
Integrating Planning and Deep Reinforcement
Learning via Automatic Induction of Task

Substructures

Jung-Chun Liu Chi-Hsien Chang Shao-Hua Sun Tian-Li Yu
National Taiwan University

Taipei, Taiwan
{r10921043, d07921004, shaohuas, tianliyu}@ntu.edu.tw

Abstract

Despite recent advancements, deep reinforcement learning (DRL) still struggles
at learning sparse-reward goal-directed tasks, while classical planning excels at
addressing hierarchical tasks, yet most of the methods rely on assumptions about
pre-defined subtasks. To bridge the best of both worlds, we propose a frame-
work that integrates DRL with classical planning by automatically inducing task
structures and substructures from a few demonstrations. Specifically, we adopt ab-
straction mapping formulation and define critical actions that lead to the transition
at the abstraction level. The framework induces critical action schemata regarded
as subtasks to solve the problems. Symbolic regression is used for substructure
induction by employing genetic programming where the program model reflects
prior domain knowledge of effect rules. We compare the proposed framework to
state-of-the-art DRL algorithms, imitation learning methods, and an exploration
approach in various domains. Experimental results on various tasks show that
our proposed framework outperforms all the abovementioned algorithms in terms
of sample efficiency and task performance. Moreover, our framework achieves
strong generalization performance by effectively inducing new rules and compos-
ing task structures. Ablation studies justify the design of our induction module
and the proposed genetic programming procedure.

1 Introduction

Deep reinforcement learning (DRL) as an inductive learning method allows agents to deal with
high-dimensional decision-making problems considered intractable in the past [4]. DRL has ap-
plied to various fields, including robotics [39], autonomous driving [23], and video games [36].
However, exploring complex tasks with sparse and delayed rewards still remains challenging, lead-
ing to inapplicability on many real-world problems comprising multiple subtasks, e.g., cooking and
furniture assembly.

In contrast, classical planning is a deductive learning method that aims to solve planning and
scheduling problems. Particularly, classical planning is adept at finding the sequence of actions in
deterministic and known environments. Researchers in classical planning have developed effective
planners that can handle large-scale problems [58]. Yet, classical planning agents face difficulties
exploring environments due to limitations in model and domain-specific representation in unknown
environments where action models are undiscovered.

Several methods work on combining planning and DRL to address hierarchical tasks with high-
level abstraction. Konidaris et al. [24] develop a skill-up approach to build a planning representation
from skill level to abstract level, while they do not encompass skill acquisition from low-level execu-

NeurIPS 2023 Workshop on Generalization in Planning (GenPlan 2023).

tion. Mao et al. [35] introduce an extension of planning domain definition language (PDDL) [16, 48]
to model the skill, and Silver et al. [49] propose a method for learning parameterized policies inte-
grated with symbolic operators and neural samplers. However, they consider object-centric repre-
sentations, which require fully observable environments and carefully designed predicates.

In this paper, we combine classical planning and DRL to augment agents effectively to adapt to
environments by inducing underlying prior knowledge from demonstrations. Specifically, we de-
vise a method that induces symbolic knowledge using genetic programming [25], an evolutionary
computation approach, to discover task substructures represented as expression trees that accurately
capture the underlying patterns within the data. The compositional property of the programs enables
generalizability that adapts to new environments by discovering new substructures from known ones.

To evaluate the proposed framework, we design three gridworld environments where agents can
move on and interact with objects. The results show the improvement of DRL agents and outperfor-
mance compared to other imitation learning and exploration-based methods. Also, our framework
demonstrates generalizability by inducing variant substructures and recomposing task structures.
Finally, we show the ablation studies about the efficacy of the induction module.

2 Related Work

Learning abstraction from demonstrations. State abstraction facilitates the agent’s reasoning
capabilities in high-level planning by extracting symbolic representations from low-level states [1,
17]. Agents can learn the abstraction from demonstrations since demonstrations encompass valuable
information regarding task composition and relevant features [7]. Some methods were developed to
extract task decomposition and abstraction from demonstrations [18, 11]. Our work extends these
approaches to infer knowledge from demonstrations.

Learning planning action models. Some works have focused on integrating learning and plan-
ning to enhance capabilities in complex environments [12, 59]. To leverage the strategies of classical
planning, many works have developed building planning action models, including skill acquisition
and action schema learning [3, 53, 40, 9, 49, 35, 64]. However, these works mainly focus on the
existing planning benchmark and less focus on general Markov decision process (MDP) problems.
On the other hand, to address the issue of sample efficiency in DRL, several techniques explored the
integration of symbolic knowledge with DRL by learning planning action models [22, 34]. In this
work, we aim to bridge this gap by extending these approaches to incorporate inferred knowledge
into DRL, enhancing its applicability in complex decision-making scenarios.

Hierarchical task learning. A proper hierarchical structure is crucial for task decomposition and
abstraction. Various methods have been proposed for constructing hierarchical task representation
[41], including graphs [56], automata [15, 20, 21, 63], programs [54, 55, 57, 32, 29], and hierarchical
task networks [18, 51, 28]. Some approaches utilize the capabilities of deep learning with intrinsic
rewards [26, 13]. In addition, some of these works specifically address leveraging knowledge to
deal with multiple compositional tasks via task decomposition [2, 52, 31, 55, 50, 15]. Despite the
success in building hierarchical models shown in previous works, these works put less emphasis
on inducing subtask rules and substructure. Therefore, we develop a method to induce symbolic
knowledge and leverage it for hierarchical task representation.

3 Problem Formulation

We address the sparse-reward goal-directed problems which can be formulated as MDPs denoted
as ⟨S,A, T,R, γ⟩ , where S denotes state space, A denotes action space, T : S × A → S de-
notes a transition function, R : S × A → R denotes a reward function, and γ ∈ (0, 1] denotes
a discounting factor. DRL agents often struggle at solving sparse-reward, hierarchical tasks, while
classical planning techniques excel in such scenarios. On the other hand, unlike classical planning,
DRL is regarded as a generic model-free framework that does not require pre-defined models. This
motivates us to bridge the best of both worlds by integrating these two paradigms.

However, while DRL directly learns from interacting with MDPs and represents the action and the
states with fixed vectors of numeric values, classical planning operates on literal conjunctions. To

2

address this gap, we integrate planning and DRL methods by annotating the specific MDP actions in
the form of action schemata. Specifically, we consider the problem of inducing the action schemata
from the near-optimal demonstrations which may exhibit deviations from the optimal solutions. The
objective is to induce the action schemata which can be leveraged for task structure deduction. After
the action schemata are discovered, the framework deduces task structures from the action model
and aims to offer guidance for the training of DRL agents based on the task structures.

4 Integration of MDP in DRL and Planning with Critical Action

To bridge the gap between DRL and planning, we introduce the concept of critical actions in this
section. Specifically, we formulate our problems as mapping tasks described by MDPs to PDDL
and SAS+ [8], where the preliminary notation is elaborated in Appendix A. To express numeric
variables, we adopt the configuration of PDDL 2.1 [14], which includes arithmetic operators for
specification.

Mapping between MDP and classical planning. Lee et al. [27] has developed the abstraction
mapping between planning and MDP problems. A planning task Π = ⟨V,O, s′g⟩, where V is a set
of variables, O is a set of operators in the domain, and s′g is a partial state describing the goal. The
transition graph of the planning task is a tuple T ′ = ⟨S ′, T ′,S ′goal⟩, where T ′ is a set of transitions
⟨s′, o, T ′(s′)⟩ for all s′ in S ′, and S ′goal is a set of goal states. Let L : S → S ′ be a mapping from the
MDP state space S to high-level planning state space S ′. Given an MDP problem, the abstraction
⟨L,Π⟩ is proper iff there exists a mapping L to Π such that ⟨L(s), ψ,L(T (s, aψ))⟩ ∈ T ′ if some
ψ is admissible in the MDP state s ∈ S or L(s) = L(T (s, aψ)), where T ′ is a set of all possible
transitions in Π. In this work, we focus on the MDP problems with proper abstraction in which a
mapping to a planning domain exists, and action models can be induced by the proposed framework.

Critical action. Critical actions are the actions which lead to the transitions in T ′. That is, these
actions are critical for progress at the planning level and must be executed in a specific order. A
state s′ ∈ S ′ in the planning domain is an assignment to V , and s′v ∈ R is the value assigned to
the variable v ∈ V . We map each si in MDP problems with distinct s′v in planning, considering a
planning task as an MDP-like tuple ⟨S ′,O, T ′⟩, a transition ⟨s, aψ, T (s, aψ)⟩ in an MDP problem
can be directly transferred to the transition ⟨L(s), ψ,L(T (s, aψ))⟩ in planning domain.

The critical actions can be recognized from the effects which are necessary state changes to achieve a
goal. Thus, we define critical action schemata with the critical effects and the required preconditions
in classical planning, considering mapping the problem to a planning task Π. A critical action ψ ∈ O
is a planning operator whose action schema can be defined as a tuple ⟨aψ, pre(ψ), eff (ψ)⟩. We
define the notations as follows, and an illustration is shown in Figure 1.

• MDP action aψ ∈ A denotes the MDP action mapping to ψ.

• Precondition pre(ψ) is a set of conditions requires satisfaction before executing ψ.

• Effect eff (ψ) is a set of functions which indicates the state change after executing ψ.

Given an effect eff (ψ) and one of its variables v ∈ V(eff (ψ)), an effect rule eff (ψ)v : R → R
is a function which transfers the specific feature value s′v in s′ to another value eff (ψ)v[s

′
v] in

the transition, and a precondition rule pre(ψ)v is a logical formula pre(ψ)v : R → {0, 1} that
determines whether the variable v is satisfied to execute ψ. Given a state s′, two critical action ψ
and ϕ, eff (ψ)v satisfy pre(ϕ)v in state s′ iff a variable v in both V(eff (ψ)) and V(pre(ϕ)), and
pre(ϕ)v[s

′
v] is false while pre(ϕ)v[eff (ψ)v[s

′
v]] is true in a transition with ψ. That is, executing ψ

makes ϕ become admissible.

To efficiently induce the model, we assume that the properties of the features in a state are known.
Effect variable space E = {v | v ∈ V(eff (ψ)) ∀ ψ ∈ O} contains the variables that will change in
transitions and related to the progress of the tasks.

Critical-action network. This work represents symbolic knowledge structures as critical-action
networks illustrated in Figure 1c. Given a set of critical actions O and a desired goal specification
pgoal, a critical-action network G = (V,E) is an in-tree structure where the root is the critical action

3

wood ≥ 2 at_workbench = 1

stick + 1wood - 2

make_stick
make1

(a) Critical action

Name Symbol Example

Critical action ψ make_stick
MDP action aψ make1
Effect variables V(eff (ψ)) {wood, stick}
Effect eff (ψ) {wood− 2, stick+ 1}
Precondition variables V(pre(ψ)) {at_workbench, wood}
Precondition pre(ψ) {at_workbench = 1, wood ≥ 2}

(b) Symbols and examples of an action schema make_stick.

wood ≥ 2 at_workbench = 1

stick + 1wood - 2

make_stick

stick = 1

at_wood = 1

pickup_wood× 2

wood+(1×2)

× 1

stick = 0

(c) Critical-action network

Inventory
empty

Inventory
wood × 2

Inventory
stick × 1

MDP
actions

MDP
actions

right
right
down
pickup
pickup

down
left

make1

(d) Example of making a stick in MINECRAFT

Figure 1: Critical action. (a)-(b) The illustration, symbols, and examples of a critical action.
A critical action is an essential action in environments with preconditions and effects. (c) Critical-
action network. If an action model is discovered by the induction module, it builds critical-action
networks. (d) Example of making a stick in MINECRAFT. Actions highlighted by red rectangles
are critical, i.e., picking up wood twice and making a stick (make1).

that can satisfy the goal specification directly. For each edge (ψ, ϕ) ∈ E, there exists eff (ψ)v for
some v that satisfy pre(ϕ)v . Once the action schemata are known, we can construct the network
using planners or backward chaining.

5 Method

Section 5.1 introduces the induction module that determines the critical actions from near-optimal
demonstrations and extracts symbolic rules. Section 5.2 describes the training module that deduces
task structures to build critical-action networks online from the given goal. The network contains
subtask dependencies, providing guidance through intrinsic rewards and augmenting the training
efficiency of DRL agents. An overview of our proposed framework is illustrated in Figure 2a.

5.1 Induction Module

The procedure of the induction module is illustrated in Figure 2b. The module first extracts action-
effect linkages (a,V(eff (ψ))) from demonstrations. Second, the module induces effect rules eff (ψ)
given (a,V(eff (ψ))). Finally, the module leverages the rules to determine the precondition rules
pre(ψ) for each (a, eff (ψ)). After these steps, the components of critical action schemata are all
determined. Note that we name the critical action ψ for the convenience of reference, which is not
known when inducing action schemata. We use “·” to represent an undefined critical action. The
following paragraphs will elaborate on the details of the induction methods.

Action-effect linkages. Based on the outcome assumption that one action only impacts specific
state features, we can detect co-occurrence of what effects often occur after executing a by cal-
culating mutual information [47] between actions and effect variables. Let E be a set of possible
effect variable combinations V(eff (·)) in the transitions of demonstrations. The mutual information
M(a,V(eff (·))) is defined as follows:

M(a,V(eff (·))) =
∑
a∈A

∑
V(eff (·))∈E

PAE(a,V(eff (·))) log PAE(a,V(eff (·)))
PA(a)PE(V(eff (·)))

, (1)

where PA(a) is the count of transitions with action a; PE(V(eff (·))) is the count of transitions that
include variables in V(eff (·)); PAE(a,V(eff (·))) is the count of transitions that include changed

4

Induction
Module

Critical Actions

DRL Module

Critical Action Network

Goal
 Intrinsic
 Reward

 RewardAction

Training
Module

Knowledge
Base

Training Data

Environment

Agent

Demonstrations

State

(a) Framework overview

Collecting
Demonstrations

 Extracting
Action-Effect Linkage

 Determining
Effect Symbolic Rules

Demonstrations

Action-Effect Pairs

 Determining
Precondition Rules

Effect Rules

Precondition Rules

Critical Action Schemata

(b) Induction module

Figure 2: (a) Framework overview. The proposed framework is two-stage. In the induction stage,
critical action schemata are induced from demonstrations. In the training stage, the training module
deduces the critical-action network from the goal by backward-chaining and offers intrinsic rewards
to the DRL module according to the network. (b) Induction module. The induction module induces
the critical action schemata from demonstrations through three steps. First, it finds the linkage
between actions and effect variables in transitions. Then, given the transitions with action-effect
linkage, the induction module induces the effect rules via symbolic regression. Finally, it determines
the precondition given the specific action and the effect.

variables in V(eff (·)) with action a. To determine the linkage, the pairs are divided into two clusters
with the threshold of a maximum gap, and the cluster with higher values are selected. The detailed
algorithm is shown in Appendix B.1.

Effect symbolic rules. Given an action-effect pair (a,V(eff (·))), the induction module proceeds
to search for the effect eff (·), which can be formulated as a symbolic regression. To accomplish
this, we employ genetic programming for symbolic regression to discover each effect rule eff (·)v
for all v in V(eff (·)), aiming to discover programs that can accurately predict the effects.

In genetic programming, each program is represented as an expression tree, taking sv and aψ in
each transition as input and yielding the predicted value of v after the transition as output. The
algorithm consists of three key steps: initialization, evaluation, selection, and reproduction. Initially,
a population of programs is randomly generated. The fitness of each program is evaluated based
on its prediction accuracy, and the programs with the highest fitness values are selected, serving
as parents to reproduce offspring through crossover, mutation, and duplication mechanisms. The
procedures and the example of genetic programming are illustrated in Figure 3.

The model of symbolic rules is regarded as the substructures of the subtasks, and selecting the proper
operators for the symbolic model compatible with the effects plays a crucial role in facilitating effec-
tive inference. For instance, in the context of general DRL task with numerical variable representa-
tion configuration, arithmetic operation set F = {+,−,×,÷, inc,dec} is used as the function set in
genetic programming, where inc denotes an increment operator and dec denotes a decrement oper-
ator. This choice of function set is consistent with the numerical variable representation commonly
employed in DRL tasks. The underlying assumption guiding our approach is that the effects can
be expressed through these programs, serving as prior knowledge of the problem. This allows our
method to induce task substructures and generalize the knowledge across domains that share iden-
tical operation configurations. This distinguishing feature sets our approach apart from alternative
model-free methodologies. Additional implementation details can be found in Appendix B.2.

Precondition rules. After the relation between a and eff (·) are found, determining precondition
rules pre(·) can be formulated as a classification problem, as the objective is to identify whether
eff (·) occurs given the action and the state. The process involves minimal consistent determina-

5

Start

Population
Intialization

Evaluation

Terminate?

Crossover Mutation Duplication

True

End

False

Selection

Reproduction

(a) Procedure of genetic programming

-

wood 2

action effect variable state next state

make1 wood

wood = 2, ... wood = 0, ...

wood = 4, ... wood = 2, ...

wood = 3, ... wood = 1, ...

÷

wood 2

make1 ↔ {wood, stick}

fitness = 1

woodt+1=woodt-2 woodt+1=woodt÷2

fitness = 0.33

+

wood 1

fitness = 0

woodt+1=woodt+1

(b) Example of fitness evaluation

Figure 3: Symbolic regression using genetic programming. Given a pair of an MDP action and
effect variables, symbolic regression is used to determine the rules when executing the action. (a)
Procedure of genetic programming. The programs iteratively evolve through fitness evaluation,
selection, and reproduction. (b) Example of fitness evaluation. The algorithm evaluates the accu-
racy of programs to induce the rule between make1 and wood.

tion (MCD) and the decision tree method. The model of pre(·) decides what preconditions leading
to desired effects after executing a. Additional details can be found in Appendix B.3.

5.2 Training Module

After the induction process, the critical action schemata serve as the components of the knowledge
base that guides the agent in the training stage. During the training stage, the training module
deduces the critical-action network given the initial state and goal specification and provides intrinsic
reward if the agent successfully performs an action that meets the critical effects in the network.

Inferring critical-action network. Once the critical actions schemata are defined, we can infer
task structures from the model. Given a goal and an initial state, the proposed framework deduces
the critical-action networks by backward chaining. Starting from the goal, the module searches for
the critical action to find the desired effect for unconnected precondition rules pre(·)v where v ∈ E.
Maximum operation steps are set to terminate the search. Once the critical action is found, the
critical action will be considered as the predecessor of previous critical actions.

DRL agent. In the training stage, we aim to train a DRL agent that can learn the subtask by lever-
aging the feature-extracting power of neural networks. The induction module only specifies the
coarse-grained critical action to express temporal order. Therefore, the framework deploys DRL to
complete the fine-grained decision-making tasks, which utilizes deep learning to approximate the
optimal policy with neuron networks. DRL uses the policy gradient method to update the policy. In
the proposed method, we use the action-critic method [38, 43] as the DRL agent. The implementa-
tion details are described in Appendix B.4.

Intrinsic rewards. During the training stage, if the agent successfully executes the critical effects,
it will receive an intrinsic reward when the preconditions of a critical action ψ are satisfied. Con-
versely, if the agent takes an action that leads to undesired effects, such as violating effect rules, it
will receive a penalty. However, note that our model only specifies positive critical actions and does
not explicitly identify actions that have possible negative consequences. Therefore, the implemen-
tation of a penalty depends on the specific domain.

6

6 Experiments

We evaluate our framework and provide ablation studies in this section. Section 6.1 lists the algo-
rithms we use for comparison. Section 6.2 provides the description of the environments and tasks.
Section 6.3 presents the results of training efficiency and accuracy. Section 6.4 demonstrates the
generalizability in different levels.

6.1 Baselines

We extensively compare our framework to various DRL algorithms (DQN and PPO) learning from
rewards, imitation learning methods (BC and GAIL) learning from demonstrations, advanced ap-
proaches (DQN-RBS and BC-PPO) that leverage both rewards and demonstrations, and an explo-
ration method (RIDE) that maximizes intrinsic and extrinsic rewards.

• Deep Q-Network (DQN; [37]) is an off-policy deep Q-learning algorithm.
• Proximal Policy Optimization (PPO; [46]) is a state-of-the-art on-policy DRL algorithm.
• Behavior cloning (BC; [45]) imitates an expert by learning from demonstrations in a su-

pervised manner.
• Generative adversarial imitation learning (GAIL; [19]) mimics expert behaviors via

learning a generative adversarial network whose generator is a policy.
• DQN-RBS initializes the replay buffer of DQN with demonstrations, allowing for a per-

formance boost. This is inspired by the replay buffer spiking technique [30].
• BC-PPO pre-trains a policy with BC using demonstrations and then fine-tunes the policy

with PPO using rewards, similar to Video PreTraining (VPT; [5]).
• Rewarding impact-driven exploration (RIDE; [44]) is a DRL exploration method in-

spired by the intrinsic curiosity module [42].

6.2 Environments & Tasks

To evaluate the proposed framework and the baselines, we design three groups of tasks in a 8 × 8
gridworld environment, where an agent can move along four directions {up, down, left, right}
and interact with objects. The tasks are described as follows. See Appendix C for more details.

SWITCH considers the combination lock scenario that turns on the switches in sequential order,
representing as the states x1, x2, ..., xk in a chain, where xi ∀ i ∈ k is the state that after turning on

DQN PPO BC GAIL DQN-RBS BC-PPO RIDE Ours

0 1 2 3 4 5
Steps (M)

0.0

0.2

0.4

0.6

0.8

1.0

Re
w

ar
ds

(a) 4-SWITCHES

0 1 2 3 4 5
Steps (M)

0.0

0.2

0.4

0.6

0.8

1.0

Re
w

ar
ds

(b) 8-SWITCHES

0 1 2 3 4 5
Steps (M)

0.0

0.2

0.4

0.6

0.8

1.0

Re
w

ar
ds

(c) 4-DISTRACTORS

0 1 2 3 4 5
Steps (M)

0.0

0.2

0.4

0.6

0.8

1.0

Re
w

ar
ds

(d) 4-ROOMS

0 1 2 3 4 5
Steps (M)

0.0

0.2

0.4

0.6

0.8

1.0

Re
w

ar
ds

(e) DOORKEY

0 1 2 3 4 5
Steps (M)

0.0

0.2

0.4

0.6

0.8

1.0

Re
w

ar
ds

(f) IRON

0 1 2 3 4 5
Steps (M)

0.0

0.2

0.4

0.6

0.8

1.0

Re
w

ar
ds

(g) ENHANCETABLE

0 1 2 3 4 5
Steps (M)

0.0

0.2

0.4

0.6

0.8

1.0

Re
w

ar
ds

(h) MULTIPLE

Figure 4: Task performance. We report the mean (line) and the standard deviation (shaded regions)
of the training curves over 5M steps out of three runs. Our approach outperforms other methods,
especially in advanced tasks.

7

switch i. If the wrong switch j < i is toggled, the progress will reset to the previous state xj . This
configuration makes it challenging for DRL agents to solve the task solely through exploration. We
design four tasks 4-SWITCH, 8-SWITCH, 4-DISTRACTORS and 4-ROOMS, where 4-SWITCH and
8-SWITCH evaluate the performance between different difficulties of tasks. 4-DISTRACTORS con-
sist of four target switches and four distractor switches, and 4-ROOMS combines the configuration
Minigrid four-rooms tasks [10].

DOORKEY features a hierarchical task similar to the Minigrid door-key tasks, where the agent needs
to open a door with a key and turn on a switch behind the door.

MINECRAFT is inspired by the computer game Minecraft and is similar to the environment in pre-
vious works [50, 2, 55, 6]. The environment is designed for evaluation using multiple-task demon-
strations. We select a simple task IRON, a difficult task ENHANCETABLE, and a multiple-goal
task MULTIPLE.

For the methods that require demonstrations, we collect 20 demonstrations from corresponding tasks
in SWITCH and DOORKEY and collect 64 multiple-task demonstrations from MULTIPLE for all tasks
in MINECRAFT. More details about the environment and the tasks can be found in Appendix C.

6.3 Results

The experimental results in Figure 4 show that our framework outperforms all the baselines on chal-
lenging tasks (e.g., 8-SWITCH, 4-DISTRACITORS, ENHANCETABLE, MULTIPLE) and performs
competitively on simpler tasks (e.g., DOORKEY, 4-SWITCHES, IRON). The imitation learning ap-
proaches, BC and GAIL, fail to learn all the tasks due to insufficient demonstrations and lack of
exploration, while RIDE, BC-PPO, and DQN-RBS, which consider rewards online, fail on advanced
tasks that require long-term planning. In contrast, our framework can leverage the knowledge from
the same number of demonstrations and efficiently explore the environment, especially on the tasks
8-SWITCHES where all the baselines completely fail, as shown in Figure 4b. Moreover, our pro-
posed framework is the most sample-efficient method in learning the DOORKEY task.

6.4 Generalizability

Our framework employs the critical-action model to achieve task-level generalizability, enabling the
construction of novel task structures based on familiar critical actions. Additionally, we introduce
genetic programming, renowned for its adaptability in reasoning symbolic rules as task substruc-
tures, thereby enhancing generalizability at the rule level. To define the domain gap, we denote
the original domain as the domain where demonstrations are collected and the variant domain as
the domain where agents learn. For rule-level generalizability, we define a variant critical action
ϕ from ψ where V(eff (ϕ)) = V(eff (ψ)) and V(pre(ϕ)) = V(pre(ψ)) while eff (ϕ) ̸= eff (ψ)
or pre(ϕ) ̸= pre(ψ). If a critical action ψ varies, the induced symbolic programs and the popu-
lation can evolve and adapt to new substructures. Since V(pre(ϕ)) and V(eff (ϕ)) are known, the
procedure starts from inducing effect rules eff (ϕ) ̸= eff (ψ). Thus, the proposed framework can
potentially achieve task generalization.

Table 1: Generalization performance in the original
domain 4-SWITCHES and its variant domains.

Task GAIL BC-PPO Ours

4-SWITCHES-(N+1) 30%±8% 97%±0% 96%±1%

8-SWITCHES-(N+1) 10%±2% 00%±0% 90%±2%
4-DISTRACTORS-(N+1) 10%±7% 41%±4% 95%±2%
4-DISTRACTORS-(2N+1) 11%±6% 33%±2% 95%±1%

Setup. To evaluate the generalizability
of our framework and baselines, we
consider 4-SWITCHES-(N+1) as the
original domain and its variant domains,
8-SWITCHES-(N+1), 4-DISTRACTORS-
(N+1), and 4-DISTRACTORS-(2N+1).
In 8-SWITCHES-(N+1), we extend the
number of switches from 4 to 8 to evaluate
the generalization of task structures. In 4-DISTRACTORS-(N+1), 4 distractor switches are added
to 4-SWITCHES-(N+1). The order of switches in 4-DISTRACTORS-(2N+1) changes to 2n + 1
(e.g., 1 → 3 → 5 → 7), while the order of switches in 4-DISTRACTORS-(N+1) is n + 1 (e.g.,
1 → 2 → 3 → 4). This series of settings evaluates if a method can generalize to different effect
rules. We collect 200 demonstrations in 4-SWITCHES-(N+1) and and run 5M steps for all methods.
For 4-DISTRACTORS-(2N+1), we collect only 4 additional demonstrations for all methods, and our
framework leverages the previous populations of genetic programming to re-induce the rules, which
only require few-shot demonstrations.

8

Baselines. We compare our framework with the best-performing baseline, BC-PPO, and the most
widely used baseline, GAIL, for the generalization experiments.

Results. The results in Table 1 demonstrate that the performance of GAIL and BC-PPO drops in the
variant domains, whereas our framework is able to generalize, highlighting its ability to construct
novel rules and structures in the variant domains.

6.5 Ablation Study

Figure 5: Action-effect mutual information in
MINECRAFT inferred by our framework.

This section presents the ablation studies of
the induction modules. Section 6.5.1 quali-
tatively examines the mutual information and
Section 6.5.2 shows the accuracy of symbolic
regression using genetic programming.

6.5.1 Action-Effect Linkage

In Section 5.1, we introduce action-effect link-
ages to discover the co-occurred effect vari-
ables and actions. Figure 5 presents the exper-
imental results in MINECRAFT and shows the
relationship between the logarithm of mutual
information and action-effect linkages. The
heat map visualizes the values of mutual infor-
mation of all action-effect pairs, with darker colors indicating higher values and stronger associ-
ations, highlighting the linkages. For instance, { wood, stick} is the effect variables of
make_stick as mentioned in Figures 1a and 1b, discovered by our framework from executing
make1. The results demonstrate a significant difference in mutual information between linked action
and effect variables compared to unrelated ones.

6.5.2 Symbolic Regression

25 50 75 100 125 150 175 200
Number of Demonstrations

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (
%

)

Polulation size
500 1000 2000

Figure 6: Symbolic regression accuracy.

The proposed framework necessitates a robust
symbolic regression module to generate the
symbolic rules. In Section 5.1, we introduce ge-
netic programming as symbolic regression for
induction. Since genetic programming is a ran-
domized search method, empirical results are
shown to discuss the success rate of finding cor-
rect rules and how much demonstrations are re-
quired to capture the symbolic rules.

The experiment setting is described as follows.
In MINECRAFT environment, there are 27 ef-
fect rules listed in Table 3. We sample different
numbers of demonstrations from random subtasks, and the number of population are 500, 1000, and
2000. Other parameters of genetic programming are the same as the setting in Table 2. We calculate
the number of programs which is equivalent to the ground truth after simplification. The result is the
average accuracy out of five runs shown in Figure 6. We claim that the effect rules can be induced
via genetic programming when a sufficient number of demonstrations and programs in the popula-
tion are available. Noting that the results are related to the diversity of the data and its coverage of
counterexamples relevant to the induction process. In addition, critical-action networks can still be
built when some rules are inequivalent to the ground truth due to the bias of the data, as long as the
rules match with the precondition of succeeding critical actions.

7 Discussions

We presented a framework to address sparse-reward, goal-directed MDP tasks by integrating DRL
and classical planning techniques. Our proposed framework represents symbolic knowledge as crit-
ical actions and employs a procedure to automatically extract knowledge from a few near-optimal

9

demonstrations. This combination of inductive learning (i.e., DRL) and deductive learning (i.e., clas-
sical planning) enables our framework to perform explicit high-level planning and accurate low-level
execution, allowing for robust task performance and generalizing to unseen domains. Additionally,
the proposed evolutionary computation provides adaptability at the rule level by inducing the task
substructures. Under the mechanism, the agent can adapt to new environments by generating new
symbolic knowledge from a pool of candidate programs.

Specifically, by representing knowledge as critical actions and employing critical-action networks,
we provided a structured and organized mechanism for capturing and utilizing symbolic knowledge
within DRL. The proposed procedures of subtask decomposition combine planning and DRL, lead-
ing to effective and efficient learning in goal-directed tasks. Furthermore, the compositionality of
the critical-action model allows for different levels of generalization, and hence such a model has
the potential to address a wide range of general problems. To sum up, our work offers a perspective
to integrate inductive and deductive learning on general goal-directed decision-making problems.

This work extensively evaluates our proposed framework on deterministic, fully observable environ-
ments within the integer domain. To extend our proposed framework to complex domains, such as
continuous input, we can potentially leverage recent studies that have developed genetic program-
ming for different variable types [60, 61]. When facing stochastic or partially observable environ-
ments, the induction module can fail to induce some critical actions because of the uncertainty. In
a worst-case scenario, when the induction module produces no rule, the proposed framework sim-
ply reduces to the backbone DRL algorithm (i.e., PPO) without any intrinsic reward. One potential
direction to address this issue is to extend the induction module to recognize and infer probabilistic
rules [40, 3], which is left for future work.

8 Acknowledgement

The authors would like to thank the support of the National Science and Technology Council in
Taiwan under grant No. NSTC 111-2221-E-002-189 and National Taiwan University under grant
No. 112L891103. Shao-Hua Sun was partially supported by the Yushan Fellow Program by the
Ministry of Education, Taiwan.

10

References
[1] David Abel, Dilip Arumugam, Lucas Lehnert, and Michael Littman. State abstractions for

lifelong reinforcement learning. In International Conference on Machine Learning, 2018.

[2] Jacob Andreas, Dan Klein, and Sergey Levine. Modular multitask reinforcement learning with
policy sketches. In International Conference on Machine Learning, 2017.

[3] Ankuj Arora, Humbert Fiorino, Damien Pellier, Marc Métivier, and Sylvie Pesty. A review of
learning planning action models. The Knowledge Engineering Review, 2018.

[4] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony Bharath. Deep
reinforcement learning: A brief survey. IEEE Signal Processing Magazine, 2017.

[5] Bowen Baker, Ilge Akkaya, Peter Zhokov, Joost Huizinga, Jie Tang, Adrien Ecoffet, Bran-
don Houghton, Raul Sampedro, and Jeff Clune. Video pretraining (VPT): Learning to act by
watching unlabeled online videos. In Neural Information Processing Systems, 2022.

[6] Ethan Brooks, Janarthanan Rajendran, Richard Lewis, and Satinder Singh. Reinforcement
learning of implicit and explicit control flow in instructions. In International Conference on
Machine Learning, 2021.

[7] Richard Byrne and Anne Russon. Learning by imitation: A hierarchical approach. Behavioral
and Brain Sciences, 1998.

[8] Christer Bäckström and Bernhard Nebel. Complexity results for SAS+ planning. Computa-
tional Intelligence, 1995.

[9] Ethan Callanan, Rebecca De Venezia, Victoria Armstrong, Alison Paredes, Tathagata
Chakraborti, and Christian Muise. MACQ: A holistic view of model acquisition techniques.
In The ICAPS Workshop on Knowledge Engineering for Planning and Scheduling, 2022.

[10] Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo de Lazcano, Lucas Willems,
Salem Lahlou, Suman Pal, Pablo Samuel Castro, and Jordan Terry. Minigrid & miniworld:
Modular & customizable reinforcement learning environments for goal-oriented tasks. CoRR,
abs/2306.13831, 2023.

[11] Luis Cobo, Peng Zang, Charles Isbell, and Andrea Thomaz. Automatic state abstraction from
demonstration. In International Joint Conference on Artificial Intelligence, 2011.

[12] Mohamad Hosein Danesh, Panpan Cai, and David Hsu. Leader: Learning attention over driv-
ing behaviors for planning under uncertainty. In Conference on Robot Learning, 2023.

[13] Carlos Florensa, Yan Duan, and Pieter Abbeel. Stochastic neural networks for hierarchical
reinforcement learning. In International Conference on Learning Representations, 2017.

[14] Maria Fox and Derek Long. PDDL2.1: An extension to PDDL for expressing temporal plan-
ning domains. Journal of Artificial Intelligence Research, 2003.

[15] Daniel Furelos-Blanco, Mark Law, Anders Jonsson, Krysia Broda, and Alessandra Russo.
Induction and exploitation of subgoal automata for reinforcement learning. Journal of Artificial
Intelligence Research, 2021.

[16] Malik Ghallab, Craig Knoblock, David Wilkins, Anthony Barrett, Dave Christianson, Marc
Friedman, Chung Kwok, Keith Golden, Scott Penberthy, David Smith, Ying Sun, and Daniel
Weld. PDDL - the planning domain definition language. 1998.

[17] Lin Guan, Sarath Sreedharan, and Subbarao Kambhampati. Leveraging approximate symbolic
models for reinforcement learning via skill diversity. arXiv preprint arXiv:2202.02886, 2022.

[18] Bradley Hayes and Brian Scassellati. Autonomously constructing hierarchical task networks
for planning and human-robot collaboration. In IEEE International Conference on Robotics
and Automation, 2016.

11

[19] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Advances in
Neural Information Processing Systems, 2016.

[20] Rodrigo Toro Icarte, Ethan Waldie, Toryn Klassen, Rick Valenzano, Margarita Castro, and
Sheila McIlraith. Learning reward machines for partially observable reinforcement learning.
Neural Information Processing Systems, 2019.

[21] Rodrigo Toro Icarte, Toryn Klassen, Richard Valenzano, and Sheila A. McIlraith. Reward
machines: exploiting reward function structure in reinforcement learning. Journal of Artificial
Intelligence Research, 2022.

[22] Mu Jin, Zhihao Ma, Kebing Jin, Hankz Hankui Zhuo, Chen Chen, and Chao Yu. Creativity of
ai: Automatic symbolic option discovery for facilitating deep reinforcement learning. In AAAI
Conference on Artificial Intelligence, 2022.

[23] B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A. Al Sallab, Senthil
Yogamani, and Patrick Pérez. Deep reinforcement learning for autonomous driving: A survey.
IEEE Transactions on Intelligent Transportation Systems, 2022.

[24] George Konidaris, Leslie Pack Kaelbling, and Tomas Lozano-Perez. From skills to symbols:
Learning symbolic representations for abstract high-level planning. Journal of Artificial Intel-
ligence Research, 2018.

[25] John Koza. Genetic programming: On the programming of computers by means of natural
selection. Statistics and computing, 1994.

[26] Tejas Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Joshua B. Tenenbaum. Hierarchical
deep reinforcement learning: Integrating temporal abstraction and intrinsic motivation. Ad-
vances in Neural Information Processing Systems, 2016.

[27] Junkyu Lee, Michael Katz, Don Joven Agravante, Miao Liu, Tim Klinger, Murray Campbell,
Shirin Sohrabi, and Gerald Tesauro. AI planning annotation in reinforcement learning: Options
and beyond. In Planning and Reinforcement Learning Workshop at International Conference
on Automated Planning and Scheduling, 2021.

[28] Youngwoon Lee, Shao-Hua Sun, Sriram Somasundaram, Edward Hu, and Joseph J. Lim. Com-
posing complex skills by learning transition policies. In International Conference on Learning
Representations, 2019.

[29] Yu-An Lin, Chen-Tao Lee, Guan-Ting Liu, Pu-Jen Cheng, and Shao-Hua Sun. Addressing
long-horizon tasks by integrating program synthesis and state machines. arXiv:2311.15960,
2023.

[30] Zachary C Lipton, Jianfeng Gao, Lihong Li, Xiujun Li, Faisal Ahmed, and Li Deng. Efficient
exploration for dialogue policy learning with bbq networks & replay buffer spiking. arXiv
preprint arXiv:1608.05081, 2016.

[31] Anthony Liu, Sungryull Sohn, Mahdi Qazwini, and Honglak Lee. Learning parameterized task
structure for generalization to unseen entities. In AAAI Conference on Artificial Intelligence,
2022.

[32] Guan-Ting Liu, En-Pei Hu, Pu-Jen Cheng, Hung-Yi Lee, and Shao-Hua Sun. Hierarchical pro-
grammatic reinforcement learning via learning to compose programs. In International Confer-
ence on Machine Learning, 2023.

[33] Wei-Yin Loh. Classification and regression trees. Wiley interdisciplinary reviews: data mining
and knowledge discovery, 2011.

[34] Daoming Lyu, Fangkai Yang, Bo Liu, and Steven Gustafson. Sdrl: Interpretable and data-
efficient deep reinforcement learning leveraging symbolic planning. In AAAI Conference on
Artificial Intelligence, 2019.

[35] Jiayuan Mao, Tomás Lozano-Pérez, Joshua B. Tenenbaum, and Leslie Pack Kaelbling. PDS-
ketch: Integrated domain programming, learning, and planning. In Neural Information Pro-
cessing Systems, 2022.

12

[36] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

[37] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, Stig Pe-
tersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran,
Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep rein-
forcement learning. Nature, 2015.

[38] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap,
Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforce-
ment learning. In International Conference on Machine Learning, 2016.

[39] Thanh Thi Nguyen, Ngoc Duy Nguyen, and Saeid Nahavandi. Deep reinforcement learning for
multiagent systems: A review of challenges, solutions, and applications. IEEE Transactions
on Cybernetics, 2020.

[40] Hanna Pasula, Luke Zettlemoyer, and Leslie Kaelbling. Learning symbolic models of stochas-
tic domains. Journal of Artificial Intelligence Research, 2007.

[41] Shubham Pateria, Budhitama Subagdja, Ah-hwee Tan, and Chai Quek. Hierarchical reinforce-
ment learning: A comprehensive survey. ACM Computing Surveys, 2022.

[42] Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. Curiosity-driven ex-
ploration by self-supervised prediction. In International Conference on Machine Learning,
2017.

[43] Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
Dormann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of
Machine Learning Research, 2021.

[44] Roberta Raileanu and Tim Rocktäschel. RIDE: Rewarding impact-driven exploration for
procedurally-generated environments. In International Conference on Learning Representa-
tions, 2020.

[45] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and
structured prediction to no-regret online learning. In International Conference on Artificial
Intelligence and Statistics, 2011.

[46] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[47] Claude Elwood Shannon. A mathematical theory of communication. The Bell system technical
journal, 1948.

[48] Tom Silver and Rohan Chitnis. PDDLGym: Gym environments from PDDL problems. In
Planning and Reinforcement Learning Workshop at International Conference on Automated
Planning and Scheduling, 2020.

[49] Tom Silver, Ashay Athalye, Joshua B. Tenenbaum, Tomás Lozano-Pérez, and Leslie Pack
Kaelbling. Learning neuro-symbolic skills for bilevel planning. In Conference on Robot Learn-
ing, 2022.

[50] Sungryull Sohn, Junhyuk Oh, and Honglak Lee. Hierarchical reinforcement learning for zero-
shot generalization with subtask dependencies. Neural Information Processing Systems, 2018.

[51] Sungryull Sohn, Hyunjae Woo, Jongwook Choi, and Honglak Lee. Meta Reinforcement Learn-
ing with Autonomous Inference of Subtask Dependencies. arXiv preprint arXiv:2001.00248,
2020.

[52] Sungryull Sohn, Hyunjae Woo, Jongwook Choi, lyubing qiang, Izzeddin Gur, Aleksandra
Faust, and Honglak Lee. Fast inference and transfer of compositional task structures for few-
shot task generalization. In Uncertainty in Artificial Intelligence, 2022.

13

[53] Roni Stern and Brendan Juba. Efficient, safe, and probably approximately complete learning
of action models. In International Joint Conference on Artificial Intelligence, 2017.

[54] Shao-Hua Sun, Hyeonwoo Noh, Sriram Somasundaram, and Joseph Lim. Neural program syn-
thesis from diverse demonstration videos. In International Conference on Machine Learning,
2018.

[55] Shao-Hua Sun, Te-Lin Wu, and Joseph J Lim. Program guided agent. In International Con-
ference on Learning Representations, 2020.

[56] Maxwell Svetlik, Matteo Leonetti, Jivko Sinapov, Rishi Shah, Nick Walker, and Peter Stone.
Automatic curriculum graph generation for reinforcement learning agents. AAAI Conference
on Artificial Intelligence, 2017.

[57] Dweep Trivedi, Jesse Zhang, Shao-Hua Sun, and Joseph J Lim. Learning to synthesize pro-
grams as interpretable and generalizable policies. In Neural Information Processing Systems,
2021.

[58] Mauro Vallati, Lukas Chrpa, Marek Grześ, Thomas Leo McCluskey, Mark Roberts, Scott San-
ner, et al. The 2014 international planning competition: Progress and trends. AI Magazine,
2015.

[59] Manuela Veloso, Jaime Carbonell, Alicia Perez, Daniel Borrajo, Eugene Fink, and Jim Blythe.
Integrating planning and learning: The prodigy architecture. Journal of Experimental & The-
oretical Artificial Intelligence, 1995.

[60] Marco Virgolin, Tanja Alderliesten, Cees Witteveen, and Peter A. N. Bosman. Scalable ge-
netic programming by gene-pool optimal mixing and input-space entropy-based building-block
learning. In Genetic and Evolutionary Computation Conference, 2017.

[61] Marco Virgolin, Tanja Alderliesten, Cees Witteveen, and Peter AN Bosman. Improving model-
based genetic programming for symbolic regression of small expressions. Evolutionary com-
putation, 29(2):211–237, 2021.

[62] Lucas Willems. PyTorch Actor-Critic deep reinforcement learning algorithms: A2C and PPO.
https://github.com/lcswillems/torch-ac, 2022.

[63] Zhe Xu, Bo Wu, Aditya Ojha, Daniel Neider, and Ufuk Topcu. Active finite reward automaton
inference and reinforcement learning using queries and counterexamples. In Machine Learning
and Knowledge Extraction, 2021.

[64] Qiang Yang, Kangheng Wu, and Yunfei Jiang. Learning action models from plan examples
using weighted max-sat. Artificial Intelligence, 2007.

14

https://github.com/lcswillems/torch-ac

Appendix

A Preliminary Definition

This section provides the annotations of the Markov decision process (MDP) and planning specifi-
cation discussed in Sectino 4. Section A.1 gives the formulation of MDP problems and Section A.2
explains the definition and the annotation of planning domain definition language (PDDL).

A.1 Markov Decision Process

A decision-making problem is formulated as a Markov decision process (MDP). MDP consists of a
five-tuple ⟨S,A, T,R, γ⟩, where S denotes state space, A denotes action space, T : S × A → S
denotes a transition function, R : S × A → R denotes a reward function, and γ ∈ (0, 1] denotes a
discounting factor.

In contrast with classical planning, problems in reinforcement learning represent the actions and the
states with vectors of numeric values instead of literal conjunctions. A state in S is a n-dimension
vector s, where each entry si, i ∈ {1, 2, ..., n}, represents the value of a numeric variable. In this
work, we focus on goal-directed sparse-reward problems. That is, given an initial state, the objective
is to find a policy to reach a desired goal state, and the agent only receives rewards when reaching
the goal state.

A.2 Planning Domain Definition Language

PDDL is a language in first-order logic to describe the domains and the problems. A domain de-
scription includes the specification of objects, variables, and action models with preconditions and
effects. A problem description includes an initial state and goal specification. These standard lan-
guage specifications allow off-the-shelf planners to deduce the optimal action sequence of the goal.

For theory formalism, we follow the representation of SAS+. To distinguish with MDP state space
S, the state space in the planning domain are denoted as S ′. A SAS+ task Π can be represented as
a tuple ⟨V,O, s′init, p′goal⟩, where V is a set of variables, and O is a set of operators in the domain.
A state s′ ∈ S ′ in the planning domain is an assignment to V , and s′v ∈ R is the value assigned to
the variable v ∈ V in s′. p′ ⊂ s′ is a partial state of s′, where p′ is the assignment to V(p′) ⊂ V .
Specifically, s′init ∈ S ′ is the initial state, and p′goal is a partial state of the goal specification.

A logical condition lv describes the relation between the variable v and an distinct value (e.g.,
wood = 1, stick ≥ 2). Each operator o ∈ O can be described as an action schema in a
pair ⟨pre(o), eff (o)⟩, where pre(o) is a conjunction of logical conditions denoted the precondi-
tion needed to be satisfied before executing o, eff (o) is a set of functions denoted the change toward
the state variables after executing o. The prevail condition is a subset of pre(o) which holds during
the action and does not affect by the effect, denoted as prv(o) = {lv | lv ∈ pre(o), v ̸∈ V(eff (o))}.
An operator o is admissible in state s′ iff pre(o) ⊂ s′ and prv(o) ⊂ s′.

B Implementation Detail

In this section, we elaborate on the implementation detail of the proposed framework that was used
in the experiments. We implement several modules using off-the-shelf packages and approaches,
including genetic programming as symbolic regression with gplearn, the agents with PPO, and the
intrinsic reward function we use in the experiments.

B.1 Algorithm in Extracting Action-Effect Linkages

In Algorithm 1, for each MDP action, we calculate the mutual information between the action and
all combinations of effect variables in demonstrations. Then, we apply the two-center clustering
method to determine the threshold shown in Algorithm 2. Two-center clustering finds a threshold
value that separates a given data into two clusters, which minimizes the sum of distances of data
points from their respective cluster centers. We take the logarithm of mutual information as the
metric to avoid incorrect thresholds caused by extremely high mutual information.

15

Algorithm 1 Extracting Action-Effect Linkages

Input: Demonstrations, action set A, effect set E
Output: Action-effect pairs with linkages L
L← ∅
for a in A do

Na ← ∅
for V(eff (·)) in E do

Na ← Na ∪M(a,V(eff (·)))
end for
t← Two-Center-Clustering(Na)
for V(eff (·)) in E do

if M(a,V(eff (·))) ≥ t then
L← L ∪ (a,V(eff (·)))

end if
end for

end for

Algorithm 2 Two-Center-Clustering

Input: Data D with length n
Output: Threshold of two clusters
cluster1, cluster2 ← ∅
c1, c2 ← min(D),max(D)
if c1 = c2 then

return c1
end if
terminated← False
while not terminated do:

for i = 1 to n do
if |D[i]− c1| < |D[i]− c2| then

cluster1 ← D[i]
else

cluster2 ← D[i]
end if

end for
c′1, c

′
2 ← mean(cluster1),mean(cluster2)

if c1 = c′1 and c2 = c′2 then
terminated← True

end if
c1, c2 ← c′1, c

′
2

end while
return (c1 + c2)/2

B.2 Genetic Programming

Genetic programming is employed as a symbolic regressor for determining symbolic effect rules in
the proposed methods, illustrated in Figure 3a. We use the gplearn package for implementation and
the parameter settings of are shown in Table 2. Given the action-effect linkage (a,V(eff (·))), the
transitions with action a are selected as the training data. For each effect variable v in V(eff (·)), the
algorithm’s objective is to find the program eff (·)v that predicts v after executing the action with the
highest accuracy.

Each program is represented as an expression tree where input is the current state in the transition
and output is the predicted value. The algorithm comprises several steps: initialization, evaluation,
selection, crossover, and mutation. Initially, the population, which is a set of programs, is randomly
generated. Fitness evaluation is then performed on all programs; a subset of programs with the
highest fitness values is selected. These programs serve as parents to produce offspring through
crossover and mutation mechanisms. Through iterative selection and production, the evolution of

16

Table 2: The parameter setting of gplearn. The parameter with two values indicates that the
settings are different in two phases.

Parameters Value (first/second phase)

population_size 2000/2000
tournament_size 40/40
generations 20/10
p_crossover 0.6/0.6
p_subtree_mutation 0.2/0.2
p_hoist_mutation 0.1/0.1
p_point_mutation 0.05/0.05
max_samples 0.95/0.95
init_depth (2,6)/(2,6)
parsimony_coefficient 0.0001/0.005
function_set {+,−,×,÷, inc,dec}/{+,−,×,÷, inc,dec}

the population to discover the programs that best fit the given data. The evaluation metric used in
genetic programming is the percentage of correct effect prediction shown below:

fitness(eff (·)v) =
of transitions with (a,V(eff (·))) consistent with eff (·)v

of transitions with (a,V(eff (·)))
, (2)

where a transition consistent with eff (·)v means that the predicted effect value eff (·)v(sv) is consis-
tent with the actual one T (s, a) given the transition ⟨s, a, T (s, a)⟩. To prevent bloat issues in which
the program grows extremely large to fit the data, the algorithm contains two phases: exploring
and pruning. The best programs with the highest accuracy are determined in the exploring phase.
Subsequently, in the pruning phase, we set high parsimony to prune the program.

B.3 Decision Tree Method

The proposed framework uses classification and regression tree (CART) [33] to build decision trees.
CART is a supervised learning algorithm that generates binary trees by recursive partitioning, where
each internal node represents a decision based on a specific variable, and each leaf node represents
a prediction. Let data partitioned at the internal node m denoted as Dm with nm samples. The
algorithm aims to find a decision with a variable q and a threshold t to partition Dm into two subsets
D0
m and D1

m with n0m and n1m samples. The loss function of the partition is defined as follows:

G(Dm, q, t) =
n0m
nm

H(D0
m) +

n1m
nm

H(D1
m), (3)

where H(Di
m) is the entropy of Di

m. In each partition, the algorithm’s objective is to find the (q, t)
that minimizes G(Dm, q, t) at node m. This process is repeated until a stopping criterion is met.

In the given transition ⟨s, a, T (s, a)⟩with a in demonstrations, the current states s are taken as inputs
to a decision tree, and the outcome of the decision tree is a true value that whether T (s, a) consistent
with the rules in eff (·). After generating a decision tree by CART, the model of this decision tree is
then transferred into a conjunction of rules by logical simplification and set as the precondition rules
pre(·), while V(pre(·)) is the set of variables mentioned in pre(·). Considering the precondition
is the conjunction of the precondition rules while the formula of the decision tree may involve
disjunction, the decision tree model is transferred into the disjunctive normal form. Each clause in
the disjunctive normal form is considered the precondition for different critical actions.

B.4 Deep Reinforcement Learning Module

In our research, we adopt the Proximal Policy Optimization (PPO) as the foundation for our frame-
work and the baseline in this work, utilizing the torch-ac library [62] for implementation. The
architecture of our model is designed to encode an 8x8 gridworld and state information.

17

The gridworld is handled by a convolutional neural network (CNN) comprising four layers. The
network effectively processes the input images, which are formatted in a three-channel setup, repre-
senting the object, color, and status respectively. The first convolutional layer utilizes 32 filters with
a kernel size of 3×3 and a stride of 2×2. Subsequent layers employ 2×2 kernels, with channel sizes
incrementing through 64, 96, to 128. Each layer integrates the ReLU activation function.

Parallelly, the state representation, converted into PDDL, is encoded through a two-layer fully-
connected network. Each of these layers contains 64 neurons and leverages the ReLU activation
function for non-linear transformation.

Two types of encoded observation are concatenated and encoded by another two-layer 64×64 fully-
connected network. The output-encoded observation is then used as the input of the actor network
and the critic network. Both the encoding networks and the actor-critic networks are trained.

B.5 Reward Function

During the training stage, we train an agent with intrinsic rewards generated from the critical action
network. The modified rewards function is illustrated as follows:

Rint(s) =

{
+1 if execute a critical action,
0 otherwise.

(4)

Given the original reward function R as extrinsic rewards, the overall reward of the MDP problem
is Rmod(s) = R(s) +Rint(s). In the experiment, the reward function is defined as

R =

{
stepmax−step
stepmax

if the episode terminated,
0 otherwise,

(5)

where stepmax is the maximum number of steps in the environment, and step is where step is the
current number of steps the agent has done. The setting of the maximum number of steps in each
environment is described in Appendix C.

C Test Environments

We use three MDP environments: SWITCH, DOORKEY, and MINECRAFT for evaluation. The
first environment SWITCH tests the ability to achieve sequential tasks. The second environment
DOORKEY is similar to door-key in Minigrid which is a baseline environment with hierarchical
tasks. The third environment MINECRAFT is designed to evaluate the ability to construct various
task structures with multiple subtasks for compositional tasks. The following sections provide a
description of the environments. The maximum number of steps in DOORKEY is 1600, while in
SWITCH and MINECRAFT is 25600.

C.1 SWITCH

The environment SWITCH is designed to evaluate the ability to solve hierarchical tasks. In SWITCH,
several switches are placed on the grid. The objective of the agent in SWITCH is to sequentially turn
on switches in a pre-determined order.

We define the state variables as V = {at_switch, next_switch, goal_switch}. at_switch
indicates the switch the agent stays at. If the agent does not stay at any switch, this variable is
set to zero. next_switch indicates which switch should be activated in the following actions.
goal_switch denotes the last switch and also implies how many switches should be turned on. The
action space A contains five actions: {left, right, up, down, toggle}. toggle enables the agent
to activate or deactivate a switch.

The switches have three states, including available, on and off. The agent can turn the available
switch to on. If the agent executes the action toggle at the switch, it will be deactivated and turned
to available. The agent can not change the status of the off switch until the predecessor switch is on.
If a on switch is turned to available, all subsequent switches will also be deactivated. This makes it
challenging for RL agents to solve the task through random walks or exploration alone.

18

2

1

3

4

(a) 4-SWITCHES

2

1

3

4

6

5

7

8

(b) 8-SWITCHES

2

1

3

4

5

6

7

8

(c) 4-DISTRACTORS

2

1

3

4

(d) 4-ROOMS

Figure 7: Visualization of SWITCH environments. N-SWITCHES in (a) and (b) shows the tasks
which consist of 4 and 8 switches in incremental order. (c) N-DISTRACTORS is the variant N-
SWITHES with other n distractor switches (the circle with dotted line). (d) combines four-room
environment in Minigird, testing the navigation ability of the agent.

For various evaluations, we design several situations, including the number of switches, sequential
order, and distractors. In the following sections, the settings of the tasks are listed and the illustra-
tions can be found in Figure 7.

• N-SWITCHES. When the number of switches increases, the tasks become more difficult as
it has more chance to turn off the switch. This setting evaluates the performance of different
difficulties of tasks.

• N-DISTRACTORS. Available switches are added as distractors to the environment. The
agent can turn on and off the distractor switches, but it does not help to achieve the tasks.
In n-switch incremental-order tasks, the switches labeled n + 1 to 2n are set as distrac-
tors, while in n-switch incremental-order tasks, the switches labeled 2, 4, ..., 2n are set as
distractors. This setting evaluates whether the agent acquires the ability to select correct
switches and neglects the incorrect ones.

• 4-ROOMS. Two lines of walls divide the gridworld into four rooms according to the four-
room configuration in Minigrid. Every two rooms are interconnected by a gap in the walls.
In this scenario, the agent must navigate through the rooms considering the walls to activate
the switches. This setting evaluates the efficacy of DRL involving navigating obstacles at
low-level execution.

• Order of the switches. To evaluate generalizability, we define two types of orders in-
cluding (N+1) and (2N+1). (N+1) indicates that the switches should be turned on in
incremental order (i.e., 1 → 2 → 3 → 4...) where (goal_switch = n), and (2N+1)
indicates that the switches should be turned on in odd order (i.e., 1 → 3 → 5 → 7...)
where (goal_switch = 2n+ 1). The order are labeled after the task name (e.g., 4-
DISTRACTORS-(N+1)), and by default the order is (N+1).

C.2 DOORKEY

The environment DOORKEY presents a task where an agent must collect a key to unlock a door and
turn on the switch behind the door. It is a basic setting which can be used to evaluate the ability to
solve hierarchical tasks.

We define the state variables as V = {agent_dir, has_key, door_state, at_switch, at_door,
next_switch}. agent_dir indicates the agent direction, has_key indicates whether the agent
holds the key, and door_state indicates the state of the door, including open, closed, and locked.
The action space A contains seven actions: {left, right, up, down, toggle, pickup, drop}.
toggle enables the agent to activate a switch or open the door.

C.3 Minecraft

MINECRAFT is inspired by the computer game Minecraft and is similar to the environment in
previous works [50, 2, 55, 6] illustrated in Figure 8a. The agent can pick up the primary ma-
terials on the map and make different tools in specific places consuming the materials. The

19

Inventory
wood ✕ 2, stone ✕ 3

at_wood

at_stone

at_iron

at_gem

at_workbench

at_toolshed

at_sheep

(a) Visualization of MINECRAFT environment.

make_stick

pickup_wood pickup_stone

make_stone_pickaxe

pickup_iron

make_iron_pickaxe

pickup_gem

make_scissors

pickup_woolmake_paper

make_jukebox make_enhance_table make_bed

(b) Dependency of subtasks in MINECRAFT.

Figure 8: Illustration of configuration and subtask dependencies in MINECRAFT environment.
(a) There are 7 locations in MINECRAFT environment, and the agent needs to collect materials and
craft tools at specific location. (b) illustrate the dependencies of the critical actions. For instance, to
execute pickup_iron, the agent needs to make a stone pickaxe. The graph ignores preconditions,
effects, and the number of executions required.

goal of each task is to acquire the desired materials or tools. The state variables include
{x, y, at_ < place >,< inventory >}, where at_ < place > denotes whether the agent is at
the place, and < inventory > denotes the number of materials or tools the agent holds.

In our experiments, thirteen types of items are designed in the inventory: wood, stone, stick, iron,
gen, stone_pickaxe, iron_pickaxe, wool, paper, scissors, bed, jukebox, enhance_table,
and there are seven places on the gird world: at_wood, at_stone, at_iron, at_gem, at_sheep,
at_workbench, at_toolshed.

The action spaceA contains eight actions: {left, right, up, down, make1, make2, make3, make4}.
The agent crafts different items when executing different make actions (make1, make2, make3,
make4) and at different places (workbench or toolshed). The formulas of the items are listed in
Table 3, and the dependency of the subtasks is illustrated in Figure 8b. The agent needs to get
the materials to create desired items. We test two single tasks with different difficulties IRON and
ENHANCETABLE, and a multiple task MULTIPLE that sample the goal at random.

20

Table 3: Formulas in MINECRAFT environment. The MDP actions, precondtions and effects are the
same as their corresponding critical actions.

Inventory MDP Action Preconditions
Effects

wood pickup
at_wood = 1
wood+ 1

stone pickup
at_stone = 1
stone+ 1

iron pickup
at_iron = 1 stone_pickaxe ≥ 1
iron+ 1

gem pickup
at_gem = 1 iron_pickaxe ≥ 1
gem+ 1

wool pickup
at_sheep = 1 scissors ≥ 1
wool+ 1

stick make1
at_workbench = 1
stick+ 1 wood− 1

stone_pickaxe make1
at_toolshed = 1
stone_pickaxe+ 1 stone− 3 stick− 2

iron_pickaxe make2
at_toolshed = 1
iron_pickaxe+ 1 iron− 3 stick− 2

iscissors make2
at_workbench = 1
scissors+ 1 iron− 2

paper make3
at_workbench = 1 scissors ≥ 1
paper− 1 wood− 1

bed make3
at_toolshed = 1
bed+ 1 wood− 3 wool− 3

jukebox make4
at_workbench = 1
jukebox+ 1 wood− 3 gem− 1

enhance_table make4
at_toolshed = 1
enhance_table+ 1 stone− 1 paper− 2 gem− 1

D Critical Action

The critical action and its graph are shown in this section. Tables 4 and 5 show the critical actions
in DOORKEY and SWITCH environments. The rules of critical actions in MINECRAFT environment
are already listed in Table 3 and are omitted in this section. Figures 9, 10, 11 and 12 illustrate the
critical action networks of N-SWITCHES, DOORKEY, IRON and ENHANCETABLE, respectively.

Table 4: Critical actions in SWITCH environment.
Action Name MDP Action Preconditions

Effects

turn_on toggle
at_switch = next_switch
next_switch+ 1

21

Table 5: Critical actions in DOORKEY environment.
Action Name MDP Action Preconditions

Effects

pickup_key pickup
at_key = 1
at_key = 0 has_key = 1

open_door toggle
door_state = 0 at_door = 1 agent_dir = 1
door_state = 2

turn_on toggle
at_switch = 1 door_state = 2
next_switch+ 1

× goal
turn on
toggle

at_switch = next_switch

next_switch+(1×goal)
next_switch=goal+1

next_switch=1

Figure 9: Critical action network of SWITCH

pickup key
pickup

has_key=1

next_switch=1

at_key=0

at_key=1

at_door=1agent_dir=1

open door
toggle

turn on
toggle

door_state=0 at_stiwch=1

next_switch+1
next_switch=1+1

Figure 10: Critical action network of DOORKEY

22

wood≥(2×2) at_workbench = 1

wood-(2×2)

make_stick
make1

stick ≥ 2

make_stone_pickaxe
make1

at_stone = 1

pick_stone
pickup× 3

stone ≥ 3

stick - 2 stone - 3

pick_iron
pickup

at_toolshed = 1

stone_pickaxe ≥ 1

iron + 1

stick+(1×2) stone+(1×3)

stone_pickaxe + 1

× 2

× 1

× 1

iron = 1

at_wood = 1

pick_wood
pickup× 4

wood+(1×4)

iron = 0

Figure 11: Critical action network of IRON

23

stick ≥ 2

make_iron_pickaxe
make1

iron ≥ 3

stick - 2 iron - 3

at_toolshed = 1

iron_pickaxe + 1

× 1

pick_gem
pickup

gem + 1

× 1

gem ≥ 1

iron_pickaxe ≥ 1

at_toolshed = 1

wood≥(1×2)

make_paper
make2× 2

wood-(1×2) paper+(1×2)
paper ≥ 2

at_workbench = 1

stone+(1×3)
stone ≥ 3

scissors ≥ 1

iron ≥ 2

make_scissors
make2

at_workbench = 1

iron - 2scissors + 1

× 1

wood≥(4×2) at_workbench = 1

wood-(4×2)

make_stick
make1

stick ≥ 2

make_stone_pickaxe
make1

at_stone = 1

pick_stone
pickup× 6

stone ≥ 3

stick - 2 stone - 3

pick_iron
pickup

at_toolshed = 1

stone_pickaxe ≥ 1

iron+(1×2)

stick+(1×2)stone+(1×3)

stone_pickaxe + 1

× 4

× 1

× 5

at_wood = 1

pick_wood
pickup× 10

wood+(1×8)

iron+(1×3)

wood+(1×2)

stick+(1×2)

make_enhance_table
make4× 1

paper - 2enhance_table + 1
enhance_table = 1

stone - 3 gem - 1

enhance_table = 0

Figure 12: Critical action network of ENHANCETABLE

24

	Introduction
	Related Work
	Problem Formulation
	Integration of MDP in DRL and Planning with Critical Action
	Method
	Induction Module
	Training Module

	Experiments
	Baselines
	Environments & Tasks
	Results
	Generalizability
	Ablation Study
	Action-Effect Linkage
	Symbolic Regression

	Discussions
	Acknowledgement
	Preliminary Definition
	Markov Decision Process
	Planning Domain Definition Language

	Implementation Detail
	Algorithm in Extracting Action-Effect Linkages
	Genetic Programming
	Decision Tree Method
	Deep Reinforcement Learning Module
	Reward Function

	Test Environments
	Switch
	Doorkey
	Minecraft

	Critical Action

