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ABSTRACT

Many important sequential decision problems – from robotics, games to logistics
– are multi-tasked and goal-oriented. In this work, we frame them as Contextual
Goal Oriented (CGO) problems, a goal-reaching special case of the contextual
Markov decision process. CGO is a framework for designing multi-task agents
that can follow instructions (represented by contexts) to solve goal-oriented tasks.
We show that CGO problem can be systematically tackled using datasets that are
commonly obtainable: an unsupervised interaction dataset of transitions and a su-
pervised dataset of context-goal pairs. Leveraging the goal-oriented structure of
CGO, we propose a simple data sharing technique that can provably solve CGO
problems offline under natural assumptions on the datasets’ quality. While an of-
fline CGO problem is a special case of offline reinforcement learning (RL) with
unlabelled data, running a generic offline RL algorithm here can be overly con-
servative since the goal-oriented structure of CGO is ignored. In contrast, our
approach carefully constructs an augmented Markov Decision Process (MDP) to
avoid introducing unnecessary pessimistic bias. In the experiments, we demon-
strate our algorithm can learn near-optimal context-conditioned policies in simu-
lated CGO problems, outperforming offline RL baselines.

1 INTRODUCTION

Goal-Oriented (GO) problems (Kaelbling, 1993) are an important class of sequential decision-
making problems with widespread applications, ranging from robotics (Yu & Mooney, 2023) to
game-playing (Hessel et al., 2019) to real-world logistics (Mirowski et al., 2018). Many of these
problems are multi-tasked: rather than aiming toward a single goal, the agent is expected to reach
some goal in a task-specific goal set based on the task instruction. We frame these multi-tasked
goal-oriented applications as Contextual GO (CGO) problems and design a simple algorithm that
can provably solve them using offline datasets that are commonly available in CGO applications.

CGO problem is a special case of contextual Markov Decision Process (MDP) (Hallak et al., 2015).
In a CGO problem, each task is a reaching problem with a goal set that is communicated indirectly
to the agent via a context. CGO problem includes the classical GO problem as a special case,
where the context is just the target goal, but in general contexts in CGO problem can convey rich,
high-level task instructions. In robotics, e.g., common contexts are verbal instructions like “clean
up the table” whereas goals are specific configurations (e.g., a clean table) in the environment. In
games, contexts can be side-quests for the player to accomplish, and in logistics contexts describe
origins and destinations of journeys an operator should execute. We will use navigation as a running
example in this paper. Imagine instructing a truck operator with the context “Deliver goods to a
warehouse in the Bay area”. Given the context, they must first infer some feasible goal in the goal
set (e.g., a warehouse location) and implement a policy to efficiently navigate to that goal.

CGO problems are challenging, because the rewards are sparse (non-zero rewards only when reach-
ing goals) and the contexts can be difficult to interpret into feasible goals. However, CGO problem
has an important structure that the transition dynamics (e.g., navigating a city road network) are
independent of the context (e.g., journey origin and destination), and efficient multitask learning can
be achieved by sharing dynamics data across tasks or contexts.

We study offline Reinforcement Learning (RL) for CGO problems. Offline learning is timely for
CGO problems given the recent availability of suitable massive datasets. We identify two different
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kinds of datasets that are commonly available in CGO applications – an (unsupervised) dynamics
dataset of agent trajectories, and a (supervised) context-goal dataset of pairs of contexts and goals.
In robotics, task-agnostic play data can be obtained at scale (Lynch et al., 2020; Walke et al., 2023)
in an unsupervised manner whereas instruction datasets (e.g., Misra et al. (2016)) allow supervised
learning of the context-goal mapping. In navigation, self-driving car trajectories (e.g., Wilson et al.
(2021); Sun et al. (2020)) allow us to learn dynamics whereas landmarks datasets (e.g. Mirowski
et al. (2018); Hahn et al. (2021)) allow us to map the contexts to goals.

We propose a Simple Data Sharing (SDS) technique that can provably solve CGO problems subject
to natural assumptions on the datasets’ quality. We prove that SDS can learn a goal-reaching policy
for the CGO problem with high probability, as long as 1) the distribution generating the dynamics
dataset “covers” a feasible path to the target goal set and 2) the context-goal distribution “covers”
some feasible goals. We remark that “covering” here does not mean that such a path or a goal has
to appear in the datasets or the data have to be generated only by goal-reaching policies (e.g., it
suffices that data can be stitched together to form a goal-reaching path). Instead, it is a distribution-
level coverage requirement; we will present coverage conditions based on the generalization ability
of function approximators used in learning, which is weaker than requiring coverage conditions
based on non-zero density. SDS is a reduction-based technique that can be implemented on top of a
standard offline RL algorithm based on Bellman equation. Our key insight is to carefully construct
an action-augmented MDP such that the dynamics dataset and context-goal dataset can be reconciled
together as a standard reward-labeled offline dataset.

To our knowledge, SDS is the first offline algorithm that can provably solve CGO problems with
just positive data (i.e., the context-goal dataset). While the offline CGO problem here can be cast as
an offline RL problem with unlabeled data (i.e., viewing each {context, state} pair as a composite
state1), existing theoretical results (Yu et al., 2022; Hu et al., 2023; Li et al., 2023a) indicate that
both positive data and negative data (i.e., pairs of context and non-goal data) are needed. 2. An
alternative approach to offline CGO problems is to predict goals based on contexts and then run
offline goal-conditioned RL (Ma et al., 2022). This approach only needs positive data in learning
the predictor, but it can fail when the predicted goal is not reachable from the initial state (since the
context-goal dataset could contain non-feasible goals).

We contribute an effective SDS technique and a new analysis technique that formally proves that
CGO problem can be solved offline with just dynamics data and context-goal data (i.e. positive
data), without the need for negative data. We also show that SDS can be implemented on top of
existing offline RL algorithms (with concrete instantiations for PSPI (Xie et al., 2021) in Section 3.3
and IQL (Kostrikov et al., 2021) in Section 4). In addition to theoretical analyses, we conduct several
experiments in simulated domains, confirming that SDS outperforms SOTA offline RL baselines
designed for unlabeled data and the goal prediction baseline. Finally, we situate our contributions
within the vast literature on Goal-Oriented RL (Kaelbling, 1993) and contextual MDPs (Hallak et al.,
2015) in Section 1.1 and Appendix A.

1.1 RELATED WORK

Offline RL Offline RL methods have proven to be effective in GO problems as it also allows
learning a common set of sub-goals/skills (Chebotar et al., 2021; Ma et al., 2022; Yang et al., 2023).
A variety of approaches are used to mitigate the distribution shift between the collected datasets and
the trajectories likely to be generated by learnt policies: (1) constrain target policies to be close to the
dataset distribution (Fujimoto et al., 2019; Wu et al., 2019; Fujimoto & Gu, 2021), (2) incorporate
value pessimism for low-coverage or Out-Of-Distribution states and actions (Kumar et al., 2020; Yu
et al., 2020; Jin et al., 2021) and (3) adversarial training via a two-player game (Xie et al., 2021;
Cheng et al., 2022). Our SDS allows the use of generic offline RL algorithms to solve CGO problem
offline. We demonstrate its applicability with PSPI (Xie et al., 2021) and IQL (Kostrikov et al., 2021)
as our base offline RL algorithm in analyses (Section 3.3) and experiments (Section 4), respectively.

1Context-goal data can be processed into reward-labeled data, whereas dynamics data from the original
MDP imputed with all of the contexts seen in the context-goal dataset becomes the reward-unlabeled data.

2Additionally reward-labeled data covering the full trajectory is necessary for general offline RL. But for
GO problems, we show that a weaker condition of covering only the goals is sufficient. Existing algorithms for
offline RL with unlabeled data may work with this weaker notion of coverage, but it is unclear how to prove it.
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(a) Similar goal sets with differ-
ent contexts

(b) Distinct goal sets with finite con-
texts

(c) Goal sets (could be overlapping)
given continuous contexts

Figure 1: The interplay between contexts and goals in a Contextual Goal-Oriented (CGO) problem
characterizes many real-world multi-task settings. (a) All the contexts may share similar goal sets
(e.g., pouring coffee). (b) A finite set of context, where each context may map to different goal sets.
(c) The goal sets can be defined by continuous contexts, and the goal sets from different contexts
could share overlapping support so the context-goal relationship is neither one-to-many or many-to-
one, creating a complex CGO problem.

Offline RL with unlabeled data Our CGO setting is a special case of offline RL with unlabeled
data, or more broadly the offline policy learning from observations paradigm (Li et al., 2023a). There
only a subset of the offline data is labeled with rewards (in our setting, that is the contexts dataset, as
we don’t know which samples in the dynamics dataset are goals.). However, the MAHALO scheme
in (Li et al., 2023a) is much more general than necessary for CGO problems, and we show instead
that our simple data sharing scheme has better theoretical guarantees than MAHALO in Section 3.3.
In our experiments, we compare CGO with several offline RL algorithms designed for unlabeled
data: UDS (Yu et al., 2022) where unlabeled data is assigned zero rewards and PDS (Hu et al.,
2023) where a pessimistic reward function is estimated from a labeled dataset.

Goal-oriented RL GO RL has been extensively studied (Kaelbling, 1993). Existing work focus
on two critical aspects of goal-oriented RL: (1) data relabeling and augmentation methods to make
better use of available data and (2) learning reusable skills to solve long-horizon problems by chain-
ing sub-goals or skills. For (1), hindsight relabeling methods (Andrychowicz et al., 2017; Li et al.,
2020) are effective in improving the learning efficiency of agents by reusing visited states in the
trajectories as successful goal examples. For (2), hierarchical methods for determining sub-goals,
and training goal reaching policies have been effective in long-horizon problems (Nair & Finn,
2019; Singh et al., 2020; Chebotar et al., 2021). Beyond data efficiency, another key objective of
goal-oriented RL is generalization, wherein a common representation of target goals is learned. Pop-
ular strategies for goal generalization include universal value function approximators (Schaul et al.,
2015), unsupervised representation learning (Nair et al., 2018; Nair & Finn, 2019; Han et al., 2021),
and pessimism-induced generalization in offline GO formulations (Yang et al., 2023). Our CGO
framing enables both data reuse and goal generalization, by using rich contextual representations of
goals and a reduction to offline RL to combine dynamics and context-goal datasets.

2 PRELIMINARIES

2.1 CONTEXTUAL GOAL-ORIENTED (CGO) PROBLEM

A Contextual Goal-Oriented (CGO) problem describes a multi-tasked goal-oriented setting with a
shared transition kernel. We consider a Markovian CGO problem with an infinite horizon, defined
by the tuple M = (S,A, P,R, γ, C, d0), where S is the state space, A is the action space, P :
S × A → ∆(S) is the transition kernel, R : S × C → {0, 1} is the reward function, γ ∈ [0, 1)
is the discount factor, C is the context space, and finally ∆ denotes the space of distributions. We
do not assume any particular topology on S,A and C and they can be continuous. Each context
c ∈ C specifies a goal-reaching task with a goal set Gc ⊂ S, and reaching any goal in the goal set
Gc is regarded as successful. The reward function is hence defined as R(s, c) = 1(s ∈ Gc). An
episode of a CGO problem starts from an initial state s0 and a context c sampled according to a
distribution d0(s0, c), and it terminates when the agent reaches the goal set Gc. During the episode,
c does not change; only st changes (according to P (s′|s, a)) and the transition kernel P (s′|s, a) is
context independent. The classical GO problem (Kaelbling, 1993) is a special case of CGO, where
a multi-goal problem can be viewed as multiple contexts with each context describing a goal.
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Spectrum of CGO Problem Figure 1 illustrates different CGO problems encountered when learn-
ing a language-conditioned control policy for a robot manipulator. s describes the robot and the
world state, a is the robot action, and c is the language instruction. For each instruction c, the ma-
nipulation task for the robot is a reaching problem to a set of targeted robot and world states. The
simplest CGO instance is when most of the contexts c ∈ C correspond to the very similar goal sets,
as shown in Figure 1a. In this case, a context-agnostic policy can be near-optimal3. When different
contexts have non-overlapping goal sets Gc and we only have finite contexts (as in Figure 1b), the
problem is essentially multi-task RL which requires context-conditioned policies. In its full com-
plexity, the number of contexts can be infinite; and goal sets of different contexts could potentially
overlap4, as shown in Figure 1c. A CGO agent thus needs to learn how to respond to different
contexts as well as transfer knowledge efficiently across contexts.

Objective Since the context carries rich information, a CGO policy in general is context-
conditioned, i.e., π : S × C → ∆(A). The performance of a policy π is measured by its return,
J(π) := Eπ,P,d0

[∑T
=0 γ

tR(st, c)
]
, where T is the time the agent first enters Gc (a random variable

dependent on π, P and d0), and Eπ,P,d0 denotes the expectation over trajectories generated by run-
ning π with P starting from s0, c sampled from d0. We can view the return as the average success
rate of reaching any goal in the goal set Gc when the problem horizon is exponentially distributed
(according to the discount γ). A CGO algorithm takes a policy class Π = {π : S × C → ∆(A)} as
input and returns a near-optimal policy π† such that J(π†) ≈ maxπ∈Π J(π).

2.2 OFFLINE LEARNING

We aim to solve CGO problems using offline datasets without additional online environment interac-
tions, à la offline RL. We identify two types of data that are commonly available: Ddyn := {(s, a, s′)}
is an unsupervised dataset of agent trajectories collected from P (s′|s, a), whereas Dgoal := {(c, s) :
s ∈ Gc} is a supervised dataset of context-goal pairs. Different offline CGO algorithms can be
judged based on the assumptions they require on {Ddyn, Dgoal}, such as what the datasets should
cover and how much data are needed to learn π†. No algorithm, to our knowledge, can provably
learn near-optimal π† using only the positive Dgoal data (i.e., without needing additional negative
data of non-goal examples) when combined with Ddyn data. In the next section, we demonstrate
how to leverage the special structure of the CGO problem to design provably correct offline algo-
rithms. This insight leads to a Simple Data Sharing (SDS) scheme that can enable existing offline
RL algorithms (designed for fully labeled data) to solve offline CGO problems using just the positive
goal-labeled data without needing any additional non-goal examples, or reward learning.

2.3 NOTATION AND ASSUMPTION

Before presenting the main results, we introduce some definitions and shorthand to make the pre-
sentation more readable. We introduce a fictitious zero-reward absorbing state s+ /∈ S and modify
the dynamics such that whenever the agent enters Gc it transits to s+ in the next time step (for all
actions) and stays there forever. This is a standard technique to convert a goal reaching problem
(with a random problem horizon) to an infinite horizon problem. It does not change the problem.

Specifically, we extend the reward and the dynamics as follows: We define S̄ = S
⋃
{s+}, X :=

S × C, and X̄ := S̄ × C. In addition, we define X+ := {x : x = (s, c), s = s+, c ∈ C}. We use
G to denote the goal set on X , i.e., G := {x ∈ X : x = (s, c), s ∈ Gc}. With abuse of notation,
we define the reward function and the transition kernel on X̄ accordingly as R(x) = 1(s ∈ Gc)
and P (x′|x, a) := P (s′|s, c, a)1(c′ = c), where P (s′|s, c, a) := 1(s′ = s+) if s ∈ Gc or s = s+

otherwise P (s′|s, c, a) = P (s′|s, a), where x = (s, c) and x′ = (s′, c′). Notice the context does not
change in the transition. For all value functions, we define their value at s+ as zero.

Given a policy π : X → ∆(A), we define its state-action value function (i.e., Q function) as
Qπ(x, a) := Eπ,P [

∑∞
t=0 γ

tR(x)|x0 = x, a0 = a]. We use V π(x) := Qπ(x, π) to denote the value
function given π, where Q(x, π) := Ea∼π[Q(x, a)] . By construction, we have Qπ(x, a), V π(x) ∈

3Indeed we show in Section 4 that some existing multi-task RL benchmarks are in this regime where a
context-agnostic Implicit Q-Learning (IQL) (Kostrikov et al., 2021) baseline performs well.

4Here the intersection of all goal sets given all possible contexts can be empty, which means it cannot be
solved by a context agnostic policy.
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[0, 1], ∀x ∈ X , a ∈ A. By these definitions, we can write the return J(π) = V π(d0) = Qπ(d0, π).
We denote π∗ as the optimal policy and define Q∗ := Qπ∗

, V ∗ := V π∗
.

Data Assumption We suppose that there are two distributions µdyn(s, a, s
′) and µgoal(s, c), where

µdyn(s
′|s, a) = P (s′|s, a) and µgoal has support within Gc, i.e., µgoal(s|c) > 0 ⇔ s ∈ Gc. We

assume that Ddyn and Dgoal are i.i.d. samples drawn from µdyn and µgoal, i.e.,

Ddyn = {(si, ai, s′i) ∼ µdyn} and Dgoal = {(sj , cj) ∼ µgoal}.

We suppose that x ∼ d0 is not in G almost surely. This is to simplify the presentation. If x ∈ G, the
agent reaches its goal immediately and no learning is needed.

For CGO problems to be solvable offline, we need some additional assumptions about the support
of µdyn and µgoal. We defer the specific assumptions needed for our algorithm to Section 3.3.

3 SIMPLE DATA SHARING TO SOLVE CGO PROBLEMS

The key idea of SDS is the construction of an action-augmented MDP with which the dynamics
and context-goal datasets can be combined into a conventional offline RL dataset. In the following,
first we describe this action-augmented MDP (Section 3.1) and show that it preserves the optimal
policies of the original MDP (Appendix B.1). We then outline a practical algorithm to convert the
two datasets of an offline CGO problem into a dataset for this augmented MDP (Section 3.2) such
that any generic offline RL algorithm can be used as a solver. Finally, in Section 3.3, we theoretically
analyze an instantiation of SDS based on PSPI (Xie et al., 2021) and show that SDS can provably
find a near-optimal policy for the CGO problem.

3.1 ACTION-AUGMENTED MDP

One reason why offline RL cannot directly leverage Ddyn and Dgoal to solve a CGO problem is that
each goal-reaching problem has its own context-specific termination criterion. Notice that although
the dynamics datasets Ddyn is consistent with the original MDP transition kernel (i.e. P (s′|s, a)),
it is however not consistent with the transition kernel P (x′|x, a) (which also includes the effect of
context-specific termination) of the context-augmented MDP in Section 2.3. This is easiest to see
if some s ∈ Gc in the Dgoal dataset is also observed in the dynamics dataset. Ddyn will imply from
(s, a, s′) that action a can transition to s′, however Dgoal implies that all actions at s will transition to
s+. This conflict means that combining the two datasets naively leads to an inconsistent algorithm.

We propose a new augmented MDP, which augments the action space of the context-augmented
MDP in Section 2.3. Define Ā = A

⋃
{a+}, with a fictitious action a+ /∈ A to avoid conflicts

across Ddyn and Dgoal. The reward in this action-augmented MDP is now action-dependent, for
x = (s, c) ∈ X , R̄(x, a) := 1(s ∈ Gc)1(a = a+), which means the reward given any action in the
original action space A is 0, and there would be a reward 1 only if a+ is taken in the goal set. And
the transition upon taking action a+ is defined as P̄ (x′|x, a+) := 1(s′ = s+) and P̄ (x′|x, a) :=
P (s′|s, a)1(c′ = c) for other actions, which means when taking a+ the agent would always transit
to s+, and the transition remains the same as in the original MDP given any normal action..

We denote this action-augmented MDP as M := (X̄ , Ā, R̄, P̄ , γ). For a policy π : X → ∆(A) and
a value function f : X ×A → [0, 1] defined in the original MDP, we define their extensions on M:

π̄(a|x) =
{
π(a|x), x /∈ G

a+, otherwise
and f̄g(x, a) =


g(x), a = a+ and x /∈ X+

0, x ∈ X+

f(x, a), otherwise.

The extension of f is based on a function g : X → [0, 1] which determines the f̄g value only at a+.

Regret Equivalence We show in Appendix B.1 (see Lemma B.3) that the regret of a policy ex-
tended to the augmented MDP is equal to the regret of the policy in the original MDP describing
the CGO problem, and any policy defined in the augmented MDP can be converted into that in
the original MDP without increasing the regret. Thus, solving the augmented MDP can yield cor-
respondingly optimal policies for the original problem. We next sketch a practical technique to
combine Ddyn and Dgoal along with the fictitious action labels a+ such that we can solve the action-
augmented MDP effectively.
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Algorithm 1 Simple Data Sharing (SDS) for CGO
Input: Dynamics dataset Ddyn, context-goal dataset Dgoal

for each sample (s, c) ∼ Dgoal do
Create transition5(x, a+, 1, x+), where x = (s, c) and x+ = (s+, c), add it to D̄goal

end for
for each (s, a, s′) ∼ Ddyn do

for each (·, c) ∼ Dgoal do
Create transition (x, a+, 0, x′), where x = (s, c) and x′ = (s′, c), add it to D̄dyn

end for
end for

Output: D̄dyn and D̄goal

Remark 3.1. The difference between the action-augmented MDP and the original MDP is that
the rewards of the action-augmented MDP are known from the data (due to its shifted definition),
whereas the rewards of the original MDP are missing. This difference allows us to directly apply
a reduction from offline CGO to offline RL. In contrast, working with the original MDP requires
learning additionally a (pessimistic) reward function before offline RL can be applied.

3.2 PRACTICAL ALGORITHM: SIMPLE DATA SHARING

In Algorithm 1 we sketch our Simple Data Sharing (SDS) technique. It takes the two datasets Ddyn

and Dgoal as input, and produces a single dataset D̄dyn
⋃
D̄goal that is suitable for use by any offline

RL algorithm based on Bellman equation like CQL (Kumar et al., 2020), IQL (Kostrikov et al.,
2021), PSPI (Xie et al., 2021), ATAC (Cheng et al., 2022) etc. Notice that any policy returned
by the offline RL algorithm can be executed in the CGO problem by simply masking out the a+

action. We note that in practice Algorithm 1 can be implemented as a pre-processing step in the
minibatch sampling of a deep offline RL algorithm (as opposed to computing the full D̄dyn and D̄goal

once before learning). Empirically, we found that equally balancing the samples D̄dyn and D̄goal
generates the best result. Below we analyze SDS theoretically by applying SDS to PSPI (Xie et al.,
2021); later in Section 4, we apply SDS to IQL (Kostrikov et al., 2021) in simulation experiments.

3.3 INFORMATION THEORETIC GUARANTEE: SDS+PSPI

In this section, we show a formal analysis for our reduction approach, when instantiated with PSPI
(Xie et al., 2021). Due to space limit, we present the instantiation of SDS+PSPI algorithm in Ap-
pendix B.3, and summarize our assumptions and the main theoretical result as follows.

Assumption 3.2 (Realizability). We assume for any π ∈ Π, Qπ ∈ F and R ∈ G.

Assumption 3.3 (Completeness). We assume: For any f ∈ F and g ∈ G, max(g(x), f(x, π)) ∈ F;
And for any f ∈ F , π ∈ Π, T πf(x, a) ∈ F , where T π is a zero-reward Bellman backup operator
with respect to P (s′|s, a): T πf(x, a) := γEx′∼P (s′|s,a)1(c′=c)[f(x

′, π)].

Definition 3.4. We define the generalized concentrability coefficients:

Cdyn(π) := max
f,f ′∈F

∥f − T πf ′∥2ρπ
/∈G

∥f − T πf ′∥2µdyn

and Cgoal(π) := max
g∈G

∥g −R∥2ρπ∈G

∥g −R∥2µgoal

(1)

where ∥h∥2µ := Ex∼µ[h(x)
2], ρπ/∈G(x, a) = Eπ,P

[∑T−1
t=0 γt1(xt = x, at = a)

]
, ρπ∈G(x) =

Eπ,P

[
γT 1(xT = x)

]
, and T is the first time the agent enters the goal set.

Concentrability coefficients is a generalization notion of density ratio; it describes how much the
(unnormalized) distribution in the numerator is “covered” by that in the denominator in terms of
the generalization ability of function approximators (Xie et al., 2021). If Cdyn(π),Cgoal(π) are finite
given µgoal, µdyn,F ,G, π, then we say π is covered by the data distributions and conceptually offline
RL can learn a policy to be no worse than π.

5s+ is implemented as terminal=True.
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Theorem 3.5. Let π† denote the learned policy of SDS + PSPI with datasets Ddyn and Dgoal, using
value function classes 6 F = {X ×A → [0, 1]} and G = {X → [0, 1]}. Under Assumption 3.2, 3.3
and 3.4,with probability 1− δ, it holds, for any π ∈ Π,

J(π)− J(π†) ≤ Cdyn(π)
√
ϵdyn + Cgoal(π)

√
ϵgoal (2)

where ϵdyn = O
(

log(|F||G||Π|/δ)
|Ddyn|

)
and ϵgoal = O

(
log(|G|/δ)
|Dgoal|

)
are statistical errors, and Cdyn(π) and

Cgoal(π) are concentrability coefficients.

We can interpret the upper bound in Theorem 3.5 as follows: the statistical errors ϵdyn, ϵgoal would
decrease as we have more data from µgoal and µdyn; for any compoarator π with finite coefficients
Cdyn(π),Cgoal(π), the final regret upper bound would also decrease. Take π = π∗ as an example.
For the coefficients Cdyn(π),Cgoal(π) to be finite, it means 1) the state-action distribution from the
dynamics data “covers” the state-action pairs generated by π∗, which naturally includes stitching;
2) the support of µgoal “covers” the goals π∗ would reach. The coverage is measured based on the
generalization ability of f and g as in Definition 3.4; e.g., if g(x1) and g(x2) are similar for x1 ̸= x2,
then x2 is within the coverage so long as x1 can be generated by µgoal. It is important to note that
Theorem 3.5 simultaneously apply to all π ∈ Π not just π∗. Therefore, so long as the above coverage
conditions hold for any goal-reaching policy π, the learned policy is guaranteed to be goal-reaching
too (when the number of samples is large enough so that the statistical errors can be ignored).

As a result, SDS+PSPI can provably learn with only the positive data (i.e., the context-goal dataset)
without the need for additional labeling of non-goal samples. Notice that PSPI is one possible way to
achieve pessimistic learning in offline RL, and the same intuition could be extended to other offline
RL algorithms based on Bellman equation.
Remark 3.6. MAHALO (Li et al., 2023a) is a SOTA offline RL algorithm that can provably learn
from unlabeled data. MAHALO can also be implemented on top of PSPI; however, their theoretical
result (Theorem D.1) requires a stronger version concentrability, maxg∈G ∥g−r∥2

ρπ
/∈G
/∥g−r∥2

µgoal
, to be

small. In other words, it needs additional labeling of non-goal states.

4 EXPERIMENTS

Through experiments we aim to answer the following questions: 1) Does our method work in sce-
narios of different context-goal relationships shown in Figure 1, under the data assumptions in Sec-
tion 2.3? 2) Under each setting, is there any empirical benefit from using SDS, compared with offline
RL baselines (for unlabeled data) that require pessimistic reward learning or goal prediction?

4.1 ENVIRONMENTS AND DATASETS

Dynamics dataset. For all experiments, we use the AntMaze-v2 datasets of D4RL (Fu et al., 2020)
as dynamics datasets Ddyn; we remove the reward and terminal information labels.

Context-goal dataset. We construct three levels of context and goal relationships as shown in Fig-
ure 1: 1) Figure 1a where multiple contexts define very similar goal sets (Section 4.3); 2) Figure 1b
where the number of contexts is finite with distinct goal sets (Section 4.4); 3) Figure 1c where the
contexts are continuous and randomly sampled, the goal sets could overlap (Section 4.5). For each
environment, we define a context set and an oracle function to tell whether a state is within the goal
set; this oracle function is only used in data construction and is not accessible to the algorithms
tested here. Then given each context, we select states in the dynamics dataset that satisfy the oracle
function to construct the goal examples7

Evaluation. Section 4.3, 4.4 and 4.5 contain results where the training and testing contexts are
sampled from the same distribution; in Section 4.5 we also test the algorithms with a different
context distribution. For evaluation, we use8 the oracle function that defines context-goal sets to
provide the reward given a certain context in Section 4.4 and 4.5 . The evaluation of each context is
done by 100 episodes. We train each algorithm for 5 seeds and report the statistics.

6We state a more general result for non-finite function classes in the appendix.
7Such oracle is never visible to the algorithm but only to construct the dataset.
8Exception: in the original AntMaze, we use the D4RL metric, so the results are comparable to the literature.
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4.2 METHODS

Here we describe the algorithms compared in the experiments. To facilitate a clean comparison of
different conceptual approaches to solving offline CGO problems, we use IQL (Kostrikov et al.,
2021) as the backbone offline algorithm for all the methods. The same set of hyperparameters in
IQL is used in all experiments. In the experiments, we use the −1/0 reward notion, which can be
shown to be the same as the 0/1 reward notion in terms of ranking policies under the discounted
MDP setting. Please see Appendix C.1 for detailed hyperparameters of all methods.

SDS+IQL (Ours). We apply SDS in Algorithm 1 with IQL as the offline RL algorithm to solve
the augmented MDP defined in Section 3.19. More specifically, we set a+ to be an extra dimension
in the action space but mask out extra dimension for policy output.

Reward prediction (RP). For naive reward prediction, we first convert the context-goal set to
a dataset with reward 0 for all (c, s) ∼ Dgoal, and then learn a reward function with the dataset.
For policy training, we randomly sample (s, a, s′) ∼ Ddyn and c ∼ Dgoal and label the transition
with the learned reward: if reward prediction of (c, s′) is larger then some threshold, we label the
transition with r = 0 and terminal = True; otherwise we label the transition with r = −1 and
terminal = False. Then we apply IQL with this labeled dataset.

PDS. For PDS (Hu et al., 2023), we follow the similar procedure as RP but learn a pessimistic
reward function using ensembles. Then we apply similar steps to label the transitions with contexts
and apply IQL with this labeled dataset as RP.

UDS+RP. On top of RP, we introduce another possible way to learn a reward function while we
construct “non-goal” samples in a pessimistic manner: we also sample random c ∼ Dgoal and
s ∼ Ddyn and label it with r = −1 similar to the spirit of UDS (Yu et al., 2022), then train the
reward function with the combined positive and negative dataset. Then we follow the same steps in
RP for policy training with the learned reward function.

Goal prediction. We learn a conditional generative model as the goal predictor using classifier-
free diffusion guidance Ho & Salimans (2022), where the context in the context-goal dataset serves
as the condition and the goal states in the context-goal dataset are used to train the generative model.
In the meantime, we learn a general goal-conditioned policy with the dynamics-only dataset using
HER Andrychowicz et al. (2017)+IQL. Given a test context, the goal predictor first samples the goal
under the condition, and then we use the generated goal as the condition for the output policy.

4.3 ORIGINAL ANTMAZE

In the original AntMaze, 2D goal locations (contexts) are sampled from a fixed cell in the maze and
perturbed with a small noise, generating very similar goal sets. Our training context set is chosen as
2D locations of the states with terminal=True in the D4RL datasets, and the full state is added as the
goal example. 10 Test contexts and environmental evaluation follow the original AntMaze.

SDS matches the performance of the context-agnostic method under the setting of Fig 1a, and
achieves better performance than reward learning baselines. We show the normalized return
in each AntMaze environment for all methods in Table 1. Without the need to learn an extra reward
function, our method consistently achieves equivalent or better performance in each environment
compared to other reward learning baselines. We observe that our method achieves comparable
average performance to the context-agnostic method, given that goal sets are all very similar.11

Reward model evaluation for reward learning baselines. We also visualize the learned reward
model from reward learning baselines12 to show how good they are at predicting the reward, and

9We choose IQL since it is a popular practical algorithm to solve AntMaze environments
10We notice that the number of goal examples in the original AntMaze is too small to learn a good goal

predictor, so we omit the goal prediction baseline under this setting. We will present goal prediction results in
Section 4.4,4.5 where we construct more goal examples.

11Also, we find that umaze is too easy such that even if the goal labeling is bad it still has a relatively high
reward (since the maze is too small), so we also omit umaze in other experiments. Li et al. (2023b) show offline
RL algorithms can learn good with goal-reaching data even when the rewards are wrong.

12We include the details for reward model evaluation in Appendix C.2.
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how it is related to the performance. Take “medium-diverse” and “large-diverse” environments as
examples (see Figure 2, 3). Also, we observe that PDS+RP is consistently better at separating pos-
itive and negative distributions than plain RP and UDS+RP, so we omit to compare with UDS+RP
and plain RP in the rest of the experiments. Intuitively, our method does not require reward learning
thanks to the construction of the augmented MDP, which avoids the extra errors in reward prediction.

Env/Method SDS (Ours) PDS RP UDS+RP Context-agnostic IQL
umaze 94.8±1.3 93.0±1.3 50.5±2.1 54.3±6.3 97.7±1.0
umaze diverse 72.8±7.7 50.6±7.8 72.8±2.6 71.5±4.3 65.5±10.5
medium play 75.8±1.9 66.8±4.9 0.5±0.3 0.3±0.3 75.2±3.4
medium diverse 84.5±5.2 22.8±2.4 0.5±0.5 0.8±0.5 76.0±3.7
large play 60.0±7.6 39.6±4.9 0±0 0±0 45.8±2.6
large diverse 36.8±6.9 30.0±5.3 0±0 0±0 46.7±5.4
average 70.8 50.5 20.7 21.2 67.8

Table 1: Normalized return in AntMaze-v2, averaged over 5 random seeds with standard errors.

(a) PDS (b) UDS+RP (c) RP

Figure 2: Reward model evaluation for the large-diverse environment. Green dots are outliers.

4.4 MODIFIED ANTMAZE: FOUR ROOMS

Context-goal setup. We partition the maze into four rooms and any state in the room would be
a goal state. We use discrete room numbers (1,2,3,4) as contexts. As the agent always starts in
Room 1, the training and test context sets are Room 2,3,4. We use medium and large environments.
Additionally, we perturb all the state dimensions with N (0, 0.1) Gaussian noises when constructing
the context-goal dataset, so the goal sets are not subsets of the dynamics datasets.

SDS achieves better performance than baselines under the setting in Figure 1b. We show the
normalized return (average success rate in percentage) in each modified Four Rooms environment
for our method and baseline methods in Table 2, where our method consistently outperforms the
performances of baseline methods. We also provide evaluation for reward learning in Figure 5.

Env/Method SDS (Ours) PDS Goal Prediction
medium-play 78.7±0.9 46.0±4.47 59.3±2.6
medium-diverse 83.6±1.9 51.3±3.6 66.7±2.4
large-play 65.5±2.5 13.9±2.4 41.4±3.6
large-diverse 72.2±2.9 11.1±3.8 42.0±3.0
average 75.0 30.6 52.4

Table 2: Average scores with standard errors over 5 random seeds from Four Rooms with perturba-
tion. The score for each run is the average success rate (%) of the other three rooms.

4.5 MODIFIED ANTMAZE: RANDOM CELLS

Context-goal setup. We use the 2D locations as context but the distribution of the context is much
more diverse than Section 4.3. For each maze map, we choose a set of non-wall 2D locations in the
maze map, uniformly sample from it, and add uniform perturbations to get the training contexts. To
construct the goal set given context, we obtain states with the 2D locations within the L2 ball with a
certain radius. For test distributions, we have two settings: 1) the same as the training distribution;

9
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Env/Method SDS (Ours) PDS Goal Prediction
medium-play 76.8±6.1 52.0±8.8 66.7±7.2
medium-diverse 78.2±6.5 60.9±11.3 69.7±8.7
large-play 57.6±12.4 50.6±6.4 42.4±8.2
large-diverse 54.7±8.8 58.3±9.2 44.2±8.1
average 66.8 55.5 55.8

Table 3: Average scores with standard errors over 5 random seeds from Random Rells with pertur-
bation. The score for each run is the average success rate (%) of 5 random test contexts from the
same training distribution.

Env/Method SDS (Ours) PDS Goal Prediction
medium-play 67.9±8.2 50.1±13.4 70.5±1.9
medium-diverse 72.5±6.5 57.5±14.8 63.0±7.2
large-play 60.2±4.8 48.1±8.0 44.3±4.1
large-diverse 58.0±5.8 44.1±9.9 55.4±5.7
average 64.7 49.9 58.3

Table 4: Average scores with standard errors over 5 random seeds from Random Cells with pertur-
bation. The score for each run is the average success rate (%) of 5 random test contexts far away
from the start.

2) test contexts are drawn from a limited area that is far away from the starting point of the agent.
Additionally, we perturb all the state dimensions with N (0, 0.1) Gaussian noises when constructing
the context-goal dataset, so the goal sets are not subsets of the dynamics datasets.

SDS outperforms or matches the performance of baselines under the setting in Figure 1c.
We show the normalized return (average success rate in percentage) in each modified Random Cells
environment for all methods in Table 3, where our method consistently outperforms all baseline
methods in each environment, which also shows the generalization ability in the context space. We
also provide reward visualization for reward learning baselines in Figure 6.

SDS also works with a different test context distribution. We also test with a different dis-
tribution of random cells that are far away from the start with some specified threshold in each
environment in Table 4. We can observe that when tested with this different context distribution,
SDS still consistently outperforms reward learning baselines.

5 CONCLUSION AND LIMITATION

We propose a Simple Data Sharing technique for offline CGO problems. We prove SDS can learn
near optimal policies so long as the offline data cover goal-reaching trajectories needed at the test
time, without the need of negative labels. We also validate the efficacy of SDS experimentally,
and we find it outperforms other reward-learning offline RL baselines across various CGO problem
settings. We highlight SDS works under certain assumptions. As shown in our theoretical result in
Section 3.3, the SDS technique would fail 1) if the dynamics dataset does not contain trajectories
leading to the goal set of a given context, 2) the context-goal dataset does not cover the contexts
and goals faced at test time, or 3) if the goal set does not cover reachable goals from initial states.
While we believe SDS for its simplicity and theoretical guarantees would be useful in real-world
settings (such as learning visual-language robot policies), our experimental setup is limited to low-
dimensional simulation environments. Scaling up SDS empirically is an interesting future direction.
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A ADDITIONAL RELATED WORK

Data-sharing in RL Sharing information across multiple tasks is a promising approach to accel-
erate learning and to identify transferable features across tasks. In RL, both multi-task and transfer
learning settings have been studied under varying assumption on the shared properties and structures
of different tasks (Zhu et al., 2023; Teh et al., 2017; Barreto et al., 2017; D’Eramo et al., 2020). For
data sharing in CGO, we adopt the contextual MDP formulation (Hallak et al., 2015; Sodhani et al.,
2021), which enables knowledge transfer via high-level contextual cues. Prior work on offline RL
has also shown the utility of sharing data across tasks: hindsight relabeling and manual skill group-
ing (Kalashnikov et al., 2021), inverse RL (Li et al., 2020), sharing Q-value estimates (Yu et al.,
2021; Singh et al., 2020) and reward labeling (Yu et al., 2022; Hu et al., 2023).

B SDS +PSPI: THEORETICAL ANALYSIS

In this section, we provide a detailed analysis for the instantiation of SDS using PSPI. We follow
the same notation for the value functions, augmented MDP and extended function classes as stated
in Section 2 and Section 3 in the main text.

B.1 EQUIVALENCE RELATIONS BETWEEN ORIGINAL AND AUGMENTED MDP

We begin by showing that the optimal policy and any value function in the augmented MDP can
be expressed using their analogue in the original MDP. With the augmented MDP defined as M :=
(X̄ , Ā, R̄, P̄ , γ) in Section 3.1, we first define the value function in the augmented MDP. For a policy
π̄ : X̄ → Ā, we define the Q function for the augmented MDP as

Q̄π̄(x, a) := Eπ̄,P̄

[ ∞∑
t=0

γtR̄(x, a)|x0 = x, a0 = a

]
Notice that we don’t have a reaching time random variable T in this definition; instead the agent
would enter an absorbing state s+ after taking a+ in the augmented MDP. We can define similarly
V̄ π̄(s) := Q̄π̄(x, π̄).
Remark B.1. Let Q̄π

R be the extension of Qπ based on R. We have, for x /∈ G, Q̄π
R(x, a) = Q̄π̄(x, a)

∀a ∈ Ā, and for x ∈ G, Q̄π
R(x, a) = Q̄π̄(x, a+) = 1, ∀a ∈ Ā.

By the construction of the augmented MDP, it is obvious that the following is true.
Lemma B.2. Given π : X → ∆(A), let π̄ be its extension. For any h : X ×A → R, it holds

Eπ,P

[
T∑

t=0

γth(x, a)

]
= Eπ̄,P̄

[ ∞∑
t=0

γth̃π(x, a)|x /∈ X+

]
where T is the goal-reaching time (random variable) and we define h̃π(x, a+) = h(x, π).

We can now relate the value functions between the two MDPs.
Proposition B.3. For a policy π : S → ∆(A), let π̄ be its extension (defined above). We have for
all x ∈ X , a ∈ A,

Qπ(x, a) ≥ Q̄π̄(x, a)

V π(x) = V̄ π̄(x)

Conversely, for a policy ξ : X̄ → ∆(Ā), define its restriction ξ on X and A by translating proba-
bility of ξ originally on a+ to be uniform over A. Then we have for all s ∈ S, a ∈ A

Qξ(x, a) ≥ Q̄ξ(x, a)

V ξ(x) ≥ V̄ ξ(x)

Proof. The first direction follows from Lemma B.2. For the latter, whenever ξ takes a+ at some
x /∈ G, it has V̄ ξ(x) = 0 but V̄ ξ(x) ≥ 0 since there is no negative reward in the original MDP. By
performing a telescoping argument, we can derive the second claim.
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By this lemma, we know the extension of π∗ (i.e., π̄∗) is also optimal to the augmented MDP and
V ∗(x) = V̄ ∗(x) for x ∈ X . Furthermore, we have a reduction that we can solve for the optimal
policy in the original MDP by the solving augmented MDP, since

V ξ(d0)− V ∗(d0) ≤ V ξ(d0)− V̄ ∗(d0)

for all ξ : X̄ → ∆(A). In particular,

Regret(π) := V π(d0)− V ∗(d0) = V π̄(d0)− V̄ ∗(d0) =: Regret(π̄) (3)

Since the augmented MDP replaces the random reaching time construction with an absorbing-state
version, the Q function Q̄π̄ of the extended policy π̄ satisfies the Bellman equation

Q̄π̄(x, a) = R̄(x, a) + γEx′∼P̄ (·|x,a)[Q̄
π(x′, π̄)]

=: T̄ πQ̄π(x, a) (4)

For x ∈ X and a ∈ A, we show how the above equation can be rewritten in Qπ and R.

Proposition B.4. For x ∈ X and a ∈ A,

Q̄π̄(x, a) = 0 + γEx′∼P̄ (·|x,a)[max(R(x′), Qπ(x′, π))]

For a = a+, Q̄π̄(x, a+) = R̄(x, a+) = R(x). For x ∈ X+, Q̄π̄(x, a) = 0.

Proof. The proof follows from Lemma B.5 and the definition of P̄ .

Lemma B.5. For x ∈ X , Q̄π̄(x, π̄) = max(R(x), Qπ(x, π))

Proof. For x ∈ X ,

Q̄π̄(x, π̄) =

{
Q̄π̄(x, a+), if x ∈ G

Q̄π̄(x, π), otherwise
(Because of definition of π̄)

=

{
Q̄π̄(x, a+), if x ∈ G

Qπ(x, π), otherwise
(Because of Proposition B.3)

=

{
R̄(x, a+), if x ∈ G

Qπ(x, π), otherwise
(Definition of augmented MDP)

=

{
R(x), if x ∈ G

Qπ(x, π), otherwise

= max(R(x), Qπ(x, π))

where in the last step we use R̄(x) = 1 for x ∈ G and R̄(x) = 0 otherwise.

B.2 FUNCTION APPROXIMATOR ASSUMPTIONS

In Theorem 3.5, we assume access to a policy class Π = {π : X → ∆(A)}. We also assume access
to a function class F = {f : X × A → [0, 1]} and a function class G = {g : X → [0, 1]}. We can
think of them as approximator for the Q function and the reward function of the original MDP.

Recall the zero-reward Bellman backup operator T π with respect to P (s′|s, a) as defined in As-
sumption 3.3:

T πf(x, a) := γEx′∼P0(·|x,a)[f(x
′, π)]

where P0(x
′|x, a) := P (s′|s, a)1(c′ = c). Note this definition is different from the one with

absorbing state s+ in Section 2.3. Using this modified backup operator, we can show that the
following realizability assumption is true for the augmented MDP:

Proposition B.6 (Realizability). By Assumption 3.2 and Assumption 3.3, there is f ∈ F and g ∈ G
such that Q̄π̄ = f̄g .
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Proof. By Assumption 3.3, there is h ∈ F such that h(x, a) = max(R(x), Qπ(x, a)). By Proposi-
tion B.4, we have for x ∈ X , a ̸= a+

Q̄π̄(x, a) = 0 + γEx′∼P̄ (·|x,a)[max(R(x′), Qπ(x′, π))]

= 0 + γEx′∼P0(·|x,a)[h(x, π)]

= T πh ∈ F

For a = a∗, we have Q̄π̄(x, a∗) = R̄(x, a+) = R(x) ∈ G. Finally Q̄π̄(x+, a) = 0 for x+ ∈ X+.
Therefore, Q̄π̄ = f̄g for some f ∈ F and g ∈ G.

B.3 ALGORITHM

In this section, we describe the instantiation of PSPI with SDS in detail along with the necessary
notation. As discussed in Section 3.3, our algorithm is based on the idea of reduction, which turns
the offline CGO problem into an standard offline RL problem in the augmented MDP. To this end,
we construct augmented datasets D̄dyn and D̄goal in Algorithm 1 as follows:

D̄dyn = {(xn, an, rn, x
′
n)|rn = 0, xn = (si, cj), x

′
n = (s′i, cj), an = ai, (si, ai, s

′
i) ∈ Ddyn, (·, cj) ∈ Dgoal}

D̄goal = {(xn, a
+, rn, x

+
n )|rn = 1, xn = (sn, cn), x

+
n = (s+, cn), (sn, cn) ∈ Dgoal}

For the analysis, we consider a simplified version of Algorithm 1 where we do not reuse the samples
in Ddyn. Specifically, for each sample (si, ai, s

′
i) ∈ Ddyn, we pair it with one sample (·, cj) ∈ Dgoal

and do not reuse the sample from Ddyn. This can be naively done by pairing observed transitions and
context-goal pairs in both datasets when |Dgoal| ≥ |Ddyn|. In the analysis, we will state our results
under this simplification.

With this construction, we have: D̄dyn ∼ µdyn(s, a, s
′)µgoal(c) and D̄goal ∼ µgoal(c, s)1(a =

a+)1(s′ = s+). With abuse of notation, we write µdyn(x, a, x
′) = µdyn(s, a, s

′)µgoal(c) and
µgoal(x, a, x

′) = µgoal(c, s)1(a = a+)1(s′ = s+). Note that, |D̄goal| = |Dgoal| and |D̄dyn| = |Ddyn|
as we are simply augmenting the observed states and actions without reusing samples. These two
datasets have the standard tuple format, so we can run offline RL on D̄dyn

⋃
D̄goal.

SDS +PSPI We consider the information theoretic version of PSPI (Xie et al., 2021) which can
be summarized as follows: For an MDP (X ,A, R, P, γ), given a tuple dataset D = {(x, a, r, x′)},
a policy class Π, and a value class F , it finds the policy through solving the two-player game:

max
π∈Π

min
f∈F

f(d0, π) s.t. ℓ(f, f ;π,D)− min
f ′∈F

ℓ(f ′, f ;π,D) ≤ ϵb (5)

where f(d0, π) = Ex0∼d0
[f(x0, π)], ℓ(f, f ′;π,D) := 1

|D|
∑

(x,a,r,x′)∈D(f(x, a)− r− f ′(x′, π))2.
The term ℓ(f, f ;π,D) − minf ′ ℓ(f ′, f ;π,D) in the constraint is an empirical estimation of the
Bellman error on f with respect to π on the data distribution µ, i.e. Ex,a∼µ[(f(x, a)−T πf(x, a))2].
It constrains the Bellman error to be small, since Ex,a∼µ[(Q

π(x, a)− T πQπ(x, a))2] = 0.

Below we show how to run PSPI to solve the augmented MDP with offline dataset D̄dyn
⋃
D̄goal.

To this end, we extend the policy class from Π to Π̄, and the value class from F to F̄G using the
function class G based on the extensions defined in Section 3.1. One natural attempt is to implement
equation 5 with the extended policy and value classes Π̄ and F̄ and D̄ = D̄dyn

⋃
D̄goal. This would

lead to the two player game:

max
π̄∈Π̄

min
f̄g∈F̄G

f̄g(d0, π̄) s.t. ℓ(f̄g, f̄g; π̄, D̄)− min
f̄ ′
g′∈F̄G

ℓ(f̄ ′
g′ , f̄g; π̄, D̄) ≤ ϵb (6)

However, equation 6 is not a well defined algorithm, because its usage of the extended policy π̄ in
the constraint requires knowledge of G, which is unknown to the agent.

Fortunately, we show that equation 6 can be slightly modified so that the implementation does not
actually require knowing G. Here we use a property (Proposition B.4) that the Bellman equation of
the augmented MDP:

Q̄π̄(x, a) = R̄(x, a) + γEx′∼P̄ (·|x,a)[Q̄
π(x′, π̄)]

= 0 + γEx′∼P̄ (·|x,a)[max(R(x′), Qπ(x′, π))]
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for x ∈ X and a ̸= a+, and Q̄π̄(x, a) = 1 for x ∈ G and a = a+.

We apply these two equalities to D̄dyn and D̄goal to construct our Bellman error estimates. Let
ϕ(Q̄π̄(x)) := max(R(x), Qπ(x, π)). We can rewrite the squared Bellman error on these two data
distributions using the Bellman backup defined on the augmented MDP (see eq.4) as below:

Ex,a∼µdyn [(Q̄
π̄(x, a)− T̄ π̄Q̄π̄(x, a))2] = Ex,a∼µdyn [(Q̄

π̄(x, a)− 0− γEx′∼P̄ (·|x,a)[ϕ(Q̄
π̄)(x′, π)])2]

(7)

Ex,a∼µgoal [(Q̄
π̄(x, a)− T̄ π̄Q̄π̄(x, a))2] = Ex,a∼µgoal [(Q̄

π̄(x, a+)− 1)2] (8)

We can construct an approximator f̄g(x, a) for Q̄π̄(x, a). Substituting the estimator f̄g(x, a) for
Q̄π̄(x, a) in the squared Bellman errors above and approximating them by finite samples, we derive
the empirical losses below.

ℓdyn(f̄g, f̄
′
g′ ; π̄) :=

1

|D̄dyn|
∑

(x,a,r,x′)∈D̄dyn

(f(x, a)− γmax(g′(x′), f ′(x′, π)))2 (9)

ℓgoal(f̄g) :=
1

|D̄goal|
∑

(x,a,r,x′)∈D̄goal

(g(x)− 1)2 (10)

where we use ϕ(f̄g)(x, a) = max(g(x), f(x, a)) and for x /∈ X+, f̄g(x, a) = f(x, a)1(a ̸=
a+) + g(x)1(a = a+).

Using this loss, we define the two-player game of PSPI for the augmented MDP:

max
π∈Π

min
f̄g∈F̄

f̄g(d0, π̄) (11)

s.t. ℓdyn(f̄g, f̄g; π̄)− min
f̄ ′
g′∈F̄

ℓdyn(f̄
′
g′ , f̄g; π̄) ≤ ϵdyn

ℓgoal(f̄g) ≤ 0

Notice f̄g(d0, π̄) = f(d0, π). Therefore, this problem can be solved using samples from D without
knowing G.

B.4 ANALYSIS

Covering number We first define the covering number on the function classes F , G, and Π13. For
F and G, we use the L∞ metric. We use N∞(F , ϵ) and N∞(G, ϵ) to denote the their ϵ-covering
numbers. For Π, we use the L∞-L1 metric, i.e., ∥π1−π2∥∞,1 := supx∈X ∥π1(·|s)−π2(·|s)∥1. We
use N∞,1(Π, ϵ) to denote its ϵ-covering number.

High-probability Events First, we show Q̄π̄ has small empirical errors.
Lemma B.7. With probability at least 1− δ, it holds for all π ∈ Π,

ℓdyn(Q̄
π̄, Q̄π̄; π̄)− min

f̄ ′
g′∈F̄

ℓdyn(f̄
′
g′ , Q̄π̄; π̄) ≤ ϵdyn

ℓgoal(Q̄
π̄) ≤ 0

where14

ϵdyn = O

 log
(
N∞

(
F , 1

|Ddyn|

)
N∞

(
G, 1

|Ddyn|

)
N∞,1

(
Π, 1

|Ddyn|

)
/δ
)

|Ddyn|


13For finite function classes, the resulting performance guarantee will depend on |F|, |G| and |Π| instead of

the covering numbers as stated in Theorem 3.5.
14Technically, we can remove N∞

(
G, 1

|Ddyn|

)
in the upper bound, but we include it here for a cleaner

presentation.
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Proof. Note Q̄π̄ = f̄g for some f ∈ F and g ∈ G (Proposition B.6) and

0 = Ex,a∼µdyn [(Q̄
π̄(x, a)− T̄ π̄Q̄π̄(x, a))2] = Ex,a∼µdyn [(Q̄

π̄(x, a)− 0− γEx′∼P̄ (·|x,a)[ϕ(Q̄
π̄)(x′, π)])2]

Following a similar proof of Theorem 8 of (Cheng et al., 2022), we can derive ϵdyn. On the other
hand, ℓgoal(f̄g) = 0 because the reward R(x) is deterministic.

Nest, we show that with high probability the empirical error can upper bound the population error.
Lemma B.8. For all f ∈ F , g ∈ G satisfying

ℓdyn(f̄g, f̄g; π̄)− min
f̄ ′
g′∈F̄

ℓdyn(f̄
′
g′ , f̄g; π̄) ≤ ϵdyn

ℓgoal(f̄g) ≤ 0

With probability at least 1− δ, for any f ∈ F ,g ∈ G∥∥f̄g(x, a)− γEx′∼P̄ (·|x,a)[max(g(x′), f(x′, π))]
∥∥
µdyn

≤ O
(√

ϵdyn
)

∥g(x)− 1∥µgoal
≤ O


√√√√ log

N∞

(
G, 1

|Dgoal|

)
δ

|Dgoal|

 =:
√
ϵgoal

Proof. This follows from Theorem 9 of (Cheng et al., 2022).

Pessimistic Estimate We show the empirical value estimate found in equation 11 is pessimistic.
Lemma B.9. Given π, let f̄π

g denote the minimizer in equation 11. With high probability,
f̄π
g (d0, π̄) ≤ Qπ(d0, π)

Proof. By Lemma B.7, we have f̄π
g (d0, π̄) ≤ Q̄π

R(d0, π̄) = Qπ(d0, π).

Next we bound the amount of underestimation.
Lemma B.10. Suppose x0 ∼ d0 is not in G almost surely. For any π ∈ Π,

Qπ(d0, π)− f̄π
g (d0, π̄)

≤ Eπ

[
T−1∑
t=0

γt (γmax(gπ(xt+1), f
π(xt+1, π))− fπ(xt, at)) + γT (R(xT )− gπ(xT ))

]
Note that in a trajectory xT ∈ G whereas xt /∈ G for t < T by definition of T .

Proof. Let f̄π
g = (fπ, gπ) be the empirical minimizer. By performance difference lemma, we can

write

(1− γ)Qπ(d0, π)− (1− γ)f̄π
g (d0, π̄)

= (1− γ)Q̄π(d0, π̄)− (1− γ)f̄π
g (d0, π̄)

= Ed̄π̄ [R̄(x, a) + γf̄π
g (x

′, π̄)− f̄π
g (x, a)]

where with abuse of notation we define d̄π̄(x, a, x′) := d̄π̄(x, a)P̄ (x′|x, a), where d̄π̄(x, a) is the
average state-action distribution of π̄ in the augmented MDP.

In the above expectation, for x ∈ G, we have a = a+ and x+ = (s+, c) after taking a+ at x = (s, c),
which leads to

R̄(x, a) + γf̄π
g (x

′, π̄)− f̄π
g (x, a) = R̄(x, a+) + γf̄π

g (x
+, π̄)− f̄π

g (x, a
+) = R(x)− gπ(x)

For x /∈ G and x /∈ X+, we have a ̸= a+ and x′ /∈ X+; therefore

R̄(x, a) + γf̄π
g (x

′, π̄)− f̄π
g (x, a) = R(x) + γf̄π

g (x
′, π̄)− fπ(x, a)

≤ γmax(gπ(x′), fπ(x′, π))− fπ(x, a)

18
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where the last step is because of the definition of f̄π
g . For x ∈ X+, we have x ∈ X+ and the reward

is zero, so

R̄(x, a) + γf̄π
g (x

′, π̄)− f̄π
g (x, a) = 0

Therefore, we can derive

(1− γ)Qπ(x0, π)− (1− γ)f̄π
g (x0, π̄)

≤ Ed̄π̄ [γmax(gπ(x′), fπ(x′, π))− fπ(x, a)|x /∈ G, x /∈ X+] + Ed̄π̄ [R(x)− gπ(x)|x ∈ G]

Finally, using Lemma B.2 we can have the final upper bound.

B.5 MAIN RESULT: PERFORMANCE BOUND

Let π† be the learned policy and let f̄π†

g be the learned function approximators. For any comparator
policy π, let f̄π

g = (fπ, gπ) be the estimator of π on the data. We have.

V π(d0)− V π†
(d0)

= Qπ(d0, π)−Qπ†
(d0, π

†)

= Qπ(d0, π)− f̄π†

g (d0, π̄
†) + f̄π†

g (d0, π̄
†)−Qπ†

(d0, π
†)

≤ Qπ(d0, π)− f̄π†

g (d0, π̄
†)

≤ Qπ(d0, π)− f̄π
g (d0, π̄)

≤ Eπ,P

[
T−1∑
t=0

γt(γmax(gπ(xt+1), f
π(xt+1, π))− fπ(xt, at)) + γT (R(xT )− gπ(xT ))

]

≤ Eπ,P

[
T−1∑
t=0

γt|γmax(gπ(xt+1), f
π(xt+1, π))− fπ(xt, at)|+ γT |R(xT )− gπ(xT )|

]
≤ Cdyn(π)Eµdyn [|γmax(gπ(x′), fπ(x′, π))− fπ(x, a)|] + Cgoal(π)Eµgoal [|g(x)− 1|]
≤ Cdyn(π)

√
ϵdyn ++Cgoal(π)

√
ϵgoal

where Cdyn(π) and Cgoal(π) are the concentrability coefficients defined in Definition 3.4.

Theorem B.11. Let π† denote the learned policy of SDS + PSPI with datasets Ddyn and Dgoal,
using value function classes F = {X × A → [0, 1]} and G = {X → [0, 1]}. Under realizability
and completeness assumptions as stated in Assumption 3.2 and Assumption 3.3 respectively, with
probability 1− δ, it holds, for any π ∈ Π,

J(π)− J(π†) ≤ Cdyn(π)
√
ϵdyn + Cgoal(π)

√
ϵgoal

where

ϵdyn = O

 log
(
N∞

(
F , 1

|Ddyn|

)
N∞

(
G, 1

|Ddyn|

)
N∞,1

(
Π, 1

|Ddyn|

)
/δ
)

|Ddyn|

 ,

and,

ϵgoal = O

 log
(
N∞

(
G, 1

|Dgoal|

)
/δ
)

|Dgoal|


are statistical errors, and Cdyn(π) and Cgoal(π) are concentrability coefficients which decrease as
the data coverage increases.
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C EXPERIMENTAL DETAILS

C.1 HYPERPARAMETERS AND EXPERIMENTAL SETTINGS

IQL. For IQL, we keep the hyperparameter of γ = 0.99, τ = 0.9, β = 10.0, and α = 0.005
in Kostrikov et al. (2021), and tune other hyperparameters on the antmaze-medium-play-v2 envi-
ronment and choose batch size = 1024 from candidate choices {256, 512, 1024, 2046}, learning rate
= 10−4 from candidate choices {5 · 10−5, 10−4, 3 · 10−4} and 3 layer MLP with RuLU activating
and 256 hidden units for all networks. We use the same set of IQL hyperparameters for both our
methods and all the baseline methods included in Section 4.2, and apply it to all environments.

RP. For naive reward prediction, we use the full context-goal dataset as positive data, and train
a reward model with 3-layer MLP and ReLU activations, learning rate = 10−4, batch size = 1024,
and training for 100 epochs for convergence. To label the transition dataset, we need to find some
appropriate threshold to label states predicted as goals given contexts. We choose the percentile as
5% in the reward distribution evaluated by the context-goal set as the threshold to label goals in the
antmaze-medium-play-v2 environment, from candidate choices {0%, 5%, 10%}. Then we apply it
to all environments. Another trick we apply for the reward prediction is that instead of predicting 0
for the context-goal dataset, we let it predict 1 but shift the reward prediction by -1 during reward
evaluation, which prevents the model from learning all 0 weights. Similar tricks are also used in
other reward learning baselines.

UDS+RP. We use the same structure and training procedure for the reward model as RP, except
that we also randomly sample a minibatch of “negative” contextual transitions with the same batch
size for a balanced distribution, which is constructed by randomly sampling combinations of a state
in the trajectory-only dataset and a context from the context-goal dataset. To create a balanced
distribution of positive and negative samples, we sample from each dataset with equal probability.
For the threshold, we choose the percentile as 5% in the reward distribution evaluated by the context-
goal set as the threshold to label goals in the antmaze-medium-play-v2 environment, from candidate
choices {0%, 5%, 10%}. Then we apply it to all environments.

PDS. We use the same structure and training procedure for the reward model as RP, except that we
train an ensemble of 10 networks as in Hu et al. (2023). To select the threshold percentile and the
pessimistic weight k, we choose the percentile as 15% in the reward distribution evaluated by the
context-goal set as the threshold to label goals from candidate choices {0%, 5%, 10%, 15%, 20%},
and k = 15 from the candidate choices {5,10,15,20} in the antmaze-medium-play-v2 environment.
Then we apply them to all environments.

SDS (ours). We do not require extra parameters other than the possibility of sampling from the
real and fake transitions. Intuitively, we should sample from both datasets with the same probability
to create an overall balanced distribution. Empirically, we also find that the balance distribution
generates the best result.

C.2 REWARD MODEL EVALUATION

For reward learning baselines, we evaluate the learned reward model: we construct the positive
dataset from context-goal examples, and the negative dataset from the combination of the context
set and all states in the trajectory-only data, using the oracle context-goal function defined in the
environment to filter out positive ones. We then evaluate the predicted reward on both positive and
negative datasets, generating boxplots to visualize the distributions of the predicted reward for both
datasets. The purpose of the reward model evaluation is to showcase whether the learned reward
function can successfully capture context-goal relationships.

D MORE REWARD MODEL EVALUATIONS

Here we present boxplots for reward models with experimental setups in Section 4.3, 4.4 and 4.5.
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(a) PDS (b) UDS+RP (c) RP

Figure 3: Reward model evaluation for the medium-diverse environment in Section 4.3. Green dots
are outliers.

(a) PDS (b) UDS+RP (c) RP

Figure 4: Reward model evaluation for the umaze-diverse environment in Section 4.3. Green dots
are outliers.

(a) Large, PDS (b) Large, UDS+RP (c) Medium, PDS (d) Medium, UDS+RP

Figure 5: Reward model evaluation for Four Rooms in Section 4.4. Green dots are outliers.

(a) Large, PDS (b) Large, UDS+RP (c) Medium, PDS (d) Medium, UDS+RP

Figure 6: Reward evaluation for Random Cells in Section 4.5 (the test context distribution is the
same as training). Green dots are outliers.
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