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ABSTRACT

Context. Mixup is a highly successful technique to improve generalization of
neural networks by augmenting the training data with combinations of random
pairs. Selective mixup is a family of methods that apply mixup to specific pairs,
e.g. only combining examples across classes or domains. These methods have
claimed remarkable improvements on benchmarks with distribution shifts, but their
mechanisms and limitations remain poorly understood.

Findings. We examine an overlooked aspect of selective mixup that explains its
success in a completely new light. We find that the non-random selection of pairs
affects the training distribution and improve generalization by means completely
unrelated to the mixing. For example in binary classification, mixup across classes
implicitly resamples the data for a uniform class distribution — a classical solution
to label shift. We show empirically that this implicit resampling explains much of
the improvements in prior work. Theoretically, these results rely on a “regression
toward the mean”, an accidental property that we identify in several datasets.

Takeaways. We have found a new equivalence between two successful methods:
selective mixup and resampling. We identify limits of the former, confirm the
effectiveness of the latter, and find better combinations of their respective benefits.

1 INTRODUCTION

Mixup and its variants are some of the few methods that improve generalization across tasks and
modalities with no domain-specific information (Zhang et al., 2017). Standard mixup replaces
training data with linear combinations of random pairs of examples, proving successful e.g. for
image classification (Yun et al., 2019b), semantic segmentation (Islam et al., 2023), natural language
processing (Verma et al., 2019), and speech processing (Meng et al., 2021).

This paper focuses on scenarios of distribution shift and variants of mixup that improve out-of-
distribution (OOD) generalization. We examine the family of methods that apply mixup on selected
pairs of examples, which we refer to as selective mixup (Hwang et al., 2022; Li et al., 2023; Lu
et al., 2022a; Palakkadavath et al., 2022; Tian et al., 2023; Xu et al., 2020; Yao et al., 2022b). Each
method uses a predefined criterion,1 for example combining examples across classes (Yao et al.,
2022b) (Figure 1) or across domains (Xu et al., 2020; Li et al., 2023; Lu et al., 2022a). These simple
heuristics have claimed remarkable improvements on benchmarks such as DomainBed (Gulrajani
and Lopez-Paz, 2020), WILDS (Koh et al., 2021), and Wild-Time (Yao et al., 2022a).

Despite impressive empirical performance, the theoretical mechanisms of selective mixup remain
obscure. For example, the selection criteria in Yao et al. (2022b) include the selection of pairs of the
same class / different domains but also the exact opposite. This raises questions:

1. What makes each selection criterion suitable to any specific dataset?
2. Are there multiple mechanisms responsible for the improvements with selective mixup?

This paper presents surprising answers, highlighting an overlooked side effect of selective mixup.
The non-random selection of pairs implicitly biases the training distribution and improve
generalization by means completely unrelated to the mixing. We observe empirically that simply
forming mini-batches with all instances of the selected pairs (without mixing them) often produces
the same improvements as mixing them. This critical ablation was absent from prior studies.

1We focus on the basic implementation (Yao et al., 2022b) without modifications to the learning objective.
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Figure 1: Selective mixup is a family of methods that replace the training data with combined pairs of
examples fulfilling a predefined criterion, e.g. pairs from different classes. An overlooked side effect
is to modify the training distribution: here, sampling classes more uniformly. This is responsible for
much of the observed improvements in OOD generalization.

We also analyze theoretically the resampling induced by different selection criteria. We find that
conditioning on a “different attribute” (e.g. combining examples across classes or domains) brings
the training distribution of this attribute closer to a uniform one. Consequently, the imbalances in
the data often “regress toward the mean” with selective mixup. We verify empirically that several
datasets do indeed shift toward a uniform class distribution in their test split (see Figure 10). We also
find remarkable correlation between improvements in performance and the reduction in divergence of
training/test distributions due to selective mixup. This also predicts a new failure mode of selective
mixup when the above property does not hold (see Appendix C).

Our contributions are summarized as follows.
• We point out an overlooked resampling effect when applying selective mixup (Section 3).
• We show theoretically that certain selection criteria induce a bias in the distribution of features

and/or classes equivalent to a “regression toward the mean” (Theorem 3.1). In binary classification
for example, selecting pairs across classes is equivalent to sampling uniformly over classes, the
standard approach to address label shift and imbalanced data.

• We verify empirically that multiple datasets indeed contain a regression toward a uniform class
distribution across training and test splits (Section 4.6). We also find that improvements from
selective mixup correlate with reductions in divergence of training/test distributions over labels
and/or covariates. This strongly suggests that resampling is the main driver for these improvements.

• We compare many selection criteria and resampling baselines on five datasets. In all cases,
improvements with selective mixup are partly or fully explained by resampling effects (Section 4).

The implications for future research are summarized as follows.
• We connect two areas of the literature by showing that selective mixup is sometimes equivalent

to resampling, a classical strategy for distribution shifts (Garg et al., 2023; Idrissi et al., 2022).
This hints at possible benefits from advanced methods for label shift and domain adaptation on
benchmarks with distribution shifts.

• The resampling explains why different criteria in selective mixup benefit different datasets: they
affect distributions of features and/or labels thus addressing covariate/label shift.

• This explanation highlights the risk of overfitting to the benchmarks: much of the improvements
rely on the accidental “regression toward the mean” in the datasets examined.

2 BACKGROUND: MIXUP AND SELECTIVE MIXUP

Notations. We consider a classification model fθ : Rd → [0, 1]C of learned parameters θ. It maps
an input vector x ∈ Rd to a vector y of scores over C classes. The training data is typically a set of
labeled examples D = {(xi,yi, di)}ni=1 where yi are one-hot vectors encoding ground-truth labels,
and di ∈ N are optional discrete domain indices. Domain labels are available e.g. in datasets with
different image styles (Li et al., 2017) or collected over different time periods (Koh et al., 2021).

Training with ERM. Standard empirical risk minimization (ERM) optimizes the model’s parameters
for minθ R(fθ,D). The expected training risk for a chosen loss function L is:

R(fθ,D) = E(x,y)∈D L
(
fθ(x),y

)
. (1)

An empirical estimate is obtained with an arithmetic mean over instances of the dataset D.

2



Under review as a conference paper at ICLR 2024

Training with mixup. Standard mixup essentially replaces training examples with linear combina-
tions of random pairs in both input and label space. We formalize it by redefining the training risk:

Rmixup(fθ,D) = E(x,y)∈D L
(
f(cx+(1−c)x̃, cy+(1−c) ỹ)

)
(2)

with mixing coefficients c ∼ B(2, 2) and paired examples (x̃, ỹ) ∼ D. (3)
The expectation is approximated by sampling coefficients and pairs at every training iteration.

Selective mixup. While standard mixup combines random pairs, selective mixup only combines
pairs that fulfill a predefined criterion. To select these pairs, the method starts with the original data D,
then for every (x,y, d) ∈ D it selects a (x̃, ỹ, d̃) ∈ D such that they fulfill the criterion represented
by the predicate Paired

(
·, ·). For example, the criterion same class, different domain (“intra-label

LISA” in Yao et al. (2022b)) is implemented as:

Paired
(
(xi,yi, di), (x̃i, ỹi, d̃i)

)
= true iff (ỹ=y) ∧ (d̃ ̸=d) (same class, diff. domain) (4a)

Other examples:

Paired
(
(xi,yi, di), (x̃i, ỹi, d̃i)

)
= true iff (ỹ ̸=y) (different class) (4b)

Paired
(
(xi,yi, di), (x̃i, ỹi, d̃i)

)
= true iff (d̃=d) (same domain) (4c)

3 SELECTIVE MIXUP MODIFIES THE TRAINING DISTRIBUTION

The new claims of this paper comprise two parts.
1. Estimating the training risk with selective mixup (Eq. 2) uses a different sampling of examples

from D than ERM (Eq. 1). We demonstrate this theoretically in this section.
2. We hypothesize that this different sampling of training examples influences the generalization

properties of the learned model, regardless of the mixing operation. We verify this empirically in
Section 4 using ablations of selective mixup that omit the mixing operation — a critical baseline
absent from prior studies.

Training distribution. This distribution refers to the examples sampled from D to estimate the
training risk (Eq. 1 or 2) — whether these are then mixed or not. The following discussion focuses
on distributions over classes (y) but analogous arguments apply to covariates (x) and domains (d).

With ERM, the training distribution equals the dataset distribution because the expectation in Eq. (1)
is over uniform samples of D. We obtain an empirical estimate by averaging all one-hot labels, giving
the vector of discrete probabilities pY(D) = ⊕(x,y)∈D y / |D| where ⊕ is the element-wise sum.

With selective mixup, evaluating the risk (Eq. 2) requires pairs of samples. The first element of
a pair is sampled uniformly, yielding the same pY(D) as ERM. The second element is selected as
described above, using the first element and one chosen predicate Paired(·, ·) e.g. from (4a–4c). For
our analysis, we denote these “second elements” of the pairs as the virtual data:

D̃ =
{
(x̃i, ỹi, d̃i) ∼ D : Paired

(
(xi,yi, di), (x̃i, ỹi, d̃i)

)
= true, ∀ i = 1, . . . , |D|

}
. (5)

We can now analyze the overall training distribution of selective mixup. An empirical estimate is
obtained by combining the distributions resulting from the two elements of the pairs, which gives the
vector pY(D ∪ D̃) = (pY(D) ⊕ pY(D̃)) / 2.

Regression toward the mean. With the criterion same class, it is obvious that pY(D̃) = pY(D).
Therefore these variants of selective mixup are not concerned with resampling effects.2 In contrast,
the criteria different class or different domain do bias the sampling. In the case of binary classification,
we have pY(D̃)=1−pY(D) and therefore pY(D ∪ D̃) is uniform. This means that selective mixup
with the different class criterion has the side effect of balancing the training distribution of classes, a
classical mitigation of class imbalance (Japkowicz, 2000; Kubat et al., 1997). For multiple classes,
we have a more general result.

Theorem 3.1. Given a dataset D={(xi,yi)}i and paired data D̃ sampled according to the “different
class” criterion, i.e. D̃ = {(x̃i, ỹi) ∼ D s.t. ỹi ̸=yi}, then the distribution of classes in D ∪ D̃ is

2The absence of resampling effects holds for same class and same domain alone, but not in conjunction with
other criteria. See e.g. the differences between same domain / diff. class and any domain / diff. class in Figure 3.
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more uniform than in D. Formally, the entropy H
(
pY(D)

)
≤ H

(
pY(D ∪ D̃)

)
.

Proof: see Appendix D.
Theorem 3.1 readily extends in two ways. First, the same effect also results from the different domain
criterion: if each domain contains a different class distribution, the resampling from this criterion
averages them out, yielding a more uniform aggregated training distribution. Second, this averaging
applies not only to class labels (y) but also covariates (x). An analysis using distributions is ill-suited
but the mechanism similarly affects the sampling of covariates when training with selective mixup.

When does one benefit from the resampling (regardless of mixup)? The above results mean that
selective mixup can implicitly reduce imbalances (a.k.a. biases) in the training data. When these are
not spurious and also exist in the test data, the effect on predictive performance could be detrimental.

We expect benefits (verified in Section 4) on datasets with distribution shifts. By definition, their
training/test splits contain different imbalances. Softening imbalances in the training data is then
likely to bring the training and test distributions closer, in particular with extreme shifts such as the
complete reversal of a spurious correlation (e.g. waterbirds dataset, see Section 4.1).

We also expect benefits on worst-group metrics (e.g. civilComments dataset, see Section 4.4). The
challenge in these datasets comes from the imbalance of class/domain combinations. Prior work has
indeed shown that balancing is beneficial (Idrissi et al., 2022; Sagawa et al., 2019).

4 EXPERIMENTS

We performed a large number of experiments to understand the contribution of the different effects of
selective mixup and other resampling baselines (complete results in Appendix B).

Datasets. We focus on five datasets that previously showed improvements with selective mixup. We
selected them to cover a range of modalities (vision, NLP, tabular), settings (binary, multiclass), and
types of shifts (covariate, label, and subpopulation shifts).
• Waterbirds (Sagawa et al., 2019) is a popular artificial dataset used to study distribution shifts.

The task is to classify images of birds into two types. The image backgrounds are also of two
types, and the correlation between birds and backgrounds is reversed across the training and test
splits. The type of background in each image serves as its domain label.

• CivilComments (Koh et al., 2021) is a widely-used dataset of online text comments to be classified
as toxic or not. Each example is labeled with a topical attribute (e.g. Christian, male, LGBT, etc.)
that is spuriously associated with ground truth labels in the training data. These attributes serve as
domain labels. The target metric is the worst-group accuracy where the groups correspond to all
toxicity/attribute combinations.

• Wild-Time Yearbook (Yao et al., 2022a) contains yearbook portraits to be classified as male
or female. It is part of the Wild-Time benchmark, which is a collection of real-world datasets
captured over time. Each example belongs to a discrete time period that serves as its domain label.
Distinct time periods are assigned to the training and OOD test splits (see Figure 10).

• Wild-Time arXiv (Yao et al., 2022a) contains titles of arXiv preprints. The task is to predict each
paper’s category among 172 classes. Time periods serve as domain labels.

• Wild-Time MIMIC-Readmission (Yao et al., 2022a) contains hospital records (sequences of
codes representing diagnoses and treatments) to be classified into two classes. The positive class
indicates the readmission of the patient at the hospital within 15 days. Time periods serve as
domain labels.

Methods. We train standard architectures suited to each dataset with the methods below (details in
Appendix A). We perform early stopping i.e. recording metrics for each run at the epoch of highest
ID or worst-group validation performance (for Wild-Time and waterbirds/civilComments datasets
respectively). We plot average metrics in bar charts over 9 different seeds with error bars representing
± one standard deviation. ERM and vanilla mixup are the standard baselines. Baseline resampling
uses training examples with equal probability from each class, domain, or combinations thereof as
in Idrissi et al. (2022); Sagawa et al. (2019). Selective mixup (■) includes all possible selection
criteria based on classes and domains. We avoid ambiguous terminology from earlier works because
of inconsistent usage (e.g. “intra-label LISA” means “different domain” in Koh et al. (2021) but
not in Yao et al. (2022a)). Selective sampling (■) is a novel ablation of selective mixup where the
selected pairs are not mixed, but the instances are appended one after another in the mini-batch. Half
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are dropped at random to keep the mini-batch size identical to the other methods. Therefore any
difference between selective sampling and ERM is attributable only to resampling effects. We also
include novel combinations (■) of sampling and mixup.

4.1 RESULTS ON THE waterbirds DATASET

The target metric for this dataset is the worst-group accuracy, with groups defined as the four
class/domain combinations. The two difficulties are (1) a class imbalance (77 / 23%) and (2) a
correlation shift (spurious class/domain association reversed at test time). See discussion in Figure 2.

50 60 70 80
waterbirds: OOD worst-group accuracy (%)

Same domain + Diff. class
Diff. domain + Same class

Diff. domain
Same class
Diff. class

Same domain
Diff. domain + Diff. class

Same domain + Diff. class
Diff. domain + Same class

Diff. class
Diff. domain + Diff. class

Diff. domain
Same class

Same domain
Resampling (uniform combinations)

Resampling (uniform classes)
Resampling (uniform domains)

Vanilla mixup
Baseline (ERM)

Figure 2: Main results on waterbirds.

We first observe that vanilla mixup is detrimen-
tal compared to ERM. Resampling with uniform
class/domain combinations is hugely beneficial,
for the reasons explained in Figure 3. The rank-
ing of various criteria for selective sampling is
similar whether with or without mixup. Most in-
terestingly, the best criterion performs similarly,
but no better than the best resampling.

■ Baselines
■ Selective sampling without mixup
■ Selective mixup

The excellent performance of the best version of selective mixup is here entirely due to resam-
pling. The efficacy of resampling on this dataset is not a new finding (Idrissi et al., 2022; Sagawa
et al., 2019). What is new is its equivalence with the best variant of selective mixup. Figure 3 further
supports this claim by comparing proportions of classes and domains sampled by each method.
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Resampling uniform combinations gives them all equal weights, just like the worst-group target metric.
Selective mixup with same domain / diff. class also gives equal weights to the classes, while breaking

the spurious pattern between groups and classes, unlike any other criterion.

Figure 3: The sam-
pling ratios of each
class/domain clearly
explain the perfor-
mance of the best
methods (waterbirds).

4.2 RESULTS ON THE yearbook DATASET

The difficulty of this dataset comes from a slight class imbalance and the presence of covariate/label
shift (see Figure 10). The test split contains several domains (time periods). The target metric is the
worst-domain accuracy. Figure 4 shows that vanilla mixup is slightly detrimental compared to ERM.
Resampling for uniform classes gives a clear improvement because of the class imbalance. With
selective sampling (no mixup), the only criteria that improve over ERM contain “different class”.
This is expected because this criterion implicitly resamples for a uniform class distribution.

To investigate whether some of the improvements are due to resampling, we measure the divergence
between training and test distributions of classes and covariates (details in Appendix A). Figure 5)
shows first that there is a clear variation among different criteria (• blue dots) i.e. some bring the
training/test distributions closer to one another. Second, there is a remarkable correlation between the
test accuracy and the divergence, on both classes and covariates.3 This means that resampling effects
do occur and also play a part in the best variants of selective mixup.

Finally, the improvements from simple resampling and the best variant of selective mixup suggest
a new combination. We train a model with uniform class sampling and selective mixup using the

3As expected, the correlation is reversed for the first two test domains in Figure 5 since they are even further
from a uniform class distribution than the average of the training data, as seen in Figure 10.
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Baseline (ERM) Figure 4: Main results on yearbook.

With selective mixup, the “different class”
criterion is not useful, but “same class” per-
forms significantly better than ERM. Since
this criterion alone does not have resampling
effects, it indicates a genuine benefit from
mixup restricted to pairs of the same class.

■ Baselines
■ Selective sampling without mixup
■ Selective mixup
■ Novel combinations of sampling and mixup
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Figure 5: Different selection criteria (•) modify the distribution of both covariates and labels (upper
and lower rows). The resulting reductions in divergence between training and test distributions
correlate remarkably well with test performance.3 This confirms the contribution of resampling to the
overall performance of selective mixup.

“same class” criterion, and obtain performance superior to all existing results (last row in Figure 5).
This confirms the complementarity of the effects of resampling and within-class selective mixup.

4.3 RESULTS ON THE arXiv DATASET

This dataset has difficulties similar to yearbook and also many more classes (172). Simple resampling
for uniform classes is very bad (literally off the chart in Figure 6) because it overcorrects the imbalance
(the test distribution being closer to the training than to a uniform one). Uniform domains is much
better since its effect is similar but milder.

All variants of selective mixup (■) perform very well, but they improve over ERM even without
mixup (■). And the selection criteria rank similarly with or without mixup, suggesting that parts of
the improvements of selective mixup is due to the resampling. Given that vanilla mixup also clearly
improves over ERM, the performance of selective mixup is explained by cumulative effects of
vanilla mixup and resampling effects. This also suggests new combinations of methods (■) among
which we find one version marginally better than the best variant of selective mixup (last row).

4.4 RESULTS ON THE civilComments DATASET

This dataset mimics a subpopulation shift because the worst-group metric requires high accuracy on
classes and domains under-represented in the training data. It also contains an implicit correlation
shift because any class/domain association (e.g. “Christian” comments labeled as toxic more often
than not) becomes spurious when evaluating individual class/domain combinations.

4.5 RESULTS ON THE MIMIC-Readmission DATASET

This dataset contains a class imbalance (about 78/22% in training data), label shift (the distribution
being more balanced in the test split), and possibly covariate shift. It is unclear whether the task
is causal or anticausal (labels causing the features) because the inputs contain both diagnoses and
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Figure 6: Main results on arXiv.

■ Baselines
■ Selective sampling without mixup
■ Selective mixup
■ Novel combinations of sampling and mixup

To investigate the contribution of resam-
pling, we measure the divergence between
training/test class distributions and plot
them against the test accuracy (Figure 7).
We observe a strong correlation across
methods. Mixup essentially offsets the
performance by a constant factor. This
suggests again the independence of the
effects of mixup and resampling.
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Figure 7: Divergence of tr./test class distributions vs. test accuracy.

The resampling baselines (••) also roughy agree with a linear fit to the
“selective sampling” points. We therefore hypothesize that all these
methods are mostly addressing label shift. We verify this hypothesis
with the remarkable fit of an additional point (▲) of a model trained by
resampling according to the test set class distribution, i.e. cheating.

It represents an upper bound that might be achievable in future work with
methods for label shift (Azizzadenesheli et al., 2019; Lipton et al., 2018).

We replicated these observations on every test domain of this dataset
(Figure 15 in the appendix).
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civilComments: OOD worst-group accuracy (%)
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Figure 8: Main results on civilComments.

For the above reasons, it makes sense that
resampling for uniform classes or combinations
greatly improves performance, as shown in
prior work (Idrissi et al., 2022).

With selective mixup (■), some criterion (same
domain/diff. class) performs clearly above
all others. But it works even better without
mixup! (■) Among many other variations,
none surpasses the uniform-combinations
baseline.

■ Baselines
■ Selective sampling without mixup
■ Selective mixup
■ Novel combinations of sampling and mixup

treatments. The target metric is the area under the ROC curve (AUROC) which gives equal importance
to both classes. We report the worst-domain AUROC, i.e. the lowest value across test time periods.

Vanilla mixup performs a bit better than ERM. Because of the class imbalance, resampling for uniform
classes also improves ERM. As expected, this is perfectly equivalent to the selective sampling criterion
“diffClass” and they perform therefore equally well. Adding mixup is yet a bit better, which suggests
again that the performance of selective mixup is merely the result of the independent effects of
vanilla mixup and resampling. We further verify this explanation with the novel combination of

7



Under review as a conference paper at ICLR 2024

simple resampling and vanilla mixup, and observe almost no difference whether the mixing operation
is performed or not (last two rows in Figure 9).

52 53 54 55 56 57
MIMIC: OOD worst-d. AUROC (%)

Resampling (uniform cl.) + vanilla mixup
Resampling (uniform cl.) + concatenated pairs

Diff. domain + Diff. class
Diff. class

Same domain + Diff. class
Same domain + Diff. class

Diff. class
Diff. domain + Diff. class

Resampling (uniform classes)
Vanilla mixup

Baseline (ERM)

Figure 9: Main results on MIMIC-Readmission.

■ Baselines
■ Selective sampling without mixup
■ Selective mixup
■ Novel combinations of sampling and mixup

To further support the claim that these methods mostly address label shift, we report in Table 1 the
proportion of the majority class in the training and test data. We observe that the distribution sampled
by the best training methods brings it much closer to that of the test data.

Proportion of majority class (%)
In the dataset (training) 78.2
In the dataset (validation) 77.8
In the dataset (OOD test) 66.5

Sampled by different training methods
Resampling (uniform classes) 50.0
Diff. domain + diff. class 50.0
Diff. class 50.1
Same domain + Diff. class 49.9
Resampling (uniform cl.) + concatenated pairs 64.3
Resampling (uniform cl.) + vanilla mixup 64.3

Table 1: The performance of the various meth-
ods on MIMIC-Readmission is explained by
their correction of a class imbalance. The best
training methods (boxed numbers) sample the
majority class in a proportion much closer to
that of the test data.

4.6 EVIDENCE OF A “REGRESSION TOWARD THE MEAN” IN THE DATA

We hypothesized in Section 3 that resampling helps because of a “regression toward the mean”
between training and test splits. We now check for this property and find indeed a shift toward
uniform class distributions in all datasets studied. For the Wild-Time datasets, we plot in Figure 10
the ratio of the minority class (for binary tasks: yearbook, MIMIC) and class distribution entropy (for
the multiclass task: arXiv). Finding this property agrees with the proposed explanation and with the
fact that we selected all three datasets because they previously showed improvements with selective
mixup in Yao et al. (2022a).

The shift toward uniformity also holds in waterbirds and civilComments, artificially through the
worst-group metric. The training data contains imbalanced groups (class/domain combinations) while
the worst-group accuracy gives uniform importance to all groups.
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Figure 10: The class distribution shifts toward uniformity in these Wild-Time datasets. This agrees with the
explanation that the benefits from resampling rely on a “regression toward the mean”.

5 RELATED WORK

Mixup and variants. Mixup was originally introduced in Zhang et al. (2017) and numerous variants
followed (Cao et al., 2022). Many propose modality-specific mixing operations: CutMix (Yun
et al., 2019a) replaces linear combinations with collages of image patches, Fmix (Harris et al., 2020)
combines image regions based on frequency contents, AlignMixup (Venkataramanan et al., 2022)
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combines images after spatial alignment. Manifold-mixup (Verma et al., 2019) replaces the mixing in
input space with the mixing of learned representations, making it applicable to text embeddings.

Mixup for OOD generalization. Mixup has been integrated into existing techniques for domain
adaptation (DomainMix (Xu et al., 2020)), domain generalization (FIXED (Lu et al., 2022b)), and
with meta learning (RegMixup (Pinto et al., 2022)). This paper focuses on variants we call “selective
mixup” that use non-uniform sampling of the pairs of mixed examples. LISA (Yao et al., 2022b)
proposes two heuristics, same-class/different-domain and vice versa, used in proportions tuned by
cross-validation on each dataset. Palakkadavath et al. (2022) use same-class pairs and an additional
objective to encourage invariance of the representations to the mixing. CIFair (Tian et al., 2023)
uses same-class pairs with a contrastive objective to improve algorithmic fairness. SelecMix (Hwang
et al., 2022) proposes a selection heuristic to handle biased training data: same class/different
biased attribute, or vice versa. DomainMix (Xu et al., 2020) uses different-domain pairs for domain
adaptation. DRE (Li et al., 2023) uses same-class/different-domain pairs and regularize their Grad-
CAM explanations to improve OOD generalization. SDMix (Lu et al., 2022a) applies mixup on
examples from different domains with other improvements to improve cross-domain generalization
for activity recognition.

Explaining the benefits of mixup has invoked regularization (Zhang et al., 2020) and augmenta-
tion (Kimura, 2021) effects, the introduction of label noise (Liu et al., 2023), and the learning of rare
features (Zou et al., 2023). These works focus on the mixing and in-domain generalization, whereas
we focus on the selection and OOD generalization.

Training on resampled data. We find that selective mixup is sometimes equivalent to training
on resampled or reweighted data. Both are standard tools to handle distribution shifts in a domain
adaptation setting (Japkowicz, 2000; Kubat et al., 1997) and are also known as importance-weighted
empirical risk minimization (IW-ERM) (Shimodaira, 2000; Gretton et al., 2009). For covariate
shifts, IW-ERM assigns each training point x of label y a weight equal to the likelihood ratio
ptarget(x)/psource(x), and for label shifts, ptarget(y)/psource(y) (Azizzadenesheli et al., 2019; Lipton
et al., 2018), Several works recently showed that reweighting and resampling are competitive with
the state of the art in various OOD (Idrissi et al., 2022; Park et al., 2022; Perrett et al., 2023; Sagawa
et al., 2019) and label-shift settings (Garg et al., 2023).

6 CONCLUSIONS AND OPEN QUESTIONS

Conclusions. This paper helps understand selective mixup, which is one of the most successful and
general methods for distribution shifts. We showed unambiguously that much of the improvements
were actually unrelated to the mixing operation and could be obtained with much simpler, well-known
resampling methods. On datasets where mixup does bring benefits, we could then obtain even better
results by combining the independent effects of the best mixup and resampling variants.

Limitations. We focused on the simplest version selective mixup as described by Yao et al. (2022b).
Many papers combine the principle with modifications to the learning objective (Hwang et al., 2022;
Li et al., 2023; Lu et al., 2022a; Palakkadavath et al., 2022; Tian et al., 2023; Xu et al., 2020).
Resampling likely plays a role in these methods too but this claim requires further investigation. We
evaluated “only” five datasets. Since we introduced simple ablations that can single out the effects of
resampling, we hope to see future re-evaluations of other datasets.

Because we picked datasets that had previously shown benefits with selective mixup, we cannot fully
verify the predicted failure when there is no “regression toward the mean” in the data. Still, we do
present one experiment in Appendix C that convincingly verifies this prediction on yearbook by
swapping the ID and OOD data.

Finally, this work is not about designing new algorithms to surpass the state of the art. Our focus is
on improving the scientific understanding of existing mixup strategies and their limitations.

Open questions. Our results leave open the question of the applicability of selective mixup to
real situations. The “regression toward the mean” explanation indicates that much of the observed
improvements are accidental since they rely on an artefact of some datasets. In real deployments,
distribution shifts cannot be foreseen in nature nor magnitude. This is a reminder of the relevance
of Goodhart’s law to machine learning (Teney et al., 2020) and of the risk of overfitting to popular
benchmarks (Liao et al., 2021).
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APPENDICES

A EXPERIMENTAL DETAILS

We follow prior work on each dataset for the architectures and hyperparameters of our experiments.
For each dataset, all methods compared use hyperparameters initially validated with the ERM
baseline. All experiments use early stopping i.e. recording metrics for each run at the epoch of highest
ID or worst-group validation performance (for Wild-Time and waterbirds/civilComments datasets
respectively). Each dataset/method is run with 9 different seeds unless otherwise noted. The bar
charts report the average over these seeds and error bars represent ± one standard deviation.

We noticed considerable variability in the results reported in prior work, sometimes for
datasets/methods supposedly identical (e.g. resampling baselines on waterbirds). Therefore we
only make comparisons across results obtained within a unique code base after re-running all base-
lines in the same setting.

We also found some issues in existing code that we could not clear up with their authors despite
multiple requests. This includes inconsistent preprocessing and duplicated data in the preprocessing
of civilComments in Idrissi et al. (2022), “magic constants” in the implementation of selective mixup
(LISA) in Yao et al. (2022b), inappropriate architectures for MIMIC in Yao et al. (2022a). We
fixed these issues in our codebase. Therefore we refrain from claims or direct comparisons with the
absolute state of the art.

Dataset-specific notes:
• On waterbirds, we use ImageNet-pretrained ResNet-50 models. The results in the main paper use

linear classifiers trained on frozen features. We report similar results with fine-tuned ResNet-50
models in Figure 11.

• On CivilComments, we use a standard pretrained BERT. To limit the computational expense for
our large number of experiments, we use the BERT-tiny version (2 layers, 2 attention heads,
embeddings of size 128). The results in the main paper use linear classifiers on frozen features.
We report similar results with fine-tuned models in Figure 17 (using only one seed).

• On Wild-Time Yearbook, we train the small CNN architecture described in Yao et al. (2022a)
from scratch. In the analysis of Figure 5, we measure the distance between the training and test
distributions of inputs (vectorized grayscale images). To do so, we measure the distance between
every pair across the two sets. For each test example, we keep the minimum distance (i.e. closest
training example), then average these distances over the test set.

• On Wild-Time arXiv, we use random subset of 10% of the dataset. We verified on a small number
of experiments that this produces very similar results to the full dataset at a fraction of the
computational expense.

• On Wild-Time MIMIC-Readmission, the baseline transformer architecture proposed in Yao et al.
(2022b) seems inappropriate. Its ID and OOD performance is surpassed by random guessing or
even by constant predictions of the majority training class. The issue probably went unnoticed
because the standard accuracy metric is misleading with imbalanced data (70% ID accuracy of
that ERM baseline is worse than chance).
To remedy this, we first switch to the AUROC metric. It gives equal weight to the classes and 50%
is then unambiguously equivalent to random chance.
Second, we use a much simpler architecture. We train a “bag of embeddings” where each token
(diagnosis/treatment code) is assigned a learned embedding, which are summed across sequences
then fed to a linear classifier.

All experiments were run on a single laptop with an Nvidia GeForce RTX 3050 Ti GPU.
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B ADDITIONAL RESULTS

We show below results from the main paper while including in-domain (ID), out-of-distribution
(OOD) average-domain/average-group, and OOD worst-domain/worst-group performance. The
OOD metrics are always strongly correlated across methods and training epochs, but ID and OOD
performance sometimes require a trade-off, as noted in Teney et al. (2023).
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Figure 11: Results on waterbirds (top) with linear classifiers on frozen ResNet-50 features and
(bottom) with fine-tuned ResNet-50 models (selected methods only).
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Figure 12: Results on yearbook.
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Figure 13: Results on yearbook-reversed (swapping ID and OOD data) to test the predicted failure
mode. The “regression toward the mean” does not hold, therefore the methods that improved OOD
performance on the original dataset are now detrimental (methods presented in the same order as
Figure 12).

45 50 55
arxiv: ID accuracy

Resampling (uniform dom.) + Same class
Resampling (uniform dom.) + Same domain

Resampling (uniform dom.) + Same domain + Diff. class
Resampling (uniform dom.) + Diff. domain + Diff. class

Resampling (uniform dom.) + Diff. domain + Same class
Resampling (uniform dom.) + Diff. class

Resampling (uniform dom.) + Diff. domain
Diff. domain + Diff. class

Same class
Diff. domain

Same domain
Same domain + Diff. class

Diff. class
Diff. domain + Same class

Diff. domain
Diff. domain + Diff. class

Diff. class
Same domain

Same domain + Diff. class
Same class

Diff. domain + Same class
Resampling (uniform domains)

Resampling (uniform classes)
Vanilla mixup

Baseline (ERM)

43 44 45 46
OOD average-domain accuracy

41 42 43
OOD worst-domain accuracy (%)

Figure 14: Results on arXiv. Interestingly, the methods with selective sampling without mixup are
much better than selective mixup on in domain (ID) but worse out of domain (OOD). This shows a
clear trade-off between these two objectives.
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Figure 15: Same analysis as in Figure 7 of the main paper, performed on every test domain. In all
cases, we observe a strong correlation between the improvements in accuracy and the reduction in
divergence of the class distribution due to resampling effects.
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Figure 16: Results
on civilComments with
linear classifiers on
frozen embeddings.
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Figure 17: Results
on civilComments with
fine-tuned BERT mod-
els (single seed, re-
duced set of methods).
These results are qual-
itatively identical to
those with frozen em-
beddings above.
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Figure 18: Results on
MIMIC-Readmission.

C TESTING THE PREDICTED FAILURE MODE

The explanations proposed in this paper state that the resampling effects with selective mixup are
beneficial because a “regression toward the mean” is present in the datasets. As a corollary, it implies
that the effect would be detrimental if the opposite property holds (i.e. increased imbalances in the
test data).

We test this prediction on the yearbook dataset by switching the ID and OOD data. More precisely,
whereas the original dataset uses data from years 1930–1970 as training data and ID test data (as
shown in Figure 10), we use this data as the OOD test data. Vice versa for data from years 1970–2010.
As a result, the training→ test label shift is now an increased imbalance rather than a regression
toward a uniform one.

The results on yearbook-reversed confirm the predicted failure (comparing Figures 12–13). The
methods that improved OOD performance on the original dataset are now detrimental.
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D PROOF OF THEOREM 3.1

Theorem D.1 (Restating Theorem 3.1). Given a dataset D={(xi,yi)}i and paired data D̃ sampled
according to the “different class” criterion, i.e. D̃ = {(x̃i, ỹi) ∼ D s.t. ỹi ̸= yj}, then the
distribution of classes in D ∪ D̃ is more uniform than in D.

Formally, the entropy H
(
pY(D)

)
≤ H

(
pY(D ∪ D̃)

)
.

Proof. Let us define the shorthands p def
= pY(D) and p̃

def
= pY(D̃).

In D̃, the ith class gets assigned, in the expectation, on a proportion of points equal to the proportion
of all other classes j ̸= i in the original data D.

Looking at the individual elements of p̃, we therefore have, ∀ i=1 . . . C:

p̃i = ΣC
j ̸=i pj / (C−1) (6)

p̃i = (1−pi) / (C−1) (7)

We will show that every element of p̃ is closer to 1
C than the corresponding element of p:

|pi − 1
C | ≥ |p̃i − 1

C | (8)

|C pi−1
C | ≥ | (1−pi)C−(C−1)

C (C−1) | (9)

|C pi − 1| ≥ | 1−C pi

(C−1) | (10)

|C pi − 1| ≥ |C pi − 1
(C−1) | (11)

Therefore p̃ is closer to a uniform distribution than p, and

H(p) ≤ H(p̃) (12)

Since pY(D ∪ D̃) =
(
pY(D) ⊕ pY(D̃)

)
/ 2, we also have

H
(
p
)
≤ H

(
(p ⊕ p̃)/2

)
(13)

H
(
pY(D)

)
≤ H

(
pY(D ∪ D̃)

)
(14)

with an equality iff pY(D) is uniform.
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