
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Discovering Hidden Algebraic Structures via Transformers with Rank-Aware
Beam GRPO

Anonymous Authors1

Abstract
Recent efforts have extended the capabilities of
transformers in logical reasoning and symbolic
computations. In this work, we investigate their
capacity for non-linear latent pattern discovery
in the context of functional decomposition, fo-
cusing on the challenging algebraic task of mul-
tivariate polynomial decomposition. This prob-
lem, with widespread applications in science and
engineering, is proved to be NP-hard, and de-
mands both precision and insight. Our contribu-
tions are threefold: First, we develop a synthetic
data generation pipeline providing fine-grained
control over problem complexity. Second, we
train transformer models via supervised learning
and evaluate them across four key dimensions
involving scaling behavior and generalizability.
Third, we propose Beam Grouped Relative Policy
Optimization (BGRPO), a rank-aware reinforce-
ment learning method suitable for hard algebraic
problems. Finetuning with BGRPO improves ac-
curacy while reducing beam width by up to half,
resulting in approximately 75% lower inference
compute. Additionally, our model demonstrates
competitive performance in polynomial simpli-
fication, outperforming Mathematica in various
cases.

1. Introduction
Transformers, initially developed for natural language pro-
cessing (Vaswani et al., 2017), have shown remarkable ver-
satility across diverse domains such as vision (Dosovitskiy
et al., 2020) and protein folding (Jumper et al., 2021). More
recently, their applications in formal reasoning, symbolic
mathematics and algorithmic tasks start to gain traction. Sev-
eral works have showcased transformer-based architectures’

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

ability to tackle highly structured problems, including theo-
rem proving (Polu & Sutskever, 2020; Trinh et al., 2024),
integration (Lample & Charton, 2020), matrix multiplica-
tion (Fawzi et al., 2022) and equation solving (Drori et al.,
2022).

In this work, we investigate the transformer’s capacity for
non-linear latent pattern discovery in the context of func-
tional decomposition, i.e. decomposing a complex function
as the composition of simpler sub-functions. In contrast
to step-by-step logical deduction, or pattern recognition in
data analysis, functional decomposition poses significant
new challenges to the transformer, because the forms of the
sub-functions that we try to discover can be totally hidden or
obscured in the final compact form of the original function.
Furthermore, it requires extreme precision without any mar-
gin of error. Unlike more forgiving classification tasks, the
decomposition problem admits only a sparse set of correct
solutions: even minor deviations in signs or coefficients can
render outputs completely invalid.

Beyond its theoretical interest, functional decomposition
has ubiquitous applications in software engineering (Tem-
pero et al., 2024), systems biology (Mori et al., 2023),
mechanical design (She et al., 2024), systems engineering
(Hernandez et al., 2024) and digital logic design (Adamski
et al., 2005; Lin et al., 2008), where capturing hidden sub-
structures within high-dimensional functions leads to more
tractable and efficient models. However, identifying a func-
tion’s latent compositional structure requires models to look
past surface-level correlations, attending instead to deep
algebraic symmetries and invariants.

A particularly rich case of functional decomposition arises
in multivariate polynomial functions. The polynomial de-
composition problem over a ring k seeks to decompose
a given polynomial f ∈ k[x1, . . . , xn] into polynomials
g ∈ k[y1, . . . , ym] and h1, . . . , hm ∈ k[x1, . . . , xn] such
that

f(x1, . . . , xn) = g
(
h1(x1, . . . , xn), . . . , hm(x1, . . . , xn)

)
.

(1)
It has wide-ranging applications from cryptography (Patarin
& Goubin, 1997) to dynamical modeling (Dang & Testylier,
2012), signal processing (Demirtas et al., 2012) and robotics
(Elias & Wen, 2025; Manocha & Canny, 1992).

The multivariate polynomial decomposition problem has

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Discovering Hidden Algebraic Structures via Transformers with Rank-Aware Beam GRPO

been proved to be NP-hard by Dickerson (Dickerson, 1987;
1993), although efficient algorithms for various special cases
are discussed in (Gathen et al., 2003; Von Zur Gathen,
1990a;b; Faugère & Perret, 2009a;b; Zhao et al., 2012).
To illustrate the difficulty of the problem for the models, let
us consider the following expression

f = 2a3
1b

3
1 + 25a2

1b
2
1 + 6a2

1a2b2b
2
1 + 6a2

1a3b3b
2
1 + 6a1a

2
2b

2
2b1

+ 6a1a
2
3b

2
3b1 + 96a1b1 + 50a1a2b2b1 + 50a1a3b3b1

+ 12a1a2a3b2b3b1 + 2a3
2b

3
2 + 2a3

3b
3
3 + 25a2

2b
2
2 + 25a2

3b
2
3

+ 6a2a
2
3b2b

2
3 + 96a2b2 + 6a2

2a3b
2
2b3 + 96a3b3

+ 50a2a3b2b3 + 12

It has a hidden O(3)-symmetry, which can be revealed by
decomposing f = g ◦ h, with g(y) = y2 + 2(4 + y)3 and
h = a1b1 + a2b2 + a3b3. This is a highly nontrivial task
to identify the inner function h directly from the expanded
form of f , as its structure becomes completely obscured
after polynomial substitution, expansion and simplification.
Even in this relatively constrained case where g is univari-
ate, discovering the decomposition requires recognizing
non-linear latent patterns across dozens of terms. When
g becomes multivariate, the complexity increases substan-
tially, making the problem even more challenging.

To tackle the polynomial decomposition problem, we de-
velop a systematic approach with four key components.
First, we create a backward synthetic data generation
pipeline that allows fine-grained control over polynomial
complexity involving range of coefficients, degree, and num-
ber of variables. Second, we train lightweight transformer
models on these synthetic datasets using supervised learn-
ing and analyze how performance scales across four axes
(performance complexity scaling, architecture scaling, dis-
tribution adaptation, search strategy analysis). Third, we
discover that both multi-sampling and greedy search meth-
ods struggle with the sparse solution space of the polyno-
mial decomposition problem, and we implement a beam
search strategy to effectively extract the models’ capabili-
ties. Finally, to address the computational intensity of beam
search, we develop a rank-aware variant of the Grouped Rel-
ative Policy Optimization (GRPO) reinforcement learning
algorithm, which encodes rank information directly in the
reward function.

Our study makes the following contributions to neural ap-
proaches for polynomial decomposition. First, our back-
ward data generation pipeline enables targeted training
across varying levels of decomposition difficulty. Second,
our comprehensive evaluation across four dimensions, for
the first time, establishes robust baselines for transformers’
performance on polynomial decomposition tasks. Third,
using the rank-aware Beam Grouped Relative Policy Op-
timization (BGRPO), our models improve accuracy while
reducing beam search width by up to 50%, resulting in 75%
lower computational requirements during inference. Addi-

tionally, our model demonstrates competitive performance
in polynomial simplification, outperforming Mathematica
in various cases. This underscores the potential of neu-
ral models to complement and extend classical symbolic
computation capabilities.

2. Method
2.1. Backward Synthetic Data Generation

We generate synthetic data for supervised learning us-
ing a backward approach, starting from the decomposed
form. First, we generate the inner functions (h1, . . . , hm in
Eq. (1)) and the outer function (g in Eq. (1)) with random
monomial terms of bounded degree and random coefficients
within a given range. Then, we obtain the composed func-
tion (f in Eq. (1)) via substitution, expansion, and term
collection. See Appendix A for the detailed algorithm. For
each generated instance, we create a training pair consist-
ing of the expanded polynomial f as input and its decom-
posed components {g, h1, . . . , hvouter} as the target output.
The model is trained to minimize the standard negative log-
likelihood loss function.

Our synthetic data generation process provides fine-grained
control over problem complexity through eight parame-
ters: Cinner (coefficient range for inner polynomials), dinner
(maximum degree of inner polynomials), vinner (number of
variables in inner polynomials), tinner (maximum number
of terms in inner polynomials), and similarly Couter, douter,
vouter, and touter for the outer polynomial.

2.2. Beam Search

Beam search is a breadth-first search algorithm that approx-
imates optimal decoding by keeping track of the k most
probable sequences at each step (Freitag & Al-Onaizan,
2017). For each of the k current sequences, the algorithm
considers the top-k token extensions per sequence. These
k2 candidate continuations are then ranked by the sum of
log probabilities of all tokens in the sequence, and only the
top-k sequences with the highest cumulative log probability
are retained for the next step. In this paper, we refer to k
as the beam width, and to the position (1st, 2nd, etc.) of an
output in the final beam as its rank.

Our analysis across all model outputs identified a spe-
cific error pattern in polynomial decomposition: the model
achieves approximately 90% accuracy for predicting non-
sign tokens (operators, numbers, variables), but exhibits
near-random performance for deciding between positive
and negative signs. This creates a unique inference chal-
lenge where exploration needs to be constrained for high-
confidence structural elements while simultaneously ex-
panded for uncertain sign choices.

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Discovering Hidden Algebraic Structures via Transformers with Rank-Aware Beam GRPO

Beam search is particularly well-suited for this situation as
it maintains the high-confidence structural backbone while
systematically exploring variations in the uncertain com-
ponents. Our experiments demonstrate that beam search
significantly outperforms greedy decoding and random sam-
pling for polynomial decomposition tasks. See Appendix C
for a detailed error analysis and an explanation of beam
search effectiveness for this task.

2.3. BGRPO : Reinforcement Learning Method
Enhancing Beam Search Efficiency

The computational cost of beam search scales quadratically
with beam width. There would be a significant compu-
tational advantage if we could improve the ranks of cor-
rect outputs. To address this, we introduce Beam Grouped
Relative Policy Optimization (BGRPO), a reinforcement
learning method that extends GRPO, uniquely taking into
account rankings in the beam search, specifically designed
for improving beam search inference efficiency.

Reinforcement learning enables models to explore solu-
tion spaces more effectively than supervised learning alone,
enhancing the model’s capabilities by addressing specific
weaknesses through a reward mechanism. This approach en-
courages correct answers while discouraging incorrect ones
based on an advantage function—the difference between a
solution’s reward and a baseline reward. Group Relative Pol-
icy Optimization (GRPO) (Shao et al., 2024) estimates this
baseline for each question by sampling a group of outputs,
and has shown promising results for reinforcement learning
in language generation tasks due to its sample efficiency
and stability (DeepSeek-AI, 2025). We chose GRPO over
traditional Proximal Policy Optimization (PPO) (Schulman
et al., 2017) because it eliminates the need for a separate
value network or reward model, reducing training complex-
ity while improving stability, and its group-wise baseline
calculation naturally fits tasks with a clear binary reward
structure like polynomial decomposition.

Our proposed Beam Grouped Relative Policy Optimiza-
tion (BGRPO) extends this approach by using beam search
rather than independent sampling for generating the group
of outputs. While this significantly alters the distribution
of outputs, making their average reward less suitable as a
traditional baseline, it still provides valid training signals by
reinforcing correct answers and penalizing incorrect ones.
BGRPO is particularly effective for our task because beam
search generates outputs with identical structure that differ
only in the confusing elements (signs), creating a focused
learning signal.

Additionally, BGRPO incorporates rank information di-
rectly into the reward function by applying an exponential
decay factor based on the position in the beam. This incen-
tivizes correct answers to appear at earlier positions in the

beam search, effectively pushing correct solutions toward
the top of the beam ranking.

Training Objective For a prompt x, let B(x) =
{y1, . . . , yw} be the set of beam search outputs with beam
width w generated by the old policy πθold . Each output
sequence yi receives a reward ri, where ri = 0 for incorrect
polynomial decomposition and ri = 1 for correct decom-
position. In BGRPO, we incorporate rank information by
scaling the reward for correct decompositions using an ex-
ponential decay function e−rank/w. We optimize the policy
model πθ for µ iterations by maximizing the following ob-
jective, JBGRPO(θ), where we define ρi =

πθ(yi|x)
πθold

(yi|x) for
brevity:

JBGRPO(θ) =
1

w

w∑
i=1

[
min

(
ρiAi, clip(ρi, 1− ε, 1 + ε)Ai

)
− βDKL(πθ||πref)

]
(2)

where ε is the clipping parameter that constrains policy
updates and β controls the KL divergence regularization
term:

DKL(πθ||πref) =
πref(oi|q)
πθ(oi|q)

− log
πref(oi|q)
πθ(oi|q)

− 1. (3)

where ε is the clipping parameter that constrains policy
updates and β controls the KL divergence regularization
term:

DKL(πθ||πref) =
πref(oi|q)
πθ(oi|q)

− log
πref(oi|q)
πθ(oi|q)

− 1. (4)

Here, πref is the reference policy, which is the initial
model before BGRPO training. The advantage function
Ai is computed without normalization as Ai = ri −
mean({r1, r2, · · · , rw}), following the approach in (Liu
et al., 2025).

3. Experimental Setup
3.1. Evaluation Axes

To systematically analyze our models’ capabilities for the
polynomial decomposition problem, we consider four key
evaluation dimensions.

Problem Complexity Scaling (D1). We analyze how the
model performance varies with respect to changes in the
complexity parameters for synthetic data generation. We
vary the number of variables vinner, vouter, and the max-
imum degrees dinner, douter for both the inner and outer
polynomials.

Architecture Scaling (D2). We investigate how model
performance scales with key architectural hyperparameters

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Discovering Hidden Algebraic Structures via Transformers with Rank-Aware Beam GRPO

of the transformer. In particular, we measure P(M(d, l, a)),
the performance of models with embedding dimension d,
number of layers l, and number of attention heads a. Our
goal is to characterize how these hyperparameters influence
model capabilities.

Distribution Adaptation (D3). A practical challenge in
applying transformers to symbolic computation is their sen-
sitivity to the numerical ranges present in the training data.
For example, models trained on specific coefficient ranges
tend to struggle with polynomials outside these ranges. On
the other hand, we found that models can rapidly adapt
to new coefficient distributions with minimal additional
training, suggesting that they manage to learn generalizable
pattern recognition rather than merely memorizing specific
numerical relationships.

To quantify the model’s ability to transfer its polynomial
decomposition skills to numerically distinct but structurally
identical problems, we prepare the model Mn

C1→C2
. This

model is initially trained on 1M polynomial decomposition
examples with Couter = C1 and then fine-tuned with n
examples with Couter = C2 where C1 ∩ C2 = ∅. We
measure the performance of model Mn

C1→C2
on a test set of

polynomial decomposition problems with Couter = C2:

G(n) = P
(
Mn

C1→C2
, test set with Couter = C2

)
(5)

Search Strategy Analysis (D4). We investigate how beam
search enhances model performance on polynomial decom-
position tasks, analyzing its effectiveness across different
model architectures and levels of problem complexity.

3.2. Synthetic Dataset Setup

For the axis D1 of the problem complexity scaling, we first
examine degree scaling by training a model on 2M poly-
nomial decomposition examples with different inner and
outer degrees as described in Table 1. We then evaluate
this model on separate test datasets with the same configura-
tion parameters, each corresponding to one of nine different
(dinner, douter) pairs to assess performance across varying
problem complexities.

For the second part of theD1 axis, we train a model for each
combination of vinner and vouter varying from 2 to 4 while
fixing the other parameter at 3. For each combination, we
use 1M examples to train the model.

For the axis D2 of architecture scaling, we train multiple
models with varying architectural configurations, all using
the same dataset of 2M examples with polynomial parame-
ters as described in Table 1.

For the axis D3 of distribution adaptation, we train ini-
tial models on 1M examples with Couter = C1 = [−5, 5]
and then adapt them to examples with Couter = C2 =

[−10,−6] ∪ [6, 10]. Other parameters are the same across
both datasets as described in Table 1.

For the second part of D1 (Variable Scaling) and D2, we set
tinner = touter = 3 to prevent expressions from becoming
too long. We describe our tokenization in Appendix B.

Table 1. Synthetic Dataset Configuration Across Evaluation Axes
Evaluation Axis Inner Coeff. Outer Coeff. Inner Degrees Outer Degrees Inner Vars Outer Vars

D1 (Degree) [−20, 20] [−20, 20] {2, 3, 4} {2, 3, 4} 1 1
D1 (Variable) [−5, 5] [−5, 5] 3 3 {2, 3, 4} {2, 3, 4}
D2 (Arch.) [−5, 5] [−5, 5] 3 3 3 3

D3 [−20, 20] C1 = [−5, 5] {1, 2} {1, 2, 3, 4} 1 1
[−20, 20] C2 = [−10,−6] ∪ [6, 10] {1, 2} {1, 2, 3, 4} 1 1

3.3. Architecture Configuration

We employ a decoder-only transformer architecture follow-
ing standard design principles (Vaswani et al., 2017). Ta-
ble 2 summarizes our task-specific configurations across all
experimental axes. For lightweight and effective training,
we developed our own model and training pipeline based on
minGPT (Karpathy, 2020).

3.4. Supervised Learning Details

We train our models using the Adam optimizer with an ini-
tial learning rate of 6× 10−4, incorporating a 10% warmup
period followed by cosine decay. Each configuration ini-
tially trains on 1M instances, with additional 1M training
examples added incrementally until performance saturation.
We use a batch size of 200 throughout training. We train
models with enough epochs until it saturates with the given
dataset.

3.5. BGRPO Implementation

For the BGRPO reinforcement learning phase, we gener-
ate candidate solutions using beam search with a width of
32 and temperature of 1.0. We implement our approach
using the GRPO functionality from the trl library (von
Werra et al., 2020). The training process consists of 5 policy
update iterations after sampling outputs for 8 distinct poly-
nomial decomposition problems. We set the PPO clipping
parameter ε to 0.2 and the KL divergence coefficient β to
0.01. The learning rate during BGRPO training is 1× 10−5.
We train models from D2 on a dataset of 200 non-repeating
problems, saving checkpoints every 5 iterations and select-
ing the best model based on performance with beam width
7.

4. Experimental Results
4.1. Problem Complexity Scaling (D1)

In the first part of D1, we examine how model performance
varies with the degrees of inner and outer polynomials. The
result is shown in Figure 1. We use greedy search for the

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Discovering Hidden Algebraic Structures via Transformers with Rank-Aware Beam GRPO

Table 2. Transformer Model Configuration Across Experiments
Experiment Window Emb. Dim Layers Heads

D1 (Degree) 256 512 6 8
D1 (Variable) 850 512 6 8

D2 (Arch.) 850 {256, 512, 768} {4, 6} 8
D2 (Attn.) 850 512 6 {4, 8, 16}
D3 256 512 4 8

Table 2. Common settings: GELU activation, learned positional
embeddings, multi-head attention with causal masking, MLP hid-
den dim = 4× embedding dim.

Figure 1. Performance across different dinner, douter

inference. Regardless of the degrees of the polynomials,
our model achieves a remarkable single-output accuracy.
Notably, when using beam search with a width of 10, the
model’s accuracy reaches 100% for these configurations.

Our analysis reveals a pattern: performance remains invari-
ant to increases in the outer polynomial’s degree, while
decreasing when the inner polynomial’s degree increases.
This demonstrates that the transformer’s decomposition ca-
pability is primarily limited by the complexity of the inner
polynomial rather than that of the outer polynomial.

In the second part of D1, we investigate how the perfor-
mance scales with vinner and vouter, the number of variables
in the inner and outer polynomials. Figures 2 and 3 present
these results.

Given the challenging nature of multivariate polynomial
decomposition, we evaluate the model’s performance using
beam search with a width of 30, considering a prediction
correct if at least one of the 30 candidate outputs is correct
decomposition.

Our results reveal two trends: performance decreases dra-
matically as vouter increases, yet counter-intuitively im-
proves as vinner increases. This observation aligns with
the following heuristic understanding: higher vouter creates
an information bottleneck, requiring the model to simulta-
neously resolve multiple interdependent inner functions. In
contrast, higher vinner provides more dimensions of input

Figure 2. Performance across
different vouter

Figure 3. Performance across
different vinner

Figure 4. Accuracies on different number of layer and dimension.

variation with additional structural indicators that can guide
the decomposition process.

4.2. Architecture Scaling (D2)

In D2, we examine how model performance varies with
architectural parameters: embedding dimension, number
of layers, and number of attention heads. When varying
the number of heads, we maintain a constant total embed-
ding dimension, meaning that models with more heads have
smaller per-head embedding dimensions. We use the dataset
described in Section 3.2 and evaluate using beam search
with a width of 30.

Figure 4 reveals the scaling behavior (Kaplan et al., 2020)
of transformer architectures on polynomial decomposition.
As model capacity increases through higher embedding
dimensions and additional layers, performance consistently
improves.

Notably, our results demonstrate the presence of a data-
dependent scaling threshold. With limited training data
(1M examples), larger models initially underperform their
simpler counterparts, particularly evident in the 6-layer con-
figurations with higher embedding dimensions. However,
this pattern reverses completely with additional training
data, confirming that larger models possess superior capac-
ity for mathematical pattern recognition when provided with

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Discovering Hidden Algebraic Structures via Transformers with Rank-Aware Beam GRPO

Figure 5. Performance recovery when adapting to a new coefficient
distribution

sufficient examples to leverage their parametric advantage.

In D2, we also examine model performance with different
numbers of attention heads. Our experiments reveal that
increasing the number of attention heads while maintaining
constant total embedding dimension leads to progressively
deteriorating performance on polynomial decomposition
tasks. Models with 4 heads achieved 32.0% accuracy, while
those with 8 and 16 heads reached only 28.0% and 25.0% ac-
curacy, respectively. This suggests that for our specific task
of mathematical pattern recognition, fewer, more expressive
attention heads with larger per-head dimensions provide
better performance than numerous specialized heads with
smaller dimensions.

4.3. Distribution Adaptation (D3)

We evaluate G(n) as defined in Eq. 5, which measures how
quickly models adapt to new coefficient distributions as
a function of adaptation sample size n. For this experi-
ment, we train a model with 4 layers and 512 embedding
dimension on the dataset described in Section 3.2. The
initial training used 1M examples with outer polynomial
coefficient range C1, followed by fine-tuning on n examples
with coefficient range C2 for a single epoch. We report the
variance in accuracy based on three independent trials.

Models trained exclusively on the first dataset achieve only
5.67% accuracy on the new distribution, despite reaching
nearly 100% accuracy on the original distribution. Figure 5
illustrates how performance recovers during adaptation. No-
tably, despite using only ≈ 2% of the original training data
size, the model rapidly recovers its accuracy from single
digits to over 90%. This rapid adaptation indicates suc-
cessful transfer learning, suggesting that the model devel-
ops a general mathematical understanding of polynomial
substructures rather than memorizing specific numerical
relationships.

We further investigate whether alternative data representa-
tions could enhance this adaptation capability. We propose
”split” representation of polynomials, where we randomly
select terms from the expanded form and split their coeffi-

Figure 6. Beam scaling with
varying vouter (vinner = 3)

Figure 7. Beam scaling with
varying vinner (vouter = 3)

cients. For example:

fnon-split(a) =− 63 + 23a− 71a2 − 11a3 − 14a4 − 12a5 − 2a6

fsplit(a) =− 63 + 23a− 4a2 − 67a2 − 8a3 − 3a3

− 7a4 − 7a4 − 12a5 − a6 − a6

(6)

In Figure 5, the red line demonstrates G(n) of the model
trained on data with both normal and split representation.
Models trained on this mixed data including split represen-
tation demonstrate significantly faster adaptation, requiring
only 70% of the additional training examples to reach equiv-
alent performance on the new distribution.

This enhanced generalization likely stems from the model
being forced to recognize mathematically equivalent but dif-
ferently represented polynomials, compelling it to develop
a deeper understanding of polynomial structure rather than
memorizing specific patterns.

4.4. Search Strategy Analysis (D4)

We evaluate how search strategies impact model perfor-
mance on polynomial decomposition tasks, with a particular
focus on beam search efficiency. Figure 6 and 7 illustrate
the accuracy achieved across different beam widths for poly-
nomials with varying numbers of variables.

Our results reveal an unusually dramatic impact of beam
search for polynomial decomposition compared to typical
NLP tasks. For two-variable polynomials, accuracy im-
proves from 11% with greedy search to 69% with a beam
width of 30—a remarkable 6.3× improvement. This stands
in stark contrast to standard neural machine translation ap-
plications, where beam search typically yields BLEU score
improvements of only 2-4 points (Huang et al., 2018; Ran-
zato et al., 2016). Even more telling, most NMT systems
show diminishing returns with beam widths beyond 5-10
(Freitag & Al-Onaizan, 2017).

4.5. BGRPO Results

We evaluated BGRPO across models of varying sizes from
our architecture scaling experiments(D2), implementing
versions both with and without rank signal. Fig 8 illustrates

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Discovering Hidden Algebraic Structures via Transformers with Rank-Aware Beam GRPO

1 5 10 15 20 25 30
Beam Width

0
5

10
15
20
25
30
35

Ac
cu

ra
cy

 (%
)

26.1%
30.2%
31.7%

Accuracy @30

Dimension 256

1 5 10 15 20 25 30
Beam Width

0
5

10
15
20
25
30
35

Ac
cu

ra
cy

 (%
)

29.5%
32.0%
33.5%

Accuracy @30

Dimension 512

1 5 10 15 20 25 30
Beam Width

0
5

10
15
20
25
30
35

Ac
cu

ra
cy

 (%
)

32.1%
33.9%
35.4%

Accuracy @30

Dimension 768

BGRPO on finetuned models with layer 6
After BGRPO with rank signal
After BGRPO without rank signal
Before BGRPO

Figure 8. Accuracies on experiments with different dimension.
Each experiment we have finetuned model with 2M data and mod-
els trained with BGRPO with and without rank signal on top of
that.

these results.

BGRPO consistently improved accuracy across all beam
widths regardless of model size. Without rank signal,
BGRPO gives average accuracy increases of 34.0%, 17.8%,
and 12.4% for 6-layer models with dimension 256, 512, and
768 respectively. Including rank signal in BGRPO produces
even more improvements, with average accuracy increases
of 46.6%, 28.4%, and 30.2%.

These improvements translate to significant computational
efficiency gains. For instance, the dimension-256 model ini-
tially achieved 26.1% accuracy with beam width 30. After
applying BGRPO with rank signal, comparable accuracy
(26.0%) was achieved with just beam width 16. This effec-
tively halves the required beam width for equivalent per-
formance. Since beam search computation scales quadrat-
ically with beam width, this improvement reduces beam
search computation by approximately 75% while maintain-
ing equivalent performance.

On average, BGRPO without rank signal reduced the re-
quired beam width by 31.3%, 14.9%, and 11.4% for 6-
layer models with dimension 256, 512, and 768 respectively.
When incorporating rank signal, BGRPO reduced required
beam width even further, by 38.9%, 22.0%, and 26.5%.

4.6. Simplification Comparison with Mathematica

While polynomial simplification and polynomial decomposi-
tion represent two distinct mathematical objectives, simplifi-
cation frequently arises as a consequence of decomposition,
since decomposed forms generally exhibit reduced algebraic
complexity compared to the original expression. In this sub-
section, we briefly explore the capabilities of our models for
this related problem, and benchmark against the most pow-
erful symbolic computation engine Mathematica. Despite
our lightweight parameter budgets and the absence of any
explicit simplification objective in our training, the models
were able to reduce the leaf count (Wolfram Research, Inc.,
1996) of complex expressions, with performance on par
with — and in two of five complexity regimes surpassing
—Mathematica’s state-of-the-art FullSimplify function (see
Table 3, competitive performances are bolded).

Table 3. Average leaf count comparison (Beam width = 30)
Problem Complexity Leaf Count (mean)

vO vS Transformer Mathematica ∆

2 3 27.28 30.03 -2.75
3 3 22.85 22.12 0.73
4 3 22.52 20.00 2.52
3 2 17.27 17.10 0.17
3 4 26.04 27.56 -1.52

These findings highlight that transformers’ inherent ability
to uncover latent patterns rivals that of the most advanced
symbolic computation methods.

5. Conclusion
Our investigation into transformers for polynomial decom-
position uncovers key insights into how neural networks can
infer hidden algebraic structures.

We find that model performance depends asymmetrically on
polynomial complexity parameters (D1): inner polynomial
degree plays a dominant role, while outer polynomial com-
plexity has limited impact. Counterintuitively, increasing
the number of inner variables improves accuracy by im-
posing structural constraints, whereas more outer variables
create information bottlenecks.

From an architectural viewpoint (D2), we confirm that per-
formance scales with model size. We observe that fewer but
more expressive attention heads are especially effective for
this task. In terms of distribution adaptation (D3), models
transfer rapidly to new coefficient distributions, requiring as
little as 2% of the original training data, indicating that they
internalize generalizable principles rather than rely on mem-
orization. Moreover, we can enhance this generalization
capability through strategic dataset design.

Beam search analysis (D4) yields up to 6.3× improve-

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Discovering Hidden Algebraic Structures via Transformers with Rank-Aware Beam GRPO

ment over greedy decoding due to the sparse, precise na-
ture of mathematical solutions. Models finetuned with
our rank-aware BGRPO reinforcement learning method
achieve equivalent accuracy with up to 50% smaller beam
widths, cutting inference computation by approximately
75%. Lastly, our model demonstrates competitive perfor-
mance in polynomial simplification compared with sym-
bolic computation tools in Mathematica.

Our work provides, for the first time, a systematic analy-
sis of transformer capabilities for polynomial decomposi-
tion through carefully controlled experiments across four
dimensions. Our methodologies can serve as a road map
for exploring neural models in other domains that require
non-local latent pattern discovery, such as functional decom-
position problems ranging from systems engineering and
mechanical design to digital logic design. While we devel-
oped BGRPO specifically for enhancing beam search in the
polynomial decomposition problem, similar techniques may
prove useful in other domains with sparse solution spaces
where models can identify correct structures but struggle
with specific details.

Limitations Our generalizability investigation was con-
strained to univariate polynomials with relatively narrow
coefficient ranges and limited maximum degrees. Compu-
tational constraints restricted our architecture scaling ex-
periments to relatively small models (maximum 6 layers,
768-dimensional embeddings); however, the consistent per-
formance improvements without accuracy saturation sug-
gest that further scaling would yield additional gains. Fi-
nally, our method’s reliance on wide beam search creates
computational overhead during inference despite BGRPO’s
improvements.

References
Adamski, M. A., Karatkevich, A., Wegrzyn, M., Rawski, M.,

Łuba, T., Jachna, Z., and Tomaszewicz, P. The influence
of functional decomposition on modern digital design
process. Design of Embedded Control Systems, pp. 193–
204, 2005.

Dang, T. and Testylier, R. Reachability analysis for poly-
nomial dynamical systems using the bernstein expansion.
Reliab. Comput., 17(2):128–152, 2012.

DeepSeek-AI. Deepseek-r1: Incentivizing reasoning ca-
pability in llms via reinforcement learning, 2025. URL
https://arxiv.org/abs/2501.12948.

Demirtas, S., Su, G., and Oppenheim, A. V. Sensitivity of
polynomial composition and decomposition for signal
processing applications. In 2012 Conference Record of
the Forty Sixth Asilomar Conference on Signals, Systems
and Computers (ASILOMAR), pp. 391–395. IEEE, 2012.

Dickerson, M. T. Polynomial decomposition algorithms
for multivariate polynomials. Technical report, Cornell
University, 1987.

Dickerson, M. T. General polynomial decomposition and the
s-1-decomposition are np-hard. International Journal of
Foundations of Computer Science, 4(02):147–156, 1993.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., et al. An image is worth 16x16
words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

Drori, I., Zhang, S., Shuttleworth, R., Tang, L., Lu, A., Ke,
E., Liu, K., Chen, L., Tran, S., Cheng, N., et al. A neural
network solves, explains, and generates university math
problems by program synthesis and few-shot learning at
human level. Proceedings of the National Academy of
Sciences, 119(32):e2123433119, 2022.

Elias, A. J. and Wen, J. T. Ik-geo: Unified robot inverse
kinematics using subproblem decomposition. Mechanism
and Machine Theory, 209:105971, 2025.

Faugère, J.-C. and Perret, L. An efficient algorithm for de-
composing multivariate polynomials and its applications
to cryptography. Journal of Symbolic Computation, 44
(12):1676–1689, 2009a.

Faugère, J.-C. and Perret, L. High order derivatives and de-
composition of multivariate polynomials. In Proceedings
of the 2009 international symposium on Symbolic and
algebraic computation, pp. 207–214, 2009b.

Fawzi, A., Kozhasov, K., Goldblum, M., Behrmann, J.,
Zhang, C., Fuchs, F., Huang, P.-S., Li, L., and Kohli, P.
Discovering faster matrix multiplication algorithms with
reinforcement learning. In International Conference on
Machine Learning (ICML), 2022.

Freitag, M. and Al-Onaizan, Y. Beam search strategies
for neural machine translation. In Proceedings of the
First Workshop on Neural Machine Translation. As-
sociation for Computational Linguistics, 2017. doi:
10.18653/v1/w17-3207. URL http://dx.doi.org/
10.18653/v1/W17-3207.

Gathen, J. v. z., Gutierrez, J., and Rubio, R. Multivariate
polynomial decomposition. Applicable Algebra in Engi-
neering, Communication and Computing, 14(1):11–31,
2003.

Hernandez, I., Watson, B. C., Weissburg, M. J., and Bras, B.
Using functional decomposition to bridge the design gap
between desired emergent multi-agent-system resilience
and individual agent design. Systems Engineering, 27(5):
911–930, 2024.

8

https://arxiv.org/abs/2501.12948
http://dx.doi.org/10.18653/v1/W17-3207
http://dx.doi.org/10.18653/v1/W17-3207

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Discovering Hidden Algebraic Structures via Transformers with Rank-Aware Beam GRPO

Huang, L., Zhao, K., and Ma, M. When to finish? op-
timal beam search for neural text generation (modulo
beam size), 2018. URL https://arxiv.org/abs/
1809.00069.

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M.,
Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žı́dek,
A., Potapenko, A., et al. Highly accurate protein structure
prediction with alphafold. nature, 596(7873):583–589,
2021.

Kaplan, J., McCandlish, S., Henighan, T., and Brown, T. B.
Scaling laws for neural language models. arXiv preprint
arXiv:2001.08361, 2020.

Karpathy, A. mingpt. https://github.com/
karpathy/minGPT, 2020.

Lample, G. and Charton, F. Deep learning for symbolic
mathematics. arXiv preprint arXiv:2006.02974, 2020.

Lin, H.-P., Jiang, J.-H. R., and Lee, R.-R. To sat or not to
sat: Ashenhurst decomposition in a large scale. In 2008
IEEE/ACM International Conference on Computer-Aided
Design, pp. 32–37. IEEE, 2008.

Liu, Z., Chen, C., Li, W., Qi, P., Pang, T., Du, C., Lee,
W. S., and Lin, M. Understanding r1-zero-like training:
A critical perspective, 2025. URL https://arxiv.
org/abs/2503.20783.

Manocha, D. and Canny, J. F. Real time inverse kinematics
for general 6r manipulators. In ICRA, pp. 383–389, 1992.

Mori, M., Cheng, C., Taylor, B. R., Okano, H., and Hwa,
T. Functional decomposition of metabolism allows a
system-level quantification of fluxes and protein alloca-
tion towards specific metabolic functions. Nature Com-
munications, 14(1):4161, 2023.

Olsson, C., Elhage, N., Nanda, N., Joseph, N., DasSarma,
N., Henighan, T., Mann, B., Askell, A., Bai, Y., Chen,
A., Conerly, T., Drain, D., Ganguli, D., Hatfield-Dodds,
Z., Hernandez, D., Johnston, S., Jones, A., Kernion, J.,
Lovitt, L., Ndousse, K., Amodei, D., Brown, T., Clark, J.,
Kaplan, J., McCandlish, S., and Olah, C. In-context learn-
ing and induction heads. Transformer Circuits Thread,
2022. https://transformer-circuits.pub/2022/in-context-
learning-and-induction-heads/index.html.

Patarin, J. and Goubin, L. Asymmetric cryptography with
s-boxes is it easier than expected to design efficient asym-
metric cryptosystems? In International Conference on
Information and Communications Security, pp. 369–380.
Springer, 1997.

Polu, S. and Sutskever, I. Generative language model-
ing for automated theorem proving. arXiv preprint
arXiv:2009.03393, 2020.

Ranzato, M., Chopra, S., Auli, M., and Zaremba, W. Se-
quence level training with recurrent neural networks,
2016. URL https://arxiv.org/abs/1511.
06732.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A.,
and Klimov, O. Proximal policy optimization algo-
rithms, 2017. URL https://arxiv.org/abs/
1707.06347.

Shao, Z., Wang, P., Zhu, Q., Xu, R., Song, J., Bi, X.,
Zhang, H., Zhang, M., Li, Y. K., Wu, Y., and Guo,
D. Deepseekmath: Pushing the limits of mathemat-
ical reasoning in open language models, 2024. URL
https://arxiv.org/abs/2402.03300.

She, J., Belanger, E., and Bartels, C. Evaluating the ef-
fectiveness of functional decomposition in early-stage
design: development and application of problem space
exploration metrics. Research in Engineering Design, 35
(3):311–327, 2024.

Tempero, E., Denny, P., Finnie-Ansley, J., Luxton-Reilly, A.,
Kirk, D., Leinonen, J., Shakil, A., Sheehan, R., Tizard, J.,
Tu, Y.-C., et al. On the comprehensibility of functional
decomposition: An empirical study. In Proceedings of the
32nd IEEE/ACM International Conference on Program
Comprehension, pp. 214–224, 2024.

Trinh, T. H., Wu, Y., Le, Q. V., He, H., and Luong, T. Solv-
ing olympiad geometry without human demonstrations.
Nature, 625(7995):476–482, 2024.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

von Werra, L., Belkada, Y., Tunstall, L., Beeching, E.,
Thrush, T., Lambert, N., Huang, S., Rasul, K., and
Gallouédec, Q. Trl: Transformer reinforcement learn-
ing. https://github.com/huggingface/trl,
2020.

Von Zur Gathen, J. Functional decomposition ofpolynomi-
als: the tame case. Journal of Symbolic Computation, 9
(3):281–299, 1990a.

Von Zur Gathen, J. Functional decomposition of polynomi-
als: the wild case. Journal of Symbolic Computation, 10
(5):437–452, 1990b.

Wang, K., Variengien, A., Conmy, A., Shlegeris, B., and
Steinhardt, J. Interpretability in the wild: a circuit for
indirect object identification in gpt-2 small, 2022. URL
https://arxiv.org/abs/2211.00593.

9

https://arxiv.org/abs/1809.00069
https://arxiv.org/abs/1809.00069
https://github.com/karpathy/minGPT
https://github.com/karpathy/minGPT
https://arxiv.org/abs/2503.20783
https://arxiv.org/abs/2503.20783
https://arxiv.org/abs/1511.06732
https://arxiv.org/abs/1511.06732
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2402.03300
https://github.com/huggingface/trl
https://arxiv.org/abs/2211.00593

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Discovering Hidden Algebraic Structures via Transformers with Rank-Aware Beam GRPO

Wolfram Research, Inc. ComplexityFunction
– Wolfram Language Documentation. https:
//reference.wolfram.com/language/ref/
ComplexityFunction.html, 1996. Accessed
12 May 2025.

Zhao, S., Feng, R., and Gao, X.-S. On functional decom-
position of multivariate polynomials with differentiation
and homogenization. Journal of Systems Science and
Complexity, 25(2):329–347, 2012.

A. Backward Synthetic Data Generation
Algorithm

Our backward synthetic data generation in subsection 2.1
can be described as follows.

Algorithm 1 Backward Generation of Synthetic Training
Data
Require: Coefficient range Cinner, Couter; maximal de-

grees dinner, douter; variable counts vinner, vouter; term
limits tinner, touter.

1: Generate outer polynomial g with vouter variables, co-
efficients ∈ Couter, degree = douter, and no more than
touter monomial terms.

2: Generate vouter inner polynomials h1, . . . , hvouter ,
where each hi has vinner variables, coefficients ∈
Cinner, degree = dinner, and no more than tinner mono-
mial terms.

3: f ← g(h1, . . . , hvouter
), i.e. substitute h1, . . . , hvouter

into g, expand and collect the monomial terms.
4: return (f, g, h1, . . . , hvouter)

B. Tokenization
We encode polynomials using prefix notation, with separate
tokens for operators, digits, and variables. Each number in-
cludes its sign, so we only use addition, multiplication, and
power operators. Subtraction is represented as addition with
a negative sign. Each input sequence consists of the tok-
enized expanded polynomial f followed by a question mark
token ’?’. The target output format depends on the number
of outer variables: for vouter = 1, the target output is simply
the tokenized inner polynomial h; for vouter > 1, the target
output begins with the tokenized outer polynomial g fol-
lowed by each tokenized inner polynomial h1, . . . , hvouter

,
with all polynomials separated by a delimiter token ’&’.

Below is an example of a tokenized training input ’x’ and
target output ’y’:
x : + ∗ P 9 0 a + ∗ N 3 1 9 ˆ a P 2 + ∗ N 3 6 ˆ a P 3

∗ N 1 ˆ a P 4 ? + N 5 + ∗ P 1 8 a ˆ a P 2 □□ . . .
y :□□□□□□□□□□□□□□□□□□□□□□□ □ □

□□□□□□□+ N 5 + ∗ P 1 8 a ˆ a P 2 □□□ . . .

Figure 9. Top-3 probability for each token position in the answer
sequence where

Answer: + * N 5 ˆ b1 P 3 + * N 4 * b0 ˆ b2 P 2 * N 5 ˆ
b2 P 3 & + * P 2 * ˆ a0 P 2 a2 * N 2 * a0 * a1 a2 & + * N 5 ˆ a0 P
3 + * P 4 * ˆ a0 P 2 a2 * N 5 * a0 * a1 a2 & + * P 4 * a0 * a1 a2 *
P 2 * a1 ˆ a2 P 2

Question: + * P 6 2 5 ˆ a0 P 9 + * N 1 5 0 0 * ˆ a0 P 8
a2 + * P 1 8 7 5 * ˆ a0 P 7 * a1 a2 + * P 1 2 0 0 * ˆ a0 P 7 ˆ a2 P 2
+ * N 3 0 0 0 * ˆ a0 P 6 * a1 ˆ a2 P 2 + * P 1 8 7 5 * ˆ a0 P 5 * ˆ a1
P 2 ˆ a2 P 2 + * N 3 2 0 * ˆ a0 P 6 ˆ a2 P 3 + * P 1 2 0 0 * ˆ a0 P 5
* a1 ˆ a2 P 3 + * N 1 6 2 8 * ˆ a0 P 4 * ˆ a1 P 2 ˆ a2 P 3 + * P 4 3 3
* ˆ a0 P 3 * ˆ a1 P 3 ˆ a2 P 3 + * N 1 2 8 * ˆ a0 P 3 * ˆ a1 P 2 ˆ a2 P
4 + * N 3 5 2 * ˆ a0 P 2 * ˆ a1 P 3 ˆ a2 P 4 + * N 3 2 * ˆ a0 P 2 * ˆ
a1 P 2 ˆ a2 P 5 + * N 2 0 8 * a0 * ˆ a1 P 3 ˆ a2 P 5 * N 4 0 * ˆ a1 P
3 ˆ a2 P 6 ?

This example shows a training pair where the outer

polynomial is 90a−319a2−36a3−a4 and the target inner
polynomial is −5 + 18a+ a2. The □ symbol represents a
padding token which is excluded from the log-likelihood
loss calculation.

C. Example Ouput Logits and Effectiveness of
the Beam Search

Figure 9 shows example top-3 probabilities for each token
position in the answer sequence at temperature 1, using the
layer-6, embedding dimension 512 model from our D2 ex-
periments. Correct answers are highlighted in red. The visu-
alization clearly illustrates that the model’s primary source
of confusion occurs in sign decisions, while it confidently
predicts most of the other token types.

10

https://reference.wolfram.com/language/ref/ComplexityFunction.html
https://reference.wolfram.com/language/ref/ComplexityFunction.html
https://reference.wolfram.com/language/ref/ComplexityFunction.html

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Discovering Hidden Algebraic Structures via Transformers with Rank-Aware Beam GRPO

Table 4 quantifies this observation by showing the probabil-
ity and accuracy statistics for different token types across
our model architectures fromD2. These statistics were com-
puted using a test set of 1000 polynomial decomposition
problems at temperature 1.

Table 4. Token Type Analysis Across Different Model Architec-
tures

Token Type Metric 4 Layers 6 Layers

256 dim 512 dim 768 dim 256 dim 512 dim 768 dim

Sign Probability 0.489± 0.001 0.489± 0.001 0.493± 0.001 0.491± 0.001 0.490± 0.001 0.490± 0.001
Accuracy 0.519± 0.006 0.531± 0.006 0.530± 0.006 0.522± 0.006 0.523± 0.006 0.521± 0.006

Operator Probability 0.920± 0.002 0.915± 0.002 0.919± 0.002 0.927± 0.002 0.925± 0.002 0.925± 0.002
Accuracy 0.937± 0.002 0.934± 0.002 0.935± 0.002 0.943± 0.002 0.941± 0.002 0.942± 0.002

Number Probability 0.880± 0.002 0.870± 0.002 0.878± 0.002 0.890± 0.002 0.885± 0.002 0.884± 0.002
Accuracy 0.901± 0.002 0.893± 0.003 0.897± 0.002 0.911± 0.002 0.905± 0.002 0.903± 0.002

Table 4. Note: Values shown as mean ± standard error of the mean.
The sign token probabilities are near-random, while operators and
numbers show high confidence and accuracy.

As discussed in Section 2.2, our models achieve approxi-
mately 90% accuracy when predicting non-sign tokens, but
exhibit near-random performance when choosing between
positive and negative signs. This specific error pattern makes
beam search particularly effective for our task.

The effectiveness of beam search stems from its ability to
explore multiple sign configurations while preserving the
high-confidence structural tokens. In probability terms, se-
lecting a token with 0.1 probability instead of one with 0.9
probability is equivalent to making approximately 11 con-
secutive choices of a 0.45 probability token over a 0.55 prob-
ability token. Since our polynomial expressions typically
contain fewer than 10 sign decisions, beam search with a
width of approximately 30 can efficiently cover most viable
sign permutations while maintaining the correct monomial
structure identified with high confidence.

D. Attention Score Analysis: Monomial Heads
Attention mechanism analysis has provided valuable in-
sights into transformer model behaviors, with studies iden-
tifying specialized attention heads that serve specific func-
tions. For example, (Olsson et al., 2022) identified ”Induc-
tion Heads” that play a crucial role in in-context learning,
while (Wang et al., 2022) provided a comprehensive under-
standing of indirect object identification in GPT-2 Small.

In our analysis of attention patterns in polynomial decompo-
sition models, we identified specialized attention heads that
recognize the structure of polynomials, particularly focus-
ing on monomial identification. We call these ”Monomial
Heads,” and they appear consistently across all model sizes
in our architecture scaling experiments (D2).

Monomial Heads manifest in two distinct patterns in our
models. First, in layer 0, several attention heads consistently
attend to tokens 1-5 positions behind the current position,

as shown in the leftmost plot of Figure 10. Second, in layer
1, we observe specialized behavior where certain heads fo-
cus attention on specific tokens within each monomial of
the input polynomial (middle plot), while others specifi-
cally attend to delimiter tokens in the decomposition output
(rightmost plot).

We hypothesize that this represents a two-stage process: in
the first layer, the model identifies key tokens that serve as
indicators for each monomial by examining local context
(1-5 tokens behind). In the second layer, tokens within each
monomial attend to these indicator tokens to establish their
monomial membership. While this pattern is most clear in
the encoding of the input polynomial, the decomposition
output shows evidence of boundary recognition, particu-
larly at the transitions between inner functions marked by
delimiter tokens.

Figure 10. Attention score visualization of selected attention heads
from our 6-layer transformer model with embedding dimension
768. The visualization shows attention patterns for a tokenized
polynomial sequence and its decomposition.

Input polynomial: + ∗ P 2 5 6 ∧ a0 P 9 + ∗ N 1 9 2 ∗
∧ a0 P 8 a1 + ∗ P 4 8 ∗ ∧ a0 P 7 ∧ a1 P 2 + ∗ N 4 ∗ ∧ a0 P 6 ∧
a1 P 3 + ∗ N 6 4 ∗ ∧ a0 P 3 ∧ a1 P 6 + ∗ P 1 6 ∗ ∧ a0 P 2 ∧ a1 P
7 ∗ P 6 4 ∧ a1 P 9 ?

Model’s decomposition output: + ∗ N 4 ∧ b0 P 3 + ∗
b0 ∧ b2 P 2 ∗ N 1 ∧ b2 P 3 & + ∗ N 4 ∧ a0 P 3 ∗ ∧ a0 P 2 a1 &
+ ∗ N 3 ∧ a1 P 3 + ∗ N 2 ∗ a1 ∧ a2 P 2 ∗ N 4 ∧ a2 P 3 & ∗ N 4 ∧
a1 P 3
The visualization reveals how different attention heads focus on
specific structural elements when decomposing polynomials.

11

