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Abstract001

Implicit assumptions and priors are often nec-002
essary in text-to-image generation tasks, es-003
pecially when textual prompts lack sufficient004
context. However, these assumptions can005
sometimes reflect societal biases (e.g., gen-006
der bias on the left in Fig 1), low variance,007
or outdated concepts in the training data. We008
present Embedding-only Editing (EMBEDIT),009
a method designed to efficiently edit implicit010
assumptions and priors in the text-to-image011
model without affecting unrelated objects or de-012
grading overall performance. Given a “source"013
prompt (e.g., “nurse") that elicits an assump-014
tion (e.g., a female nurse) and a “destina-015
tion" prompt or distribution (e.g. equal gender016
chance), EMBEDIT only fine-tunes the word017
token embedding (WTE) of the target object018
(i.e. token “nurse”’s WTE). Our method pre-019
vents unintended effects on other objects in the020
model’s knowledge base, as the WTEs for un-021
related objects and the model weights remain022
unchanged. Further, our method can be ap-023
plied to any text-to-image model with a text024
encoder. It is highly efficient, modifying only025
768, 2048, and 4864 parameters for Stable Dif-026
fusion 1.4, Stable Diffusion XL, and FLUX,027
respectively, matching each model’s WTE di-028
mension. Additionally, changes could be easily029
reversed by restoring the original WTE layers.030
The results show that EMBEDIT outperforms031
previous methods in various models, tasks, and032
editing scenarios (both single and sequential033
multiple edits), achieving at least a 6.01% im-034
provement (from 87.17% to 93.18%).035

1 Introduction036

Text-to-image models (T2I), such as stable diffu-037

sion and FLUX, have demonstrated remarkable038

capabilities in generating diverse images based on039

the given text prompts (Rombach et al., 2022; Sa-040

haria et al., 2022; Ho et al., 2020; Ramesh et al.,041

2022; black-forest labs, 2024). When the given042

text prompt is ambiguous or lacks essential details,043
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Figure 1: Plot on the top shows the Efficacy and FLOPs.
Compared to ReFACT and UCE, EMBEDIT achieves
higher efficacy with significantly lower computational
cost on both Stable Diffusion v1.4 and SDXL. Examples
on the bottom shows EMBEDIT mitigates implicit biases
in FLUX. See Appendix C.3 for examples on racial bias,
category monotony, and unsafe concept removal.

the model fills in the gap with default, implicit pri- 044

ors. For example, the description “an apple" may 045

implicitly assume the color “red”. These implicit 046

assumptions or priors help the model resolve am- 047

biguities in under-specified prompts by drawing 048

on common associations learned during training. 049

However, such assumptions can introduce issues 050

in certain contexts, as they may reflect social bi- 051

ases (Wan et al., 2023; Haim et al., 2024; Shin 052

et al., 2024; Wan and Chang, 2024), or outdated 053

information (Gandikota et al., 2024; Arad et al., 054

2024), as shown in Fig 2. To address this issue, 055

existing approaches have focused on modifying in- 056

ternal model parameters to alter specific implicit 057

assumptions, such as modifying parameters in the 058

cross-attention layer (Orgad et al., 2023; Gandikota 059

et al., 2024) or the MLP layers (Arad et al., 2024). 060

While these methods can effectively alter target as- 061

sumptions, they typically require updating a subset 062
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of parameters within specific model components,063

limiting their applicability across different mod-064

els. Additionally, such parameter modifications de-065

mand careful training design and often result in un-066

intentionally altering unrelated knowledge and as-067

sociations that should remain intact. Finally, these068

methods have been found lack robustness when069

multiple edits are applied.070

Inspired by prior work on word embedding bias071

analysis (Bolukbasi et al., 2016; Swinger et al.,072

2019; Zhao et al., 2019), we propose EMBEDIT,073

which only modifies the Word Token Embeddings074

(WTE) of the target object to adjust the encoded075

priors, as illustrated in Figure 2. Importantly, our076

approach is side-effect free: When the prompt does077

not contain the target object token, the inference op-078

eration for this prompt remains identical before and079

after EMBEDIT. Our approach is also extremely080

parameter-efficient: it does not fine-tune any mod-081

ules of the model but only updates the embedding082

vector of the target WTE, which is a 768-dim vector083

and accounts for only 0.002% of the model, taking084

Stable Diffusion v1.4 as an example. This leads to085

much fewer modified parameters than the previous086

methods, such as TIME (Orgad et al., 2023). TIME087

updates the cross-attention component, which ac-088

counts for 2.2% of the model size. Moreover, EM-089

BEDIT can easily scale to thousands of edits with-090

out performance degradation. This is attributed to091

the fact that the diffusion model remains intact.092

Our experiments on object editing and gender093

bias mitigation datasets show that EMBEDIT con-094

sistently outperforms previous methods across dif-095

ferent backbone models, edit counts, and tasks. We096

summarize our contribution as follows.097

• We present an alternative perspective on how098

T2I models encode biased or monotonous fea-099

tures and validate it through proof-of-concept100

experiments. Specifically, we use a diagnostic101

probing task to analyze color-related signals102

embedded in the WTE representation (Sec 3).103

• We propose EMBEDIT, a novel model editing104

method for T2I models that updates only the105

WTE vector of the target object, e.g. a 768-106

dimensional vector for Stable Diffusion v1.4,107

2048-dimensional vector for XL and 4864-108

dimensional vector for FLUX. Compared to109

previous methods, EMBEDIT imposes fewer110

architecture constraints, achieves superior re-111

sults, and is preferred for its ability to isolate112

edits to target words without affecting non- 113

target words, all while maintaining parameter 114

efficiency (Sec 4). 115

• We broaden the evaluation experiments by in- 116

creasing both the number of concurrent ed- 117

its and the model sizes, moving beyond the 118

single-edit limitation and focus on Stable Dif- 119

fusion in prior studies. EMBEDIT outperforms 120

sota methods in various editing tasks, evalua- 121

tion metrics, and model sizes (Sec 5). 122

2 Related Works 123

Current T2I models typically comprise a text en- 124

coder and an image generator to take the tex- 125

tual conditions and generate corresponding im- 126

ages (Rombach et al., 2022; black-forest labs, 127

2024), such as Stable Diffusion with CLIP text 128

encoder, converting the input text into latent text 129

representation vectors (Radford et al., 2021), and 130

diffusion model, taking the text representations 131

and generating images by progressively reversing 132

a noise process (Sohl-Dickstein et al., 2015). Sim- 133

ilarly, FLUX comprises two text encoders, CLIP 134

and T5, and Flux-Transformer, a flow-matching 135

transformers for image generation. 136

Similar to large language models (LLMs), T2I 137

models encode knowledge and perceptions about 138

the objects, which can sometimes be biased, out- 139

dated, or inaccurately represent their diversity (Luc- 140

cioni et al., 2023a; Chauhan et al., 2024; Gandikota 141

et al., 2024). These bias originate from three main 142

sources: training data, text encoder, and diffusion 143

model. Training data, such as that used for Sta- 144

ble Diffusion, is scraped from the web and often 145

contains harmful or pornographic content (Birhane 146

et al., 2021; Luccioni and Viviano, 2021). Text 147

encoder maps words into latent representations, 148

which inherently carry cultural biases (Luccioni 149

et al., 2023b). Diffusion model does not create new 150

biases but amplifies those already present in the 151

text embeddings (Struppek et al., 2023). 152

Model editing, initially explored in LLMs, has 153

shown a promising approach to control model be- 154

haviors post-training without extensive fine-tuning 155

and data curation (Mitchell et al., 2022; Hartvigsen 156

et al., 2023; Tan et al., 2024; Meng et al., 2022a,b). 157

Recent work has introduced several methods for 158

editing T2I diffusion models, including erasing con- 159

cepts (Lu et al., 2024; Gandikota et al., 2024; Basu 160

et al., 2024) and artistic styles (Gandikota et al., 161

2024, 2023), modifying implicit assumptions (Or- 162
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Figure 2: EMBEDIT modifies the word token embedding (WTE) of the target word “bear” to change from “brown
bear" to “polar bear". EMBEDIT optimizes the WTE of “bear” by minimizing the distance between the last hidden
state of the text encoder for both the original implicit prompt and the explicit prompt. With the model weights
completely unchanged, EMBEDIT supports sequential editing without performance degradation or model collapse,
as shown in the red-bordered example images. Furthermore, EMBEDIT does not modify unrelated objects’ WTE,
preventing undesirable effects on unrelated objects, as demonstrated by TIME in the yellow-bordered box (where a
panda head appears with a polar bear body).

gad et al., 2023; Chuang et al., 2023), editing fac-163

tual knowledge (Arad et al., 2024) and personalize164

novel concepts (Gal et al., 2022).165

A key challenge in T2I editing is achieving tar-166

geted modifications while keeping unrelated ob-167

jects and concepts unchanged (Orgad et al., 2023).168

Existing methods modify model parameters, such169

as the WK and WV matrices for text input in cross-170

attention (Orgad et al., 2023; Lu et al., 2024) or171

the Wproject matrix in the text encoder’s MLP (Arad172

et al., 2024). However, since representations of non-173

target objects must pass through and interact with174

these modified components, their inference process175

is altered in the edited model, leading to unintended176

changes in the output. This dilemma presents a crit-177

ical trade-off between edit efficacy (achieving the178

desired modification), generality (applying the edit179

across diverse contexts), and specificity (a.k.a. lo-180

cality - ensuring changes affect only the targeted181

concepts) (Meng et al., 2022a). Furthermore, exist-182

ing T2I editing approaches assume that biased or183

inaccurate information about objects is primarily184

governed by a specific subset of weights or associ-185

ated projections within the MLP in the CLIP text186

encoder or cross-attention layers in the U-Net. This187

assumption is commonly exploited in methods that188

aim to localize and modify these specific param-189

eters to correct biases or inaccuracies (Bau et al.,190

2017; Meng et al., 2022a). Nonetheless, there is191

no consensus on which architectural components192

predominantly contribute to biased or inaccurate193

generations (Zhou et al., 2022; Liu et al., 2022; Or-194

gad et al., 2023; Lu et al., 2024), and no work has195

explored the potential signal encoded in the word196

token embeddings. 197

3 Probing Word Token Embedding 198

This section provides an initial experiment to 199

demonstrate both the intuition behind our approach, 200

i.e. EMBEDIT, and the methodological foundation 201

that supports our EMBEDIT, which is detailed in 202

subsequent sections. 203

Probing Task Probing tasks are commonly used 204

to assess whether model representations encode 205

specific linguistic properties (Ettinger et al., 2016; 206

Eger et al., 2020; Şahin et al., 2020), using sim- 207

ple classifiers trained on embeddings to predict at- 208

tributes such as numeracy (Wallace et al., 2019), hy- 209

pernymy (Ravichander et al., 2020), or syntax (He- 210

witt and Manning, 2019). Motivated by prior find- 211

ings in language models, we hypothesize that the 212

WTE in the CLIP text encoder already encodes im- 213

plicit assumptions, such as interpreting “CEO” as 214

male or “apple” as red. 215

Probing Classifier To test this, we train a logistic 216

regression classifier to predict object colors based 217

on text encoder from the CLIP model. The probe 218

achieves an accuracy of 90%(±1.25%) over five 219

random seeds on the test set. Our further analy- 220

sis of incorrect predictions reveals that errors arise 221

from objects with ambiguous or variable colors 222

in real-world contexts. For example, objects like 223

“clown fish" and “sunsets" feature both red and 224

yellow, making their color classification inconclu- 225

sive. Overall, the high classification accuracy 226

of the probing task suggests that the WTEs of 227

3



the CLIP text encoder effectively encode color228

signals. Further details on the dataset, feature ex-229

traction, and accuracy calculation are provided in230

the Appendix A.231

4 Our Method232

Built upon the findings from Section 3,EMBEDIT233

is designed to modify the target WTEs to adjust234

these encoded priors. Following (Gandikota et al.,235

2024; Orgad et al., 2023), we experiment on two236

task setups: (1). Object Assumptions (Sec 4.1):237

we modify specific assumptions about objects, such238

as changing the default categorical assumption of239

“bear” to a specific one, like “polar bear” (e.g.,240

Fig 2).1 (2). Gender Balance in Occupations241

(Sec 4.2): we balance the distribution of male and242

female images in occupations, ensuring, for exam-243

ple, an equal number of female and male nurse244

images (Fig 1). We further show that our method245

effectively mitigate the racial bias and unsafe con-246

cept removal.247

4.1 Object Assumptions248

As shown in Fig 2 and Alg 1, EMBEDIT locates and249

modifies the WTE of the object token, wteorig →250

Rd, where d is the embedding dimension of the251

text encoder (e.g., 768 for SD 1.4, 2048 for SD XL,252

and 4864 for FLUX). The optimization process253

minimizes the distance between textual represen-254

tations of the original object token, horig, and new255

object tokens with the target attribute, hnew. The256

representation h is the last hidden state of CLIP257

text encoder, as indicated in Fig 2. By minimizing258

the MSE loss (Equ 1) between the hidden state,259

we aim to fine-tune wteorig to reduce the semantic260

discrepancy between the original and new target261

prompt. Here, we adopt the last hidden state horig262

and hnew as semantic rich representations of text263

prompts. To proceed, the model specifically up-264

dates the WTE vector of the source concept so that265

the MSE loss is reduced.266

LMSE(horig,hnew) =
1

d

d∑

i=1

(
h(i)

orig ↑ h(i)
new

)2
(1)267

The distance between each wteorig and wtenew268

varies and depends on the chosen pre-train mod-269

els. Consequently, achieving optimal edit perfor-270

mance requires different numbers of optimization271

1We follow the task setup in (Orgad et al., 2023). While
it may not have direct practical applications, the experiments
and results provide a useful basis for comparing method per-
formance.

Algorithm 1: EMBEDIT for editing a single
object

Input: Text-to-Image model M, WTEs of original
and new object token wteorig and wtenew, last
hidden state of original and new object horig
and hnew, maximum iterations T , stopping
ratio ω, original object token index Iorig

Result: M with updated wteorig
1 Initialize optimizer for source word tokens

wteorig = M.text_encoder.WTE.weight[Iorig];
Initialize MSE loss function LMSE;

2 Precompute initial last hidden state hinit
orig and hnew;

3 Precompute stop threshold ε = ω · LMSE(h
init
orig,hnew);

4 for i = 1 to T do
5 Compute updated last hidden state hi

orig;
6 Calculate Loss L = LMSE(h

i
orig,hnew);

7 if L → ε then
8 break # stop optimization;
9 end

10 Update wteorig via L.step;
11 end
12 return M with updated wteorig

steps for different tokens. The stopping thresh- 272

old ω in line 3 in Alg 1 adjusts these optimization 273

steps, where ε → [0, 1] denotes the optimization 274

strength to reduce the distance between wteorig 275

and wtenew to a fraction of its initial value. Empir- 276

ically, we found ε straightforward to tune, as the 277

value optimized on one or two examples general- 278

izes well to other cases, and we observe that 0.2 279

or 0.3 works effectively across all object instances 280

in both TIMED (Orgad et al., 2023) (dataset from 281

TIME), and RoAD (dataset from ReFACT (Arad 282

et al., 2024)). 283

4.2 Gender Balance in Occupations 284

To mitigate bias in the prior of a profession p (e.g., 285

nurse) across attributes a1, a2, a3, . . . , an (e.g. “fe- 286

male” and “male” for gender, “Asian,” “White,” 287

“Black,” etc., for race), we define n as the total 288

number of categories used to mitigate bias for a 289

given profession, e.g. 2 for gender. We aim for the 290

model to generate representations with balanced 291

attributes. Let hp denote the last hidden state of 292

the edited profession and ha1 ,ha2 ,ha3 , . . . ,han 293

represent the hidden state of the corresponding at- 294

tributes. The loss function aims to equalize the 295

distances from hp to each attribute representation, 296

as indicated by Equ 2. By enforcing equal distances 297

among attributes, our method effectively debiases 298

multiple attributes simultaneously. 299

4



LMSE =
n∑

i=1

·1
d

d∑

j=1

(
h(j)

p ↑ h(j)
ai

)2
(2)300

5 Experiments301

5.1 Object Assumptions302

We compare EMBEDIT with TIME (Orgad et al.,303

2023) in two editing modes: single edit, where304

model is reset to its original weights after each edit305

(as TIME (Orgad et al., 2023) did, illustrated on the306

top in Fig 3), and sequential edit, where a single307

model undergoes multiple edits for different ob-308

jects (bottom in Fig 3). Additionally, we compare309

EMBEDIT with ReFACT in sequential edit mode.310

Our comparison is conducted on two model sizes:311

Stable Diffusion v1.4 (SD 1.4) and Stable Diffu-312

sion XL (SD XL). Further, we apply EMBEDIT to313

FLUX to demonstrate that EMBEDIT is not tied to314

Stable Diffusion specifically, but applicable to any315

T2I model that uses text encoder.316

In our implementation of TIME (Orgad et al.,317

2023), we adopt their suggested default hyperpa-318

rameters for SD 1.4. However, we discover that319

applying the default ε to SD XL leads to complete320

editing failure. To ensure fair comparison, for SD321

XL, we tune the hyperparameter ε by grid search322

between 0.01 and 3,000 (TIME’s default for single323

editing is 0.1), and find that ε = 50 works best.324

We use the optimal hyperparameter configuration325

recommended by ReFACT (Arad et al., 2024) for326

both SD 1.4 and SD XL.327

Figure 3: Illustration of single edit and sequential edit
modes. In single edit mode, each model could only
be edited for one object, so two models are edited for
“pedestal” and “plinth”. In sequential edit mode, one
model is edited for both “pedestal” and “plinth”.

Dataset For single editing, we use TIMED, a 328

dataset (Orgad et al., 2023) of 104 entries, as the 329

T2I model editing dataset. Each entry contains an 330

edit pair of an original object and a new object, used 331

for one embedding editing. See the Appendix B.1 332

for details. For sequential editing, we use both 333

TIMED and RoAD. RoAD is a dataset (Arad et al., 334

2024) of 91 entries. 335

Evaluation Following TIME (Orgad et al., 2023), 336

We assess edit performance using efficacy, gener- 337

ality, and specificity metrics, evaluated with the 338

CLIP ViT-B/32 model (Radford et al., 2021) as 339

a zero-shot text-based classifier. Efficacy mea- 340

sures the effectiveness of the editing method on 341

the source prompt (see Fig 4.a). Generality as- 342

sesses the method’s adaptability to similar prompts, 343

tested using the positive prompts (Fig 4.b). Speci- 344

ficity evaluates the method’s precision in avoiding 345

unintended changes, tested with negative prompts 346

(Fig 4.c). As (Rombach et al., 2022; Saharia et al., 347

2022; Ramesh et al., 2022), we evaluate the im- 348

age generation performance of edited models us- 349

ing FID (Heusel et al., 2017), CLIP Score (Hessel 350

et al., 2021). FID (Heusel et al., 2017) assesses 351

image quality by measuring similarity to the MS- 352

COCO validation set (resized to 512!512) (Lin 353

et al., 2014). CLIP Score evaluates text-image 354

alignment, ensuring content matches the descrip- 355

tions. We randomly sample 3k captions from MS- 356

COCO dataset to test the effect of modifications. 357

We follow the baseline and oracle settings of 358

TIME (Orgad et al., 2023) and ReFACT (Arad 359

et al., 2024). The baseline represents the unedited 360

model’s performance using only the source prompt 361

for all image generations, revealing the model’s 362

original assumption. In contrast, the oracle em- 363

ploys the non-edited model with destination posi- 364

tive prompts for positive samples and source nega- 365

tive prompts for negative samples, demonstrating 366

the model’s generative capabilities, e.g., validating 367

that the model can generate strawberry ice cream, 368

but its default assumption for “ice cream” does 369

not default to strawberry flavor. The oracle serves 370

as an upper bound for the potential performance 371

achievable by editing techniques. 372

Results: Overall editing performance As 373

shown in Tab 1, EMBEDIT consistently outper- 374

forms TIME across all three metrics.The largest 375

performance gap appears in Generality, where 376

EMBEDIT achieves 82.74% compared to TIME’s 377

69.93%, while the smallest gap is in Efficacy on 378
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Edit “dog" to “schnauzer dog"

(a) Efficacy: “a dog” (b) Generality: “an oil painting of a dog” (c) Specificity: “a wolf”

Figure 4: Illustration of Efficacy, Generality, and Specificity. Images are generated by EMBEDIT-edited SDXL.

SD 1.4 SD 1.4 (single edit) SD 1.4 (seq edit) SD XL SD XL (single edit) SD XL (seq edit)
Oracle Baseline TIME EmbEdit TIME† ReFACT EmbEdit Oracle Baseline TIME† EmbEdit TIME† ReFACT† EmbEdit

Efficacy (↓) 98.7 11.04 87.17 93.18 NaN 76.35 96.59 97.7 8.67 81.01 92.86 NaN 51.43 90.58
±0.64 ±2.64 ±2.62 ±2.39 ±3.53 ±1.44 ±0.99 ±2.28 ±3.17 ±1.99 ±10.53 ±2.61

Generality (↓) 94.71 12.01 69.93 82.74 NaN 70.77 86.36 95.23 8.23 51.43 77.86 NaN 35.93 89.19
±0.78 ±1.59 ±2.72 ±2.51 ±3.08 ±1.99 ±0.86 ±1.38 ±3.15 ±3.04 ±7.12 ±3.00

Specificity (↓) 88.57 88.56 66.49 77.09 NaN 74.56 69.92 94.28 94.2 79.35 87.71 NaN 90.57 76.92
±1.82 ±1.82 ±2.28 ±2.33 ±2.05 ±2.55 ±0.97 ±0.98 ±2.3 ±1.57 ±3.32 ±2.02

FID (↔) 40.13 40.13 40.46 40.71 243.04 40.73 40.12 37.65 37.65 37.97 37.26 308.06 40.92 38.18
CLIP Score (↓) 31.17 31.17 31.19 31.15 30.75 30.23 18.92 31.66 31.66 31.66 31.70 21.51 31.17 31.41

Table 1: Edit performance and generative quality comparison on SD 1.4 and SD XL. % is omitted for clarity. Best for
each model, metrics, and editing mode is highlighted in bold (oracle is excluded). The standard deviation is shown
below. NaN: sequential editing with TIME causes Stable Diffusion to collapse and only generate salt-and-pepper
noise images. †These results are from additional experiments conducted by the author.

SD 1.4, with EMBEDIT at 93.18% versus TIME’s379

87.17%. Tab 2 compares the performance of EM-380

BEDIT and ReFACT on the RoAD dataset. EMBE-381

DIT outperforms ReFACT across all three editing382

metrics, e.g., achieving 88.18% in specificity com-383

pared to 80.40% by ReFACT. The generative per-384

formance under two editing methods is comparable385

to each other however EMBEDIT demonstrates a386

significant advantage in editing speed, requiring387

only 0.37s compared to 89.75s for ReFACT.388

Results: Generation quality As shown by FID389

and CLIP Score, EMBEDIT maintains performance390

comparable to the unedited model (upper bound391

baseline) across both editing modes and datasets.392

Further comparison of sequential edits between393

TIME and EMBEDIT is provided in Appendix C.394

Results: FLUX (non-SD model) Tab 3 shows395

the results of EMBEDIT applied to FLUX, a T2I396

model using Flow Matching with DiT architecture.397

These results show EMBEDIT’s strong and effective398

editing performance across different T2I model.399

Compute and parameter efficiency We com-400

pare each editing method’s editing performance401

and computational efficiency in Fig 5. The top-402

right corner represents the optimal scenario, i.e.403

high editing performance and minimal computa-404

tion. EMBEDIT demonstrate superior advantage,405

achieving higher editing accuracy with significantly406

lower FLOPs across various metrics and model407

sizes. Further, as shown in Tab 4, our method is408
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Figure 5: A comparison of Efficacy, Generality,
Specificity, and FLOP between EMBEDIT TIME and
ReFACT. The closer to the right top corner, the better.
Metrics for TIME in sequential edit are omitted due to
noise in generated images.

exceptionally parameter-efficient: we only tune one 409

token’s embedding, a vector of 768 dimensions.2 410

This accounts for merely 0.002% of the total param- 411

eter of Stable Diffusion 1.4 and 0.003% of Stable 412

2In some cases, we tune multiple tokens’ WTEs when
the object word is tokenized into multiple subwords or spans
multiple words.
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Diffusion XL, 1000 times less than TIME (Orgad413

et al., 2023) and ReFACT (Arad et al., 2024).414

Sequential editing EMBEDIT maintains robust415

performance in sequential editing. For SD 1.4416

specifically, considering the standard deviation, se-417

quential editing does not affect the edit perfor-418

mance, achieving 93.18% (2.39%) and 96.59%419

(1.44%) efficacy for single and sequential edit, re-420

spectively. Sequential edit by TIME leads both421

models to collapse, only outputting salt-and-pepper422

noise, as shown in red-bordered images in Fig 3.423

Generalization on Stable Diffusion XL EMBE-424

DIT demonstrates comparable editing performance425

and generation quality across models of different426

sizes. Interestingly, the larger model size leads an427

increase in Specificity (77.09% ↗ 87.71% in sin-428

gle editing and 69.92% ↗ 76.92% in sequential429

editing). We also observe this pattern with TIME430

that specificity increases from 66.49% to 79.35% in431

single editing mode. One potential explanation is432

that the dual text encoders in SDXL helps constrain433

semantic changes locally through the model.434

Edit “ice cream" to “strawberry ice cream"

“a scoop of ice cream” “a bucket of ice”

Edit “mushroom” to “purple mushroom”

“a mushroom” “mushroom in the sea”

Figure 6: Illustration of failure cases where an object
consists of multiple tokens (top) and where the target
concept rarely appears in daily life.

Qualitative analysis We investigate failure cases435

and identify two distinct patterns. First, as illus-436

RoAD on SD 1.4 (Sequential edit)
Method Oracle Baseline ReFACT EMBEDIT

Efficacy 99.72 1.99 92.26 91.19
±0.28 ±1.46 ±2.37 ±3.19

Generality 96.76 7.33 83.51 82.44
±0.82 ±1.95 ±3.32 ±3.41

Specificity 97.54 97.54 80.40 88.18
±0.79 ±0.79 ±2.97 ±2.15

FID 40.13 40.13 41.93 40.66
CLIP Score 31.17 31.17 30.59 31.04
Average edit time - - 89.75s 0.37s

Table 2: EMBEDIT and ReFACT sequential edit perfor-
mance and generative quality comparison on SD 1.4.

Model edit Efficacy Generality Specificity FID CLIP Score

FLUX

Single 98.12 68.41 73.44 45.87 30.89
±0.99 ±4.30 ±3.43

Seq 95.75 65.38 70.69 47.11 30.88
±1.82 ±4.18 ±3.30

Table 3: Evaluation of EMBEDIT using flow matching
with DiT architecture T2I model.

TIME ReFACT EMBEDIT

Model SD 1.4 SD XL SD 1.4 SD 1.4 SD XL
FLOP 19,169,280 340,787,200 442,159,411 1,536 4,096
Weight 2.200% 9.625% 8.415% 0.002% 0.003%

Table 4: A comparison between TIME (Orgad et al.,
2023), ReFACT (Arad et al., 2024) and EMBEDIT based
on the average FLOPs for each edit and the ratio of
edited weights required to modify a single object.

trated in the top row of Fig 6, EMBEDIT fails speci- 437

ficity when editing multi-word objects with broad 438

semantic meanings for each word. Taking “ice 439

cream” as an example, when editing “ice cream" 440

to “strawberry ice cream", EMBEDIT jointly edit 441

WTEs of both “ice” and “cream” to fuse the as- 442

sumption “strawberry” to their WTEs. The suc- 443

cessful editing causes the word “ice” to inappropri- 444

ately carry the “strawberry” attribute of red color 445

even in unrelated contexts, such as “a bucket of 446

ice”. This issue becomes particularly problematic 447

when the constituent words frequently appear in 448

semantically unrelated compound terms, such as 449

“ice hockey” and “face cream”. From a linguistic 450

perspective, these component words function as hy- 451

pernyms or superordinates, encompassing broader 452

semantic categories (Pearl, 2022). Consequently, 453

editing these terms risks unintended modifications 454

to semantically distinct expressions that contain the 455

edited words. 456

Second, the effectiveness of EMBEDIT dimin- 457

ishes for concepts with limited real-world occur- 458

rence. As illustrated in the second row of Fig 6, gen- 459

erated objects fail to preserve characteristic mush- 460

room morphology as “purple mushroom” rarely ap- 461

pears. This observation is consistent with previous 462

hypotheses that diffusion models encode perceptual 463

attributes of objects (Basu et al., 2024). 464

5.2 Gender Balance in Occupations 465

This section addresses social bias as a specific 466

type of implicit assumption encoded within lan- 467

guage models (Blodgett et al., 2020; Devinney 468

et al., 2022; May et al., 2019) and T2I diffusion 469

models (Fraser et al., 2023; Struppek et al., 2022; 470

Zameshina et al., 2023; Arad et al., 2024; Xiong 471

et al., 2024; Masrourisaadat et al., 2024; Mandal 472
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et al., 2023). Diffusion models are found to inher-473

ently reflect social and cultural biases (Bender et al.,474

2021; Cho et al., 2023; Lin et al., 2014). For exam-475

ple, in our experiments, SD 1.4 associates specific476

genders with professions: only 5.55% of images477

generated for “A photo of a CEO” depict women,478

while 97.22% of images for “A photo of a house-479

keeper” feature women. Our goal is to mitigate480

stereotype-driven assumptions.3481

Figure 7: Example of mitigating gender bias

Evaluation We follow the experimental setup of482

TIME (Orgad et al., 2023), using source prompts483

like “A/An [profession]” (e.g., “A CEO”). The goal484

is to balance gender representation in the generated485

images and prevent biased associations between486

professions and gender. For each profession p, we487

aim for gender balance, with 50% of the generated488

images depicting women. To quantify gender bias,489

we compute the percentage of female-presenting490

figures Fp → [0, 100], and define the deviation from491

balance as !p =
|Fp→50|

50 (Orgad et al., 2023). For492

each test prompt, we generate 24 images and use493

CLIP 4 to classify gender in each image. Therefore,494

for each profession, we generate 144 (6 prompts495

*24 images) images to calculate the percentage of496

the female gender. The optimal value for Fp is 50497

and !p is 0, representing a balanced distribution of498

male and female images. We compare the editing499

performance Fp with the base model. The oracle is500

defined as the base model explicitly asked with “a501

[gender] [profession]”, where [gender] is randomly502

set to “female” or “male”.503

Results As shown in Tab 5, EMBEDIT consis-504

tently outperforms TIME (Orgad et al., 2023) and505

3We limit our analysis to binary genders to avoid mis-
representing non-binary identities. Future work should be
thoughtfully expanded to include the full gender spectrum.

4We measure image similarity to “[female/male] [profes-
sion]” with a human evaluation of 100 examples confirming
100% accuracy, especially for images of short hair females
and long hair males.

Baseline Oracle TIME UCE EMBEDIT

Fp

Hairdresser 77.08 53.47 47.50 65.38 49.30
CEO 5.55 55.56 33.33 34.62 39.58
Teacher 80.55 48.61 24.17 70.37 57.63
Lawyer 29.86 44.45 59.17 66.67 55.84
Housekeeper 97.22 57.64 86.67 78.57 43.75
Farmer 3.47 55.56 48.43 31.03 55.56

!(↔) 0.598 0.097 0.308 0.385 0.121

Table 5: Results of mitigating gender bias in profession
assumptions. % are omitted for clarity.

UCE (Gandikota et al., 2024) across all profes- 506

sional categories, reducing the overall ! from 507

0.598 to 0.121, achieving a greater reduction than 508

TIME (0.598 to 0.308) and UCE (0.598 to 0.385). 509

Figure 7 demonstrates the bias mitigation perfor- 510

mance for several professions. 511

Racial Bias Mitigation EMBEDIT also mit- 512

igate the racial bias like prior works like 513

UCE (Gandikota et al., 2024), Debiasing- 514

VL (Chuang et al., 2023). Since race classification 515

from images is inherently ambiguous for both mod- 516

els and humans, we adopt a qualitative analysis. 517

EMBEDIT leads to more balanced representation 518

of these groups in generated professional images. 519

See the results in Appendix C.1 520

Unsafe Concept Removal EMBEDIT is also ef- 521

fective at removing unsafe concepts such as nudity. 522

Compared to UCE (Gandikota et al., 2024), EMBE- 523

DIT produces cleaner and more appropriate outputs. 524

See Appendix C.2 for details. 525

6 Conclusions 526

We present EMBEDIT, a simple yet effective ap- 527

proach for modifying implicit assumptions in T2I 528

diffusion models by editing word token embed- 529

dings (WTEs). Our probing experiments provide 530

intuitive motivation for this approach, showing that 531

the WTE encodes sufficient information to repre- 532

sent visible attributes of objects. In experiments 533

across two editing tasks, EMBEDIT demonstrate 534

state-of-the-art performance while being remark- 535

ably parameter-efficient, updating only 768 param- 536

eters for Stable Diffusion v1.4, 2048 parameters 537

for Stable Diffusion XL and 4864 parameters for 538

FLUX. Unlike previous methods, EMBEDIT main- 539

tains model stability during sequential edit and gen- 540

eralizes effectively across model scales. Although 541

EMBEDIT proves effective for editing implicit as- 542

sumptions and mitigating gender bias, it shows 543

limitations when handling multi-word objects. Fu- 544

ture work addressing this could further enhance 545

EMBEDIT’s capabilities. 546
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7 Limitation547

While our experiments comprehensively demon-548

strate the effectiveness of our approach, several549

minor limitations remain. Our method struggles550

with prompts involving unnatural or implausible551

edits (e.g., editing “mushroom” to “purple mush-552

room”), which may produce objects that resemble553

mushrooms but deviate from realistic appearances.554

We also employ a fixed set of random seeds and555

standard evaluation metrics such as CLIP Score556

and FID, without exhaustively exploring alternative557

metrics or seed variability. Additionally, prompt558

design is limited to common declarative forms, so559

performance on less typical or highly composi-560

tional prompts is not systematically tested. We561

can partially infer this from the generality evalu-562

ation. These limitations are unlikely to affect the563

validity of our main findings, but addressing them564

could further strengthen future work.565
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Gözde Gül Şahin, Clara Vania, Ilia Kuznetsov, and Iryna799
Gurevych. 2020. LINSPECTOR: Multilingual prob-800
ing tasks for word representations. Computational801
Linguistics, 46(2):335–385.802

Jisu Shin, Hoyun Song, Huije Lee, Soyeong Jeong, and803
Jong C. Park. 2024. Ask llms directly, "what shapes804
your bias?": Measuring social bias in large language805
models. ArXiv, abs/2406.04064.806

Jascha Sohl-Dickstein, Eric Weiss, Niru Mah-807
eswaranathan, and Surya Ganguli. 2015. Deep un-808
supervised learning using nonequilibrium thermo-809
dynamics. In International conference on machine810
learning, pages 2256–2265. PMLR.811

Lukas Struppek, Dom Hintersdorf, Felix Friedrich,812
Patrick Schramowski, Kristian Kersting, and 1 others.813
2023. Exploiting cultural biases via homoglyphs in814
text-to-image synthesis. Journal of Artificial Intelli-815
gence Research, 78:1017–1068.816

Lukas Struppek, Dominik Hintersdorf, and Kristian Ker-817
sting. 2022. The biased artist: Exploiting cultural818
biases via homoglyphs in text-guided image genera-819
tion models. ArXiv, abs/2209.08891.820

Nathaniel Swinger, Maria De-Arteaga, Neil Thomas 821
Heffernan IV, Mark DM Leiserson, and Adam Tau- 822
man Kalai. 2019. What are the biases in my word 823
embedding? In Proceedings of the 2019 AAAI/ACM 824
Conference on AI, Ethics, and Society, pages 305– 825
311. 826

Chenmien Tan, Ge Zhang, and Jie Fu. 2024. Massive 827
editing for large language models via meta learning. 828
In International Conference on Learning Representa- 829
tions. 830

Eric Wallace, Yizhong Wang, Sujian Li, Sameer Singh, 831
and Matt Gardner. 2019. Do NLP models know num- 832
bers? probing numeracy in embeddings. In Proceed- 833
ings of the 2019 Conference on Empirical Methods 834
in Natural Language Processing and the 9th Inter- 835
national Joint Conference on Natural Language Pro- 836
cessing (EMNLP-IJCNLP), pages 5307–5315, Hong 837
Kong, China. Association for Computational Linguis- 838
tics. 839

Yixin Wan and Kai-Wei Chang. 2024. White men lead, 840
black women help? benchmarking language agency 841
social biases in llms. 842

Yixin Wan, George Pu, Jiao Sun, Aparna Garimella, Kai- 843
Wei Chang, and Nanyun Peng. 2023. "kelly is a warm 844
person, joseph is a role model": Gender biases in llm- 845
generated reference letters. ArXiv, abs/2310.09219. 846

Tianwei Xiong, Yue Wu, Enze Xie, Yue Wu, Zhen- 847
guo Li, and Xihui Liu. 2024. Editing massive 848
concepts in text-to-image diffusion models. ArXiv, 849
abs/2403.13807. 850

Sohee Yang, Elena Gribovskaya, Nora Kassner, Mor 851
Geva, and Sebastian Riedel. 2024. Do large language 852
models latently perform multi-hop reasoning? In 853
Proceedings of the 62nd Annual Meeting of the As- 854
sociation for Computational Linguistics (Volume 1: 855
Long Papers), pages 10210–10229, Bangkok, Thai- 856
land. Association for Computational Linguistics. 857

Mariia Zameshina, Olivier Teytaud, and Laurent Na- 858
jman. 2023. Diverse diffusion: Enhancing im- 859
age diversity in text-to-image generation. ArXiv, 860
abs/2310.12583. 861

Jieyu Zhao, Tianlu Wang, Mark Yatskar, Ryan Cotterell, 862
Vicente Ordonez, and Kai-Wei Chang. 2019. Gender 863
bias in contextualized word embeddings. In Proceed- 864
ings of the 2019 Conference of the North American 865
Chapter of the Association for Computational Lin- 866
guistics: Human Language Technologies, Volume 867
1 (Long and Short Papers), pages 629–634, Min- 868
neapolis, Minnesota. Association for Computational 869
Linguistics. 870

Daquan Zhou, Zhiding Yu, Enze Xie, Chaowei Xiao, 871
Animashree Anandkumar, Jiashi Feng, and Jose M 872
Alvarez. 2022. Understanding the robustness in vi- 873
sion transformers. In International conference on 874
machine learning, pages 27378–27394. PMLR. 875

11

https://aclanthology.org/2020.starsem-1.10
https://aclanthology.org/2020.starsem-1.10
https://aclanthology.org/2020.starsem-1.10
https://doi.org/10.1162/coli_a_00376
https://doi.org/10.1162/coli_a_00376
https://doi.org/10.1162/coli_a_00376
https://api.semanticscholar.org/CorpusID:270285484
https://api.semanticscholar.org/CorpusID:270285484
https://api.semanticscholar.org/CorpusID:270285484
https://api.semanticscholar.org/CorpusID:270285484
https://api.semanticscholar.org/CorpusID:270285484
https://api.semanticscholar.org/CorpusID:252367223
https://api.semanticscholar.org/CorpusID:252367223
https://api.semanticscholar.org/CorpusID:252367223
https://api.semanticscholar.org/CorpusID:252367223
https://api.semanticscholar.org/CorpusID:252367223
https://openreview.net/pdf?id=L6L1CJQ2PE
https://openreview.net/pdf?id=L6L1CJQ2PE
https://openreview.net/pdf?id=L6L1CJQ2PE
https://doi.org/10.18653/v1/D19-1534
https://doi.org/10.18653/v1/D19-1534
https://doi.org/10.18653/v1/D19-1534
https://api.semanticscholar.org/CorpusID:269157013
https://api.semanticscholar.org/CorpusID:269157013
https://api.semanticscholar.org/CorpusID:269157013
https://api.semanticscholar.org/CorpusID:269157013
https://api.semanticscholar.org/CorpusID:269157013
https://api.semanticscholar.org/CorpusID:264128125
https://api.semanticscholar.org/CorpusID:264128125
https://api.semanticscholar.org/CorpusID:264128125
https://api.semanticscholar.org/CorpusID:264128125
https://api.semanticscholar.org/CorpusID:264128125
https://api.semanticscholar.org/CorpusID:268536809
https://api.semanticscholar.org/CorpusID:268536809
https://api.semanticscholar.org/CorpusID:268536809
https://doi.org/10.18653/v1/2024.acl-long.550
https://doi.org/10.18653/v1/2024.acl-long.550
https://doi.org/10.18653/v1/2024.acl-long.550
https://api.semanticscholar.org/CorpusID:264306287
https://api.semanticscholar.org/CorpusID:264306287
https://api.semanticscholar.org/CorpusID:264306287
https://doi.org/10.18653/v1/N19-1064
https://doi.org/10.18653/v1/N19-1064
https://doi.org/10.18653/v1/N19-1064


A Probing Task876

Probing Task provides an initial check to demon-877

strate both the intuition behind our approach, i.e.878

EMBEDIT, and the methodological foundation that879

supports our EMBEDIT, which is detailed in subse-880

quent sections.881

Inspired by these findings in language models,882

we hypothesize that WTE in the text encoder al-883

ready encodes implicit assumptions, such as “CEO”884

is male and “apple” is red. Therefore, we employ a885

probing task to validate this hypothesis. Given an886

object commonly in color red (e.g., “apple"), we887

take its WTE of CLIP text encoder as the feature,888

and we set up a simple task to predict its color. In-889

tuitively, high prediction accuracy would indicate890

that WTE representations in text encoder inherently891

encode color information, suggesting that object892

color presumptions are embedded directly within893

the WTE layer.894

In the probing task, we prompt ChatGPT to gen-895

erate two lists of objects: one comprising 100 red896

objects and another comprising 100 yellow objects.897

We divide the mix of the two lists into a training set898

and test set in random order, 80:20. We extract the899

WTE (Word Token Embedding) of each object as900

their features. Then, we use these features to train901

a logistic regression model. During testing, the902

model predicts the color labels for the test set and903

achieves an accuracy of 90 (±1.25). This shows904

that WTE contains implicit assumptions.905

B Additional Experimental Details906

B.1 Datasets907

See Table 6 for a sample entry of TIME dataset908

(TIMED). The original object (e.g., “bear”) is a909

generic token that describes a scenario where a vi-910

sual attribute is implicitly inferred by the model.911

The new object (e.g., “polar bear”) is more specific912

and describes the same scenario with a precise at-913

tribute. See Table 7 for a sample entry of gender.914

The under-specified source prompts in the form915

“A/An [profession]”, such as “A CEO”. The desti-916

nation prompt specifies a non-stereotypical gender,917

such as “A female CEO”. We add five test prompts918

for each profession, describing it in various scenar-919

ios, e.g., “A CEO laughing”920

The TIMED reveals several limitations regard-921

ing sequential editing evaluation. Firstly and most922

notably, we observe instances where objects mod-923

ified as the target in previous contexts appear in924

subsequent specificity test cases. Figure 8 gives925

Edit Original Destination
bear polar bear

Test Original Destination

Posi
tiv

e
a zoo with bear a zoo with polar bear
a bear on beach a polar bear on beach
bear on the tree polar bear on the tree
cubist bear cubist polar bear
little bear little polar bear

Nega
tiv

e
a panda a polar panda
a dog a polar dog
a cat a polar cat
a koala a polar koala
a sloth a polar sloth

Table 6: An example of a single edit in EMBEDIT

Source Destination
Editing CEO male CEO
Validation A photo of a CEO

Testing

A painting of a CEO
A CEO working
A CEO laughing
A CEO in the workplace
A CEO digital art

Table 7: An example entry in mitigating gender bias
dataset.

an illustration of this. Secondly, some general- 926

ity test objects do not include the original objects. 927

For example, the edit object is “dog” but the test 928

prompt is “puppy”, see Figure 9 for details. Thirdly, 929

some instances are ambiguous and hard to evalu- 930

ate. See Figure 10 for details. Also, the TIMED 931

dataset contains several instances of impractical or 932

surreal editing scenarios, which significantly com- 933

promise the model’s performance. For example, 934

editing “banana” to “blue banana” introduces un- 935

natural modifications that the model struggles to 936

handle. The list of those removed objects can be 937

found in Table 8 938

Edit “plinth" to “wooden plinth"

Baseline“plinth” EMBEDIT “plinth” Specificity “pedestal”

Figure 8: A specificity test example for sequential edits:
since “pedestal” is edited before “plinth”, the “plinth”
specificity test is considered a success.
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Edit “dog" to “Schnauzer dog"

Baseline “dog” EMBEDIT “dog” Generality “puppy”

Figure 9: An example of editing “dog” to “schnauzer
dog”: P2 is a successful edit, while P3 is a generality
test with “puppy”. We remove “puppy” as we consider
puppy and dog convey different semantics.

Old New
banana blue banana

cat green cat
dog green dog
fern purple fern
frog purple frog

panther purple panther
mushroom purple mushroom

pizza square pizza
root purple root
tree purple tree

Ron Weasley female Ron Weasley
Neville Longbottom female Neville Longbottom

truffle purple truffle
vehicle flying vehicle

Albus Dumbeldore blond Albus Dumbeldore
Draco Malfoy female Draco Malfoy

Hagrid female Hagrid
Harry Potter female Harry Potter

the sun the green sun
sunflower blue sunflower

McDonald’s McDonald’s sushi
subway subway pizza
subway subway sushi

Taco Bell Taco Bell pizza
Taco Bell Taco Bell sushi
Wendy’s Wendy’s pizza
Wendy’s Wendy’s sushi

Table 8: List of unsuitable objects.

B.2 Model Implementation939

We conduct experiments on three models: Stable940

Diffusion v1.4 (SD 1.4)(Rombach et al., 2022), Sta-941

ble Diffusion XL (SD XL) and FLUX. SD 1.4 has942

one text encoder with a 768-dimensional represen-943

tation and 16 cross-attention layers. SD XL has two944

text encoders with dimensions 768 and 1280, and945

70 and 44 cross-attention layers. FLUX has two946

text encoders with dimensions 768 and 4096. We947

use the same SD 1.4 model5 as TIME (Orgad et al.,948

2023) and ReFACT (Arad et al., 2024), the official949

5https://huggingface.co/CompVis/
stable-diffusion-v1-4

Edit “subway" to “subway pizza"

Baseline“subway” EMBEDIT “subway” “a subway meal”

Figure 10: An example of ambiguous edit: “subway"
to “subway pizza”. “subway” has dual meanings: food
and transportation. Additionally, it is hard to determine
whether the generated images refer to a normal pizza or
a “subway pizza”.

Figure 11: A comparison of edit performance between
EMBEDIT and TIME methods in Stable Diffusion v1.4
and Stable Diffusion XL models.

SD XL model 6 and the FLUX.1-dev model 7 from 950

Hugging Face. All experiments run on an NVIDIA 951

A100 with a fixed random seed for consistency. 952

Hyperparameter Sensitivity EMBEDIT uses the 953

same hyperparameters for both single and sequen- 954

tial edits across SD 1.4 and SD XL. In contrast, 955

TIME requires model-specific and edit-mode- 956

specific tuning. While TIME’s recommended 957

hyperparameter of 0.1 is effective for SD 1.4, it 958

need to be adjusted significantly—from 0.1 to 959

10,000—to achieve reasonable performance with 960

SD XL. EMBEDIT, however, demonstrate great ro- 961

bustness with consistent hyperparameters across 962

models. 963

B.3 Ablation Study 964

To quantify the effect of the learning rate (lr) on 965

EMBEDIT, We conducted an ablation study using 966

24 data samples, each samples generate 8 images. 967

The results of this ablation study are presented in 968

Table 9. We select 0.001 for our experiment. 969

6https://huggingface.co/stabilityai/
stable-diffusion-xl-refiner-1.0

7https://huggingface.co/black-forest-labs/
FLUX.1-dev
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lr Efficacy Generality Specificity
0.1 78.65 77.08 53.96

±5.37 ±6.04 ±5.09

0.01 91.67 82.21 58.96
±4.37 ±4.84 ±5.34

0.001 96.88 84.87 56.04
±1.72 ±4.18 ±5.22

0.0001 81.77 69.11 63.80
±5.80 ±5.44 ±4.82

Table 9: Comparison of EMBEDIT with different values
of learning rate. % is omitted for clarity. Best results
are marked with underline.

B.4 Automatic Gender Method970

We design a new loss function to mitigate gender971

bias automatically. Details of the automatic method972

are shown in Equation 3 4 5 6 7 8. The auto method973

aims to modify the WTE of “[profession]” and974

seeks to mitigate gender bias in professions through975

a single edit.976

Results for the six professions after auto editing977

are shown in Table 10, generating 10 images for978

each prompt. As anticipated, the auto method is979

able to adjust the gender bias but does not outper-980

form manually adjusted settings.981

Baseline Manual Auto

Fp

Hairdresser 77.08 49.30 17.24
CEO 5.55 39.58 38.37
Teacher 80.55 57.63 53.33
Lawyer 29.86 55.84 66.67
Housekeeper 97.22 43.75 91.67
Farmer 3.47 55.56 23.33

!p(↔) 0.598 0.121 0.442

Table 10: Results of manual and auto edit on gender
dataset. For Fp, “50" represents the ideal debiased result
(50 female, 50 male). !p indicates the average deviation
from 50, with smaller values reflecting a more neutral
gender assumption.

Define the “[profession]” as p, the “[counter-982

stereotypical gender] [profession]” as csp, and the983

“[stereotypical gender] [profession]” as sp. The984

corresponding last hidden states are represented985

as hp, hcsp, and hsp. To mitigate gender bias,986

the model updates and optimizes the WTE vector987

associated with the source profession.988

First, we initialize the embedding of target token989

wteinit as the average of three embeddings as shown990

in Eq. 3991

wteinit =
wtep +wte“female” +wte“male”

3
(3)992

Due to the varying biases among professions, 993

we designed a reward-penalty loss to encourage the 994

final embedding to move toward the direction of 995

counter-stereotypical gender profession. 996

Loss(p,sp,scp) = ϑ2·MSE(p, csp)+
(
1

ϑ

)2

·MSE(p, sp)

(4) 997

where MSE(.) stands for the MSE distance and is 998

defined as follows: 999

MSE(p,csp) =
1

d

d∑

i=1

(
hp, hcsp

)2 (5) 1000

1001

MSE(p,sp) =
1

d

d∑

i=1

(
hp, hsp

)2 (6) 1002

We use ϑ to control the contributions of either of 1003

the terms above for the final loss. The motivation 1004

is to balance the removal of gender bias and the 1005

adjustment of the target embedding. In particular, 1006

we determine the value of ϑ considering the bias 1007

rate ! of a specific profession using Eq. 7: 1008

!(p, sp, csp) =
↘MSE(p,sp) ↑ MSE(p, csp)↘

0.5 · (MSE(p,sp) + MSE(p,csp))
(7) 1009

We set ϑ as in Eq. 8 1010

ϑ = max(ϑmin, 10 ·!) (8) 1011

where the ! is normalized, and ϑmin represents the 1012

minimum weight to be set as 2. 1013

C Additional Results 1014

We present additional qualitative results of EMBE- 1015

DIT. Figure 16 illustrates the generalization and 1016

specificity of EMBEDIT on SD 1.4. Figure 17 on 1017

SD XL. Figure 18 is a comparison of EMBEDIT 1018

and TIME performance on SD 1.4 and SD XL. 1019

Our method does not support the retention the 1020

multi-hop reasoning on the target object (Yang 1021

et al., 2024). We selectively experiments with 10 1022

of this examples, one of the result is shown on 1023

Figure 12. 1024

C.1 Racial results 1025

Prior methods like UCE (Gandikota et al., 2024), 1026

Debiasing-VL (Chuang et al., 2023) have focused 1027

on mitigating the racial bias. We target major racial 1028
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Edit “Jason Alexander” to “Tom Hanks”

Figure 12: An example of editing “Jason Alexander” to
“Tom Hanks”: P1 is the unedited baseline with prompt
“Jason Alexander”, P2 is a successful edit with prompt
“Jason Alexander” and shown the actor Tom Hanks,
while P3 is a multi-hop test with “George Costanza
eating an apple”.

categories as defined by U.S. Office of Manage-1029

ment and Budget (OMB) standards (Office of Man-1030

agement and Budget, 2022): White, Black, Ameri-1031

can Indian, Native American, and Asian. Classify-1032

ing race from images is complex and challenging,1033

even for advanced models like CLIP and humans.1034

Therefore, we use a qualitative analysis approach1035

instead of relying on potentially inaccurate quan-1036

titative race classification. As shown in Figure 13,1037

EMBEDIT substantially improves the representa-1038

tion of these racial groups in generated professional1039

images.1040

Figure 13: Example of mitigating racial bias

C.2 Erasing the Nudity Concept1041

We compare the effectiveness of EMBEDIT and1042

UCE (Gandikota et al., 2024) in removing nudity-1043

related concepts from generated images. Black1044

bars (*) are added for content safety. EMBEDIT1045

efficiently removes unsafe concepts present in the1046

prompts, resulting in safer and more appropriate1047

generations. See Fig 14 for details.1048

C.3 Comparison Across Three T2I Models1049

In Figure 15, we compare three different text-to-1050

image (T2I) models with EMBEDIT applied.1051

When prompted with professions such as1052

“Lawyer” and “Nurse” without specifying gen-1053

*

*

*
*

*

*

*
*

*

*

Base Model UCE EmbEdit Base Model UCE EmbEdit

Figure 14: Comparison of nudity concept removal be-
tween UCE and EMBEDIT.

der, all models tend to produce stereotypical out- 1054

puts—male lawyers and female nurses—reflecting 1055

implicit gender bias. Racial bias and mode collapse 1056

are also observed in other prompts. 1057

Applying EMBEDIT leads to more balanced and 1058

diverse generations across gender, race, and cat- 1059

egory. This demonstrates the generalizability of 1060

EMBEDIT in mitigating various implicit assump- 1061

tions across different T2I architectures. 1062

D Ethical Considerations & Safety 1063

EMBEDIT allows model editing with extremely 1064

low computational resources, which could be mis- 1065

used to spread misinformation or offensive content. 1066

However, given extensive research on mitigating 1067

harmful representations (Bolukbasi et al., 2016; 1068

Bianchi et al., 2023), we believe the benefits of 1069

sharing our method outweigh the risks. 1070

Additionally, we place a high emphasis on the 1071

transparency of our research process to ensure that 1072

other researchers can understand and replicate our 1073

experiments. All tool versions, experimental se- 1074

tups, and parameter configurations are detailed in 1075

the appendix and the relevant resources and data 1076

are provided through a publicly accessible code 1077

repository. This not only facilitates scientific com- 1078

munication and collaboration but also aids in the 1079

verification of results and further research. 1080
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Figure 15: Comparison of three T2I model

Edit “monster" to “cookie monster"

(a) Efficacy: “monster” (b) Generality: “a monster under the bed” (c) Specificity: “elmo”

Edit “dog" to “poodle dog"

(d) Efficacy: “dog” (e) Generality: “a dog in a pool” (f) Specificity: “a cat”

Figure 16: Illustration of Efficacy, Generality, and Specificity. Images are generated by EMBEDIT-edited Stable
Diffusion v1.4.

Edit “dog" to “Chihuahua dog"

(a) Efficacy: “dog” (b) Generality: “a dog in a pool” (c) Specificity: “a cat”

Edit “chair" to “massage chair"

(d) Efficacy: “a chair in a mall” (e) Generality: “a chair in the park” (f) Specificity: “a bar stool”

Edit “cake" to “red velvet cake"

(g) Efficacy: “a birthday cake” (h) Generality: “cake on the dining table” (i) Specificity: “an apple pie”

Figure 17: Illustration of Efficacy, Generality, and Specificity. Images are generated by EMBEDIT-edited Stable
Diffusion XL.
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Edit “plum" to “yellow plum"
EMBEDIT Single Edit on Stable Diffusion v1.4

(a) Efficacy: “plum” (b) Generality: “a painting of plum” (c) Specificity: “elderberries”

TIME Single Edit on Stable Diffusion v1.4

(d) Efficacy: “plum” (e) Generality: “a painting of plum” (f) Specificity: “elderberries”

EMBEDIT Sequential Edit on Stable Diffusion v1.4

(g) Efficacy: “plum” (h) Generality: “a painting of plum” (i) Specificity: “elderberries”

TIME Sequential Edit on Stable Diffusion v1.4

(j) Efficacy: “plum” (k) Generality: “a painting of plum” (l) Specificity: “elderberries”

EMBEDIT Single Edit on Stable Diffusion XL

(m) Efficacy: “plum” (n) Generality: “a painting of plum” (o) Specificity: “elderberries”

TIME Single Edit on Stable Diffusion XL

(p) Efficacy: “plum” (q) Generality: “a painting of plum” (r) Specificity: “elderberries”

EMBEDIT Sequential Edit on Stable Diffusion XL

(s) Efficacy: “plum” (t) Generality: “a painting of plum” (u) Specificity: “elderberries”

TIME Sequential Edit on Stable Diffusion XL

(v) Efficacy: “plum” (w) Generality: “a painting of plum” (x) Specificity: “elderberries”

Figure 18: Comparison of EMBEDIT and TIME on SD v1.4 and SD XL for single and sequential edits.
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