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Abstract

Optimizing the privacy-utility-communication tradeoff is a key challenge for feder-
ated learning. Under distributed differential privacy (DP) via secure aggregation
(SecAgg), we prove that the worst-case communication cost per client must be at
least Ω

(
d log

(
n2ε2

d

))
to achieve O

(
d

n2ε2

)
centralized error, which matches the

error under central DP. Despite this bound, we leverage the near-sparse structure
of model updates, evidenced through recent empirical studies, to obtain improved
tradeoffs for distributed DP. In particular, we leverage linear compression methods,
namely sketching, to attain compression rates of up to 50× with no significant
decrease in model test accuracy achieving a noise multiplier 0.5. Our work demon-
strates that fundamental tradeoffs in differentially private federated learning can be
drastically improved in practice.

1 Introduction

Federated learning (FL) is a widely used machine learning (ML) framework where multiple clients
collaborate in learning a model under the coordination of a central server [12, 10]. One of the
primary attractions of FL is that it provides data confidentiality and can provide a level of privacy
to participating clients through data minimization: the raw client data never leaves the device, and
only updates to models (e.g., gradient updates) are sent back to the central server. These model
updates are more focused on the learning task at hand than is the raw data (i.e., they contain strictly
no additional information about the client, and typically significantly less, compared to the raw data);
further, the individual updates only need to be held ephemerally by the server. While these features
can offer significant practical privacy improvements over centralizing all the training data, there
is still no formal (worst-case) guarantee of privacy in this baseline federated learning model. Two
key technologies for formalizing and strengthening FL’s privacy guarantees are secure aggregation
(SecAgg) [2], and distributed differential privacy (DP) [9, 5].

Focusing on a setting where SecAgg and distributed DP are used to ensure that the server only sees the
aggregated and noised model updates, we prove a fundamental lower bound on the (worst-case) com-
munication cost required to achieve optimal privacy-accuracy tradeoffs that match communication-
unconstrained, central DP. Our lower bound essentially shows that for estimating the mean of n,
d-dimensional vectors under ε distributed DP via SecAgg, Ω

(
d log

(
n2ε2

d

))
bits are necessary to

achieve the optimal privacy-accuracy tradeoffs. This shows that, in the worst-case, there is no hope to
reduce the communication cost of the distributed DP solution of [9]. We note that the recent works
of [7, 6] show that an O(log(d)) bits communication per client is sufficient under an ideal shuffled
distributed DP model. Their compression methods require random sampling of parameters and are
thus not compatible with SecAgg, which only allows for linear compression schemes.
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To overcome the above-mentioned impossibility result, we leverage insights from recent works that
indicate near-sparsity in the gradients [16, 13] and propose linear compression schemes that allow
us to reduce the client-to-server communication cost without sacrificing utility. Experiments on
EMNIST-62 demonstrate that for a CNN model with 1 million parameters, we can compress the
client updates by 10× without impacting its accuracy. When distributed DP is used, we can compress
client updates by up to 50×. Yet, training a 0.2 million parameter model on EMNIST-62 fails to
achieve similar accuracy. These results demonstrate that our scheme is not only compressing an
overparameterized model and is instead beneficial for achieving performant (large) ML models. In
particular, our results show that under practical considerations of FL we can achieve (much) better
privacy-utility-communication tradeoffs than previously discovered by [9]. We discuss societal
considerations in Appendix A.3.

1.1 Related Works

We consider federated learning with distributed DP via SecAgg, which consists of five major steps
applied on the model update on the client side: (1) random rotation to spread out values and achieve
a sub-Gaussian Distribution, (2) `2 clipping to bound the sensitivity (as inDP-SGD), (3) randomized
rounding to move from continuous values (floats) to integers, (4) discrete Gaussian noise addition
and modular clipping to ensure bounded precision, and (5) aggregation of noised client updates
using SecAgg [2], returning the result to the server where these operations are undone in reverse
order to obtain the aggregated model update. We explore how these tradeoffs are affected by linear
compression operators (that commute with SecAgg), in particular, count sketches [4]. Most similar to
our work is that of [15] and [8], which also explore sketching in FL. [15] use a count-median sketch
which creates a biased gradient estimator. They prove convergence using error accumulation similar
to [16] and demonstrate compression rates of up to 5x on CIFAR10 and CIFAR100 [11], and up to
3x on EMNIST [3]. [8] creates a new unbiased gradient sketch operator called HEAPRIX observing
compression rates of nearly 12x on MNIST. Our work is crucially different from these because they
do not consider DP or SecAgg—they only explore how linear compression affects the communication-
utility tradeoff; we also use an unbiased count-mean sketch guaranteeing convergence.

2 Optimal Privacy-Utility-Communication Tradeoffs under SecAgg

2.1 Impossibility results for (worst-case) mean estimation

We first derive a communication lower bound for estimating the mean of n arbitrary vectors under
SecAgg. Consider n clients each with data xi ∈ Rd that satisfies ‖xi‖2 ≤ 1. A server estimates the
mean x̄ , 1

n

∑
i xi using a secure aggregation channelWSA : Gn → G, where G is a finite additive

group that the SecAgg protocal operates on. To do so, each client applies a local encoding function
Ai : X → G, and the server collects

WSA (A1(x1), ...,An(xn)) =
∑
i

Ai(xi),

where the summation is carried out under the finite (Abelian) group G. Usually we operate on a
module M space, i.e. setting G = (ZM )

m for some m,M ∈ N. Finally, the server outputs an
estimate x̂ (

∑
iAi(xi)) that minimizes the `22 error E

[
‖x̂− x̄‖22

]
, where the expectation is taken with

respect to the (possible) randomness used by the estimator x̂ and all local encoders {Ai, i = 1, ..., n}.
The following lemma bounds the `22 estimation error by the cardinality of G, showing that when |G|
is small, the resulting estimator must suffer from large error.

Lemma 2.1 (Lower Bound on the Estimation Error) Given the above setup, the minimax estima-
tion error is lower bounded by

inf
(An,x̂)

sup
x̄:‖x̄‖2≤1

E
[
‖x̂− x̄‖22

]
≥
(

1

|G|

)2/d

(1)

We defer the proof to Appendix A.1. Note that to transmit the encoded message Ai(xi) ∈ G, client
i needs to pay log (|G|) bits of communication. Therefore Lemma 2.1 implies that, to achieve
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the centralized error O
(

d
n2ε2

)
(assuming d

n2ε2 ≤ 1), the per-client communication complexity is

Ω
(
d log

(
n2ε2

d

))
= Ω̃ (d). This communication lower bound is achieved by the distributed discrete

Gaussian mechanism (up to some logarithmic constants, see [9, Theorem 2]). This result indicates that
there is minimal room for improvement on the communication cost—each client must communicate
approximately the size of the model on each update.

2.2 Reducing Communication Costs by Leveraging Near-Sparse Structures

Notice that the results of Lemma 2.1 are based on the cardinality of |G|, the (securely) aggregated
estimate of the model update. This means that when the server update estimate is sparse (or near-
sparse) such that G′ = G (or G′ ≈ G) satisfies |G′| � d we can still compress client transmission.
Prior work in sparse SGD [16, 13] shows that model updates in centralized settings are near-sparse in
that high levels of compression can be attained. In the FL setting, this translates to each aggregand’s
(each client’s model update, or xi above) being near-sparse. Our thesis is that this extends to the
aggregate update x̄. We emphasize that this is a non-trivial extension. For example, consider the case
where each aggregand xi is exact k-sparse such that ‖xi‖0 = k. In this case, the aggregate can be as
dense as min(n · k, d) = O(d).

Under the assumption that x̄ is still near-sparse, we propose the following protocol. We follow the
standard Federated Averaging protocol, starting with random initial weights W0. For R rounds, we
subsample n clients each round and broadcast the current model weights Wr. We train for E epochs
locally on each client and calculate the i-th client model update as ∆(Wr −W i

r). To transmit and
aggregate this update back to the server we propose two key steps: (1) concatenating of the model
weights to achieve a single gradient vector and (2) compressing the concatenated weights to a latent
dimension of shape [sketch_length, sketch_width] using a count-sketch (with the coordinate index
as the unique value and the coordinate value as the frequency). Following, we proceed with the
distributed DP protocol from [9]. On the server, after SecAgg and the steps outlined by [9], we
compute a final decompression operation using a count-mean sketch decoding (see Appendix A.2
Algorithm 1) and undo the weight concatenation obtaining the structured model update. Thus,
our protocol obtains a compression rate factor that reduces each client’s communication cost by
d/(sketch_length · sketch_width)x.

3 Empirical Analysis

We run experiments on the full Federated EMNIST dataset [3], a common benchmark for FL tasks.
The dataset has 62 classes, 3400 clients, with each user holding both a train and test set of examples.
In total, there are 671, 585 training examples and 77, 483 test examples. Inputs are single-channel
(28, 28) images. We sample n = 100 clients per round for a total R = 1000 rounds. We pick E = 1
local training epochs per client and use a local batch size of 20. The server uses Stochastic Gradient
Descent with learning rate 1 and momentum of 0.9 [14]; the client uses a learning rate of 0.01 without
momentum. For distributed DP, we use the geometric adaptive clipping of [1] with an initial `2
clipping norm 0.1 and a target quantile of 0.8. We use the same procedure as [9] and flatten using the
Discrete Fourier Transform, pick β = exp−0.5 as the conditional randomized rounding bias, and use
a modular clipping target probability of 6.33e−5 or ≈ 4 standard deviations at the server (assuming
normally distributed updates). We experiment with two models: ‘large’ is an ≈ 1 million parameter
Convolutional Neural Network (CNN) used by [9]. This model has two convolutional layers followed
by two dense layers (see Appendix A.5 Figure 4). ‘Small’ is an ≈ 200, 000 parameter model with 3
dense layers (see Appendix A.5 Figure 5). We repeat all experiments with 3 different random seeds.

3.1 Analyzing the Privacy-Utility-Communication Tradeoff

As a baseline, we first explore the communication-accuracy tradeoffs of our count-sketch method
without DP. Observing Figure 1a, we see that the ‘large’ model under all compression rates converges
to a well-trained model. However, as we increase the compression rate, we observe a constant
decrease in the model’s learning as shown by the consistent decrease in test-time error throughout
training. The top line of Figure 1b shows the model performance during training relative to the
baseline without compression. Observing this plot, we see that large compression rates can lead to
a significant decrease in test accuracy of up to ≈ 2.5 percentage points. In particular, we observe
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(b)(a) Test Accuracy during training for various com-
pression rates and No DP. Observe that compression
rates > 10× lead to a > 1 %-point decrease in the
converged test accuracy.
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can achieve higher compression without significant
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Figure 1: Analyzing the privacy-utility-communication tradeoff.

that a maximum compression rate of 10x is possible without significantly degrading the converged
model test accuracy (i.e., beyond 1 percentage point). In these experiments, we varied both the
sketch_length and the sketch_width but found that the sketch_length had little impact on thet
test accuracy so long as it was sufficiently large. Thus, we fixed it to 20 for all experiments and vary
only the sketch_width.

To analyze the privacy-utility-communication tradeoff, we vary the both the compression rate and the
noise multiplier; the latter can be directly converted to a user-level (ε, δ)-DP guarantee. Observing
Figure 1b, increasing the noise multiplier decreases the converged model test accuracy, as expected.
Interestingly, we see that as the noise multiplier increases, there is a decreased impact of compression
on the converged model test accuracy. However, an ML practitioner will generally aim to maximize
test performance under a pre-specified noise multiplier. In this case, it is more interesting to look at
how compression impacts learning for a given noise multiplier. When we analyze Figure 1b in this
way, we observe an interesting benefit to linear compression with distributed DP: for a larger noise
multiplier, the compression rate can be pushed significantly higher with no significant decrease in
test accuracy, up to 50x for a noise multiplier of 0.6.

3.2 Impact of Model Size on the Privacy-Utility-Communication tradeoff
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Figure 2: Impact of the number of parameters on the
privacy-utility-communication tradeoff.

In Section 3.1 above, we observed
that ‘large’ models trained to satisfy
an ε-DP guarantee can get compres-
sion for free—there is no significant
decrease in converged test accuracy.
However, our experiments beg to ques-
tion: “If we can compress a model dur-
ing learning, could we have trained
a smaller model?” Our results in
Figure 2 demonstrate that we cannot
(without sacrificing performance). In
particular, we observe that the ‘large’
model with high levels of compres-
sion outperforms the ‘small’ model to
a compression of the same sized latent
dimension. For example, we see that

the ‘large’ model with a noise multiplier of 0.4 and a 50× compression factor matches the perfor-
mance of the ‘small’ model. This result indicates that our protocol is in fact beneficial to learning:
for a fixed communication bandwidth, we can train a larger more performant model with the same
privacy guarantees.
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A Appendix

A.1 Proof for Lemma 2.1

Proof A.1 First, we claim that if there exists a scheme (An, x̂) such that

E
[
‖x̂− x̄‖22

]
≤ r2, for some r > 0, (2)
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then there exists a r-covering C(r) over the `2 unit ball Bd(1) ,
{
x ∈ Rd : ‖x‖2 ≤ 1

}
so that

|C(r)| ≤ |G|.
To see this, observe that if (An, x̂) satisfies (2), then {E [x̂(g)] , g ∈ G} forms a r-covering of Bd(1).
Since for any x̄ =

∑
i xi ∈ Bd(1), by setting g =

∑
iAi(xi) we obtain

‖E [x̂]− x̄‖22
(a)
≤ E

[
‖x̂− x̄‖22

]
≤ r2,

where (a) holds by Jensen’s inequality.

On the other hand, for any r-covering, it holds that |C(r)| ≥ vol(Bd(1))
vol(Bd(r)) =

(
1
r

)d
. Thus, as long as

|G| ≤
(

1
r

)d
, we must have E

[
‖x̂− x̄‖22

]
≥ r2, or equivalently

E
[
‖x̂− x̄‖22

]
≥
(

1

|G|

)2/d

. (3)

A.2 Additional Algorithms

Algorithm 1 Gradient Count Sketch Decoding
Require:Sketch S, gradient vector size d, shared seed seed

1: gradient_estimate← zeros(d)
2: for all hash_index in [0, · · · , S.length], in parallel do
3: hash_seed← hash_index+ seed
4: indices← random_uniform(0, S.width, hash_seed)
5: signs← random_choice([−1, 1], hash_seed)
6: gradient_estimate+ = signs ∗ S[hash_index, indices]

A.3 Societal Considerations

Our work explores private learning from distributed data. In general, this enables tasks like (federated)
machine learning without compromising the privacy of users who contribute data to these protocols.
However, privacy guarantees are complex and the relationship between optimized privacy metrics
like ε-DP with the practical privacy leakage are not well understood. Because of this, works that
leverage private learning protocols but do not guarantee a tight (ε, δ)-DP bound may provide a false
sense of privacy for user data.
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A.4 Additional Figures
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Figure 3: Best compression rate for each ε with
a maximum 1 percentage-point drop in converged
test accuracy.
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A.5 Model Architectures

Figure 4: ‘Large’ model architecture.

Figure 5: ‘Small’ model architecture.
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