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ABSTRACT

In this paper, we propose a new visual reasoning task, called Visual Transforma-
tion Telling (VTT). Given a series of states (i.e. images), a machine is required to
describe what happened (i.e. transformation) between every two adjacent states.
Different from most existing visual reasoning tasks, which focus on state reason-
ing, VTT concentrates on transformation reasoning. We collect 13,547 samples
from two instructional video datasets, i.e. CrossTask and COIN, and extract de-
sired states and transformation descriptions to form a suitable VIT benchmark
dataset. After that, we introduce an end-to-end learning model for VIT, named
TTNet. TTNet consists of three components to mimic human’s cognition process
of reasoning transformation. First, an image encoder, e.g. CLIP, reads content
from each image, then a context encoder links the image content together, and at
last, a transformation decoder autoregressively generates transformation descrip-
tions between every two adjacent images. This basic version of TTNet is difficult
to meet the cognitive challenge of VTT, that is to identify abstract transformations
from images with small visual differences, and the descriptive challenge, which
asks to describe the transformation consistently. In response to these difficulties,
we propose three strategies to improve TTNet. Specifically, TTNet leverages dif-
ference features to emphasize small visual gaps, masked transformation model
to stress context by forcing attention to neighbor transformations, and auxiliary
category and topic classification tasks to make transformations consistent by shar-
ing underlying semantics among representations. We adapt some typical methods
from visual storytelling and dense video captioning tasks, considering their simi-
larity with VTT. Our experimental results show that TTNet achieves better perfor-
mance on transformation reasoning. In addition, our empirical analysis demon-
strates the soundness of each module in TTNet, and provides some insight into
transformation reasoning.

1 INTRODUCTION

What will come to your mind when you are given a series of images, e.g. Figure [1? Probably we
first notice the content of each image, then we link these images in our mind, and finally conclude a
series of events from images, i.e. the whole intermediate process of cooking noodles. In fact, this is
a typical reasoning process from states (i.e. single images) to transformation (i.e. changes between
images), as described in Piaget’s theory of cognitive development (Bovet,|1976; Piaget, 1977). More
specifically, children at the preoperational stage (2-7 years old) usually pay their attention mainly
to states and ignore the transformations between states, whereas the reverse is true for children at
the concrete operational stage (7-12 years old). Interestingly, computer vision is developed through
a similar evolution pattern. In the last few decades, image understanding, including image classi-
fication, detection, captioning, and question answering, mainly focusing on visual states, has been
comprehensively studied and achieved satisfying results.

Now it is time to pay more attention to the visual transformation reasoning tasks. Recently, there
have been some preliminary studies (Park et al., [2019; [Hong et al., 2021)) on transformation. For
example, Hong et al.|(2021) defines a transformation driven visual reasoning (TVR) task, where
both initial and final states are given, and the changes of object properties including color, shape,
and position are required to be obtained based on a synthetic dataset. However, the current studies
of transformation reasoning remain limited in two aspects. Firstly, the task is defined in an artificial
environment that is far from reality. Secondly, the definition of transformation is limited to pre-
defined properties, which cannot be well generalized to unseen or new environments. As a result,
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Figure 1: Visual Transformation Telling (VTT): given states represented by images (constructed
from videos), the goal is to reason and describe transformations between every two adjacent states.

the existing transformation reasoning task cannot meet the requirement of real-world applications.
Furthermore, the lack of strong transformation reasoning ability will hinder some more advanced
event-level reasoning tasks, such as visual storytelling(Ting-Hao et al., |2016) and procedure plan-
ning(Chang et al., [2020)), since transformation plays an important role in these tasks.

To tackle these limitations, we propose a new visual transformation telling (VTT) task in this paper.
The main motivation is to provide descriptions for real-world transformations. For example, given
two images with dry and wet ground respectively, it should be described it rained, which precisely
describes a cause-and-effect transformation. Therefore, the formal definition of VTT is to output
language sentences to describe the transformation for a given series of states, i.e. images. VTT is
different from video description tasks, e.g. dense video captioning Krishna et al.| (2017), since the
complete process of transformations is shown by videos, which reduces the challenge of reasoning.

To facilitate the study of VIT, we collect 13,547 samples from two instructional video datasets,
including CrossTask(Zhukov et al.,|2019) and COIN (Tang et al., 2019;2021). They are originally
used for evaluating step localization, action segmentation, and other video analysis tasks. But we
found them suitable to be modified to fit VTT, because the transformations are mainly about daily
activities, and more importantly, some main steps to accomplish a certain job have been annotated
in their data, including temporal boundaries and text descriptions. Therefore, we extract key im-
ages from a video as input, and directly use their text labels of the main steps as transformation
descriptions. More details can be found in Section 3.2}

When designing an effective VIT model, we face two kinds of challenges. The first one is related
to the cognitive challenge, which is to derive abstract transformation from images with small dif-
ferences, e.g. from the difference between wet and dry ground to rained. The second one is the
descriptive challenge, that is, the description of transformations should consider the consistency in
a series of images to output a reasonable event. If we only consider the description for a single
transformation, i.e. between two images, it is easy to output logical errors in the results.

In order to address these challenges, we propose a difference-sensitive and context-aware model,
named TTNet (Transformation Telling Net). TTNet consists of three major components, to mimic
the human cognition process of transformation reasoning. To be specific, CLIP (Radford et al.,
2021)) is utilized as the image encoder to read semantic information from images into image vec-
tors. Then a transformer-based context encoder interacts image vectors together to capture context
information. At last, a transformer decoder autoregressively generates descriptions according to
context features. However, this basic model is not enough to meet the cognitive and descriptive
challenges, so we use three well-designed strategies to improve TTNet. Specifically, the first strat-
egy is to compute difference features on image vectors and fed them into the context encoder as
well, to emphasize small visual gaps. Then, masked transformation model is applied to capture the
context-aware information, by randomly masking out the inputs of the context encoder like masked
language model (Devlin et al.| [2019). Finally, in addition to the general text generation loss, the
whole network is also supervised under the auxiliary task of category and topic classification, which
is to constrain the transformation representations to share underlying semantics, by mimicking hu-
man’s behavior that forms a global event in mind.

Since the task of VTT is new, there is no ready-made baseline model. Considering the similarity
of visual storytelling and dense video captioning to VTT, we modify typical methods including
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CST (Gonzalez-Rico & Fuentes-Pinedal [2018), GLACNet (Kim et al.,[2019)), and Densecap Johnson
et al.| (2016) in these two applications as our baseline methods. Our experimental results show that
TTNet significantly outperforms these methods. Additionally, we conduct comprehensive studies
to show the importance of contextual information for VIT and the effectiveness of three strategies,
including difference features, masked transformation model, and auxiliary learning.

In conclusion, our major contributions include: 1) the proposal of a new task called visual trans-
formation telling to emphasize the reasoning of transformation in real world applications; 2) the
introduction of TTNet which is a difference-sensitive and context-aware model for transformation
reasoning. 3) extensive experiments on our collected data from instructional videos, demonstrating
the effectiveness of TTNet and providing many insights for understanding the VTT task.

2 RELATED WORKS

VTT belongs to the direction of visual reasoning, so we first list some typical visual reasoning
tasks and then discuss the relation between VTT and these tasks. CLEVR (Johnson et al.l 2017)
and GQA (Hudson & Manning, 2019) concentrate on relation and logical reasoning on objects.
RAVEN (Zhang et al., 2019) and V-PROM (Teney et al., 2020) care about the induction and reason-
ing of graphic patterns. VCR (Zellers et al., 2019) and Sherlock (Hessel et al.| 2022) test whether
machines are able to learn commonsense knowledge to answer daily questions. These tasks mainly
concentrate on state-level reasoning. Apart from these tasks, there is a series of works related to
dynamic reasoning. Physical reasoning (Bakhtin et al.| 2019} |Yi et al.| 2020; |Girdhar & Ramanan,
2020; Baradel et al.l 20205 Riochet et al., [2022) evaluates the ability to learn physical rules from
data to answer questions or solve puzzles. Visual COMET (Park et al., 2020) asks to reason beyond
the given state to answer what happened before and what will happen next. Visual storytelling (Park
et al.,[2020) requires completing the missing information between states to describe a story logically.
Visual reasoning has a tendency to shift from static scenes to dynamic ones. While state and trans-
formation are both important for reasoning in dynamic scenes, we concentrate on transformation
reasoning, between state-only scenarios and more complex composite scenarios.

To the best of our knowledge, there are rare studies on designing specific tasks for visual transfor-
mation reasoning. The only work is TVR (Hong et al.l 2021). Given the initial and final states, TVR
requires to predict a sequence of changes in properties, including size, shape, material, color, and
position. However, the synthetic scenario is far from reality and property change is not a common
fashion to describe transformations in life. A more natural way is the event-level description. For
example, it is more natural to tell it rained when describing what happened between dry and wet
ground outside. Visual storytelling (Ting-Hao et all 2016} Ravi et al., 2021)) requires event-level
description but transformations are mixed in the description, making it difficult to evaluate transfor-
mation only. Visual abductive reasoning (Liang et al., |2022) has a similar core idea to us, which
aims to find the most likely explanation for an incomplete set of observations. The difference is they
only require machines to reason one single missing transformation from multiple transformations,
while our task aims to reason multiple logically related transformations from states. The motiva-
tion of procedure planning |Chang et al.| (2020) is to complete a job given states, while VTT is to
explain transformations between states, which has wider scenarios, e.g. explaining the wet ground
with rain. Furthermore, the requirement for natural language generation makes VTT have different
evaluations and unique challenges such as generalization on language compositions. Walkthrough
planning |Chang et al.|(2020) has a different target which is to predict intermediate states.

Talking about transformation description, there is another topic related, i.e. visual description. Here
we review some typical visual description tasks and discuss their differences. Tasks that describe
a single image include image captioning (Farhadi et al., 2010} |Kulkarni et al., | 2011), dense image
captioning (Johnson et al., [2016)), and image paragraphing (Krause et al., 2017). The difference
lies in the level of detail. Similarly, tasks for videos include video description (Venugopalan et al.,
2015)), video paragraph description (Yu et al.,|2016), grounded video description (Zhou et al.,|2019),
and dense video captioning (Krishna et al.,[2017). Different from image captioning tasks that focus
only on a single state, video description tasks start to describe events. For example, dense video
captioning asks to predict temporal boundaries and descriptions of key events in a video. However,
they provide the full process of transformation throughout videos, reducing the need for reasoning.
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Figure 2: Different distributions of VIT samples. (a) Category. (b) Words. (c) Transformation
length (top), and sentence length (bottom).

3  VISUAL TRANSFORMATION TELLING

3.1 TASK DEFINITION

Visual transformation telling aims to test the ability of machines to reason and describe transfor-
mations from a sequence of visual states, i.e. images. Formally, N + 1 images S = {sn}N are
given, which are logically related and semantically different. Logically related means these images
are associated with a certain event, e.g. completing a job, while semantically difference is to expect
some substantial changes that are meaningful to people, i.e. transformation. The target is then to
reason N transformations 7' = {t,,})_, between every two adjacent images and describe them with
natural languages, so that s; — t; — s9 — -+ - = t,, = s,41 is logically sound.

3.2 VTT DATASET

To construct a meaningful dataset for VIT, we require the data to cover a large scope of real world
transformations. Therefore, we choose instructional videos as our basic library, because they con-
tain many daily life activities. Specifically, we choose two typical instructional video datasets,
i.e. CrossTask (Zhukov et al.| 2019) and COIN (Tang et all, 2019; 2021)), and construct our data.
Figure[T]illustrates an instruction video from COIN for cooking noodles and how we transform their
annotation into VTT dataset. We can see that the video is segmented into multiple main steps, and
each step is annotated with precise temporal boundaries and text labels. We directly use their text
labels as transformation descriptions and extract states based on temporal boundaries. Specifically,
for the first transformation, the first frame of the corresponding step segment becomes its start state
and the last frame becomes its end state. For the remaining transformations, the end state is ex-
tracted in the same way, while the start state shares the end state of the last transformation. We
check the quality of states and find transformations can be reasoned out in almost all samples. In
this way, we collected 13,547 samples as well as 55,482 transformation descriptions from CrossTask
and COIN, forming our new data for VTT. Figure 2| shows the distribution of the sample category,
keyword, transformation length, and sentence length. From the category distribution and the word
cloud, we can see that VIT data covers lots of daily activities, like dish, drink and snack, elec-
trical application, vehicle, gadgets, leisure and performance, etc. Furthermore, the distribution of
transformation length shows its diversity while most of samples contains about 2-5 transformations.
Sentence length is around 2-6 on average which means short descriptions make up the majority.

4 METHOD

Problem Formulation. Our main idea for solving visual transformation telling is to find a parame-
terized model fj to estimate the conditional probability p(T'|S; 0) = p({t;}}C, [{s;} NH1.6), where

5; € REXWXH iq 3 state represented as an image and t; = {Ij,l}l:1 is a sentence of length L. The
conditional probability can also be written as auto-regressively generating N sentences:

T|S 9 HHp m]l|x] <la{51} +1 ) (D



Under review as a conference paper at ICLR 2023

difference features* )

O-0-= R P

> D : “ 5 E E E 3 a‘dd seas‘c;r;ir'\g\/--‘:);/eos >
4L | | 3 A
cup ], .WT
é é ﬁ [ L parameter Transformer ]
v
-0
cgolzfeilt

N+1 state "\ masked transformation
representations

3. Transformation Decoder\

Transformer A A A

1. Image Encoder +  s0emx add -z water

auxiliary Iearning

Y DED) + Q)+
ilccategnry LQ)”' oJ :\O O O

[:topic 1L /;/e‘;?';;;z;';‘a;f: 2. Context EncodeD 9 share )

Figure 3: The architecture of TTNet. Images are first encoded into state representations in the im-
age encoder, then transformed into transformation representations in the context encoder, and finally
decoded into text by the transformation decoder. To be more difference-sensitive and context-aware,
three strategies are considered to enhance TTNet (marked with *). Difference features computed
according to state representations are used as extra features, state representations and difference fea-
tures are randomly masked as zero during training, and auxiliary tasks are used for supervision.

Overview of TTNet. Our TTNet is designed to mimic human’s cognitive process of transformation.
The first step is independent recognition, which means that people may understand each image inde-
pendently. Therefore, we introduce an image encoder fiy,,. to represent each image to a vector and
obtain a set of image vectors V' = {v; }; N H = { fimage (s 2)}?/:4{1 After that, humans will associate
these images together, and form an understandmg of all images guided by a global event. To reflect
this process, we introduce a context encoder, e.g. a bi-directional RNN or a transformer encoder, de-
noted as feontext> t0 Obtain context-aware image representanons C ={a}; N +1 = { feontext (3, V) }; N 'H
by considering contextual information. The final step is to describe these transformations based
on previous understanding. In TTNet, we feed the last N context-aware image representations to
a transformation decoder f .pion, implemented with an RNN or a transformer decoder, to gen-
erate each transformation description 7' = {t;}¥, = { fcaption(0i+1)},f\;1 separately and auto-
regressively. We empirically found adding the transformation representation to the word embedding
in each step is better than using it as the start token.

The model is then trained with ground truth transformations 7% = {t;}X¥, by minimizing the
following negative log-likelihood loss, where t; = {xj‘yl}le is the ground truth description of the

i transformation.
N L
£text = - Z Z Ing(x;‘k,llmz<l) (2)
i=1 I=1

In order to tackle the two unique challenges of VTT, i.e. cognitive challenge and descriptive chal-
lenge, we propose three specific strategies to enhance the above TTNet, including difference sen-
sitive encoding, masked transformation model, and auxiliary learning. To distinguish more clearly,
we called the model that does not use these three strategies TTNetyqge.-

4.1 DIFFERENCE SENSITIVE ENCODING

In visual transformation telling, the differences between two adjacent states are usually very small.
Imagine the scene of cooking noodles, the whole picture does not change much before and after the
noodles are added to the pot. This characteristic requires the model not only to understand the con-
tent of each image, but also to focus on differences between images to facilitate the understanding of
transformations. For this purpose, we first utilize CLIP (Radford et al.,[2021)) as our image encoder,
due to its strong semantic representation ability trained on large scale unsupervised data. We also
introduce difference features, by subtracting the current state and the previous state representations
AV ={v;—v;—1 }f\jl, where vy = vy 41, to emphasize the subtle difference. The above two kinds
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of representations are concatenated and fed to the context encoder. Furthermore, a type embedding
is added to distinguish these two kinds of features.

Since transformations are not independent, we may meet the logical consistency problem in the
transformation description process, named the descriptive challenge of VIT. For example, the logic
of descriptions does not make sense as shown in Figure ] TTNety,s recognizes oranges as eggs,
which is logically unreasonable with the two transformations before and after. In TTNet, we intro-
duce masked transformation model in the context encoder and auxiliary learning in the loss function
to alleviate this problem.

4.2 MASKED TRANSFORMATION MODEL R
%

¥

Masked transformation model (MTM) is inspired
by masked language model (Devlin et all 2019).

S

The intuition behind this is that one transforma-
tion can be reasoned from nearby transforma-
tions. For example, if you are told the previous
transformation is washing the watermelon and the
next is putting the watermelon into a planet, it

1. Cut both ends and remove fruit seeds.

2. Pour the egg into the bowl.
3. Pour the orange juice into the cup.

Figure 4: TTNety, failes to effectively use

is obvious that the intermediate transformation
should be related to the watermelon. Following
this intuition, 15% of the input features, including
state representations and difference features, are randomly masked during training. Furthermore, we
empirically found that, for each sample, using this strategy with half the probability works better.

contextual information and mistakenly identi-
fies the orange as an egg.

4.3 AUXILIARY LEARNING

Human usually tries to guess the category or topic before describing transformations, e.g. cook-
ing noodles. Therefore, this category or topic information may help guide description generation.
Inspired by this, we propose to leverage auxiliary tasks, i.e. category and topic classification, to su-
pervise the training process. Specifically, we introduce two additional cross entropy losses Lcaegory
and Lpic on the global context vector. We expect to make the learned transformation represen-
tations share the underlying category and topic information to enhance the learning of consistent
representations. So the final training loss becomes a combination of Liex(, Leategory> and Ligpic:

L= Etext + aﬁcategory + Bﬁtopic 3)

where « and (3 are two adjustment factors.

5 EXPERIMENTS

In this section, we first introduce our empirical setups including baseline methods and evaluation
metrics. Then we demonstrate the main empirical results on the collected VTT dataset, including
both quantitative and qualitative results. After that, we show extensive ablation studies on different
strategies used in TTNet.

5.1 EMPIRICAL SETUPS

Baseline Models. Visual storytelling and dense video captioning are the two most similar tasks
to VTT. Visual storytelling requests to generate N descriptions from N images. We select two
classic methods from the winners of visual storytelling challenge Mitchell et al.| (2018)), including
CST [Gonzalez-Rico & Fuentes-Pinedal (2018), and GLACNet [Kim et al.| (2019) for comparison.
CST contextualizes image features by LSTM and then generates descriptions with separate LSTMs
for each image. GLACNet mixtures global LSTM features and local image features into context
features and then generates descriptions with a shared LSTM decoder. When generating transfor-
mation descriptions, only the last IV context features are used. Dense video captioning has a similar
target to describe a series of events. The difference is the input is a video and it additionally requires
to predict temporal boundaries for events. We choose DenseCap [Johnson et al.| (2016) for adapta-
tion which proposed in the paper that introduces dense video captioning. DenseCap integrates the
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Table 1: Performance on the test set of VIT dataset. B@4/M/R/C/S/BS/FI/Re/LS are short for
BLEU@4 / METEOR / ROUGE-L / CIDEr / SPICE / BERT-Score / Fluency / Relevance / Logical
Soundness. * indicates to use CLIP image encoder for a fair comparison. 1 indicates TTNet signifi-
cant (p < 0.05) outperforms the corresponding model on this human evaluation metric.

Model | B@4 M R C S BS | H Re LS
CST 10.09 11.39 2598 4322 9.28 16.30 - - -
CST* 13.96 19.21 3811 84.60 21.85 2566 | 2.047 3.167 296

GLACNet | 42.77 4526 5298 38148 4533 60.12 - -
GLACNet* | 5524 5948 66.25 508.18 6021 71.13 | 475 3.82F 3.78f
DenseCap* | 48.25 52.00 59.79 439.68 53.73 66.30 | 474 3.67" 3597

TTNetgase 55.68 6047 67.05 51512 6145 7222 | 479 4.04 395
TTNet 61.22 6631 71.84 570.63 6620 76.25 | 478 410 4.11

past and future information into image features to capture the context information. There are many
advanced methods for dense video captioning but highly rely on fine-grained video features, which
are not suitable for our task. All three methods are implemented as closely as possible according to
the original paper and provide a fair comparison by using the same image encoder with TTNet. We
describe the implementation details of TTNet as well as baseline models in Section [C]

Evaluation Metrics. Following previous works on visual descriptions (Ting-Hao et al.| 2016} Kr-
1shna et al.|[2017} [Liang et al.,|2022), automated metrics including BLEU @4 (Papineni et al.,|2002),
CIDEr (Vedantam et al., |2015), METEOR (Banerjee & Lavie, 2005), ROUGE-L (Lin & Hovy,
2002), SPICE (Anderson et al.l [2016), and BERT-Score (Zhang et al.| [2020) are selected as auto-
matic metrics. Furthermore, we asked 25 human annotators to assess the quality of transformation
descriptions using a Likert scale ranging from 1 to 5, for following criteria: fluency, measuring how
well-written the transformation is; relevance, how relevant the transformations toward the image
states; logical soundness, how well the overall logic conforms to common sense.

5.2 RESULTS ON VTT DATASET

Quantitative Results. Table |l| summarizes the results of 7 models on the VTT dataset, including
TTNet, TTNetpase, CST and its CLIP version, GLACNet and its CLIP version, and CLIP version
DenseCap. From the results, TTNet surpasses other models on most metrics with a large margin,
e.g. CIDEr is 11% higher than the second best model, i.e. TTNety,.. This large improvement comes
from the three strategies we proposed, which are the only differences between TTNet and TTNetyqge.
Further comparing human metrics between them, the main strength of TTNet is the much stronger
overall logic of the generated descriptions, while the relevance is only slightly better and the flu-
ency is about the same. Secrefsec:ablation further shows the advantages of TTNet with detailed
ablation studies. It is not difficult to find that the performance gap between CST*, GLACNet*, and
Densecap* is also very large. While they all use CLIP, the difference lies in the way of context
decoding and text generation. GLACNet* outperforms DenseCap* mainly because LSTM captures
more information than past and future attention features according to the higher scores of relevance
and logical soundness. The gap between GLACNet* and CST* is caused by the way of text gen-
eration. GLACNet uses word embeddings and context features as inputs in each LSTM step, while
CST only uses the context as the initial state of LSTM. In our empirical studies, this little difference
improves the fluency a lot, and it is the reason that TTNet chooses to add context embedding to
word embedding as the inputs of the transformation decoder rather than using the context feature
as the start token. The underlying design philosophy between TTNety,se and GLACNet* is similar,
therefore, the performance is close. However, TTNety,s converges faster than GLACNet* during
training because the transformer captures the context information more efficiently than LSTM.

Qualitative Results. We show two examples from the VTT test data in Figure [5]about sowing and
pasting a car sticker. From these two examples, we can first realize that the gap between the states
is really small. For example, in the sticker case, only a small area of the sticker is changed, making
it difficult to reason a certain transformation without considering the overall pasting process. We
can see that when the states are confusing, e.g. DenseCap and GLACNet identify the wrong entity
in the sow case, TTNet is able to reason the correct transformations from the differences and the
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DenseCap: GLACNet: TTNet:
1. Put the candle wick into a vessel. 1. Dig some holes on the soil. 1. Sow on the soil.
2. Clean up the interior of the pumpkin. 2. Dig some holes on the soil. 2. Apply a cover on the soil.

Groundtruth: 1. Sow on the soil. 2. Apply a cover on the soil.

TTNet:

1. Clean the window surface.

2. Put the sticker on the window.
3. Tear off the front of the sticker.
4. Press the sticker.

GLACNet:

1. Clean the window surface.

2. Tear off the front of the sticker.
3. Tear off the front of the sticker.
4. Tear off the front of the sticker.
5. Tear off the front of the sticker. 5. Tear off the front of the sticker. 5. Tear off the front of the sticker. 5. Tear off the front of the sticker.

6. Tear off the front of the sticker. 6. Press the sticker. 6. Press the sticker. 6. Press the sticker.

7. Tear off the other side of the sticker. 7. Tear off the other side of the sticker. 7. Tear off the other side of the sticker. 7. Tear off the other side of the sticker.

Groundtruth:

1. Clean the window surface.

2. Put the sticker on the window.
3. Tear off the front of the sticker.
4. Press the sticker.

DenseCap:

1. Tear off the front of the sticker.
2. Tear off the front of the sticker.
3. Tear off the front of the sticker.
4. Tear off the front of the sticker.

Figure 5: Qualitative comparison on the VTT test data. Above: sow. Below: paste car sticker.

Table 3: Ablation studies on Table 4: Analysis of difference
Table 2: CIDEr of independent the effect of key components.  features and auxiliary tasks.

transformation prediction.

Diff. MTM Aux. C BS State Difference | CIDEr

Model Original Indep. 515.28 72.22 vV - |527.62

CST* 84.90 49.80 vV 556.85 75.00 vV early 559.78

DenseCap* 439.53 295.75 Vv 520.04 72.72 v late 570.63
GLACNet* 508.19 268.49 v, 52193 72.97

i Cat Topi CIDE

$¥§z: w/o diff g%gg gﬁggg VARV 56225 75.62 ategory Topic | r

. . V4 v 562.83 75.72 Vv 549.44

TTNet (retrain) - 459.84 Vv Vo 527.62 73.54 Vv 562.96

v v 570637625 Vv 570.63

context. Furthermore, when the difference between states becomes rather small and the transforma-
tion length becomes large, TTNet is still able to judge subtle differences between transformations.
In contrast, GLACNet indeed understands the topic of pasting the car sticker but fails to distinguish
some transformations. In conclusion, TTNet is able to reason transformations from confusing states
and distinguish subtle differences between transformations, making it excel other methods.

5.3 ABLATION STUDIES

In Section ] we introduce three strategies to improve TTNet, including difference sensitive encod-
ing, masked transformation model, and auxiliary learning. In this section, we discuss the effective-
ness of these three strategies. But before that, we first need to answer the question that whether
the context information is crucial for VTT, since all three strategies act on the context encoder to
enhance the ability to capture context information. If the answer is yes, then it comes to answer
how these strategies work and whether there exist alternative choices, e.g. other types of difference
features. Experimental analyses are organized into five following topics according to this logic.

Importance Analysis of Context. To answer the question of whether the context is really important
for reasoning transformations. We design to let models predict each transformation independently,
i.e. only from two states before and after. If transformations can be reasoned without considering
the context, model performance should remain roughly the same. However, from Table 2} the CIDEr
score of all five models drops sharply from the original setting to the independent setting, showing
that the context is clearly very important. Without context, reasoning transformations become rather
difficult, and retraining the model with independent data does not help either.

Effectiveness of Three Strategies. Next, we move on to analyze the effectiveness of the three
strategies and their combinations. The first row in TableEl shows the result of TTNetg,s and the next
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three rows show the results of using each strategy independently on the base model. Among them,
the improvement of using difference feature is the most significant, indicating the difference is also
crucial for resolving transformation reasoning. The next four rows show the results of combining
these strategies and the conclusion is combining all three strategies leads to the best result. The next
three topics will go through all these strategies one by one in detail, to see how these strategies work.

Analysis of Difference Sensitive Encoding. We just show difference feature is the most significant
strategy for TTNet. However, it is not clear how difference features help the TTNet model and if
there are alternative choices for difference features, e.g. differences of raw images. To answer the
first question, we need to go back to Table[2] which contains an interesting result that TTNet without
using difference features overtakes the full model in the independent setting. This phenomenon
suggests that difference features help to capture contextual information. Contextual information
is more important for the original setting, and the model tries to capture it by attention more to
the difference features. However, this does not prevail in the independent setting since contextual
information is less effective and the model should attention more to the image features. This is why
retraining the full model with the independent data works, because the focus of attention is adjusted
during retraining. The second question is about the alternative type of difference features. We
compare early and late differences. The early difference is pixel-level difference computed on raw
images before input to the image encoder, while the late difference is used by TTNet and computed
on encoded image vectors to become the semantic difference. In TVR (Hong et al,, [2021), early
difference is more effective while Table 4| shows the opposite result. This is because TVR requires
to predict property changes on synthetic data, which relies more on pixel differences. In contrast,
VTT requires event-level descriptions, with more emphasis on semantic distinctions.

Analysis of MTM. We expect MTM to guide the model to =
reason transformation from nearby transformations. In order oo
to validate this ability, we design to let models predict trans-
formations with incomplete states, e.g mask one state of three.
Specifically, we test models under two special settings. In the

=ill= TTNet

. TTNet w/o MTM
first setting, we randomly mask one state for all test samples. 2| _o ¢ aoner
In the second setting, we give even fewer states on average by 100 Dersecap”
only providing start and end states for each sample. The re-
. . . full randomly mask one start & end only
sults are shown in Figure [f] We can see that when there is States

less and less information, the performance of all models de-
creases. However, TTNet has the slowest decline in perfor-
mance, showing its robustness to missing states. By further comparing the results between TTNet
and TTNet w/o MTM, we can conclude this robustness is contributed by the MTM strategy.

Figure 6: Effect of missing states.

Analysis of Auxiliary Tasks. Finally, we analyze the effects of different auxiliary tasks and report
the results in Table 4] From the table, topic classification is more effective than category classi-
fication, since topics are more granular than categories. Supervision with two classification tasks
simultaneously improves the overall performance, e.g. 562.25 — 570.63 in terms of CIDEr.

6 CONCLUSION

This paper introduces a new visual reasoning task to focus on transformation reasoning, i.e. changes
between every two states, named visual transformation telling. Given a series of images as states,
the description of each transformation is required to represent what happened between every two
adjacent images. In this way, the task could be used to test the machines’ ability of transforma-
tion reasoning, which is an important cognitive skill for humans, as described in Piaget’s theory.
To the best of our knowledge, this is the first real world application for transformation reasoning
by defining transformation descriptions as output. To facilitate the study on VTT, we build bench-
mark data based on 13,547 samples from two instructional video datasets, i.e. CrossTask and COIN.
After that, we design a model named TTNet, by applying three well-designed strategies into a ba-
sic human-inspired transformation telling model to make it difference-sensitive and context-aware.
From the experiments, we find that the proposed strategies help VTT generate consistent transfor-
mation descriptions, and thus obtain better results in terms of natural language generation metrics.
The empirical studies provide valuable insights for understanding VTT and the proposed model and
may help to design more complicated transformation reasoning tasks or models in the future.
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A  VTT DATASET CONSTRUCTION

In order to provide a deeper understanding of the VTT dataset, we describe how we construct VI T
in detail. The whole process consists of four major parts, i.e. combine and complete annotations,
extract state images, and split the dataset. Additionally, we mention some annotation information
from CrossTask and COIN, which is important for understanding our decisions when building VTT,
such as how to choose the start and end states.

Combine and complete annotations. Both CrossTask and COIN provide the annotations of step
labels and corresponding segments. Step labels are predefined before they started annotating videos.
The difference is that COIN employed experts to define steps while CrossTask derived them from
WikiHow, a website teaching how to do many things. With predefined steps, they find annotators to
label the step categories and the corresponding segments for each video. We collect and organize
these annotations in a uniform format to become the basis of the VTT dataset. Apart from that,
category and topic labels are used for auxiliary learning. Both CrossTask and COIN provide topic
information, which is the task to solve. However, only COIN provides categories as the domain
information and they are missing in the CrossTask. We manually classify all topics from CrossTask
into existing categories. The full list of 12 categories and 198 topics is shown in Table[3}

Table 5: The Categories and topics in VIT dataset. Topics marked with * are from CrossTask and

others belong to COIN.

Category

Topics

Nursing and Care
(14)

Wash Dog, Use Earplugs, Use Neti Pot, Put On Hair Extensions, Use Epinephrine Auto-injector, Perform CPR,
Wear Contact Lenses, Remove Blackheads With Glue, Give An Intramuscular Injection, Shave Beard, Wash Hair,
Bandage Dog Paw, Draw Blood, Bandage Head

Pets and Fruit (7)

Plant Tree, Transplant, Graft, Cut Grape Fruit, Cut Mango, Cut Cantaloupe, Sow

Furniture and Deco-
ration (15)

Install Shower Head, Install Ceramic Tile, Install Air Conditioner, Install Curtain, Lubricate A Lock, Replace
Door Knob, Install Wood Flooring, Install Closestool, Assemble Cabinet, Assemble Sofa, Replace Faucet, Replace
Toilet Seat, Assemble Bed, Build Simple Floating Shelves*, Assemble Office Chair

Leisure and Perfor-
mance (17)

Make Paper Wind Mill, Perform Vanishing Glass Trick, Raise Flag, Play Frisbee With A Dog, Make Chinese
Lantern, Carve Pumpkin, Change Guitar Strings, Perform Paper To Money Trick, Pitch A Tent, Open Champagne
Bottle, Blow Sugar, Make Paper Easter Baskets, Cut And Restore Rope Trick, Do Lino Printing, Replace Drum-
head, Prepare Sumi Ink, Prepare Canvas

Dish (23)

Make Kimchi Fried Rice*, Cook Omelet, Make Sandwich, Grill Steak*, Clean Fish, Use Toaster, Clean Shrimp,
Make Burger, Make French Toast*, Wrap Zongzi, Make French Strawberry Cake*, Make Pickles, Boil Noodles,
Make Bread and Butter Pickles*, Make Kerala Fish Curry*, Make Lamb Kebab, Make French Fries, Use Rice
Cooker To Cook Rice, Make Pizza, Make Youtiao, Make Salmon, Smash Garlic, Make Pancakes™

Electrical Appliance
(20)

Replace Graphics Card, Replace Light Socket, Replace Electrical Outlet, Replace Memory Chip, Use Soy Milk
Maker, Change Toner Cartridge, Replace Laptop Screen, Replace Refrigerator Water Filter, Use Vending Machine,
Replace Filter For Air Purifier, Replace Hard Disk, Replace Blade Of A Saw, Refill Cartridge, Clean Laptop
Keyboard, Arc Weld, Install Ceiling Fan, Replace A Bulb, Paste Screen Protector On Pad, Assemble Desktop PC,
Use Sewing Machine

Science and Craft
(15)

Prepare Standard Solution, Make Flower Press, Use Volumetric Pipette, Hang Wallpaper, Make Candle, Make
Soap, Use Triple Beam Balance, Make Flower Crown, Use Volumetric Flask, Paste Car Sticker, Make Slime With
Glue, Make Paper Dice, Wrap Gift Box, Set Up A Hamster Cage, Use Analytical Balance

Drink and Snack (20)

Make Meringue*, Make Salad, Make Lemonade*, Make Taco Salad*, Make Tea, Make Chocolate, Make a Latte*,
Make Homemade Ice Cream, Make Jello Shots*, Make Coffee, Make Cocktail, Make Cookie, Make Irish Coffee*,
Roast Chestnut, Make Banana Ice Cream*, Make Orange Juice, Make Matcha Tea, Make Sugar Coated Haws,
Make Strawberry Smoothie, Make Hummus

Vehicle (21)

Change Bike Chain, Replace Car Fuse, Replace Rearview Mirror Glass, Tie Boat To Dock, Pump Up Bicycle
Tire, Change Car Tire, Use Jack, Remove Scratches From Windshield, Jack Up a Car*, Change Bike Tires, Install
License Plate Frame, Fuel Car, Replace A Wiper Head, Install Bicycle Rack, Replace Tyre Valve Stem, Change a
Tire*, Patch Bike Inner Tube, Polish Car, Replace Car Window, Add Oil to Your Car*, Park Parallel

Housework (15)

Put On Quilt Cover, Clean Bathtub, Wash Dish, Clean Leather Seat, Pack Sleeping Bag, Clean Wooden Floor,
Clean Toilet, Iron Clothes, Drill Hole, Remove Crayon From Walls, Clean Hamster Cage, Make Bed, Unclog Sink
With Baking Soda, Clean Rusty Pot, Clean Cement Floor

Sport (10)

Practise Karate, Wear Shin Guards, Practise Triple Jump, Throw Hammer, Play Curling, Practise Skiing Aerials,
Practise Pole Vault, Attend N B A Skills Challenge, Glue Ping Pong Rubber, Practise Weight Lift

Gadgets (21)

Open A Lock With Paperclips, Replace Mobile Screen Protector, Load Grease Gun, Change Mobile Phone Battery,
Replace Sewing Machine Needle, Change Battery Of Watch, Replace SIM Card, Resize Watch Band, Replace CD
Drive With SSD, Refill Mechanical Pencils, Make Wireless Earbuds, Refill Fountain Pen, Refill A Lighter, Rewrap
Battery, Replace Battery On Key To Car, Fix Laptop Screen Scratches, Operate Fire Extinguisher, Replace Battery
On TV Control, Use Tapping Gun, Refill A Stapler, Make RJ45 Cable

14
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Figure 7: The sample distribution of all the topics in VTT.

Table 6: Statistics of the VTT dataset.

Unique Transformations

Transformations

States

Samples

Topics

Categories

105
749
853
812
806
853

11035
44447
43957

12860
56169
54716

1825
11722

18
180
198
198
198
198

CrossTask
COIN
Train

Val

12
12
12
12
12

10759

5622

6974

1352
1436
13547

5903
55482

7339
69029

Test

Total

to select images from video frames to construct states. Ideally, the starting state should be an image
of the moment just before the transformation starts, and the ending state should be an image of the

Extract State Images. When building the VTT dataset from videos, one important question is how

moment when the transformation ends. Based on CrossTask’s precise temporal segment annotations
and COIN’s precise boundaries of segments annotated with three rounds of refinement, we choose

to directly use the start or end frame of the segments as the start or end states. As shown in Figure[T]
frames in the boundary of transformations are selected as states. After extracting, we randomly

sample 200 examples to check the quality of states and only find a few flaws such as black screens

or text transitions. This is mainly caused by careless annotators. As a whole, transformations are

samples, it is not enough to reason the transformations by only considering the nearby before and
after image states. Our motivation for the masked transformation model is from this observation that
transformation should be reasoned in the overall context. Another problem someone may care about

predictable from extracted states for humans but sometimes can be challenging. For those difficult
is whether there exist multiple transformations between two adjacent states. Since the annotation

target of CrossTask and COIN is to segment all key steps in a video, the probability of multiple

transformations between states is small.

/1352 / 1436 in the level of topic. The detailed topic distribution is shown in Figure[7] From the
figure, we can see that about half of the topics have over 100 samples. We also summarize the main

statistics of the VTT dataset in Table [0}

D

Split Dataset. Finally, we split the data randomly into Train / Val / Test sets with samples of 10759

Currently, the size of the VTT dataset is small compared with large video datasets

such as HowTol100M (Miech et al} 2019), which limits the range of transformations covered by

1Scussions.

.

the dataset. The biggest restriction is the high cost of labeling steps/transformations with descrip-
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Table 7: The VTT human evaluation guidelines.

Metric Score  Criteria

All sentences are fluent.

Most sentences are fluent with only a few flaws.

About half of the sentences are fluent.

Most of the sentences are difficult to read, only a few are okay.
All sentences are hard to read.

Fluency

The descriptions are all related to the corresponding before and after images.
A few descriptions are slightly irrelevant, e.g. the description is related to the
underlying topic but cannot be clearly inferred from the images.
3 Many descriptions are slightly irrelevant or a few descriptions are irrelevant,
Relevance e.g. the action or target object mentioned in the transformation does not match
the images.
Many descriptions are irrelevant.
1 Most descriptions are irrelevant, or some descriptions are completely irrele-
vant, e.g. transformation is unrelated to the underlying topic of the images.

AN =W W

The underlying logic of the descriptions is consistent with common sense.
The overall logic is consistent with common sense, with minor flaws.
There are a few obvious logical problems between the descriptions, e.g. un-
Logical resonable repeating transformations.
Soundness 2 There are some obvious logical problems, e.g. the order of transformations is
obviously not in line with common sense.

1 Logic cannot be judged because of the extremely poor fluency or poor rele-

vance leading to overall logic inconsistent with the underlying topic.

W B~ W

tions and temporal boundaries. One possible way to reduce this cost is first using pretrained step
localization models (Wang et al., 2021; [Zhang et al.| [2022) or action and object state-recognition
models (Soucek et al.,2022)) to propose coarse steps/transformations and then refine the results with
human annotators. With more data to cover large transformations, machines can learn more pow-
erful transformation reasoning models, which have potential enhancement value for many tasks,
such as procedure planning, visual storytelling, explaining the phenomenon in life with events, etc.
Another issue is the precision of the boundary of existing step segments in CrossTask and COIN.
For future construction of larger datasets, we suggest a strategy for possible refinement by applying
object state-recognition models (Soucek et al., [2022).

B EVALUATION DETAILS

B.1 AUTOMATIC EVALUATION

We introduce some details that are not included in the main content of the paper when computing
automatic metrics. Firstly, we follow the smooth strategy introduced by |(Chen & Cherry| (2014)
when computing BLEU@4 to provide more accurate results. This is because descriptions in VIT
are usually short, the original BLEU @4 gives a zero score for short texts. In addition, BERT-Score
is rescaled with the pre- computed baseline (Zhang et al.} 2020) to have a more meaningful score
range. BLEU@4 is computed using NLTK ackage CIDEr METEOR, ROUGE, and SPICE are
computed with the code from coco-captioni BERT-Score is computed by using the official codel
provided by the authors.

B.2 HUMAN EVALUATION

Automatic evaluation metrics have limitations on reflecting the quality of generated text mainly
because they are uninterpretable and do not correlate with human evaluations (van der Lee et al.|
2019). In the VTT task, we consider three levels of text quality, evaluated by people. The first

"https://www.nltk.org/api/nltk.translate.bleu_score.html
Zhttps://github.com/tylin/coco-caption
Shttps://github.com/Tiiiger/bert_score
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Human Evaluation for VTT

Annotation ID Category Topic

18 Vehicle Replace Car Window

Start/ Jump Next

0-1: remove the old rearview mirror 1-2: reinstall the rearview mirror

Transformation Descriptions

0->1: remove the old rearview mirror, 1 -> 2: reinstall the rearview mirror

Fluency Relevance Logical Soundness

it 2l 3 4 05 1 7 3 4 0Os 1 2 3 4 0Os

Cannot Decide Submit
Figure 8: The web interface of human evaluation on VTT.

Table 8: Implementations details of baseline models and TTNet.

Model Image Encoder Context Encoder Transformation Decoder Params
CST InceptionV3 LSTM LSTM 379M
CST* CLIP (ViT-L/14) LSTM LSTM 661M
GLACNet ResNet152 bi-LSTM LSTM 128M
GLACNet* CLIP (ViT-L/14) bi-LSTM LSTM 373M
DenseCap* CLIP (ViT-L/14) Attention LSTM 361M
TTNetgye  CLIP (ViT-L/14) Transformer Transformer 368M
TTNet CLIP (ViT-L/14) Transformer Transformer  368M

level considers only the fluency of the text itself. The second level considers the relevance of each
individual transformation description to the topic and to the images before and after. The third level
considers the logical consistency between transformation descriptions. The assessment uses the
5-point Likert scale and follows the guidelines below in Table 7}

We asked 25 people to evaluate the major baseline models’ results shown in Table[I] A subset of
samples is selected for human evaluation by randomly sampling testing samples, 1 sample from
each topic and 2 extra samples, resulting in 200 samples in total. All annotators are asked to read
and follow the guidelines to give their scores. During human evaluation, the annotators can see
the images in addition to the category and the topic as a reference. The web interface for human
evaluation is shown in Figure 8] Each sample result from each model is evaluated by at least 2
people. Our code of the evaluation webpage will also be released along with the VTT source code.

C IMPLEMENTATION DETAILS

During training, we apply commonly used image augmentation tricks, including randomly cropping
images into 224 x 224 patches, and random flipping. The overall architectures of all baseline mod-
els are shown in Table[8] We re-implemented CST and GLACNet following the original paper and
their released source code E"ﬂ We didn’t find the code of DenseCap and followed their paper to
implement the final model. The image encoder of DenseCap is replaced with CLIP since the orig-
inal model targets video descriptions and uses video encoders. When implementing TTNet, in the

‘nttps://github.com/dianaglzrico/neural-visual-storyteller
*https://github.com/tkim-snu/GLACNet
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Table 9: Results of different image encoders.

Image Encoder Params Acc | B@4 C BS
S InceptionV3 (Szegedy et al., 2016) 23M 7744 | 4488 40485 61.75
> _aé ResNet152 (He et al.,[2016)) 59M  82.82 | 50.71 464.01 67.40
&S ViT-L (Dosovitskiy et al.|[2022) 304M  85.84 | 5826 54046 73.59
§ ©  Swin-L (Liu et al.}[2021) 196M  86.32 | 5736  531.51 73.03
~ A& BEIT-L (Bao et al.,[2022) 306M 87.48 | 41.57 370.00 58.80
- RN50 39M 7330 | 53.35 491.80 69.79
82 RNIOI 57M 7570 | 53.78 49530  70.08
g) 'E  VIT-B/32 88M 76.10 | 55.21 510.08 71.27
g o  ViT-B/16 86M 80.20 | 57.73 53492 73.37
= &~ ViT-L/14 304M 8390 | 61.22 570.63 76.25

image encoder part, the default CLIP image encoder is ViT-L/14. Image encoders in all models are
pretrained and fixed during training. Further details about the image encoder and the comparison
can be found in Section[D.Jl Transformer-based context encoder consists of two transformer en-
coder layers. The implementation of the transformer is based on x—transfomerﬂ Simplified relative
positional encoding (Raffel et al., 2020) is applied in all transformer layers. In the transformation
decoder part, we directly borrow CLIP’s tokenizer and their vocabulary list. Each transformation
description is generated separately with a shared two-layer transformer decoder. The idea of adding
transformation representations into word embeddings is inspired by GLACNet (Kim et al.| [2019)
and we empirically found this way improves a lot on language influence compared with using the
representation as the start token. Like the context encoder, simplified relative positional encoding
is also used in the transformation decoder. We sample text with top-k top-p filtering with k£ = 100
and p = 0.9. The dimension of intermediate vectors is uniformed to be 512, including state rep-
resentations, transformation representations, and word embeddings. In the training loss part, the
adjustment factor o for Leqiegory 18 set to be 0.025 and 3 for Ligpic is 0.1. The optimizer we used
is AdamW (Loshchilov & Hutter} [2022)), with the learning rate first warming up to le-4 in the first
2000 steps and then gradually decreasing to 0. All models are implemented with PyTorch (Paszke
et al.| |2019) and trained on one single Tesla A100 80G GPU card with 50 epochs. The code for
training and inference will be released publicly.

D MODEL OPTIMIZATION

In this section, we show more detailed information about the selection of the image encoders and
the hyperparameters of masked transformation model when optimizing our model.

D.1 SELECTION OF IMAGE ENCODERS

Image encoding quality is the basis for subsequent reasoning and description of the model, and
thus greatly affects the overall performance of the model. From Table[I] we can see that the orig-
inal version of CST and GLACNet, with Inception V3 and ResNet as image encoders accordingly
perform worse than CST* and GLACNet*, indicating the choice of image encoder matters. We
conduct a more detailed analysis of the image encoder by testing 10 state-of-the-art image encoders,
5 were pretrained on ImageNet and 5 are CLIP models pretrained on large-scale image-text data.
In the table, we show their parameter size, ImageNet top-1 accuracy, and performance on the VTT
dataset. We can see that when the parameter sizes are similar, models pre-trained on image and
text data perform better than that pre-trained only on image data, e.g. ViT-L/14 vs. ViT-L. This
is consistent with the existing understanding that CLIP encodes more semantic information. In ad-
dition to training data, factors that affect model performance include model size, patch size used

Shttps://github.com/lucidrains/x-transformers

"Model weights and top-1 accuracy on ImageNet of ImageNet pretrained models are from: https://
github.com/rwightman/pytorch-image-models

®Pretrained weights of CLIP models are from https://github.com/openai/CLIP and top-1 accu-
racy on ImageNet is from Table 10 of the original paper.
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in vision transformers, and training strategies. For example, CLIP models have more parameters
performs better. While the parameter size between ViT-B/16 and ViT-B/32 are similar, ViT-B/16
encodes finer image has smaller patch size resulting in a better image representation. BEiT-L has
the highest accuracy on ImageNet but performs the worst among all models. Our explanation is that
BEIT has learned enough image pattern information, but there is a defect in the capture of semantic
information.

D.2 HYPERPARAMETERS OF MASKED TRANSFORMATION MODEL

There are two hyperparameters in masked transformation model, i.e. the mask ratio and the sample
ratio. The mask ratio is similar with BERT’s mask ratio (Devlin et al.L 2019), that is, the percentage
of state representations and difference features that are replaced with zero. We compare the mask
ratio from 0%-30% and find 15% works the best (Table [I0), which is in line with BERT’s find-
ing. Another hyperparameter is the sample ratio. The motivation is to tackle the inconsistent issue
between training and inference, that is, no features are masked during inference. To fill this gap,
samples have opportunities to completely bypass the mask strategy during training. The sample ra-
tio is the probability that the sample will accept the mask strategy. From Table[TT] 50% probability
is the best, better than the strategy of masking all samples used in BERT.

Table 10: Ablation on the mask ratio.
Table 11: Ablation on sample ratio.

Mask Ratio B@4 C BS
0% 6038 562.83 75.72 Sample Ratio  B@4 c BS
5% 6093 56792 76.11 0% 6038 56283 75.72
10% 61.02 56871 7613 25% 6039 562.15 75.63
15% 6122 570.63 7625 50% 6122 570.63 7625
20% 61.07 56899 7621 75% 60.96 56799 76.00
25% 6116 57018 7635 100% 6095 568.18 76.10
30% 60.72 56543 75.94

E GENERALIZATION ANALYSIS

There are two levels of generalization that should be considered in visual transformation telling. At
the level of one single transformation, the question is whether machines are able to generalize to
different language compositions, i.e. new action-target combinations that do not exist in the training
set. At the higher level of multiple transformations, the question becomes to be whether machines
can generalize to different transformation combinations, such as different numbers and orders of
transformations on the same topic. In this section, we discuss these two kinds of generalization
problems and see how well our models perform.

60
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Figure 9: Top 50 words (exclude the and and) appear multiple times in all 853 unique descriptions.

E.1 LANGUAGE COMPOSITION

Language composition Johnson et al.| (2017) has been widely discussed in the community of visual
reasoning that it is very useful if machines are able to generalize to unseen language combinations
with seen words. In the VTT dataset, it is common that different transformation descriptions share
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DenseCap: GLACNet: TTNet: Groundtruth:

1. Pour espresso. 1. Pour espresso. 1. Pour alcohol. 1. Pour coffee into glass.
2. Pour espresso. 2. Pour espresso. 2. Pour espresso. 2. Pour chocolate in glass.
3. Add whipped cream. 3. Add whipped cream. 3. Add whipped cream. 3. Pour cream.

Figure 10: Models failed to compose unseen transformations with seen words.

Table 12: Statistics of unique transformation combinations. Val Only and Test Only count combina-
tions that do not exist in the train split.

Topics Train Val Val Only  Test Test Only All
Dish 922 154 95 158 103 1118
Drink and Snack 804 141 83 146 88 968
Electrical Appliance 472 99 34 100 41 546
Furniture and Decoration 481 83 51 93 45 577
Gadgets 414 82 33 84 40 487
Housework 406 75 48 69 40 494
Leisure and Performance 408 85 39 85 39 485
Nursing and Care 316 66 29 66 27 371
Pets and Fruit 208 42 20 45 22 249
Science and Craft 395 82 37 87 42 473
Sport 167 35 18 38 22 207
Vehicle 541 110 56 120 50 643
Total 5534 1054 543 1091 559 6618

the same words, especially verbs, and nouns. We count the top 50 words, excluding the and and,
from all 853 unique transformation descriptions in the VTT dataset and results are shown in Figure[9]

With such a large proportion of shared vocabulary, the natural language generation of the transfor-
mation is more valuable than the classification of the transformation, since models would have more
chances to learn common patterns from transformations with shared words. To investigate whether
models learned on the VTT have the generalization ability of language composition, we test models
on one manually annotated by us, which comes from a related task in CrossTask, i.e. Make Bicerin.
The topic contains transformation descriptions that are not included in our training set but are com-
posed without new words. Figure [I0] show the results of three models. Unfortunately, all models
failed to generate these new descriptions from the existing words but with descriptions that match
the states as closely as possible but exist in the list of transformations from the training set. We
believe there are two main reasons. Firstly, the small size of unique transformations limits models to
gain language composition ability from data. Secondly, current models lack effective design for this
generalization ability. Therefore, enlarging the dataset to cover more diverse transformations and
designing models with stronger generalization ability will be important future directions for visual
transformation telling.

E.2 TRANSFORMATION COMBINATION

The states and transformations under the same topic can be very different, one important reason is
the different combinations of key transformations. For example, add seasoning can be the step after
the water is boiling, or the noodles are poured, or both, depending entirely on the preference of the
person cooking the noodles. This freedom leads to rich transformation combinations even with few
key single transformations under each topic. We count the unique combinations in the VTT dataset
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Table 13: Performance on all test samples and subsets of test samples whose transformation combi-
nations are shared and non-shared with the training set.

All Share Non-share
Model C Fl Re LS C Fl Re LS C Fl Re LS
CST* 085 2.04 316 296 099 195 322 3.00 073 217 3.08 2091

GLACNet* 508 475 382 378 621 480 390 391 411 469 370 3.59
DenseCap* 440 474 3.67 359 516 472 3.66 3.61 375 476 3.68 357

TTNetpase 515 479 404 395 6.02 480 4.08 400 440 477 399 388
TTNet 571 478 410 411 7.01 481 423 429 459 474 393 3.86

as shown in Table [12] From the table, we can see that more than half combinations in the test set
do not exist in the training set (559 test only v.s. 1091 total), which means models need a strong
generalization ability to predict these unseen transformation combinations well.

To investigate how models perform on these non-share combinations, we separately computed the
performance of each model on three subsets of test samples, including all test samples, test samples
that have shared combinations with the training set, and test samples that have combinations not
included in the training set. From Table[I3] we can see that models perform much worse on non-
share combinations than shared combinations, e.g. the logical soundness of TTNet is decreased from
4.29 to 3.86. This significant performance degradation suggests that the combination generalization
is challenging for existing models. Furthermore, TTNet performs indeed much better on shared
combinations than TTNetg,s (logical soundness is 4.29 v.s. 4.00), but the situation is not true for
non-shared combinations (logical soundness is 3.86 v.s. 3.88), which means the proposed three
strategies contribute on learning existing combinations on the training set but has little or even
negative effects on model’s combination generalization ability.

F  MORE QUALITATIVE RESULTS.

We show more results in Figure [TT] and Figure [I2] Figure [I2]shows several hard cases that TTNet
fails to reason and describe. We point out three potential directions to improve the TTNet. The first
one relates the image recognition ability. From the first case, TTNet recognizes the tent as platfond
which is wrong. This error might respond to the image encoder that fails to distinguish these objects.
Therefore, it may lead to a better result by using a more powerful image encoder. The major point
here is that the model needs to identify subtle differences between states and determine specific
transformations based on context. The last case is out-of-domain cases, that is, the test samples are
quite different from the training data.
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DenseCap:

1. Draw black patterns.

2. Cut the raw materials.

3. Cut the packing paper.

4. Cut the raw materials.

5. Nail down or stick together.

GLACNet:

1. Fold or bent the paper.

2. Fold or bent the paper.

3. Fold or bent the paper.

4. Nail down or stick together.
5. Nail down or stick together.

TTNet:

1. Draw pictures on the materials.

2. Fold or bent the paper.
3. Cut the raw materials.
4. Nail down or stick together.
5. Nail down or stick together.

Groundtruth:

1. Draw pictures on the materials.

2. Fold or bent the paper.
3. Cut the raw materials.
4. Nail down or stick together.
5. Nail down or stick together.

DenseCap:

. Remove the air nozzle.
. Remove the air nozzle.
. Pump up to the tire.

. Pump up to the tire.

B~

GLACNet:

1. Screw off the valve cap and open the

valve.
2. Pump up to the tire.
3. Pump up to the tire.

4. Tighten the valve and screw on the

valve cap.

TTNet:

valve.

2. Install the air nozzle.
3. Pump up to the tire.

4. Remove the air nozzle.

Groundtruth:

1. Screw off the valve cap and open the 1. Screw off the valve cap and open the

valve.

2. Install the air nozzle.
3. Pump up to the tire.

4. Remove the air nozzle.

DenseCap:

1. Do the first two jumps.
2. Do the first two jumps.
3. Do the third jump.

DenseCap:

Dig a pit with proper size.
Fill the tree into the pit.
Fill the tree into the pit.
Fill the tree into the pit.
Fill the tree into the pit.
Fill the pit with some soil.

SRR S

GLACNet:

1. Begin to run up.
2. Do the third jump.
3. Do the third jump.

GLACNet:

. Dig a pit with proper size.
. Fill the tree into the pit.

. Fill the tree into the pit.
4. Fill the pit with some soil.
5. Fill the pit with some soil.
6. Pour water to the tree.

LN =

TTNet:

1. Begin to run up.

2. Do the first two jumps.
3. Do the third jump.

TTNet:

1. Dig a pit with proper size.
2. Fill the tree into the pit.

3. Fill the pit with some soil.
4. Pour water to the tree.

5. Fill the pit with some soil.
6. Pour water to the tree.

22

Groundtruth:

1. Begin to run up.

2. Do the first two jumps.
3. Do the third jump.

BEHTS B S RIBY S e sy

Groundtruth:

1. Dig a pit with proper size.
2. Fill the tree into the pit.

3. Fill the pit with some soil.
4. Pour water to the tree.

5. Fill the tree into the pit.

6. Pour water to the tree.

Figure 11: More qualitative results in the VTT test data.
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DenseCap: GLACNet: TTNet: Groundtruth:

1. Set up the brackets. 1. Lay the cushion evenly. 1. Lay the cushion evenly. 1. Lay the cushion evenly.
2. Set up the platfond. 2. Set up the platfond. 2. Set up the platfond. 2. Set up the brackets.

3. Fix the ground nail. 3. Set up the platfond. 3. Fix the ground nail. 3. Fix the ground nail.

=Y
« 'MEF

DenseCap: GLACNet: TTNet: Groundtruth:

1. Rise to the sky. 1. Rise to the sky. 1. Ski down from the hill. 1. Ski down from the hill.
2. Rise to the sky. 2. Rise to the sky. 2. Ski down from the hill. 2. Ski up from the hill.

3. Rise to the sky. 3. Rise to the sky. 3. Rise to the sky. 3. Rise to the sky.

4. Rise to the sky. 4. Rise to the sky. 4. Ski down from the hill. 4. Ski down from the hill.
5. Rise to the sky. 5. Rise to the sky. 5. Ski down from the hill. 5. Ski up from the hill.

6. Rise to the sky. 6. Rise to the sky. 6. Rise to the sky. 6. Rise to the sky.

7. Rise to the sky. 7. Rise to the sky. 7. Ski down from the hill. 7. Fall to the ground.

8. Rise to the sky. 8. Rise to the sky. 8. Ski down from the hill. 8. Ski up from the hill.

9. Rise to the sky. 9. Rise to the sky. 9. Rise to the sky. 9. Rise to the sky.

DenseCap: GLACNet: TTNet: Groundtruth:

1. Wipe the glue to a layer. 1. Wipe up the face. 1. Disinfect the injecting place. 1. Add some water to the vessel.
2. Wipe the glue to a layer. 2. Wipe the glue to a layer. 2. Disinfect the injecting place. 2. Grind roundly and evenly.

3. Wipe nose. 3. Wipe up the face. 3. Pull out the needle and press. 3. Grind roundly and evenly.

Figure 12: Bad cases on the VTT dataset.
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