. Thus, we can use the non-dominated
sorting algorithm to sort the A according to the Pareto dominance principle. Each architecture is
assigned to one Pareto front and the rank RP of that Pareto front can be regarded as the goodness
of a solution, in our case, the efficiency. We then defined the efficiency score of A as: sE(A) =

−RP(A)−mean(RP(A))
std(RP(A)) . Since Pareto optimal front is the Rank 1 Pareto front, larger efficiency score

sE(A) means better efficiency.

Then we perform a multivariate linear regression analysis on the AS . According to our search
space, ordinal/nominal variables that describe the model are denoted as predictors to fit the sE(A).
Table 11 shows the coefficients from the regression analysis on both block-level and macro-level
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designs. Positive coefficients indicate a positive relationship. “P-Value” shows the significance
of the variables. We summarize and highlight several noteworthy conclusions uncovered by our
analysis:

• By observing optimal A∗i , smaller models should use simpler blocks while bigger models prefer
complex blocks. Simply increasing depth/width to expand the model in Tan & Le (2019) may not
be optimal.

• Adding additional skip connections will decrease the training efficiency of the model (The Coef
is significantly negative). Using “add” to combine the features is more efficient than “concat”.

• Using “conv3x3, w group=4” is the best operation among the searched operations (Coef is 0.295).
Separable conv3x3 is not efficient for training (Coef is -0.2).

• The first double-channel position should be more close to the beginning of the network, while the
final double channel-position should be delayed to the end of the network.

• Fewer blocks should be assigned to the first two stages. More should be assigned to the 3rd stage.

B.5 CO2 CONSUMPTION ANALYSIS

Fine-tuning from the pretrained ImageNet/language model is a de-facto practice in the deep learning
field (CV/NLP). Our NASOA improves the efficiency of fine-tuning which has the potentials to
greatly reduce computational cost in GPU clusters/cloud computing. According to a recent study
(Strubell et al., 2019b), developing and tuning for one typical R&D project (Strubell et al., 2018) in
Google Cloud computing needs about $250k cost, 82k kWh electricity, and 123k lbs CO2 emission,
which equals to the CO2 consumption of air traveling (NY↔SF) 62 times. Among most of them,
123 hyperparameter grid searches were performed for new datasets, resulting in 4789 jobs in total. It
is believed that the proposed faster fine-tuning pipeline can save up to 40x computational cost among
them. Furthermore, we have released all the searched efficient models to help the public skipping
the computation-heavy NAS stage and directly enjoy the benefit of our methods. In conclusion, our
NASOA is meaningful for environment protection and energy saving.

B.6 DETAILED ALGORITHMS OF NASOA

Detailed algorithms of our Model Zoo (ET-NAS) search can be found in Algorithm 2. The pseudo
code of online fine-tuning schedule generator training, prediction, and update can be found in Algo-
rithm 3.

Algorithm 2 Efficient Training Model Zoo (ET-NAS) Creation
Input: Block/Macro Search Space Si,Sa, Stop Criterion Γ, #Computation Nodes K, Sensitive

Factor ε, #Block Architectures M , #Models in Model Zoo N .
Output: Final Model Zoo Zoo

1: procedure BLOCKSEARCH(Si,Γ,K, ε,M )
2: Pf ← NSGA-II(Γ, Si,K, ε) . Our modified NSGA-II, see Algorithm 1
3: Cells← MOSTCOMMON(Pf ,M ) . Most common M cells from Pf

4: end procedure
5: procedure MACROSEARCH(Sa,Γ,K, ε,N )
6: Pf ← NSGA-II(Γ, Sa(Cells),K, ε)
7: Zoo ← NSGASORT(Pf , N, ε) . Choose models based on crowding-distance
8: end procedure

C IMPLEMENT DETAILS OF HPO METHODS

We use BOHB and random search in our experiments as the HPO baseline. As stated in Section 4.4,
The shortest/longest time constraint (budget) is defined as the time of fine-tuning 10/50 epochs for
ResNet18/ResNet101 and the rest are equally divided into the log-space, which can be represented
as: tx = t0 ∗ (t3/t0)x/t3 , where x = [0, 1, 2, 3], t0is the time to train ResNet18 for 10 epochs and
t3 is the time to train ResNet101 for 50 epochs.

We only compare the HPO setting under the same max computational budgets equal to t1 in Table
5 (left). For random search, we randomly sample candidates from predefined search space until
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Algorithm 3 Online Fine-Tuning schedule Generator Training, Prediction, and Update
Input: Model Zoo Zoo, Time Evaluator Ts, Acc Evaluator Tr, Hyper-parameter Space
SHP , Known Datasets Dold, New Dataset Dnew, #Meta-data HM , Time Constraint Tl,
#Configurations H .

Output: Optimal Model A∗, Hyper-parameters Regime∗FT , Predictor AccP
1: procedure OFFLINETRAINING(Zoo, Tr,SHP , Dold, HM )
2: MetaData← ∅, AccP ← ADAPTIVEMLP(.) . Initialize default predictor
3: for D ∈ Dold, i← 1 to HM do
4: A, RegimeFT ← RANDOM(Zoo, SHP ) . Randomly select from search space
5: Acc← Tr(D,A, RegimeFT ) . Train with selected configuration
6: MetaData←MetaData ∪ {(A, RegimeFT , Acc)} . Add this result to meta-data
7: end for
8: AccP ← TRAIN(AccP ,MetaData) . Train predictor with all meta-data
9: end procedure

10: procedure ONLINEPREDICTION(Zoo, Dnew, AccP , Tl, Ts, H)
11: MetaData← ∅
12: for i← 1 to H do
13: A ← RANDOM(Zoo)
14: Epoch← Tl÷ Ts(A, Dnew) . Always choose the largest epoch within Tl
15: RegimeFT ← RANDOM(SHP |Epoch) . Randomly select condition on Epoch
16: MetaData←MetaData ∪ {(A, RegimeFT )}
17: end for
18: A∗, Regime∗FT ← PREDICT(G,MetaData) . Choose the optimal from H configs
19: Acc← Tr(Dnew,A∗, Regime∗FT )
20: AccP ← TRAIN(AccP , {A∗, Regime∗FT , Acc}) . Improve predictor with this meta-data
21: end procedure

reaching the max computational budget. And for BOHB, we use the opensource implementation
of BOHB at https://github.com/automl/HpBandSter. We set random fraction=0.3,
percent of good observations=15%, min budget=25% and max budget=100% with respect to our
max computational budget. And we use BOHB with 40x computational cost than our proposed
methods with different model zoos. The results are presented in Section 4.4.
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