
Communication Efficient Federated Learning with
Secure Aggregation and Differential Privacy

Wei-Ning Chen∗
Google Research

Christopher A. Choquette-Choo∗
Google Research

Peter Kairouz∗
Google Research

Abstract

Optimizing the privacy-utility-communication tradeoff is a key challenge for feder-
ated learning. Under distributed differential privacy (DP) via secure aggregation
(SecAgg), we prove that the worst-case communication cost per client must be at
least Ω

(
d log

(
n2ε2

d

))
to achieve O

(
d

n2ε2

)
centralized error, which matches the

error under central DP. Despite this bound, we leverage the near-sparse structure
of model updates, evidenced through recent empirical studies, to obtain improved
tradeoffs for distributed DP. In particular, we leverage linear compression methods,
namely sketching, to attain compression rates of up to 50× with no significant
decrease in model test accuracy achieving a noise multiplier 0.5. Our work demon-
strates that fundamental tradeoffs in differentially private federated learning can be
drastically improved in practice.

1 Introduction

Federated learning (FL) is a widely used machine learning (ML) framework where multiple clients
collaborate in learning a model under the coordination of a central server [12, 10]. One of the
primary attractions of FL is that it provides data confidentiality and can provide a level of privacy
to participating clients through data minimization: the raw client data never leaves the device, and
only updates to models (e.g., gradient updates) are sent back to the central server. These model
updates are more focused on the learning task at hand than is the raw data (i.e., they contain strictly
no additional information about the client, and typically significantly less, compared to the raw data);
further, the individual updates only need to be held ephemerally by the server. While these features
can offer significant practical privacy improvements over centralizing all the training data, there
is still no formal (worst-case) guarantee of privacy in this baseline federated learning model. Two
key technologies for formalizing and strengthening FL’s privacy guarantees are secure aggregation
(SecAgg) [2], and distributed differential privacy (DP) [9, 5].

Focusing on a setting where SecAgg and distributed DP are used to ensure that the server only sees the
aggregated and noised model updates, we prove a fundamental lower bound on the (worst-case) com-
munication cost required to achieve optimal privacy-accuracy tradeoffs that match communication-
unconstrained, central DP. Our lower bound essentially shows that for estimating the mean of n,
d-dimensional vectors under ε distributed DP via SecAgg, Ω

(
d log

(
n2ε2

d

))
bits are necessary to

achieve the optimal privacy-accuracy tradeoffs. This shows that, in the worst-case, there is no hope to
reduce the communication cost of the distributed DP solution of [9]. We note that the recent works
of [7, 6] show that an O(log(d)) bits communication per client is sufficient under an ideal shuffled
distributed DP model. Their compression methods require random sampling of parameters and are
thus not compatible with SecAgg, which only allows for linear compression schemes.

∗Equal contributions. Authors listed alphabetically.

Preprint. Under review.

To overcome the above-mentioned impossibility result, we leverage insights from recent works that
indicate near-sparsity in the gradients [16, 13] and propose linear compression schemes that allow
us to reduce the client-to-server communication cost without sacrificing utility. Experiments on
EMNIST-62 demonstrate that for a CNN model with 1 million parameters, we can compress the
client updates by 10× without impacting its accuracy. When distributed DP is used, we can compress
client updates by up to 50×. Yet, training a 0.2 million parameter model on EMNIST-62 fails to
achieve similar accuracy. These results demonstrate that our scheme is not only compressing an
overparameterized model and is instead beneficial for achieving performant (large) ML models. In
particular, our results show that under practical considerations of FL we can achieve (much) better
privacy-utility-communication tradeoffs than previously discovered by [9]. We discuss societal
considerations in Appendix A.3.

1.1 Related Works

We consider federated learning with distributed DP via SecAgg, which consists of five major steps
applied on the model update on the client side: (1) random rotation to spread out values and achieve
a sub-Gaussian Distribution, (2) `2 clipping to bound the sensitivity (as inDP-SGD), (3) randomized
rounding to move from continuous values (floats) to integers, (4) discrete Gaussian noise addition
and modular clipping to ensure bounded precision, and (5) aggregation of noised client updates
using SecAgg [2], returning the result to the server where these operations are undone in reverse
order to obtain the aggregated model update. We explore how these tradeoffs are affected by linear
compression operators (that commute with SecAgg), in particular, count sketches [4]. Most similar to
our work is that of [15] and [8], which also explore sketching in FL. [15] use a count-median sketch
which creates a biased gradient estimator. They prove convergence using error accumulation similar
to [16] and demonstrate compression rates of up to 5x on CIFAR10 and CIFAR100 [11], and up to
3x on EMNIST [3]. [8] creates a new unbiased gradient sketch operator called HEAPRIX observing
compression rates of nearly 12x on MNIST. Our work is crucially different from these because they
do not consider DP or SecAgg—they only explore how linear compression affects the communication-
utility tradeoff; we also use an unbiased count-mean sketch guaranteeing convergence.

2 Optimal Privacy-Utility-Communication Tradeoffs under SecAgg

2.1 Impossibility results for (worst-case) mean estimation

We first derive a communication lower bound for estimating the mean of n arbitrary vectors under
SecAgg. Consider n clients each with data xi ∈ Rd that satisfies ‖xi‖2 ≤ 1. A server estimates the
mean x̄ , 1

n

∑
i xi using a secure aggregation channelWSA : Gn → G, where G is a finite additive

group that the SecAgg protocal operates on. To do so, each client applies a local encoding function
Ai : X → G, and the server collects

WSA (A1(x1), ...,An(xn)) =
∑
i

Ai(xi),

where the summation is carried out under the finite (Abelian) group G. Usually we operate on a
module M space, i.e. setting G = (ZM)

m for some m,M ∈ N. Finally, the server outputs an
estimate x̂ (

∑
iAi(xi)) that minimizes the `22 error E

[
‖x̂− x̄‖22

]
, where the expectation is taken with

respect to the (possible) randomness used by the estimator x̂ and all local encoders {Ai, i = 1, ..., n}.
The following lemma bounds the `22 estimation error by the cardinality of G, showing that when |G|
is small, the resulting estimator must suffer from large error.

Lemma 2.1 (Lower Bound on the Estimation Error) Given the above setup, the minimax estima-
tion error is lower bounded by

inf
(An,x̂)

sup
x̄:‖x̄‖2≤1

E
[
‖x̂− x̄‖22

]
≥
(

1

|G|

)2/d

(1)

We defer the proof to Appendix A.1. Note that to transmit the encoded message Ai(xi) ∈ G, client
i needs to pay log (|G|) bits of communication. Therefore Lemma 2.1 implies that, to achieve

2

the centralized error O
(

d
n2ε2

)
(assuming d

n2ε2 ≤ 1), the per-client communication complexity is

Ω
(
d log

(
n2ε2

d

))
= Ω̃ (d). This communication lower bound is achieved by the distributed discrete

Gaussian mechanism (up to some logarithmic constants, see [9, Theorem 2]). This result indicates that
there is minimal room for improvement on the communication cost—each client must communicate
approximately the size of the model on each update.

2.2 Reducing Communication Costs by Leveraging Near-Sparse Structures

Notice that the results of Lemma 2.1 are based on the cardinality of |G|, the (securely) aggregated
estimate of the model update. This means that when the server update estimate is sparse (or near-
sparse) such that G′ = G (or G′ ≈ G) satisfies |G′| � d we can still compress client transmission.
Prior work in sparse SGD [16, 13] shows that model updates in centralized settings are near-sparse in
that high levels of compression can be attained. In the FL setting, this translates to each aggregand’s
(each client’s model update, or xi above) being near-sparse. Our thesis is that this extends to the
aggregate update x̄. We emphasize that this is a non-trivial extension. For example, consider the case
where each aggregand xi is exact k-sparse such that ‖xi‖0 = k. In this case, the aggregate can be as
dense as min(n · k, d) = O(d).

Under the assumption that x̄ is still near-sparse, we propose the following protocol. We follow the
standard Federated Averaging protocol, starting with random initial weights W0. For R rounds, we
subsample n clients each round and broadcast the current model weights Wr. We train for E epochs
locally on each client and calculate the i-th client model update as ∆(Wr −W i

r). To transmit and
aggregate this update back to the server we propose two key steps: (1) concatenating of the model
weights to achieve a single gradient vector and (2) compressing the concatenated weights to a latent
dimension of shape [sketch_length, sketch_width] using a count-sketch (with the coordinate index
as the unique value and the coordinate value as the frequency). Following, we proceed with the
distributed DP protocol from [9]. On the server, after SecAgg and the steps outlined by [9], we
compute a final decompression operation using a count-mean sketch decoding (see Appendix A.2
Algorithm 1) and undo the weight concatenation obtaining the structured model update. Thus,
our protocol obtains a compression rate factor that reduces each client’s communication cost by
d/(sketch_length · sketch_width)x.

3 Empirical Analysis

We run experiments on the full Federated EMNIST dataset [3], a common benchmark for FL tasks.
The dataset has 62 classes, 3400 clients, with each user holding both a train and test set of examples.
In total, there are 671, 585 training examples and 77, 483 test examples. Inputs are single-channel
(28, 28) images. We sample n = 100 clients per round for a total R = 1000 rounds. We pick E = 1
local training epochs per client and use a local batch size of 20. The server uses Stochastic Gradient
Descent with learning rate 1 and momentum of 0.9 [14]; the client uses a learning rate of 0.01 without
momentum. For distributed DP, we use the geometric adaptive clipping of [1] with an initial `2
clipping norm 0.1 and a target quantile of 0.8. We use the same procedure as [9] and flatten using the
Discrete Fourier Transform, pick β = exp−0.5 as the conditional randomized rounding bias, and use
a modular clipping target probability of 6.33e−5 or ≈ 4 standard deviations at the server (assuming
normally distributed updates). We experiment with two models: ‘large’ is an ≈ 1 million parameter
Convolutional Neural Network (CNN) used by [9]. This model has two convolutional layers followed
by two dense layers (see Appendix A.5 Figure 4). ‘Small’ is an ≈ 200, 000 parameter model with 3
dense layers (see Appendix A.5 Figure 5). We repeat all experiments with 3 different random seeds.

3.1 Analyzing the Privacy-Utility-Communication Tradeoff

As a baseline, we first explore the communication-accuracy tradeoffs of our count-sketch method
without DP. Observing Figure 1a, we see that the ‘large’ model under all compression rates converges
to a well-trained model. However, as we increase the compression rate, we observe a constant
decrease in the model’s learning as shown by the consistent decrease in test-time error throughout
training. The top line of Figure 1b shows the model performance during training relative to the
baseline without compression. Observing this plot, we see that large compression rates can lead to
a significant decrease in test accuracy of up to ≈ 2.5 percentage points. In particular, we observe

3

100 200 300 400 500 600 700 800 900 1000
Round

65.0
67.5
70.0
72.5
75.0
77.5
80.0
82.5
85.0

Te
st

 A
cc

ur
ac

y,
 %

(a)

Compression Rate
0X
5X
10X
20X

30X
40X
50X

0 200 400 600 800 1000
Round

6

4

2

0

2

4

6

Te
st

 A
cc

ur
ac

y
Dr

op
, %

 P
oi

nt
s

(b)(a) Test Accuracy during training for various com-
pression rates and No DP. Observe that compression
rates > 10× lead to a > 1 %-point decrease in the
converged test accuracy.

0 10 20 30 40 50
Compression Rate

72.5

75.0

77.5

80.0

82.5

Ac
cu

ra
cy

, %

Noise
Multiplier

0.0
0.1
0.2
0.3
0.4
0.5
0.6

(b) Converged model test accuracy with varied
noise multipliers. Observe that high noise multipliers
can achieve higher compression without significant
degradation in test accuracy.

Figure 1: Analyzing the privacy-utility-communication tradeoff.

that a maximum compression rate of 10x is possible without significantly degrading the converged
model test accuracy (i.e., beyond 1 percentage point). In these experiments, we varied both the
sketch_length and the sketch_width but found that the sketch_length had little impact on thet
test accuracy so long as it was sufficiently large. Thus, we fixed it to 20 for all experiments and vary
only the sketch_width.

To analyze the privacy-utility-communication tradeoff, we vary the both the compression rate and the
noise multiplier; the latter can be directly converted to a user-level (ε, δ)-DP guarantee. Observing
Figure 1b, increasing the noise multiplier decreases the converged model test accuracy, as expected.
Interestingly, we see that as the noise multiplier increases, there is a decreased impact of compression
on the converged model test accuracy. However, an ML practitioner will generally aim to maximize
test performance under a pre-specified noise multiplier. In this case, it is more interesting to look at
how compression impacts learning for a given noise multiplier. When we analyze Figure 1b in this
way, we observe an interesting benefit to linear compression with distributed DP: for a larger noise
multiplier, the compression rate can be pushed significantly higher with no significant decrease in
test accuracy, up to 50x for a noise multiplier of 0.6.

3.2 Impact of Model Size on the Privacy-Utility-Communication tradeoff

0.0 0.2 0.4 0.6 0.8 1.0
Latent Dimension 1e6

65

70

75

80

85

Te
st

 A
cc

ur
ac

y

Noise
Multiplier
Noise Multiplier
0.0
0.1
0.2
0.3
0.4
0.5
Model Size
small
large

Figure 2: Impact of the number of parameters on the
privacy-utility-communication tradeoff.

In Section 3.1 above, we observed
that ‘large’ models trained to satisfy
an ε-DP guarantee can get compres-
sion for free—there is no significant
decrease in converged test accuracy.
However, our experiments beg to ques-
tion: “If we can compress a model dur-
ing learning, could we have trained
a smaller model?” Our results in
Figure 2 demonstrate that we cannot
(without sacrificing performance). In
particular, we observe that the ‘large’
model with high levels of compres-
sion outperforms the ‘small’ model to
a compression of the same sized latent
dimension. For example, we see that

the ‘large’ model with a noise multiplier of 0.4 and a 50× compression factor matches the perfor-
mance of the ‘small’ model. This result indicates that our protocol is in fact beneficial to learning:
for a fixed communication bandwidth, we can train a larger more performant model with the same
privacy guarantees.

4

References
[1] Galen Andrew, Om Thakkar, H Brendan McMahan, and Swaroop Ramaswamy. Differentially

private learning with adaptive clipping. arXiv preprint arXiv:1905.03871, 2019.

[2] K. A. Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Brendan McMahan,
Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggregation for
federated learning on user-held data. In NIPS Workshop on Private Multi-Party Machine
Learning, 2016.

[3] Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečnỳ, H Brendan
McMahan, Virginia Smith, and Ameet Talwalkar. Leaf: A benchmark for federated settings.
arXiv preprint arXiv:1812.01097, 2018.

[4] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in data streams.
In International Colloquium on Automata, Languages, and Programming, pages 693–703.
Springer, 2002.

[5] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni Naor. Our
data, ourselves: Privacy via distributed noise generation. In Annual International Conference
on the Theory and Applications of Cryptographic Techniques, pages 486–503. Springer, 2006.

[6] Antonious Girgis, Deepesh Data, Suhas Diggavi, Peter Kairouz, and Ananda Theertha Suresh.
Shuffled model of differential privacy in federated learning. In Arindam Banerjee and Kenji
Fukumizu, editors, Proceedings of The 24th International Conference on Artificial Intelligence
and Statistics, volume 130 of Proceedings of Machine Learning Research, pages 2521–2529.
PMLR, 13–15 Apr 2021.

[7] Antonious M Girgis, Deepesh Data, Suhas Diggavi, Peter Kairouz, and Ananda Theertha Suresh.
Shuffled model of federated learning: Privacy, communication and accuracy trade-offs. arXiv
preprint arXiv:2008.07180, 2020.

[8] Farzin Haddadpour, Belhal Karimi, Ping Li, and Xiaoyun Li. Fedsketch: Communication-
efficient and private federated learning via sketching. arXiv preprint arXiv:2008.04975, 2020.

[9] Peter Kairouz, Ziyu Liu, and Thomas Steinke. The distributed discrete gaussian mechanism for
federated learning with secure aggregation. arXiv preprint arXiv:2102.06387, 2021.

[10] Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Ar-
jun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings,
Rafael G. L. D’Oliveira, Hubert Eichner, Salim El Rouayheb, David Evans, Josh Gardner,
Zachary Garrett, Adrià Gascón, Badih Ghazi, Phillip B. Gibbons, Marco Gruteser, Zaid Har-
chaoui, Chaoyang He, Lie He, Zhouyuan Huo, Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara
Javidi, Gauri Joshi, Mikhail Khodak, Jakub Konecný, Aleksandra Korolova, Farinaz Koushanfar,
Sanmi Koyejo, Tancrède Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri, Richard Nock,
Ayfer Özgür, Rasmus Pagh, Hang Qi, Daniel Ramage, Ramesh Raskar, Mariana Raykova, Dawn
Song, Weikang Song, Sebastian U. Stich, Ziteng Sun, Ananda Theertha Suresh, Florian Tramèr,
Praneeth Vepakomma, Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X. Yu, Han Yu,
and Sen Zhao. Advances and open problems in federated learning. Foundations and Trends R©
in Machine Learning, 14(1–2):1–210, 2021.

[11] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[12] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial
intelligence and statistics, pages 1273–1282. PMLR, 2017.

[13] Leighton Pate Barnes, Huseyin A Inan, Berivan Isik, and Ayfer Ozgur. rtop-k: A statistical
estimation approach to distributed sgd. arXiv e-prints, pages arXiv–2005, 2020.

[14] Boris T Polyak. Some methods of speeding up the convergence of iteration methods. Ussr
computational mathematics and mathematical physics, 4(5):1–17, 1964.

5

[15] Daniel Rothchild, Ashwinee Panda, Enayat Ullah, Nikita Ivkin, Ion Stoica, Vladimir Braverman,
Joseph Gonzalez, and Raman Arora. Fetchsgd: Communication-efficient federated learning
with sketching. In International Conference on Machine Learning, pages 8253–8265. PMLR,
2020.

[16] Sebastian U Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. Sparsified sgd with memory.
arXiv preprint arXiv:1809.07599, 2018.

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [Yes]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main exper-

imental results (either in the supplemental material or as a URL)? [Yes] All data is
already open source and all instructions are included in the main-text. All code will be
uploaded if accepted.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [TODO]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [No]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

A Appendix

A.1 Proof for Lemma 2.1

Proof A.1 First, we claim that if there exists a scheme (An, x̂) such that

E
[
‖x̂− x̄‖22

]
≤ r2, for some r > 0, (2)

6

then there exists a r-covering C(r) over the `2 unit ball Bd(1) ,
{
x ∈ Rd : ‖x‖2 ≤ 1

}
so that

|C(r)| ≤ |G|.
To see this, observe that if (An, x̂) satisfies (2), then {E [x̂(g)] , g ∈ G} forms a r-covering of Bd(1).
Since for any x̄ =

∑
i xi ∈ Bd(1), by setting g =

∑
iAi(xi) we obtain

‖E [x̂]− x̄‖22
(a)
≤ E

[
‖x̂− x̄‖22

]
≤ r2,

where (a) holds by Jensen’s inequality.

On the other hand, for any r-covering, it holds that |C(r)| ≥ vol(Bd(1))
vol(Bd(r)) =

(
1
r

)d
. Thus, as long as

|G| ≤
(

1
r

)d
, we must have E

[
‖x̂− x̄‖22

]
≥ r2, or equivalently

E
[
‖x̂− x̄‖22

]
≥
(

1

|G|

)2/d

. (3)

A.2 Additional Algorithms

Algorithm 1 Gradient Count Sketch Decoding
Require:Sketch S, gradient vector size d, shared seed seed

1: gradient_estimate← zeros(d)
2: for all hash_index in [0, · · · , S.length], in parallel do
3: hash_seed← hash_index+ seed
4: indices← random_uniform(0, S.width, hash_seed)
5: signs← random_choice([−1, 1], hash_seed)
6: gradient_estimate+ = signs ∗ S[hash_index, indices]

A.3 Societal Considerations

Our work explores private learning from distributed data. In general, this enables tasks like (federated)
machine learning without compromising the privacy of users who contribute data to these protocols.
However, privacy guarantees are complex and the relationship between optimized privacy metrics
like ε-DP with the practical privacy leakage are not well understood. Because of this, works that
leverage private learning protocols but do not guarantee a tight (ε, δ)-DP bound may provide a false
sense of privacy for user data.

7

A.4 Additional Figures

No
 D

P
9e

+06
2e

+06
4e

+05
4e

+04 58 25 18 12 9 7

Privacy Budget,

10

20

30

40

50

Be
st

 C
om

pr
es

sio
n

Ra
te

Figure 3: Best compression rate for each ε with
a maximum 1 percentage-point drop in converged
test accuracy.

8

A.5 Model Architectures

Figure 4: ‘Large’ model architecture.

Figure 5: ‘Small’ model architecture.

9

	Introduction
	Related Works

	Optimal Privacy-Utility-Communication Tradeoffs under SecAgg
	Impossibility results for (worst-case) mean estimation
	Reducing Communication Costs by Leveraging Near-Sparse Structures

	Empirical Analysis
	Analyzing the Privacy-Utility-Communication Tradeoff
	Impact of Model Size on the Privacy-Utility-Communication tradeoff

	Appendix
	Proof for Lemma 2.1
	Additional Algorithms
	Societal Considerations
	Additional Figures
	Model Architectures

