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Abstract

Federated learning promises significant sample-efficiency gains by pooling
data across multiple agents, yet incentive misalignment is an obstacle: each
update is costly to the contributor but boosts every participant. We in-
troduce a game-theoretic framework that captures heterogeneous data: an
agent’s utility depends on who supplies each sample, not just how many.
Agents aim to meet a PAC-style accuracy threshold at minimal personal
cost. We show that uncoordinated play yields pathologies: pure equilib-
ria may not exist, and the best equilibrium can be arbitrarily more costly
than cooperation. To steer collaboration, we analyze the cost-minimizing
contribution vector, prove that computing it is NP-hard, and derive a
polynomial-time linear program that achieves a logarithmic approximation.
Finally, pairing the LP with a simple pay-what-you-contribute rule—each
agent receives a payment equal to its sample cost—yields a mechanism
that is strategy-proof and, within the class of contribution-based transfers,
is unique.

1 Introduction

Federated learning (FL) is a collaborative training framework in which multiple agents—each
holding a distinct dataset—jointly optimize a global model while keeping data local. Col-
laboration allows agents to tap into information spread across heterogeneous records—for
example, a network of hospitals pooling imaging data from distinct patient demographics
to detect rare conditions sooner. Although each agent could independently train a model,
collaboration offers higher accuracy or comparable performance with significantly fewer ex-
amples (Blum et al., 2017), enhancing both individual and federation-wide welfare.

However, realizing these gains hinges on incentives. Contributing model updates incurs costs
in compute, bandwidth, curation effort, and privacy risk, while the global model produced
by collective learning is a non-excludable public good: once trained, every agent benefits
from its accuracy regardless of individual effort. This asymmetry invites a classic free-rider
dilemma (Yang et al., 2015; Ahmed & Choi, 2023; Karimireddy et al., 2022): as one agent’s
data lifts others’ accuracy while the contributor alone incurs the cost, each participant is
tempted to trim its share once its own target is met. The resulting free-riding slows training
and can ultimately exhaust the data pool that makes FL viable.

Consequently, federated learning can be viewed as a strategic game: each agent picks a
contribution level to maximize a private utility that trades its own labeling cost against the
benefit of the joint model. Existing models of incentives in federated learning either assume
each agent’s utility depends on the local labeled data distributions of all agents (Blum et al.,
2021), or treat agents as homogeneous, which crucially implies that data are exchangeable
and each agent’s utility depends solely on the total amount of data contributed across all
agents (Karimireddy et al., 2022; Murhekar et al., 2024).

However, in typical federated learning scenarios, agents face heterogeneous data distributions
and are primarily interested in improving performance on their own local distribution. This
phenomenon—local data typically yielding greater marginal utility for local performance
than data from other agents—has been well documented in the personalization and domain
adaptation literature (Ben-David et al., 2006; Bhunia et al., 2021; Hsu et al., 2019), and
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Figure 1: An agent’s expected loss falls as a larger share of a fixed training set comes from
their own distribution. With a budget of m data points, we sample λm from Agent 1 and
(1−λ)m from Agent 2 on FEMNIST (Caldas et al., 2018), train a classifier, and repeat 100
times. For each m, Agent 1’s loss decreases monotonically in λ, confirming that data are
not exchangeable—utilities depend on who contributes. Full details in Appendix A.1.

we empirically confirm that it is present in federated learning, as shown in Figure 1. We
therefore model utilities that depend on who supplies each sample, not just how many.

In this work we ask: how can incentives be aligned in this heterogeneous game? We adopt
a PAC accuracy objective—each agent wants their test error below ε with confidence 1 −
δ—and study the game induced by this objective. Left on their own, agents settle into a
contribution equilibrium that can be inefficient: some agents free-ride, others overspend,
and total cost can explode relative to full cooperation. The central challenge is therefore to
design contribution and transfer rules that coax self-interested, heterogeneously distributed
agents into pooling enough data so that each meets its own accuracy target on its own
distribution, while keeping the federation’s total cost near minimal.

Our Results. Section 2 builds a data-heterogeneous FL game with PAC thresholds: an
agent’s utility depends on who supplies the samples, not just how many. Section 3 shows
that decentralized play can fail badly—pure Nash equilibria may not exist and, when they
do, their total cost can exceed the cooperative optimum by an unbounded factor (Price of
Stability → ∞). Motivated by this gap, Section 4 assumes a planner with full information
and full control. We prove that computing the cost-minimizing contribution vector is NP-
hard (Theorem 2). Nonetheless, the PAC constraints admit a linear program (LP) whose
cost is within a logarithmic factor of the optimum (Theorem 3); we use this LP allocation as
the foundation of the mechanism design that follows. Section 5 drops the full-information
assumption: agents now report private distributions. Pairing the LP allocation with a
simple pay-what-you-contribute rule—each agent receives a payment equal to its sample
cost—yields a mechanism that is strategyproof, and we derive conditions under which it
uniquely satisfies these properties. Finally, while our main contributions are theoretical, we
complement them with empirical validation and illustrative simulations in Appendix A that
demonstrate the practical relevance of our assumptions and algorithms.

Related Work. Early work in FL centered on communication-efficient optimization and
fairness under fully cooperative, i.i.d. or average-loss assumptions, with no pricing of data
or modeling of strategic behavior. For instance, FedAvg optimizes average loss, while Ag-
nostic FL and q-FFL reweight loss for worst-case or fairness gains, all assuming truthful
reports (McMahan et al., 2017; Mohri et al., 2019; Li et al., 2020). Blum et al. (2017) intro-
duced a collaborative PAC model and showed that pooling across k heterogeneous tasks cuts
sample complexity by Õ(log k), but participation is mandatory and incentives are ignored.

Subsequent work introduced incentives but frequently assumed that agents’ data are ex-
changeable, so that model accuracy depends only on the total sample count contributed
across all participants. Under this framework, various incentive strategies—such as transfer
payments or reputational rewards—have been proposed to combat free-riding. For example,
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Karimireddy et al. (2022) tie each agent’s model quality to its data contribution (no external
payments), whereas Murhekar et al. (2024) design budget-balanced monetary transfers that
implement welfare-maximizing equilibria; and (Lin et al., 2019; Kang et al., 2019; Sarikaya
& Ercetin, 2019; Ding et al., 2020; Fraboni et al., 2021) rely on reputation mechanisms and
credit sharing. These designs treat data as interchangeable: model quality depends solely
on the total sample count, so the marginal value of each sample ignores who provides it,
overlooking realistic heterogeneity across data distributions.

A separate line of work studies heterogeneous data, aiming to capture how collaboration
might form among agents with distinct interests. Donahue & Kleinberg (2021), and Hasan
(2021) analyze coalition and Nash stability in model-sharing games and show that agents
split into sub-coalitions when a global model biases some distributions. Blum et al. (2021)
further show that in a personalized PAC game with distribution-specific payoffs, pure Nash
equilibria may not exist, and when they do, they can be arbitrarily inefficient, underscoring
the fragility of cooperation absent incentives. These game-theoretic models emphasize that
heterogeneity can severely complicate collaboration: individual incentives may fail to align
with socially optimal pooling of data. Our work extends these papers by introducing a
concrete utility model based on PAC-style threshold guarantees where each agent requires
that the global model meet a distribution-specific accuracy threshold with high confidence.

Recent studies tackle truthfulness under heterogeneity: peer-prediction payments (Pang
et al., 2022), budget-balanced truthful gradient schemes (Chakarov et al., 2024), and an
optimal truthful mechanism for data sharing with interdependent valuations (Chen et al.,
2022); yet none compute minimum-cost allocations that meet each agent’s welfare target.

2 Model

2.1 Setup and Learning Protocol

We now make the collaborative game precise. Each agent selects how many examples
to contribute; the federation pools these examples, trains a model, and each agent then
evaluates the model on its own data distribution.
Agents and data. Consider k agents A = {1, . . . , k} who wish to jointly learn a shared
predictor but individually decide how much data to contribute. Let X denote the instance
space and Y the label space. A hypothesis is a function h : X → Y mapping instances to
predicted labels. Fix a hypothesis class H with VC dimension d, and assume agents seek to
approximate an unknown target function h⋆ ∈ H. Each agent i ∈ A has access to a local
marginal data distribution Di over X and can query labels for any data point drawn from
this distribution. The collaborative learning process involves two stages:
Stage 1 – Sample Collection. Each agent i chooses a contribution level mi ∈ N, draws
an i.i.d. unlabeled dataset Ui ∼ Dmi

i , and queries the true labels of these samples, which
are determined by the target function h⋆. The labeled sets are pooled into a dataset

S =
⋃
i∈A

{
(x, h⋆(x)) | x ∈ Ui

}
.

Denote by P(D,m, h⋆) the distribution of this dataset, which is determined by the marginal
data distributions D = (D1, . . . ,Dk), the contribution profile m = (m1, . . . ,mk), and h⋆.
Stage 2 – Model Training. A central server trains a model using Empirical Risk Mini-
mization (ERM) method:

ERM(S) = {h ∈ H | errS(h) = min
h′∈H

errS(h′)},

where errS(h) is the empirical error of hypothesis h on dataset S. For any hypothesis h,
marginal data distribution D, and target function h⋆, the generalization error is defined as

errD,h⋆(h) = Px∼D (h(x) ̸= h⋆(x)) .

Given a labeled training set S, we define the generalization error of running ERM over S
relative to (D, h⋆) as:

errERM
D,h⋆ (S) = max

h∈ERM(S)
errD,h⋆(h), (1)
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to reflect the generalization performance of an empirically optimal hypothesis under distri-
bution D with labeling function h⋆. That is, if the ERM returns multiple minimizers, we
take the worst generalization error, ensuring every bound holds under arbitrary tie-breaking.

Stages 1 and 2 define our collaborative game. Each agent i chooses an integer contribution
level mi. The server draws mi i.i.d. samples from Di for each agent, pools the labeled data
into S, and trains a single global ERM predictor ĥ(S) over H. The next subsection specifies
the payoffs from this global model and the cost of contributing data.

2.2 PAC Accuracy Objective

Each player ultimately wants a model whose test error on its own distribution is low; if
collaboration fails, the fallback is to train alone. We focus on a single, widely-used perfor-
mance criterion to formalize this goal: a Probably Approximately Correct (PAC) accuracy
threshold.1 In standard realizable PAC learning, an agent wants—with probability at least
(1 − δ)—to keep its generalization error below a tolerance ε.2 Here we adapt that notion
to our federated setting, where (1) the learner uses ERM on the pooled samples and (2)
each agent i draws from its own fixed marginal distribution Di. We then define the PAC
accuracy objective as follows: agent i requires that, for every target hypothesis h⋆ ∈ H,

Pr
S∼P(D,m,h⋆)

[
errERM

Di,h⋆(S) ≤ ε
]

≥ 1− δ. (2)

We use aε,δi (m) to denote a binary variable that is 1 if Equation 2 is satisfied, and 0
otherwise; we refer to this as agent i’s (ε, δ)-requirement or target.

Cost of Contributions. Contributing data incurs costs. Computation, and privacy risk
all translate into a per-sample monetary burden. We capture this with a linear cost: when
agent i supplies mi samples, it pays cimi, where ci > 0 denotes the cost per sample. The
parameter ci can reflect labeling fees, extra compute, or other participation overhead.

Utility Functions. Each agent balances the model’s benefit against the data cost. We
normalize monetary units so that achieving the PAC goal is worth exactly one unit of payoff,
yielding a simplified expression for utility:

ui(m) = aε,δi (m)− cimi.
3 (3)

To ensure every agent’s goal is attainable and worth pursuing, we assume self-sufficiency:
every agent could, in the worst case, meet its own accuracy requirement by training on
its own data alone. Concretely, let nind

i denote the smallest number of samples that agent
i would need to label by itself (with no contributions from others) to satisfy the (ε, δ)-
requirement on Di. Under PAC accuracy, for all marginal distributions, it holds that

nind
i ≤ O

(
d+ln(1/δ)

ε

)
,

where d = VCdim(H), the VC dimension of H.

Assumption 1. ci n
ind
i < 1, for every i.

This self-sufficiency implies that failing to meet the accuracy threshold results in strictly
lower utility than meeting it (since an agent can always fall back on solo training to obtain
the benefit, albeit at potentially high cost).

1Other metrics, such as expected error, can be treated analogously; see Section 6.
2The heterogeneous (different εi for each agent) case is analogous, as we discuss in Section 6;

we present the common-ε case for clarity.
3For more discussion about the applicability of these payoffs to real-world settings, see the

discussion in Appendix B.
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Social Cost Optimization. A central planner seeks to maximize utilitarian social wel-
fare, namely

∑
i∈A ui(m). Under Assumption 1, this welfare objective coincides with

minimizing the aggregate labeling cost subject to the same PAC constraints. Thus, from a
global standpoint, the problem is to find the contribution profile that lets every agent meet
its accuracy target at the lowest possible total cost.

min
m

c⊤m (4)

s.t. aε,δi (m) = 1 ∀ i ∈ A.

Here c⊤m is the federation’s total labeling cost, and the constraint is the PAC guarantee
of Equation 2: for every agent i and every target hypothesis h⋆, the ERM model must, with
probability at least 1 − δ, achieve error at most ε on Di. The planner therefore seeks the
cheapest contribution profile that satisfies all agents’ (ε, δ)-requirements simultaneously.

Warm-Up Example. Consider a single agent whose marginal distribution is uniform
over the n distinct points x1, . . . , xn ⊂ X and a hypothesis class that contains every possible
labeling of those points. When ε < 1/n, satisfying the PAC accuracy threshold below ε with
probability at least 1− δ requires drawing enough samples (with replacement) so that every
point appears at least once. With k > 1 agents, we can see how collaboration can improve
sample complexity: consider k agents whose distribution places most of its probability mass
on a different point xi, while still assigning every other point probability at least ε. By
pooling data, agents supply one another with examples they rarely see, allowing each to
collect fewer local samples while the group still satisfies the PAC threshold.

3 The Inefficiency of Equilibria

With the cooperative optimum in hand (Equation 4), we now analyze the uncoordinated
game in which each agent strategically chooses its sample size. We quantify the cost gap
between equilibrium behavior and the social optimum and show that a Nash equilibrium
(NE) can be arbitrarily more costly. This gap motivates central coordination, which we
develop next, and it serves as the conceptual starting point for the rest of the paper.

A contribution profile m is a NE if no agent can raise its utility by unilaterally changing
its sample count. Since each agent can always fall back to its self-sufficient plan nind

i , an
equilibrium exists only when every accuracy threshold is met; otherwise the under-served
agent would deviate to (nind

i ,m−i) to raise its utility. Thus, at equilibrium no agent wants
to cut its contribution below the threshold or add extra samples.

It is straightforward to show that pure NE may not exist in our framework (Theorem 6),
whereas mixed NE always exists (Theorem 5). Even when a pure equilibrium exists, it can
be highly inefficient. To illustrate this, consider a simple two-player setting. Let the instance
space be X = {xA, xB}. Two players, Alice and Bob, each place most of their probability
mass on a different point: for a small ε ∈ (0, 1

4 ),

DAlice(xA) = 1− 2ε, DAlice(xB) = 2ε,

DBob(xA) = 2ε, DBob(xB) = 1− 2ε.

Under the PAC objective, each agent requires that both points be correctly classified with
high probability. If Alice and Bob each contribute one labeled example, then with probability
(1 − 2ε)2 Alice draws xA while Bob draws xB . Thus (mAlice,mBob) = (1, 1) meets both
thresholds at total cost cAlice+ cBob = Θ(1) and is optimal. If one free-rides, the other must
keep sampling until seeing both points, requiring Ω(1/ε) samples. Since neither player can
unilaterally lower this cost, this profile is an NE with a cost of Ω(1/ε).

This example shows that some equilibria can be much costlier than the social optimum even
though a cost-minimal equilibrium exists. How large can the best equilibrium’s cost be? We
formalize it with the Price of Stability (PoS) (Anshelevich et al., 2008): the ratio of total
samples in the least-cost equilibrium to those in the planner’s optimum. PoS captures the
cost of decentralization. Even the best self-enforcing outcome can require far more samples
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than the cooperative minimum. In the following, we show that PoS can be arbitrarily large:

Theorem 1 (PoS is unbounded). For any ε ∈ (0, 1) there exists a sequence of instances of
our problem in which the ratio of the best NE to the optimal solution approaches Ω

(
log(1/ε)

)
.

4 Central Coordination with Full Information

The unbounded price of stability in Section 3 shows that self-directed contribution games
may squander resources. A natural fix is to appoint a central planner, such as a regulator
or platform operator, who can dictate how many labeled examples each agent contributes.
Before addressing strategic issues, we begin with the technical question of whether the
planner can compute the cost-minimizing contribution vector efficiently. In this section we
show that the problem is NP-hard (Theorem 2), yet it admits an efficient approximation via
an LP with logarithmic-type guarantees (Theorem 3). The next section returns to strategy
under coordination and builds on this to design payments that align incentives.

To isolate the computational question and remove strategic frictions for now, in this section
we grant the planner two powers. First, it has full information—it observes every marginal
distribution Di and each per-sample cost ci. Second, it has complete control—if an agent
opts in, the planner can compel it to supply the prescribed number of samples mi. These
assumptions fit cases where data statistics are public—e.g., hospital demographics or pub-
lished mobile-traffic summaries—and participation is contractual. With strategic frictions
removed, the task is now purely computational: who should collect how many samples? We
tackle that question here and relax the full-information assumption in Section 5.

4.1 Collaborative PAC Sample-Allocation Problem

Given a contribution vector m, let S be the pooled sample obtained by drawing mi points
independently from each Di. We call m feasible if, with probability at least 1−δ, every ERM
hypothesis trained on S has error at most ε on every Di. The planner specifies only the draw
counts from each distribution. Under these full-information assumptions, the task reduces
to Equation 4. Our first question is thus computational: is this optimization tractable? We
answer in the negative. The result below shows NP-hardness in |H| even with a single agent.
The full proof is in Appendix D.1.
Theorem 2. Under the PAC-accuracy objective, determining whether a specified sample
count m suffices to meet the (ε, δ)-requirement is NP-hard with respect to the hypothesis-
class size |H|, even when there is only one agent.

4.2 Approximation via Linear Programming

Despite this hardness barrier, the structure of the PAC constraints admits an efficient relax-
ation. Solving this LP takes polynomial time and returns a contribution vector whose total
cost is within a logarithmic factor of the optimum. More specifically, for a finite class H,
our task is to find a vector of sample counts m = (mi)i∈A that—with probability at least
1− δ—forces ERM to discard every hypothesis h that is bad for some agent:

∃ i ∈ A : Di

(
{x : h(x) ̸= h⋆(x) }

)
≥ ε.

For any ordered pair (h1, h2) satisfying this condition, the probability that no sample lands
in the set {x : h1(x) ̸= h2(x)} is

∏
i∈A

(
1−Di({h1 ̸= h2})

)mi
, which is log-linear in m. We

can therefore convert Equation 4 into an LP with polynomially many constraints, which can
be solved efficiently. As an empirical check, Appendix A.2 validates this LP allocation on a
finite hypothesis class by comparing to the true optimum

∑
i m

⋆
i across varying |H|.

For infinite H, we provide an approximate solution by solving the LP over a finite cover
H ⊂ H, whose size is polynomial in 1

ε and 1
δ when the VC dimension d = VCdim(H) is

bounded. While the resulting solution ensures PAC constraints are satisfied for H, it may
not suffice for the full class H, as there may exist a hypothesis h ∈ H \H that is consistent
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but still incurs high error. Nevertheless, we show that scaling the solution by a factor of
roughly d suffices to ensure the PAC objective is met for all of H.

Theorem 3 (Approximation via Linear Programming). Given any H and ε, δ > 0:

• For finite H, the LP over (H, ε, δ) returns a log(1/δ)+log |H|
log(1/δ) -approximate solution to

Equation 4.

• For infinite H, running the LP over (H, ε, δ′) and multiplying it by d + log(1/δ′′)

returns a O(d
2(log(cmaxkd/(cminεδ))

2

log(1/δ) )-approximate solution to Equation 4, where H ⊂
H is a γ-cover of H, γ = Θ

(
cminεδ/(cmaxk(d + log(1/δ)))

)
, d = VCdim(H), δ′′ =

δ
4|H| and δ′ = δ

8(d+log(2|H|/δ)) , cmin = mini∈[k] ci and cmax = maxi∈[k] ci.

5 Mechanism Design with Approximate Solutions

In Section 4 we studied the planner’s computational problem under full information and
control. Here we keep prescriptive control but drop full information and reintroduce strategy
under coordination. In the uncoordinated game of Section 3 agents act by choosing their
own sample sizes. With the planner fixing sample counts, agents can only influence outcomes
by misreporting their local distributions, which shifts the LP constraints from Section 4,4
and thus the computed contribution vector.5 Building on that LP, in this section, we design
a mechanism that is strategyproof and unique within a broad contribution-based class,
blocking this manipulation and addressing the inefficiency in Section 3. Together, these
results highlight the contrast between uncoordinated and coordinated settings.

Specifically, we now regard the agents’ local marginal data distributions as private informa-
tion that must be reported to the mechanism. To alleviate the resulting incentive issues,
we allow payments to the agents. The sequence of events, therefore, is as follows:

1. Agents report their local marginal data distributions, Dr = (Dr
1, . . . ,Dr

k).
2. The central planner computes a solution m based on the reported distributions Dr.
3. Agents contribute according to m.
4. The central planner pays each agent i an amount pi.

We make the standard assumption that agent utilities are quasi-linear, that is, the utility
of agent i for contribution vector m and payment pi (from the mechanism to the agent)
is ui(m) + pi. We say that a mechanism (which computes agent contributions and pay-
ments) is strategyproof if an agent can never benefit from misreporting their local marginal
distribution; in game-theoretic terms, it is a dominant strategy to report Dr

i = Di.

The challenge now is twofold: computation and incentives. In other words, the question
is this: How can we tractably compute contributions and payments such that the resulting
mechanism is strategyproof?

5.1 The Pay-What-You-Contribute Mechanism

In our model, the answer to the foregoing question is surprisingly immediate. To compute
the contribution vector m, we use the approximation algorithm of Theorem 3. For payments,
we use the simple pay-what-you-contribute (PWYC) scheme, that is, compensate each agent

4The information that agents must provide to the server is finite and explicit. Our LP needs,
for each pair h1, h2 ∈ H, the probability that agent i’s data lie in the disagreement set {x : h1(x) ̸=
h2(x)}. If H is finite, this is a vector with at most |H|2 entries. If H is infinite, Appendix D.2
replaces H with a finite γ-cover whose size is polynomial in d = VCdim(H). Agents then report
disagreement masses only for pairs in the cover, so the information burden remains finite and
explicit.

5Enforcing prescribed contributions without accessing raw data raises a verification challenge.
Practical approaches include cryptographic proofs and auditable contribution records (Ma et al.,
2024; Kumar et al., 2025).
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for its contribution, up to a constant:

pi(m) = ci ·mi + Ci , (5)

for constants C1, . . . , Ck.

Why is PWYC strategyproof? The utility of agent i when reporting truthfully is

ui(m) = aε,δi (m)− ci ·mi + ci ·mi + Ci = 1 + Ci,

as its learning threshold is satisfied by the contribution vector m computed by the approx-
imation algorithm. Note that this is the maximum possible utility under this mechanism:
for any m′, the utility of agent i is either 1 + Ci or Ci, depending on whether its learning
threshold is satisfied by m′.

5.2 Alternatives to Pay What You Contribute?

While the PWYC mechanism is strategyproof, one may wonder whether it is possible to
design more sophisticated mechanisms with the goal of, for example, minimizing payments.
A natural candidate is the classic Vickrey-Clarke-Groves (VCG) mechanism, which in our
setting computes the optimal solution mOPT, asks agents to contribute according to mOPT,
and then pays each agent i

pi =
∑
j ̸=i

uj(m
OPT) + qi(D−i) = k − 1−

∑
j ̸=i

cj ·mOPT
j + qi(Dr

−i) , (6)

where qi(D−i) is a term independent of the report Di of agent i. By standard argu-
ments (Nisan, 2007), the VCG mechanism ensures that each agent reports truthfully.

An obstacle to using VCG directly is that computing the optimal contribution vector is
computationally hard (Theorem 2). In the algorithmic mechanism design (Nisan & Ronen,
2001) literature, however, there are various mechanisms that overcome computational hard-
ness by augmenting approximation algorithms with clever payment schemes, including ones
inspired by VCG (Lehmann et al., 2022; Dobzinski, 2007). Is there such a rich mechanism
design space in our setting? We give a partial negative answer to this question, showing
that the PWYC mechanism is, in a qualified sense, unique.6

We start by defining a class of approximate algorithms and a class of “easy-to-compute”
payment rules. We first introduce a local obliviousness property of contribution solutions,
which helps distinguish approximate solutions from exact optima.
Definition 1 (Locally Oblivious Approximations). Given an approximation algorithm
APPROX and a solution m, we say that the algorithm is locally oblivious at m if, for
any neighbor m′ with ∥m′ − m∥1 = 1, there exist distributions D = (D1, . . . ,Dk) and
D′ = (D′

1, . . . ,D′
k) such that:

• m = APPROX(D) and m′ = APPROX(D′
i,D−i) for all i ∈ [k],

• Both m and m′ are feasible for D and for each (D′
i,D−i), for all i ∈ [k].

Local obliviousness highlights a key difference between approximate solutions and exact
optima. Intuitively, it reflects a certain slack in approximation: for any solution m and any
neighbor, we can construct pairs of distribution vectors where the approximation algorithm
outputs m and its neighbor respectively, and both solutions remain feasible across all these
instances. For example, we show that the approximation algorithm introduced in Theorem 3
is locally oblivious at all m satisfying m1,m2 ≥ 2|H| log |H| in the two-agent setting.
Lemma 1. For any H greater than a universal constant C, there exists a PAC learning
instance of (H, ε, δ) in the two-agent setting with |H| = H such that the approximation
algorithm introduced in Theorem 3 is oblivious at all m with m1,m2 ≥ 2|H| log |H|.

6This uniqueness is unfortunate, since a budget-balanced mechanism would be preferable. Even
in standard mechanism design settings, particularly the celebrated VCG mechanism, exact budget
balance is generally impossible, so the planner must make net payments to align incentives. Still,
PWYC need not put all costs on the planner. By choosing constants Ci in Equation 5, the planner
can recover part of the cost while preserving strategyproofness.
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In general, a payment mechanism maps the reported distributions Dr to a payment vector p.
However, it is often unclear how to effectively utilize the reported distributions directly. To
address this, we consider a class of mechanisms that are easy to compute in practice—those
that depend on the distributions only through the resulting contribution solution m.
Definition 2 (Contribution-Based Mechanisms). Given an algorithm APPROX, a payment
mechanism p is contribution-based if there exists f : Nk → Rk and q such that

pi(Dr) = fi
(
APPROX(Dr)

)
+ qi(Dr

−i) ,

Thus agent i’s own report affects pi only via the computed contribution vector.

We now show that PWYC is the only strategyproof contribution-based payment mechanism
when approximate solutions are used for two agents (see proof in Appendix E):
Theorem 4. For any strategyproof contribution-based payment mechanism f , approximation
algorithm APPROX, and connected M ⊂ Nk, if APPROX is oblivious at all m ∈ M , there
exist constants C1, C2 such that for all m ∈ M :

fi(m) = ci ·mi + Ci ,∀i = 1, 2,

Corollary 1. For any H greater than a universal constant C, there exists a PAC learning
instance of (H, ε, δ) in the two-agent setting with |H| = H such that when applying the
approximation algorithm introduced in Theorem 3 to compute the contribution solution, the
strategyproof contribution-based payment f must satisfy

fi(m) = ci ·mi + Ci ,∀i = 1, 2,

for all m with m1,m2 ≥ 2|H| log |H| for some constants C1, C2.

Corollary 1 follows by combining Theorem 4 with Lemma 1. Appendix F extends the same
approximation to a broader class of objectives.

6 Discussion

We conclude by discussing the implications of our results, examining key modeling assump-
tions, and outlining connections to broader theory.

Beyond the PAC accuracy objective. The (ε, δ)-guarantee controls the tail : with
probability at least 1 − δ the generalization error does not exceed ε. A complementary
member of the same threshold family bounds the expected error by ε, trading worst-case
assurance for an average-case criterion that may better reflect practical risk tolerance. Most
of our analysis carries over unchanged: Appendix F.1 develops approximation schemes for
computing optimal contribution vectors under expected error, and Appendix F.2 proves
that these solutions continue to satisfy the local obliviousness property.

Taking a broader view of utilities, we focus on threshold payoffs. With quasi-linear utility,
maximizing utility equals minimizing cost subject to the threshold. This replaces the in-
tractable dependence of each agent’s loss on its contribution with a tractable optimization.
Future work can explore richer models that trade off cost and payoff more flexibly.

Common accuracy threshold. For clarity, we assume a common accuracy target ε
across agents. This simplifying assumption streamlines notation and highlights the struc-
tural properties of the contribution game. However, our results do not rely on uniformity.
Each agent’s objective can be parameterized by a distinct εi, and all definitions, equilibrium
analyses, and approximation guarantees extend naturally to this heterogeneous setting.

Linear costs. Linear per-sample costs simplify analysis and are common in the literature,
but they can be restrictive and not strictly necessary. Permitting any convex, non-decreasing
cost function captures realistic scenarios with increasing marginal cost—for instance, later
data points may be more expensive to collect. The strategic conclusions are unchanged: a
NE still exists and pure equilibria need not. Meanwhile, the linear program in our approx-
imation algorithm becomes a convex program that remains tractable. Thus, the incentive
mechanism we derive continues to work even when agents’ data-generation costs rise with
effort, at the price of solving slightly more involved convex optimizations.
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A Empirical Validation and Illustrative Simulations

Overview. Our main contributions are theoretical. This appendix complements them
with two empirical studies that illustrate the modeling assumptions and the practical signif-
icance of the planner and mechanism. First, we show that data are not exchangeable, since
an agent benefits more from data drawn from its own distribution. Second, we validate the
planner’s LP allocation on a finite hypothesis class by comparing its total cost to the true
optimum found by search.

Dataset Selection and Motivation. We build on the LEAF benchmark (Caldas et al.,
2018), which provides realistic federated datasets naturally partitioned by user. We selected
two datasets, FEMNIST and Shakespeare, to cover both vision and textual tasks. These
specific datasets were chosen because they have the highest average number of datapoints per
user among the LEAF collection (Caldas et al., 2018). FEMNIST, built on Extended MNIST
(LeCun, 1998; Cohen et al., 2017), consists of handwritten character images partitioned
by writer. Shakespeare is constructed from The Complete Works of William Shakespeare
(Shakespeare et al., 1989; McMahan et al., 2017), partitioned by speaking role, with each
role in each play treated as a distinct agent.

Dataset Construction. We construct two-agent subsets from each dataset by selecting
the two users with the most data points. For FEMNIST, these are writers f0261_06 and
f0289_10, jointly contributing 1, 047 samples. For Shakespeare, we select the roles Hamlet
(from Hamlet) and Iago (from Othello), together providing 112, 116 samples. Additionally,
we create a variant scenario with one top agent and a random convex combination of five
other agents forming the second agent. We illustrate qualitative differences between the
FEMNIST agents in Figure 2.

Ag
en

t 
1

0 1 2 A a B b

Ag
en

t 
2

Figure 2: Samples from selected character classes for two FEMNIST agents, illustrating
distinct handwriting styles.

A.1 Effect of Data Composition on Agent-Specific Performance

Experimental Setup. For varying total data size m and fraction λ ∈ [0, 1] from Agent
1, we construct datasets D(m,λ) comprising λm samples from Agent 1 and (1−λ)m samples
from Agent 2. Models trained on these datasets are evaluated separately on each agent’s
test set. We use standard cross-entropy loss and the SOAP optimizer (Vyas et al., 2024).
To capture performance variability, experiments are repeated 100 times with different ran-
dom seeds. See Table 1 for detailed parameters. We employed task-appropriate model
architectures aligned with prior federated learning works (McMahan et al., 2017; Caldas
et al., 2018; Murhekar et al., 2024). For FEMNIST (image classification), the model is a
lightweight CNN. For Shakespeare (next-character prediction), we use a recurrent neural
network with an LSTM backbone.

Results and Discussion. These experiments confirm the intuitive expectations about
data volume and personalization, and quantify their effects. (i) For any fixed share λ, in-
creasing the budget m lowers both agents’ losses—more data helps everyone (Assumption 2).
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Table 1: Summary of experimental parameters.

Dataset Agent 1 Agent 2 # Seeds m values Learning rate Epochs

FEMNIST f0261_06 f0289_10 100 10− 450 0.01 50
Shakespeare Hamlet Iago 100 10, 000− 45, 000 0.01 25

0 0.25 0.5 0.75 1Fraction of samples from Agent 1

1

0.75

0.5

0.25

Test Accuracy on Agent 1's Data
FEMNIST

25 50 75 100 200 300 400 450

0 0.25 0.5 0.75 1Fraction of samples from Agent 1

0.35

0.4

0.45

0.4

Shakespeare

10000 15000 20000 27500 30000 40000 45000

Figure 3: Agent 1’s test accuracy as a function of the fraction of samples contributed from
its own distribution (Agent 1), compared against random convex combinations from other
agents (Agent 2). Each curve represents different total dataset sizes (m). The monotonic
trend supports the weak–monotonicity Assumption 2.

(ii) For any fixed m, raising λ cuts Agent 1’s loss: when the training set includes a higher
proportion of one writer’s style, the model is better tuned to that style and thus general-
izes better on that agent’s test set. These trends mirror prior personalization findings in
federated learning and domain adaptation (Hsu et al., 2019).

A.2 Planner validation on a finite hypothesis class

We empirically validate the planner’s LP allocation from Section 4.2 by comparing its total
prescribed samples to the true optimum obtained by discrete search over integer allocations.
We report the ratio

r =

∑
i m

LP
i∑

i m
⋆
i

under uniform per-sample costs ci = 1.

Finite-class construction. We focus on FEMNIST and construct a finite hypothesis
class H by sampling checkpoints from a compact CNN with two convolutional blocks and a
linear classifier. For each agent, we estimate pairwise disagreements Di({h1 ̸= h2}) for all
h1, h2 ∈ H using unlabeled data, i.e., the fraction of examples on which the two checkpoints
predict different labels. These estimates instantiate the constraints in Section 4.2, yielding
the LP-based contribution vector mLP.

Experimental setup. We assume ci = 1 for all agents. Given mLP, we perform an in-
dependent discrete search over integer allocations and, by repeated evaluation of the check-
points in H, find the smallest m⋆ that satisfies every agent’s (ε, δ) target. We sweep the
size |H| of the sampled class and record r.

Results. The observed values of r across |H| are reported in Table 2. The LP allocation
achieves logarithmic-type approximation factors consistent with Theorem 3.

B On Binary Payoffs

We model each agent’s payoff as 1 if its PAC requirement holds and 0 otherwise. With this
choice, each agent solves a cost–minimization problem subject to its threshold:

min
mi∈N

mi s.t. aε,δi (m) = 1.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Table 2: LP total versus the optimal total on FEMNIST for a finite hypothesis class H.

|H| r =
∑

i mLP
i∑

i m⋆
i

5 1.67
10 3.19
15 3.94
20 3.57
25 4.24
27 3.99
50 4.20

We believe this individual cost–minimization task reflects real-world scenarios,7 and by
standard Lagrange multiplier theory, there exists a multiplier λ > 0 such that any optimal
solution m⋆

i to the constrained problem is also optimal for a penalized objective of the form
max
mi

ai(m)− λmi

Hence the binary case, which made the exposition lighter, is not a fundamental limitation
but a modeling convenience that extends to a broader family of monotone utilities that trade
off accuracy against cost with weight λ.

C Existence and Efficiency of Equilibria
In this section, we study the strategic behavior of self-interested agents in our model.

C.1 Existence of Equilibria

We impose weak monotonicity—more data from any agent never hurts another. The as-
sumption guarantees equilibrium existence.
Assumption 2 (Monotonicity). For every agent i, utility is weakly increasing in any agent’s
contribution. Let m and m′ be two contribution profiles with m′

j ≥ mj for every agent j.
Then

ui(m
′) ≥ ui(m) ∀ i ∈ A..

Theorem 5 (Existence of Nash Equilibrium). A Nash equilibrium exists.

Proof. Since every agent i ∈ A is self-sufficient, i can, by contributing nind
i < ∞ samples on

their own, satisfy their objective. Since additional samples supplied by other agents never
reduce any agent’s probability of meeting its objective, the strategy mi = nind

i guarantees
utility 1−cin

ind
i ≥ 0 for every profile m−i. In contrast, any action with cimi > 1 yields utility

1 − cimi < 0 irrespective of the others’ choices, so every such action is strictly dominated
by nind

i . Thus agent i’s undominated actions lie in the finite set {0, 1, . . . , nind
i }. With each

player restricted to finitely many pure strategies, the game is finite, and Nash’s existence
theorem for finite games guarantees at least one (possibly mixed) Nash equilibrium.

We demonstrate, however, that pure Nash equilibria do not always exist:
Theorem 6 (Non-existence of Pure Nash Equilibrium). There exists a PAC learning setting
in which no pure Nash equilibrium exists.

Proof. Consider an instance space X = {x1, x2, x3} and a hypothesis class H that contains
all possible labeling. Let agents have data distributions: Define the data distributions of
the three agents by the point-probabilities

D1(x1) =
1
3 , D1(x2) =

2
3 , D1(x3) = 0,

D2(x1) = 0, D2(x2) =
1
3 , D2(x3) =

2
3 ,

D3(x1) =
2
3 , D3(x2) = 0, D3(x3) =

1
3 .

7For example, hospitals may aim to minimize their data contribution while ensuring that the
global model achieves at least 99% accuracy on their local patient population, being indifferent
between 99% and 99.5% once the target is met.
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Fix the PAC parameters ε = 1
3 and δ = 2

3 . Each agent seeks accuracy at least 2
3 with

probability at least 1
3 . Hence every agent i requires that, with probability at least 1−δ = 1

3 ,
the learned classifier incurs error at most ε on Di.
In this setup, no agent is incentivized to contribute more than one sample. Checking possible
pure strategies, one observes: At m = (1, 1, 0), agent 1 can deviate to 0 without losing
accuracy, incentivizing deviation. And, at m = (0, 1, 0), the contribution level is insufficient
for agent 3. Thus, no pure equilibrium exists.

C.2 Efficiency of Equilibria: Price of Stability

Theorem 1 (PoS is unbounded). For any ε ∈ (0, 1) there exists a sequence of instances of
our problem in which the ratio of the best NE to the optimal solution approaches Ω

(
log(1/ε)

)
.

Proof. Fix ε ∈ (0, 1
2 ) and δ ∈ (0, 1). We construct an instance whose PoS satisfies

PoS =
log(1/ε) + log(1/δ)

log(1/δ)
= Ω

(
log(1/ε)

)
,

so the ratio diverges as ε → 0. Let n > 1
2ε and set

X = {x1, . . . , xn, y, z}.
Define the hypothesis class

H = {h0} ∪ {hi : i ∈ [n]},
where

h0(x) = 0 (∀x ∈ X ), hi(x) =

{
1 if x ∈ {xi, z},
0 otherwise.

Thus y is always labeled 0, while the label of z determines whether all x1, . . . , xn are 0 (h0)
or exactly one of them is 1 (hi).
Alice and Bob have marginal distributions

DAlice(xi) = 2ε ∀i ∈ [n], DAlice(y) = DAlice(z) = 0,

DBob(z) = ε, DBob(y) = 1− ε, DBob(xi) = 0 ∀i ∈ [n].

In every NE, Bob contributes 0 samples, because any h ∈ H has error at most ε on his
distribution, so his (ε, δ)-requirement is already satisfied. In the worst case, where h0 is
the target function, Alice must choose m so that she samples every point x1, . . . , xn with
probability at least 1− δ. Let mNE be the smallest integer for which this condition holds.
In the minimum-cost contribution vector, Bob supplies mopt

Bob = log(1/δ)
log(1−ε) samples, which

include z with probability 1 − δ. If the true target is h0 no further data are needed.
Otherwise the target is some hi; Alice then has to sample only until she sees the single point
xi. Let mOPT

Alice be the least integer guaranteeing this with probability 1− δ. Sampling until
one designated point appears is far cheaper than sampling until all n points appear. Hence
the optimal cost is

∥mopt∥1 = mopt
Bob +mopt

Alice ≤ 3 log(1/δ)

2ε
.

Taking the ratio,

PoS =
∥mNE∥1
∥mOPT∥1

=
log(1/ε) + log(1/δ)

log(1/δ)
= Ω

(
log(1/ε)

)
,

which grows without bound as ε → 0.

D Details and Proofs for Section 4

D.1 Proof of the NP-hardness Result (Theorem 2)

We now formally address the computational complexity of deciding whether a given number
of samples is sufficient to satisfy the (ε, δ)-PAC learning guarantee for all agents. Given
a data domain X , a hypothesis class H of size n, distributions D = (D1, . . . ,Dk) for each
agent, an accuracy parameter ε > 0, a confidence parameter δ ∈ [0, 1), and an integer m,
we define the Collaborative PAC Sample-Allocation Problem as follows:
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Figure 4: Visualization of the Set Cover reduction used in Theorem 2. Left: Incidence
matrix of the original Set Cover instance. Each row is a subset Ej and each column an
element ui; a square means ui ∈ Ej . Right: The corresponding bipartite graph construc-
tion: each node xj corresponds to subset Ej and is connected to the hypotheses hi for which
ui ∈ Ej . A size-m set cover on the left corresponds to an m-sample training set that forces
ERM to output h⋆ on the right.

Definition 3 (Collaborative PAC Sample-Allocation Problem). Given domain X , hypothe-
sis class H, distributions D = (D1, . . . ,Dk), accuracy parameter ε > 0, confidence parameter
δ ∈ [0, 1), and integer m, decide whether drawing m samples i.i.d. from each Di suffices to
guarantee, with probability at least 1 − δ, an ERM hypothesis of error at most ε for every
agent i ∈ A.

In other words, if each agent contributes exactly mi samples from their distribution, will
the pooled dataset ensure ε-accurate performance on all distributions simultaneously? We
now examine the computational complexity of this question. We establish the following
computational hardness result:
Theorem 2. Under the PAC-accuracy objective, determining whether a specified sample
count m suffices to meet the (ε, δ)-requirement is NP-hard with respect to the hypothesis-
class size |H|, even when there is only one agent.

Proof. We reduce from the NP-complete Set Cover problem (Garey & Johnson, 2002):
given a universe U = {u1, . . . , un}, a family of subsets E = {E1, . . . , Er} with

⋃
i∈[r] Ei = U ,

and an integer m, decide whether at most m subsets cover U .
We map an instance (U, E ,m) of Set Cover to an instance of the Collaborative PAC
Sample-Allocation Problem as follows: let the data domain be X = X1 ∪ X2 where

X1 = {x1, . . . , xr}, X2 = {y1, . . . , yn}.

Each point xj ∈ X1 corresponds directly to subset Ej ∈ E , and each point yi ∈ X2 corre-
sponds to element ui ∈ U . Define the hypothesis class

H = {h⋆, h1, . . . , hn},

where, for each i ∈ [n] and j ∈ [k]:

hi(xj) =

{
1 if ui ∈ Ej

0 otherwise
, hi(yj) =

{
1 if i = j

0 otherwise
, h⋆(xj) = 0, h⋆(yj) = 0.

Set the distribution D to be uniform over X . Choose 0 < ε < 1/(r + n) so that a single
classification error violates the ε-accuracy goal, and set δ with 1− δ ≥ (|X |−1)m.
If a set cover of size p ≤ m exists, say {Ej1 , . . . , Ejp}, consider the sample S = {xj1 , . . . , xjp}.
For every competing hypothesis hi ̸= h⋆ there is a subset Ejq containing ui, hence hi(xjq ) =
1 ̸= 0 = h⋆(xjq ). Each hi therefore incurs at least one error on S, so ERM selects h⋆. Thus
m samples suffice to meet the agent’s (ε, δ)-requirement.
Conversely, assume that m samples drawn i.i.d. from D suffice to guarantee, with probability
at least 1−δ, an ERM hypothesis achieving error at most ε for any possible true hypothesis.
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Due to our choice of ε, the ERM hypothesis must correctly classify all points in X . Consider
the worst-case scenario where the true hypothesis is h⋆. To distinguish h⋆ from all other
hypotheses hi, the training set must include points from X1 that differentiate h⋆ from each
hi. Specifically, for each element ui ∈ U , the training set must contain at least one point
xj ∈ X1 with hi(xj) = 1 (meaning ui ∈ Ej), ensuring hi is eliminated by ERM. Therefore,
the set of points in the minimal training set corresponds directly to subsets forming a valid
set cover of size at most m.
Notably, if any other hypothesis hi ̸= h⋆ were the true target, fewer samples would trivially
suffice. Thus, the case where h⋆ is the true hypothesis indeed represents the worst-case.

D.2 Proof of the Approximation Guarantee (Theorem 3)

Theorem 3 (Approximation via Linear Programming). Given any H and ε, δ > 0:

• For finite H, the LP over (H, ε, δ) returns a log(1/δ)+log |H|
log(1/δ) -approximate solution to

Equation 4.
• For infinite H, running the LP over (H, ε, δ′) and multiplying it by d + log(1/δ′′)

returns a O(d
2(log(cmaxkd/(cminεδ))

2

log(1/δ) )-approximate solution to Equation 4, where H ⊂
H is a γ-cover of H, γ = Θ

(
cminεδ/(cmaxk(d + log(1/δ)))

)
, d = VCdim(H), δ′′ =

δ
4|H| and δ′ = δ

8(d+log(2|H|/δ)) , cmin = mini∈[k] ci and cmax = maxi∈[k] ci.

Proof. We start with the case where the hypothesis class H is finite, the extension to infinite
H follows with a standard covering argument.

Proof for finite H. For any pair of hypotheses (h1, h2) ∈ H, define the disagreement
regions between h1 and h2 as

DIS(h1, h2) = {x ∈ X | h1(x) ̸= h2(x)}.
This region represents the set of points where h1 and h2 disagree. For each agent i, let
Di

(
DIS(h1, h2)

)
be the probability mass that Di places on that region.

We want to guarantee that with probability at least 1 − δ, the ERM solution has error
≤ ε for all agents simultaneously. Concretely, if the true labeler is h⋆ ∈ H, then any
other hypothesis h2 that has Di(DIS(h⋆, h2)) > ε (meaning it is “bad” for agent i) must be
eliminated by at least one sample from that disagreement region.
The probability that h2 is never eliminated, given h⋆ is the true labeler, is exactly the
probability that no sample from any agent i ever lands in DIS(h⋆, h2). Since each agent i
contributes mi i.i.d. points from Di,

Pr
(
h2 is not eliminated | h⋆ = h⋆

)
=

k∏
i=1

(
1−Di

(
DIS(h⋆, h2)

))mi

.

Hence the requirements Pr(h2 not eliminated | h⋆) ≤ δ
H are log-linear constraints:

k∑
i=1

mi log
[
1−Di

(
DIS(h⋆, h2)

)]
≤ log

(
δ
H

)
.

We impose such constraints for all pairs (h⋆, h2) where Di(DIS(h⋆, h2)) > ε for agent i.
By union bounding across ≤ H possible “bad” hypotheses h2 (for each h⋆) or ≤ H2 pairs
overall, we ensure that with probability ≥ 1 − δ, any truly bad hypothesis (in the sense of
having error > ε) is eliminated.
Hence, we obtain a linear constraint in terms of mi, which allows us to approximate the
elimination probability for each hypothesis pair (h1, h2) by solving the following linear pro-
gram:

min
m∈Nk

c⊤m

subject to
k∑

i=1

mi log (1−Di(DIS(h1, h2))) ≤ log
δ

H
∀(h1, h2) ∈ H2 s.t. ∃i ∈ [k],Di(DIS(h1, h2)) > ε.

(7)
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One can then round the fractional solution up to integer counts mi.
Let m∗ be the solution of the linear program. For any agent i, we want to show:

∀h⋆ ∈ H, Pr
Uj∼D

m∗
j

j ,j∈[k]

errERM
Di

 ⋃
j∈[k]

Uj × h⋆(Uj)

 > ε

 ≤ δ.

This holds because the linear program enforces that, for each pair (h1, h2) ∈ H2, the proba-
bility of failing to eliminate any incorrect hypothesis h2 (given h⋆ = h1) is bounded by δ/H.
By applying a union bound over all hypothesis pairs, we achieve the desired bound.
To show that this solution is log(1/δ)+logH

log(1/δ) -approximate optimal, let m be the true optimal
solution. For each pair (h1, h2) such that Di(DIS(h1, h2)) > ε, if we take m samples, we
have:

k∏
i=1

(1−Di(DIS(h1, h2)))
mi ≤ δ.

Taking logarithms we obtain:

k∑
i=1

mi log (1−Di(DIS(h1, h2))) ≤ log δ.

Now, given a sample size of log(1/δ)+logH
log(1/δ) ·m, we have:

k∑
i=1

log(1/δ) + logH

log(1/δ)
·mi log (1−Di(DIS(h1, h2))) ≤ log

δ

H
,

which satisfies the constraint in Equation 7.
Next, we show how to lift the guarantee to infinite classes using γ-covers and apply our
results to this finite cover.

Proof for infinite H. For any γ ∈ (0, 1), we say H is a γ-cover of H under D if for all
h ∈ H, there exists an h ∈ H satisfying that maxi Di(DIS(h, h)) ≤ γ.

Lemma 2. Let d = VCdim(H) denote the VC dimension of H. There is a γ-cover H ⊂ H
under D of size

(
41k
γ

)d.
Proof of Lemma 2. In learning theory, for any distribution D, a subset H ⊆ H is a γ-cover
of H under D if, for every h ∈ H, there exists h ∈ H such that D(DIS(h, h)) ≤ γ. Haussler’s
sphere-packing bound guarantees Haussler (1995) the existence of such a cover with

|H| ≤
(

41
γ

)d

.

Construct a γ
k -cover of H under the averaged distribution 1

k

∑k
i=1 Di. For any h ∈ H and

its representative h in this cover,

max
i

Di

(
DIS(h, h)

)
≤

k∑
i=1

Di

(
DIS(h, h)

)
≤ γ,

so the same set is a γ-cover under D = (D1, . . . ,Dk). Substituting γ
k into Haussler’s bound

yields

|H| ≤
(

41k
γ

)d

.

Let mH,δ′ denote the solution to the LP (Equation 7) given hypothesis class H and confi-
dence parameter δ′. Let cmin = mini∈[k] ci and cmax = maxi∈[k] ci.
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Lemma 3. By choosing γ = Θ
(
cminεδ/(cmaxk(d + log(1/δ)))

)
and m = mH,δ/2, for any

target hypothesis h⋆ ∈ H and agent i, with probability at least 1−δ, any consistent hypothesis
h ∈ H will satisfy

errDi,h⋆(h) ≤ ε .

Proof of Lemma 3. Since each agent can achieve the PAC learning objective with at most
O((d + log(1/δ))/ε) data points individually, we restrict attention to contribution vectors
satisfying ∥m∥1 ≤ O( cmaxk(d+log(1/δ))

cminε
) (otherwise we can replace the solution with O((d +

log(1/δ))/ε)1).
For any m satisfying this constraint, any h⋆ ∈ H, and any agent i, let the labeled sample
be

Sh⋆

=
⋃
j∈[k]

{(x, h⋆(x)) | x ∈ Uj}.

Define
err = max

{
errDi

(h)
∣∣∣ h ∈ H, errSh⋆ (h) = min

h′∈H
errSh⋆ (h′)

}
,

the worst-case error when running ERM over H. We can show that err is small with high
probability. More specifically, assuming a (ε, δ/2)-PAC guarantee for H, we have

Pr
Sh⋆

[
∃h : errDi

(h) > ε, errSh⋆ (h) = min
h′∈H

errSh⋆ (h′)
]

≤ Pr
Sh⋆

[
∃h : errDi(h) > ε, errSh⋆ (h) = 0, errSh⋆ (h

⋆
) = 0

]
+ Pr

Sh⋆

[
errSh⋆ (h

⋆
) ̸= 0

]
≤ Pr

Sh⋆

[
∃h : errDi

(h) > ε, errSh⋆ (h) = 0
]
+ Pr

Sh⋆

[
errSh⋆ (h

⋆
) ̸= 0

]
≤ δ

2
+

(
1− (1− γ)

∑
j mj

)
≤ δ

2
+

(
1− (1− γ)

cmaxk(d+log(1/δ))
cminε

)
.

Choosing γ = cminεδ/(cmaxk(d+ log(1/δ))) yields

δ

2
+
(
1− (1− γ)

cmaxk(d+log(1/δ))
cminε

)
≤ δ,

so for any h⋆ and agent i, with probability at least 1 − δ we can always find a hypothesis
whose error is at most ε.

Lemma 4. By choosing γ = Θ
(
cminεδ/(cmaxk(d+log(1/δ)))

)
, the solution (d+log(1/δ′′)) ·

mH,δ′ is sufficient is sufficient to achieve (ε, δ)-PAC accuracy objective (Equation 2) for H,
where δ′′ = δ

4|H| and δ′ = δ
8(d+log(2|H|/δ)) .

Proof of Lemma 4. Similar to Lemma 3, we again restrict attention to contribution vec-
tors satisfying ∥m∥1 ≤ O( cmaxk(d+log(1/δ))

cminε
). This guarantee that for any target h⋆, with

probability at least 1− δ
2 , h

⋆
is consistent. Hence, we can view h

⋆
as our target hypothesis.

We now prove that for any target hypothesis h
⋆ ∈ H and any representative hypothesis

h ∈ H satisfying ∃i ∈ [k],Di(DIS(h
⋆
, h)) > ε, with probability at least 1 − δ′

2|H| , any h in

the γ-ball of h will be eliminated.
Let βi = Di(DIS(h

⋆
, h)) denote the probability mass of DIS(h

⋆
, h) under agent i’s data

distribution and let Aγ = {i ∈ [k]|βi ≥ 4γ} denote the set of agents whose probability mass
of the disagreement region is at least 4γ. The approximation solution mH,δ′ guarantees
that

k∏
i=1

(1− βi)
mH,δ′

i ≤ δ′

|H|
.

If βi < 4γ, we have

(1− βi)
mH,δ′

i > (1− 4γ)m
H,δ′
i ≥ (1− 4γ)δ

′/γ ≥ e−(4 log 4)δ′ ,
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where we adopt the inequality (1− 1/x)x ≥ 1
4 for all x ≥ 2. Hence, we have

e−(4 log 4)kδ′ ·
∏

i:βi≥4γ

(1− βi)
mH,δ′

i ≤ δ′

|H|
.

By rearranging terms, we have∏
i:βi≥4γ

(1− βi)
mH,δ′

i ≤ δ′

|H|
· e(4 log 4)kδ′ ≤ 2δ′

|H|
,

when δ′ = O( 1k ). That is to say, even if we only collect mi samples from agent i ∈ Aγ and
don’t collect from i /∈ Aγ , we will still be able to obtain one sample from the DIS(h

⋆
, h)

with probability at least 1− 2δ′

|H| .

For any distribution D, let D|h⋆
,h denote the distribution restricted to DIS(h

⋆
, h), i.e.,

D|h⋆
,h(x) =

{
D(x)

D(DIS(h
⋆
,h))

if x ∈ DIS(h
⋆
, h),

0 otherwise.

Consider D =

∑
i∈Aγ

miDi∑
i∈Aγ

mi
being a mixture of {Di|i ∈ Aγ}, the disagreement region between

h
⋆

and h under distribution D|h⋆
,h is at least 3

4 . This is because

D|h⋆
,h(DIS(h

⋆
, h)) = 1−D|h⋆

,h(DIS(h, h)) ≥ 1− γ

4γ
=

3

4
.

Hence, by standard PAC learning guarantee, if we obtain n = O(d + log(1/δ′′)) samples
from D|h⋆

,h, then with probability 1− δ′′, all h’s in the γ-ball of h are not consistent.

The current approximation solution mH,δ′ can only guarantee that with probability 1− 2δ′

|H| ,
we obtain one sample from D|h⋆

,h, i.e.,

∏
i:βi≥4γ

(1− βi)
mi ≤ 2δ′

|H|
.

When we increase mH,δ′ by n times, then with probability at least 1 − 2nδ′

|H| , we obtain n

samples from D|h⋆
,h.

Hence, by setting δ′′ = δ
4|H| and δ′ = δ

8(d+log(2|H|/δ)) , solving the LP for H, δ′ to obtain an

approximate solution mH,δ′ and multiplying it by d+log(1/δ′′), the solution (d+log(1/δ′′))·
mH,δ′ is sufficient to achieve (ε, δ)-PAC accuracy objective ( Equation 2) for H.

The solution mH,δ′ returned by the approximation algorithm for the (ε, δ′)-PAC objective
for H is at most a factor

log
(
|H|/δ′

)
log(1/δ)

=
log(8/δ) + log(d+ log(2|H|/δ)) + d log

(
k(d+ log(1/δ))/(εδ)

)
log(1/δ)

=O(
d(log k + log d+ log(1/ε) + log(1/δ) + log(cmax/cmin))

log(1/δ)
)

larger than the optimal solution for the (ε, δ)-PAC objective for H. Since the PAC ob-
jective for H is easier than the PAC objective for H, we have (d + log(1/δ′′)) · mH,δ′ is
a O(d

2(log k+log d+log(1/ε)+log(1/δ)+log(cmax/cmin))
2

log(1/δ) )-approximation solution for (ε, δ)-PAC ob-
jective for H.
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E Details and Proofs for Section 5

Lemma 1. For any H greater than a universal constant C, there exists a PAC learning
instance of (H, ε, δ) in the two-agent setting with |H| = H such that the approximation
algorithm introduced in Theorem 3 is oblivious at all m with m1,m2 ≥ 2|H| log |H|.

Proof of Lemma 1. Consider X = {1, 2, . . . , n} as our domain and the hypothesis class H
of all singletons (i.e. functions hi that label exactly one x ∈ X as positive and all others as
negative) plus the all-negative function. Thus H := |H| = n+ 1.
We now show that that for any m satisfying m1,m2 ≥ 2|H| log |H| and any neighbor m′

with ∥m′ − m∥1 = 1, we can always find distributions D1,D′
1,D2,D′

2 satisfying that

• m = APPROX(D1,D2) and m′ = APPROX(D′
1,D2) = APPROX(D1,D′

2).
• Contributions m and APPROX(D′

1,D2)
′ are both feasible for (D1,D2), (D′

1,D2),
and (D1,D′

2).

Construction. We construct a pair of distributions (D1,D2) by selecting p1, p2, q1, q2
satisfying

p1 ≤ p2 ≤ 1

2n
, q2 ≤ q1 ≤ 1

2n
, p1 + p2 ≤ 1

n
, q1 + q2 ≤ 1

n
.

Then let

p3 = . . . = pn =
1− (p1 + p2)

n− 2
, q3 = . . . = qn =

1− (q1 + q2)

n− 2
.

Hence let D1 = (p1, . . . , pn) and D2 = (q1, . . . , qn). Both are well-defined distributions.
We denote by P the family of all such pairs (D1,D2) with different choices of p1, p2, q1, q2
satisfying the above constraints.
The approximate-optimal solution APPROX(D1,D2) is found by solving a linear program
derived from disagreement regions. For example, the disagreement region between the all-
negative hypothesis h0 and a singleton h1 that is positive on point 1 has measure p1 in
D1 (and q1 in D2). The “binding constraints” come from pairs (h0, h1) and (h0, h2) (the
singletons with points 1 or 2). By contrast, any singleton on point i ≥ 3 yields a disagreement
measure at least p3, which is larger, and thus any feasible solution that satisfies the “small
measure” constraints with some margin also satisfies these larger measure constraints.
Thus the main LP constraints reduce to requiring that

m1 log
1

1− p1
+ m2 log

1

1− q1
≥ log

(
H
δ

)
, (8)

m1 log
1

1− p2
+ m2 log

1

1− q2
≥ log

(
H
δ

)
. (9)

The solution APPROX(D1,D2) is the one that minimizes c1 · m1 + c2 · m2 subject to
Equations (8) and (9) (and additional constraints for any bigger disagreements, satisfied by
slack).
If m1 +m2 ≥ 2H logH, we can show:

m1 log
(

1
1−pi

)
+ m2 log

(
1

1−qi

)
> m1 log

(
1

1−p1

)
+m2 log

(
1

1−q1

)
+ logH

for each i ≥ 3, hence those constraints are looser. Hence, satisfying Equations (8) and (9)
by a small margin also satisfies the bigger-disagreement constraints.

To satisfy the second bullet. For any i = 3, 4, . . ., according to our construction, we
have pi ≥ 1

n and p1, p2 ≤ 1
2n . Thus, we have

1− p1 ≥1− 1

2n
= e−

1
2n −O(

1

n2
) = e−

1
n e

1
2n −O(

1

n2
) ≥ (1− 1

n
)e

1
2n −O(

1

n2
)

≥(1− pi)e
1
2n −O(

1

n2
) .

Thus, we have

log(
1

1− pi
) ≥ log(

1

1− p1
) +

1

2n
−O(

1

n2
) ≥ log(

1

1− p1
) +

1

3n
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for n big enough. Then for the constraint corresponding to the disagreement region
DIS(h0, hi), we have

m1 log
1

1− pi
+m2 log

1

1− qi
≥ m1 log

1

1− p1
+m2 log

1

1− q1
+

m1 +m2

3n

≥m1 log
1

1− p1
+m2 log

1

1− q1
+ logH ,

where the last inequality holds when m1 +m2 ≥ 3H logH. Similar results also hold for D2.
That is to say, instead of satisfying Equations (8) and (9), it would be sufficient to satisfy

m1 log
1

1− p1
+m2 log

1

1− q1
≥ log

3

δ
,

m1 log
1

1− p2
+m2 log

1

1− q2
≥ log

3

δ
.

Hence, for any (D1,D2) ∈ P, we have log 3/δ
logH/δ · APPROX(D1,D2) is feasible. For simplicity,

let’s fix δ ≤ 0.5 and suppose H ≥ 18 from now. Then 1
2 ·APPROX(D1,D2) is sufficient and

so is APPROX(D1,D2)− (1, 1). Thus, we justify bullet 2.

To satisfy the first bullet. Given an m and m′, we pick D1 specified by p1, p2, D2

specified by q1, q2 and D′
1 specified by p′1, p

′
2 so that Inequalities Equations (8) and (9)

hold with equality and that m and m′ is the only solution to these linear equalities w.r.t.
(p1, p2, q1, q2) and w.r.t. (p′1, p

′
2, q1, q2), respectively.

Inequalities Equations (8) and (9) can be approximated using a first-order approximation
as follows.

m1p1 +m2q1 = log
H

δ
=: α ,

m1p2 +m2q2 = α ,

m′
1p

′
1 +m′

2q1 = α ,

m′
1p

′
2 +m′

2q2 = α .

Let’s pick

p1 =
α

m1m2
, q1 =

(1− 1/m2)α

m2
,

p2 =
(1− 1/m1)α

m1
, q2 =

α

m1m2
.

We can justify (D1,D2) ∈ P since m1,m2 ≥ 2n log n. Then if m′ differs from m at m1, by
solving

m′
1p

′
1 +m2q1 = m1p1 +m2q1 ,

m′
1p

′
2 +m2q2 = m1p2 +m2q2 ,

we have
p′1 =

m1p1
m′

1

, p′2 =
m1p2
m′

1

.

It’s easy for us to justify that (D′
1,D2) ∈ P since D′

1 is very close to D1.
If m′ differs from m at m2, by solving

m1p
′
1 +m′

2q1 = m1p1 +m2q1 ,

m1p
′
2 +m′

2q2 = m1p2 +m2q2 ,

we have
p′1 =

(m2 −m′
2)q1

m1
+ p1, p′2 =

(m2 −m′
2)q2

m1
+ p2 .

By plugging in the values of p1, p2, q1, q2, we have

p′1 =
(±1)(1− 1/m2)α

m1m2
+

α

m1m2
,

p′2 =
(±1)α

m2
1m2

+
(1− 1/m1)α

m1
.
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It is easy to see that p′2 is very close to p2 and p′1 < p′2. For p′1, we need to make it fall in
(0, 1

2n ). When m1,m2 ≥ 2n log n, we have p′1 ≤ 2
m1m2

< 1
2n . Also, p′1 is always positive. So

we are done with computing D′
1. We can compute D′

2 in the same way.

Proof of Theorem 4. When f is strategyproof, it must hold that fi(m)− ci ·mi = fi(m
′)−

ci ·m′
i for any two neighboring m,m′ ∈ M . If fi(m)− ci ·mi > fi(m

′)− ci ·m′
i, agent i will

misreport their distribution when the ground truth is (D′
i,D−i); else if fi(m) − ci · mi <

fi(m
′) − ci · m′

i, agent i will misreport when the ground truth is D, which conflicts with
truthfulness. Since M is connected, we have fi(m)− ci ·mi = Ci for all m ∈ M .

F Results for Expected Accuracy Objective

F.1 Approximation Algorithm

Recall that the optimization problem with the expected accuracy objective given an error
parameter ε is

min
m∈Nk

c⊤m

subject to
max
h⋆∈H

ES∼P(D,m,h⋆)

[
errERM

Di,h⋆(S)
]
≤ ε ,∀i ∈ A . (10)

Let’s denote the optimal solution to the above problem as m⋆,exp(ε).
For any pair (hj , ht) write

Ej,t :=
{

no sample lies in DIS
(
hj , ht

)}
, aij,t := Di

(
DIS(hj , ht)

)
,

the “no-sample” event and its probability mass under agent i’s distribution Di.
Without loss of generality, relabel the hypotheses so that the disagreement masses are non-
increasing:

ai1 ≥ ai2 ≥ . . . ≥ aiK .

Define the first “small” index by

n := min
{
j
∣∣ aij ≤ ε

2

}
(set n = K if no such j exists).

Λ<j :=
∧
k<j

¬Ek, ∆≤j :=
∨
k≤j

Ek, aiK+1 := 0.

These abbreviations mean, respectively, “no disagreement observed yet” and “some disagree-
ment observed by step j.”

ES∼P(D,m,h⋆)

[
errERM

Di,h⋆(S)
]
=

H−1∑
j=1

Pr
(
Ej ∧ Λ<j

)
aij

≤
n∑

j=1

Pr
(
Ej ∧ Λ<j

)
aij +

ε

2

=

n∑
j=1

Pr
(
∆≤j

) (
aij − aij+1

)
+

ε

2
.

For any index set [j] = {1, . . . , j} let

∆≤j :=
∨
t≤j

Et.

Then

sup
t≤j

Pr(Et) ≤ Pr(∆≤j) ≤
j∑

t=1

Pr(Et) ≤ j sup
t≤j

Pr(Et). (UB)
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Replacing Pr(∆≤j) by its upper bound
∑j

t=1 Pr(Et) in the telescoping sum from the previous
step yields

n∑
j=1

( j∑
t=1

Pr(Et)
)(

aij − aij+1

)
+

ε

2

=

n∑
t=1

Pr(Et) a
i
t +

ε

2
≤ ε,

where we set ain+1 = 0 for the telescoping identity.
Each probability

Pr(Et) =

K∏
k=1

(
1−Dk(DIS(h0, ht))

)mk

is a product of log-affine functions of m = (m1, . . . ,mK) and is therefore convex; the entire
left-hand side above is a non-negative weighted sum of convex functions, hence convex in
m.
Impose the term-wise bound Pr(Et) a

i
t ≤ ε

2H for every disagreement index t. Define the
set of “large-mass” pairs

Pε/2 :=
{
(h1, h2) ∈ H2 : max

i≤k
Di

(
DIS(h1, h2)

)
> ε

2

}
.

For each such pair write
pi(h1, h2) := Di(DIS(h1, h2))

and
a(h1, h2) := min

i: pi(h1,h2)>ε/2
pi(h1, h2).

The resulting LP is

min
m∈Nk

c⊤m

s.t.
k∑

i=1

mi log
(
1− pi(h1, h2)

)
≤ log

(
ε

2Ha(h1,h2)

)
, ∀(h1, h2) ∈ Pε/2.

(11)

Theorem 7. The solution to Equation 11 is a feasible solution to Equation 10. Given the
optimal solution m⋆,exp( ε4 ) to Equation 10 with error parameter ε

4 , then log(2H)m⋆,exp( ε4 )
is a feasible solution to Equation 11.

Proof of Theorem 7. It is direct to see the solution to Equation 11 is a feasible solution to
Equation 10. Given contribution m = m⋆,exp( ε4 ), we have Pr(Ej,t)a

i
j,t ≤ ε

4 for all hj , ht ∈ H.
That is to say,

k∏
i′=1

(
1− ai

′

j,t

)mi′

≤ ε

4aij,t
.

For aij,t >
ε
2 , since log(2H) = logH + 1 ≥ log(ai

j,tH/ε)

log(4ai
j,t/ε)

=
logH+log(ai

j,t/ε)

log(4ai
j,t/ε)

, we have

k∏
i′=1

(
1− ai

′

j,t

)mi′ ·log(2H)

≤
k∏

i′=1

(
1− ai

′

j,t

)mi′ ·
log(ai

j,tH/ε)

log(4ai
j,t

/ε) ≤ ε

aij,tH
.
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The performance of running ERM over the cover H for the expected accuracy
objective. For any H, let H be a γ-cover of H. Then for any contribution m satisfying this
constraint, any h⋆ ∈ H and any agent i, given the labeled data Sh⋆

= ∪j∈[k]{(x, h⋆(x))|x ∈
Uj}, let err = max{errDi

(h)|h ∈ H : errSh⋆ (h) = minh′∈H errSh⋆ (h′)} denote the worst case
error when running ERM over H. We can show that err is small in expectation. More
specifically, when we can achieve ε/2-expected accuracy guarantee for H, we have
When we can achieve ε expected accuracy guarantee for the cover H, we have

E [err] ≤ E
[
err

∣∣∣errSh⋆ (h
⋆
) = 0

]
P
(
errSh⋆ (h

⋆
) = 0

)
+ P

(
errSh⋆ (h

⋆
) ̸= 0

)
≤ E

[
err

∣∣∣errSh⋆ (h
⋆
) = 0

]
+ P

(
errSh⋆ (h

⋆
) ̸= 0

)
≤ ε/2 + (1− (1− γ)

kVCdim(H)
ε ) .

By setting γ = O( ε2

k·VCdim(H) ), we have E [err] ≤ ε.

F.2 Local Obliviousness of the Approximation Algorithm

Note that the image space of this approximation algorithm is [0, 2 log(H)
ε ]k according to

Equation 11. Then we show that most area of [0, 2 log(H)
ε ]k is oblivious.

Lemma 5. For any k < H ∈ N and ε < 1− 1
2H , there exists an instance of expected accuracy

learning instance of (H, ε) with |H| = H in the k-agent setting such that the approximation
algorithm introduced in Theorem 7 is oblivious at all m ∈ [2 + log(1/ε)

log(2H) ,
2 log(H)

ε ]k.

Proof. Let the input space be the H points X = {x1, . . . , xH}. The hypothesis class H
consists of all singletons over {x1, . . . , xH−1}—denote them h1, . . . , hH−1—together with
the all-negative hypothesis h0. Fix a contribution vector m = (m1, . . . ,mk). For each agent
i ∈ [k] choose ci ∈ [ε/2, 1− 1

2H ] that solves

(1− ci)
mi ci =

ε

2H
. (1)

Such a solution exists whenever

mi ∈
[
1 + log(1/ε)

log(2H) ,
2 logH

ε

]
.

Define Di by setting Di(xi) = ci and Di(xH) = 1− ci.
Fix an agent i and a hypothesis hj with j ∈ [H − 1]. Under hj the expected ERM error of
agent i equals

ES∼P(D,m,hj)

[
errERM

Di,hj
(S)

]
= Pr[xi and xj both unseen in S] ci ≤ Pr[xi unseen in S] ci.

For the all-negative hypothesis h0 the same bound holds:

ES∼P(D,m,h0)

[
errERM

Di,h0
(S)

]
= Pr[xi unseen in S] ci.

Because ci ≤ 1− 1
2H , if agent i contributes only mi − 1 samples then

Pr[xi unseen in S] ci = (1− ci)
mi−1 ci ≤ ε

2H(1− ci)
≤ ε.

Hence m− 1 is also feasible for the profile D. More generally, any Hamming neighbour m′

of m is feasible for some modified profile (D′
i,D−i), so the approximation algorithm remains

oblivious throughout the specified hyper-rectangle.
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