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Abstract

Uncertainty quantification is crucial for many safety-critical applications. Eviden-
tial Deep Learning (EDL) has been demonstrated to provide effective and efficient
uncertainty estimates on well-curated data. Yet, the effect of class imbalance on per-
formance remains not well understood. Since real-world data is often represented
by a skewed class distribution, in this paper, we holistically study EDL, and further
propose Hybrid-EDL by integrating data over-sampling and post-hoc calibration to
boost the robustness of EDL. Extensive experiments on synthetic and real-world
healthcare datasets with label distribution skew demonstrate the superiority of
our Hybrid-EDL, in terms of in-domain categorical prediction and confidence
estimation, as well as out-of-distribution detection. Our research closes the gap
between the theory of uncertainty quantification and the practice of trustworthy
applications. Code is available at https://github.com/XTxiatong/Hybrid-EDL.git.

1 Introduction

Uncertainty estimation is key to safety-critical applications like healthcare and autonomous driving,
as it allows a deep learning model to know “what is unknown” [15, 30]. Making decisions under
uncertainty makes deep learning more trustworthy in the real world [3, 30].

Commonly used uncertainty estimation approaches include deep ensembles and Bayesian neural
networks [9]. However, they are either computationally expensive or intractable and thus are not
applicable in real-world applications [8]. The recently emerged evidential deep learning (EDL) is a
cost-effective approach, designed to quantify uncertainty via a deterministic model [23, 35, 4, 16]. The
core mechanism behind EDL is to transform the classification evidence into conjugate distributions
over the traditional model predictions as its outputs. The ability of EDL is remarkable for its
effectiveness in capturing aleatoric, epistemic, as well as distributional uncertainty by a single model
and a single forward pass [39].

Despite the great promise of EDL on well-curated data, through a comprehensive performance study,
we have found that EDL is highly likely to yield imprecise distributions when facing extreme class
imbalance. This can be explained by the fact that EDL is optimised via the empirical loss, i.e., the
averaged loss of all training samples, which leads to biased classification evidence with monitory
classes under-represented. Consequently, EDL generates both inaccurate categorical predictions and
unfair uncertainty estimations.

Motivated by the above observations, in this paper, we propose a hybrid approach combining data-
level and algorithm-level strategies to alleviate the performance degradation when applying EDL
on imbalanced data. Specifically, toward a task-agnostic framework, our solution is, firstly, to train
the model with balanced data via randomly over-sampling the minority classes, and then calibrate
the output distribution via the validation set in a post-hoc fashion. To validate the effectiveness

2022 Trustworthy and Socially Responsible Machine Learning (TSRML 2022) co-located with NeurIPS 2022.

https://github.com/XTxiatong/Hybrid-EDL.git


Figure 1: Three-class Dirichlet distribution. (a) and (b) point to the same predicted class but (b) has
higher uncertainty indicated by the larger DE value. (c) shows an example with equal categorical
probabilities across the three classes with the maximum DE value.

of our proposed Hybrid-EDL, we conduct extensive experiments on both artificial imbalanced and
real-world healthcare datasets with label distribution skew. Results demonstrate the superiority
of Hybrid-EDL compared to vanilla EDL and other baselines: Hybrid-EDL achieves less biased
categorical prediction, better predictive confidence, and more precise out-of-distribution detection.

Broader Impact. Uncertainty quantification is largely under-explored for real-world applications.
In fact, most studies merely leverage benchmark data like CIFAR10 and MNIST [25, 16, 28, 31],
leaving the effectiveness a question for real applications with small data and skewed label distribution.
Our study aims to bring attention to the more difficult yet realistic settings, making uncertainty
quantification more helpful in achieving trustworthy deep learning.

2 Evidential Deep Learning for Uncertainty Quantification

Existing widely adopted deep learning models use a final softmax layer to output categorical probabil-
ities p(i) = [p

(i)
1 , p

(i)
2 , ..., p

(i)
K ], with

∑K
c p

(i)
c = 1, for a given input X(i). The output p(i) is a point

estimation which cannot capture the epistemic uncertainty because the model is deterministic [8].
Besides, the probability yielded by softmax is usually over-confident as it always predicts a close set
for any given inputs, while the real-world is open with unseen classes [37].

Different from the traditional DL, underpinned by the Bayesian rule, EDL generates a Dirichlet
distribution – the natural conjugate posterior of categorical probability p(i) (i.e., p(i) can be regarded
as a multinomial distribution) as its output [11, 26]. The posterior q(i) = Dir(α(i)) is parameterised
by α(i) = [α

(i)
1 , α

(i)
2 , ..., α

(i)
K ] for K classes. Using a uniform prior Dir(1), α(i)

c can be derived by
α(i) = 1 + l(i), where l(i)c represents the likelihood/evidence of the i-th sample for class c [26]. The
fundamental target of EDL is to estimate the classification evidence for a given sample.

The presence of the Dirichlet distribution in EDL enables a better-calibrated way of quantifying epis-
temic uncertainty compared to the traditional point estimation [23, 35]. Additionally, the expectation
of probability p̂(i) presents the average predictive confidence which reflects the aleatoric uncertainty.
EDL is able to capture the distributional shift too: if no remarkable evidence can be modelled for a
given input, the posterior αc,∀c ∈ K will approach 1. Overall, given an input X(i), an EDL model
fθ outputs distribution q(i) = Dir(α(i)) with the predictive probability p̂(i), categorical prediction
ŷ(i) and uncertainty measurement Differential Entropy (DE) inferred as below,

p̂(i)c = E[p(i)c ] =
α
(i)
c

α0
,

ŷ(i) = argmax
c

E[p(i)c ],

DE = Ep∼q[−In(p)],

(1)

where α0 =
∑K

c α
(i)
c . DE reflects how the energy is distributed, i.e., the “peakedness”, in the

Dirichlet distribution. A larger value corresponds to a higher uncertainty (see Figure 1).

Overall, EDL accomplishes uncertainty-aware classification by leveraging neural networks to estimate
the distribution q instead of the probability p. In this paper, we focus on Posterior Network [4],
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a implementation of EDL, which leverages class-conditional normalising flows to generate the
parameters of the Dirichlet distribution based on the feature extracted by common neural network. It
is optimised by the loss function formulated as below [4],

min
θ
L =

1

N

N∑
i

Ep(i)∼q(i) [CE(p(i), y(i))]− λ ·H(q(i)), (2)

where CE denotes the cross-entropy loss with CE(p(i), y(i)) = −
∑

c y
(i)
c log p

(i)
c and H denotes

the entropy of q(i). This loss approximates the posterior Dirichlet distribution for the true categorical
distribution. Specifically, the first term, the expectation of the cross entropy, maximises the classifi-
cation accuracy for the observed data, and the second term regularises the entropy, smoothing the
distribution q(i) = Dir(α(i)) to avoid overconfidence. λ represents the weight used to trade-off
between the two terms.

3 Performance Study of EDL

In this section, we analyse how class imbalance affects EDL’s performance. Without the loss of
generalisation, we use a binary classification task as an example.

3.1 Pitfalls of Loss Function

The function in Eq. (2) is an empirical loss designed to perform well on the average loss of N
training samples [14, 21]. Optimising this loss aims to minimise the negative log-likelihood of the
ground-truth class (i.e., maximise the corresponding likelihood). For ease of analysis, we re-write
Eq. (2) for the binary case as,

L =
1

N
[−

∑
y(i)=1

P1(X
(i)

) −
∑

y(i)=2

P2(X
(i)

) +

N∑
i

F (X
(i)

)], (3)

where P1 and P2 are the expected class probabilities for the two classes, respectively, with P1(X
(i)) =

Ep(i)∼q(i) [log p
(i)
1 ], P2(X

(i)) = Ep(i)∼q(i) [log p
(i)
2 ], and F (X(i)) = −λ ·H(q(i))1.

By minimising Eq. (3), we hope to approach the estimated class likelihood to the true distribution.
We now show that with the extreme class imbalance, minimising the empirical loss may cause the
minority class under-represented.

Supposing we sample N1 and N2 (N1 + N2 = N and N1 ≫ N2) data points from the two class
regions R1 and R2 for training, respectively. With a reasonable amount of training samples, the loss
(Eq. (3)) can be derived as below,

L = −
1

N
[N1 ·

1

N1

N1∑
X(i)∈R1

P1(X
(i)

) + N2 ·
1

N2

N2∑
X(i)∈R2

P2(X
(i)

)],

= −
1

N
[N1 · ER1

[P1(X
(i)

)] + N2 · ER2
[P2(X

(i)
)],

(4)

with ERc denoting the expectation on class c. Because N1 ≫ N2, ER1 [P1(X
(i))] has a higher

weight (i.e., N1/N ) in the loss. As illustrated in Figure 2, P1(X
(i)) is more likely to be optimised

faster than P2(X
(i)) and it might present a larger value than the one (denoted by P ∗

1 (X
(i) - dash

line in Figure 2) optimised on balanced data (i.e., a larger P1 corresponds a smaller L). As a result,
the classification boundary will be shifted towards class 2. Taken together, with the monitory class
under-represented, both the prediction and uncertainty quantification of EDL might be unfair.

3.2 Synthetic Data Analysis

To further validate the above analysis, we show some results on an synthetic binary classification
case. We generate two linearly separable clusters with a sample ratio of 4:1. We feed those training
samplings (80% of the data) into an EDL, and use the rest (20%) for validation. We also generate a
testing set with the data densely covering the whole region to visualise the classification boundary

1We omit this regularisation term in the following analysis, as it is small and will not cause a difference
between class 1 and 2.
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Figure 2: Estimated likelihood for classification with imbalanced data. A larger likelihood P1 on
class 1 (region R1) is likely to cause the classification boundary to shift towards class 2 (region R2).

Figure 3: Visualisation for the binary classification study. a) Synthetic training samples (in dots)
and categorical prediction results (in shades). b) Associated uncertainty measurement with a darker
colour indicating that the prediction is more uncertain.

and the estimated uncertainty. As show in Figure 3(a), if α1 > α2 (p1 > p2), the point is predicted as
class 1 and vice versa. When α1 = α2 (α is very close to 1), we label the class as unknown.

The pink shade (predicted category) covers most red data points of class 1. Correspondingly, as
shown in Figure 3(b), the estimated uncertainty DE for class 1 is radially distributed, yielding an
increasing uncertainty when the inputs gradually deviate from the centre of the training data. This
behavior suggests that EDL achieves favourable performance for class 1 - the majority class. Yet,
this is not the same for class 2, which is the minority. Firstly, the blue shade shows a relatively poor
coverage of blue points in Figure 3(a): both class 1 and unknown class invade the region of class 2.
Even for the correctly predicted area, the associated uncertainty is very high and even higher than the
marginal area of class 1, as shown in Figure 3(b). This implies that the predictions are not confident
and the estimated uncertainty is very high reaching the uncertainty for OOD samples. This again
arises the concern that EDL could estimate unfair uncertainty for the minority class.

4 Our Solution: Hybrid-EDL

Built up the above findings, we propose Hybrid-EDL, a task-agnostic framework to improve EDL’s
performance when facing class imbalance. The core mechanism of our Hybrid-EDL is to first train
the model with a conventional data balancing method and then further calibrate the model via a
validation set to optimise the class-wise performance. The main new components of Hybrid-EDL are
as bellow (with more details introduced in Appendix A),

Training with Random Over-sampling. In Hybrid-EDL, the class frequencies in the training set are
first balanced by randomly reusing some samples from minorities [24]. Then deep learning model is
fitted via the commonly used batch-based back-propagation [19].

Post-hoc Calibration. Although it is easy to achieve uniform class frequencies, enabling the empirical
loss L to present a good approximation of the optimal loss, it additionally requires for the training set
Dc to be representative of the true class region Rc for any class. Yet, generating high-quality data
samples is non-trivial, and effective data-generating strategies are usually task-specific [36, 18]. To
make the method generalised and effective, we further propose a novel post-hoc calibration module
to compensate for the simple over-sampling. To target is to calibrate the classification evidence for
minority classes by inspecting the class-wise performance via the validation set.

Specifically, for K classes, we aim to find the weights ω = [ω1, ..., ωc, ..., ωK ] that can calibrate
the parameters of the yielded Dirichlet distribution. We seek the best weights through a greedy
search whose objective is to maximise the unweighted average recall (UAR) [34] on the validation
set. For ease of notation, we assume class 1 is the majority while others are the minorities. Let Nc

denote the number of samples of class c in the imbalanced training set. We initialise the search space
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Table 1: Performance on CIFAR10 with various imbalance levels. The arrows after the metrics
indicate the optimal direction. The best results are highlighted.

ACC↑ UAR↑ RECmi↑ ECE↓ AUCo↑
Balanced EDL 0.872 0.871 - 0.100 0.801

Lightly EDL 0.830 0.830 0.822 0.134 0.780
Imbalanced Hybrid 0.842 0.841 0.831 0.122 0.788

Mildly EDL 0.763 0.764 0.749 0.166 0.650
Imbalanced Hybrid 0.790 0.789 0.781 0.153 0.686

Heavily EDL 0.698 0.700 0.668 0.213 0.627
Imbalanced Hybrid 0.722 0.721 0.697 0.205 0.661

with ω1 = 1 and ωc ∈ [1, N1

Nc
], (c > 1, N1 > Nc). We then iteratively update UAR: for each input

X(i) in the validation set Dv , the prediction is made from α(i) ·ω = [α
(i)
1 ω1, ..., α

(i)
c ωc, ..., α

(i)
K ωK ],

according to Eq. (1). Therefore, for each ωt in the search space, we can obtain a new UAR. Finally,
the ω that leads to the highest UAR on the validation set will be chosen and used for inference.

5 Experiments and Results

We evaluate Hybrid-EDL from the three aspects: 1) classification performance by the overall
accuracy (ACC), the mean of class-wise recall (UAR), and the averaged recall for minority classes
(RECmi), 2) confidence estimation by the expected calibration error (ECE) [10], and 3) out-of-
distribution detection by the Area Under the receiver operating characteristic Curve (AUCo) via
using normalised DE to detect OOD data. We first use the benchmark data including CIFAR10 and
SVHN at a variety of imbalance levels. Besides, three real-world healthcare datasets with natural
label skew are also utilised for experiments. Details can be found in Appendix B and C.

5.1 Results on Artificially Imbalanced Data

We first utilise the CIFAR10 with class imbalance of various degrees: a step distribution among
classes is kept and we term the imbalance ratio as the ratio between the size of the largest class and
the smallest class [13]. We create light (ratio=10), mild (ratio=50), and heavy (ratio=100) imbalance
for training. In addition, SVHN is employed as the OOD data to obtain AUCo.

Results are summarised in Table 1. Our Hybrid-EDL consistently outperforms the vanilla EDL in all
metrics regardless of the imbalance level. When the training data becomes increasingly imbalanced,
both the classification performance (see ACC, UAR and RECmi) and uncertainty quality (refer to
ECE and AUCo) decline compared to the results yielded by the balanced training data. Nevertheless,
the drops of our Hybrid-EDL are less significant. Specifically, although the vanilla EDL and Hybrid-
EDL achieve competitive performance when the imbalance is light, predictive confidence of our
Hybrid-EDL is more reliable because we reduce ECE from 1.34 to 1.22 with an improvement of
9%. For the mild and heavy imbalance scenarios, Hybrid-EDL improves EDL by 3%∼5% for all
metrics: showing higher classification accuracy, fairer predictive confidence, and better awareness
of distributional shift. The extreme class imbalance is a very challenging task [1], while our hybrid
method can effectively improve EDL with nearly no additional training cost and a very light post-hoc
calibration module.

We also find that, as we hypothesised, the weight ωc presents a larger value for smaller class. For
example, in the mild balance case, we get ωc up to 10 for the smallest class while ωc = 1 for the
largest and second-largest classes. This suggests that the post-hoc calibration enhances the importance
of the minorities, leading to less biased classifications.

5.2 Results for Real Applications

We conduct extensive experiments on another three real tasks with different data modalities and
model backbones. For each task, we include two OOD datasets, named near OOD (i.e., with identical
classes) and far OOD (i.e., with new classes), respectively. The data is as summarised in Table 2
Hybrid-EDL is compared to a series of traditional and start-of-the-art baselines (refer to Appendix D).
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Table 2: A summary of real application datasets. #Train is the original training data size, which is
split into training and validation folds with different seeds. #Test is the testing size. C is the number
of classes and D is the input data dimension.

Task Dataset OOD Dataset
Name Backbone Modality Name #Train #Test C Ratio (%) D Near OOD Size Far OOD Size

Task 1 ResNet34 Audio ICBHI2017 4,274 2,641 4 52.8/27.0/12.9/7.3 1×32,000 Stethoscope 336 ARCA23K 2,264
Task 2 DenseNet121 Image HAM10000 7,206 2,809 7 67.1/11.1/11.0/5.1/3.3/1.4/1.1 3×600×450 ISIC2017 1,824 CIFAR-10 10,000
Task 3 FCNet ECG EGC5000 4,500 500 5 58.4/35.3/3.9/2.0/0.5 1×140 ECG200 200 FetalECG 1,965

Table 3: Performance comparison for real applications. The average results of five runs are shown.
The best results are highlighted.

Task 1: Audio classification Task2: Image classification Task 3: Physiological signal classification

ACC↑ UAR↑ RECmi↑ ECE↓ AUCn
o↑ AUCf

o↑ ACC↑ UAR↑ RECmi↑ ECE↓ AUCn
o↑ AUCf

o↑ ACC↑ UAR↑ RECmi↑ ECE↓ AUCn
o↑ AUCf

o↑
Softmax-FL 0.578 0.399 0.286 0.366 0.573 0.580 0.845 0.712 0.699 0.122 0.699 0.913 0.922 0.710 0.646 0.073 0.681 0.746
Softmax-AG 0.599 0.411 0.291 0.342 0.583 0.595 0.869 0.733 0.705 0.107 0.734 0.945 0.934 0.725 0.663 0.068 0.706 0.771
Mahalanobis - - - - 0.644 0.672 - - - - 0.736 0.990 - - - - 0.788 0.951
MCDP 0.599 0.412 0.295 0.334 0.590 0.602 0.870 0.734 0.705 0.103 0.735 0.949 0.933 0.721 0.660 0.067 0.707 0.772
Ensemble 0.608 0.431 0.307 0.322 0.599 0.672 0.873 0.739 0.708 0.102 0.735 0.950 0.938 0.728 0.667 0.062 0.708 0.798
EarlyExit 0.607 0.430 0.300 0.321 0.598 0.670 0.871 0.733 0.707 0.104 0.736 0.983 0.936 0.726 0.665 0.062 0.710 0.810
Bagging 0.605 0.412 0.297 0.322 0.585 0.661 0.712 0.705 0.655 0.157 0.634 0.787 0.910 0.557 0.452 0.337 0.679 0.732

Hybrid-EDL 0.610 0.442 0.340 0.284 0.733 0.832 0.855 0.750 0.722 0.102 0.744 0.990 0.940 0.743 0.672 0.059 0.816 0.958

Result comparisons are summarised in Table 3. Overall, for both classification performance in terms
of ACC, UAR, and RECmi, and the quality of uncertainty as measured by ECE, AUCn

o and AUCf
o ,

our proposed Hybrid-EDL outperforms the compared baselines for all the three tasks, except ACC on
Task 2. Specifically, Hybrid-EDL improves UAR by 1.5%∼2.6% and RECmi by up to 10.7% against
the best baseline for all tasks. Hybrid-EDL also significantly reduces ECE for Task 1 and 3, and
achieves comparable ECE on Task 2 with ensemble approaches. This suggests Hybrid-EDL enables
fairer confidence estimation. In terms of using uncertainty to detect distributional shifts, Hybrid-EDL
demonstrates a superior performance for the near OOD detection, with AUCn

o improved by 13.8%,
1.1% and 3.5% for the three tasks, respectively. For the far OOD detection, Hybrid-EDL shows
competitive performance against the best baselines for Task 2 and 3, while for Task 1 which is more
challenging, we achieve an improvement of 23.8%. Ablation study additionally suggests that each
element of Hybrid-EDL provides an independent performance gain across all metrics against the
vanilla EDL (refer to Appendix E.0.2).

Implications. Leveraging uncertainty for reliable application brings practical value. Firstly, corre-
sponding to the lowest ECE in Table 3, Hybrid-EDL calibrates probabilities: the probability can
better reflect the likelihood of a true prediction. Therefore, the predicted probability can be used
as the confidence to filter out some uncertain predictions. The evidence shows if predictions with
confidence under a threshold are excluded, the ACC climbs steadily as the increase of threshold
(refer to Figure 5 in Appendix E). In addition, the uncertainty measurement DE can help to identify
undesired inputs, corresponding to the promising AUCn

o and AUCf
o in Table 3 (with the distribution

of DE shown in Figure 6 in Appendix E). The in-domain validation and testing set present similar
uncertainty distribution, yet the OOD sets show different patterns with a higher median value of DE.
In this regard, a threshold according to the quantile of DE in the validation set can be selected: with
DE larger than this threshold, an input is highly suspicious of an OOD sample. Overall, Hybrid-EDL
allows quantified uncertainty estimation for real-world applications with skewed label distribution.
The fair estimation can lead to more principled decision-making and enable deep learning models to
automatically or semi-automatically abstain on samples for which there is high uncertainty, which
could also help engender trust with domain experts and model users.

6 Conclusion

In this paper, we have theoretically and empirically demonstrated vanilla EDL’s limitations in
classification and uncertainty estimation in the presence of class imbalance. We proposed a Hybrid-
EDL framework which combines training-phase data augmentation and validation-phase calibration
to eliminate the bias inherited from the skewed training data distribution. Our experiments show
that data augmentation is effective and that the post-hoc calibration can further boost performance,
particularly for minority classes. Our study paves the way for more practical and reliable deployment
of uncertainty-aware deep learning in the real world. In the future, calibrating the model without
depending on an extra validation set will be studied.
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[1] J. Attenberg and Ş. Ertekin. Class imbalance and active learning. Imbalanced Learning:

Foundations, Algorithms, and Applications, pages 101–149, 2013.

[2] R. Avanzato and F. Beritelli. Automatic ecg diagnosis using convolutional neural network.
Electronics, 9(6):951, 2020.

[3] U. Bhatt, J. Antorán, Y. Zhang, Q. V. Liao, P. Sattigeri, R. Fogliato, G. Melançon, R. Krishnan,
J. Stanley, O. Tickoo, et al. Uncertainty as a form of transparency: Measuring, communicating,
and using uncertainty. In Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and
Society, pages 401–413, 2021.

[4] B. Charpentier, D. Zügner, and S. Günnemann. Posterior network: Uncertainty estimation
without ood samples via density-based pseudo-counts. In Proceedings of the 34th International
Conference on Neural Information Processing Systems (NeurIPS), pages 1356–1367, 2020.

[5] N. C. Codella, D. Gutman, M. E. Celebi, B. Helba, M. A. Marchetti, S. W. Dusza, A. Kalloo,
K. Liopyris, N. Mishra, H. Kittler, et al. Skin lesion analysis toward melanoma detection: A
challenge at the 2017 international symposium on biomedical imaging (isbi). In Proceedings of
the 2018 IEEE 15th international symposium on biomedical imaging (ISBI), pages 168–172,
2018.

[6] M. Fraiwan, L. Fraiwan, B. Khassawneh, and A. Ibnian. A dataset of lung sounds recorded
from the chest wall using an electronic stethoscope. Data in Brief, 35:106913, 2021.

[7] S. Gairola, F. Tom, N. Kwatra, and M. Jain. Respirenet: A deep neural network for accurately
detecting abnormal lung sounds in limited data setting. In Proceedings of the 43rd Annual
International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC),
pages 527–530, 2021.

[8] Y. Gal and Z. Ghahramani. Dropout as a bayesian approximation: Representing model un-
certainty in deep learning. In Proceedings of the 33th International Conference on Machine
Learning (ICML), pages 1050–1059, 2016.

[9] J. Gawlikowski, C. R. N. Tassi, M. Ali, J. Lee, M. Humt, J. Feng, A. Kruspe, R. Triebel,
P. Jung, R. Roscher, et al. A survey of uncertainty in deep neural networks. arXiv preprint
arXiv:2107.03342, 2021.

[10] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger. On calibration of modern neural networks.
In Proceedings of the 29th International conference on machine learning, pages 1321–1330.
PMLR, 2017.

[11] T. Hastie, R. Tibshirani, J. H. Friedman, and J. H. Friedman. The elements of statistical learning:
data mining, inference, and prediction, volume 2. Springer, 2009.

[12] D. Hendrycks and K. Gimpel. A baseline for detecting misclassified and out-of-distribution
examples in neural networks. In International Conference on Learning Representations (ICLR),
2016.

[13] Y. Huang, B. Bai, S. Zhao, K. Bai, and F. Wang. Uncertainty-aware learning against label
noise on imbalanced datasets. In Proceedings of the AAAI Conference on Artificial Intelligence
(AAAI), 2022.

[14] S. Khan, M. Hayat, W. Zamir, J. Shen, and L. Shao. Striking the right balance with uncertainty.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR),
pages 9268–9277, 2019.

7



[15] B. Kompa, J. Snoek, and A. L. Beam. Second opinion needed: communicating uncertainty in
medical machine learning. NPJ Digital Medicine, 4(1):1–6, 2021.

[16] A.-K. Kopetzki, B. Charpentier, D. Zügner, S. Giri, and S. Günnemann. Evaluating robustness
of predictive uncertainty estimation: Are dirichlet-based models reliable? In Proceedings of the
33th International Conference on Machine Learning (ICML), pages 5707–5718, 2021.

[17] B. Lakshminarayanan, A. Pritzel, and C. Blundell. Simple and scalable predictive uncertainty
estimation using deep ensembles. In Proceedings of the 31st International Conference on
Neural Information Processing Systems (NeurIPS), pages 6405–6416, 2017.

[18] E. Lashgari, D. Liang, and U. Maoz. Data augmentation for deep-learning-based electroen-
cephalography. Journal of Neuroscience Methods, 346:108885, 2020.

[19] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. nature, 521(7553):436–444, 2015.

[20] K. Lee, K. Lee, H. Lee, and J. Shin. A simple unified framework for detecting out-of-distribution
samples and adversarial attacks. In Proceedings of the 32nd International Conference on Neural
Information Processing Systems (NeurIPS), pages 1–13, 2018.

[21] T. Li, A. Beirami, M. Sanjabi, and V. Smith. Tilted empirical risk minimization. In International
Conference on Learning Representations (ICLR), 2020.

[22] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár. Focal loss for dense object detection. In
Proceedings of the IEEE international conference on computer vision (CVPR), pages 2980–2988,
2017.

[23] A. Malinin and M. Gales. Predictive uncertainty estimation via prior networks. In Proceedings
of the 32nd International Conference on Neural Information Processing Systems (NeurIPS),
pages 6405–6416, 2018.

[24] R. Mohammed, J. Rawashdeh, and M. Abdullah. Machine learning with oversampling and
undersampling techniques: overview study and experimental results. In 2020 11th international
conference on information and communication systems (ICICS), pages 243–248. IEEE, 2020.

[25] J. Moon, J. Kim, Y. Shin, and S. Hwang. Confidence-aware learning for deep neural networks.
In international conference on machine learning, pages 7034–7044. PMLR, 2020.

[26] K. P. Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

[27] R. T. Olszewski. Generalized feature extraction for structural pattern recognition in time-series
data. Carnegie Mellon University, 2001.

[28] Y. Ovadia, E. Fertig, J. Ren, Z. Nado, D. Sculley, S. Nowozin, J. Dillon, B. Lakshminarayanan,
and J. Snoek. Can you trust your model’s uncertainty? evaluating predictive uncertainty under
dataset shift. Advances in neural information processing systems, 32, 2019.

[29] A. G. Pacheco, C. S. Sastry, T. Trappenberg, S. Oore, and R. A. Krohling. On out-of-distribution
detection algorithms with deep neural skin cancer classifiers. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops, pages 732–733, 2020.

[30] J. Pei, C. Wang, and G. Szarvas. Transformer uncertainty estimation with hierarchical stochastic
attention. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), volume 36,
pages 11147–11155, 2022.

[31] J. Postels, M. Segu, T. Sun, L. Van Gool, F. Yu, and F. Tombari. On the practicality of
deterministic epistemic uncertainty. Advances in neural information processing systems, 35,
2022.

[32] L. Qendro, A. Campbell, P. Lio, and C. Mascolo. Early exit ensembles for uncertainty quantifi-
cation. In Proceedings of the Machine Learning for Health (ML4H), pages 181–195, 2021.

[33] B. M. Rocha, D. Filos, L. Mendes, G. Serbes, S. Ulukaya, Y. P. Kahya, N. Jakovljevic, T. L.
Turukalo, I. M. Vogiatzis, E. Perantoni, et al. An open access database for the evaluation of
respiratory sound classification algorithms. Physiological measurement, 40(3):035001, 2019.

8



[34] A. Rosenberg. Classifying skewed data: Importance weighting to optimize average recall.
In Proceedings of the 13th Annual Conference of the International Speech Communication
Association (INTERSPEECH), pages 3860–3864, 2012.

[35] M. Sensoy, L. Kaplan, and M. Kandemir. Evidential deep learning to quantify classification
uncertainty. In Proceedings of the 32nd International Conference on Neural Information
Processing Systems (NeurIPS), pages 6405–6416, 2018.

[36] C. Shorten and T. M. Khoshgoftaar. A survey on image data augmentation for deep learning.
Journal of big data, 6(1):1–48, 2019.

[37] R. Soni, N. Shah, and J. D. Moore. Fine-grained uncertainty modeling in neural networks.
arXiv preprint arXiv:2002.04205, 2020.

[38] P. Tschandl, C. Rosendahl, and H. Kittler. The ham10000 dataset, a large collection of multi-
source dermatoscopic images of common pigmented skin lesions. Scientific data, 5(1):1–9,
2018.

[39] D. Ulmer. A survey on evidential deep learning for single-pass uncertainty estimation. arXiv
preprint arXiv:2110.03051, 2021.

[40] T. Xia, J. Han, L. Qendro, T. Dang, and C. Mascolo. Uncertainty-aware covid-19 detection from
imbalanced sound data. In Proceedings of the 22nd Annual Conference of the International
Speech Communication Association (INTERSPEECH), pages 216–220, 2021.

9



Appendix

A Hybrid-EDL

To address the class imbalance problem, we propose Hybrid-EDL, a task-agnostic framework, to
improve EDL’s performance in categorical prediction and uncertainty quantification. The core
mechanism of our Hybrid-EDL is to first train the model with a conventional data balancing method
and then further calibrate the model via a validation set to optimise the class-wise performance. The
framework is shown in Figure 4, and the procedure is illustrated in Algorithm 1.

Figure 4: Hybrid-EDL overview. The model is trained with random over-sampling augmentation,
and a post-hoc calibration is achieved via the validation set to find the best weights ω to adjust the
output α.

Algorithm 1: Hybrid-EDL Algorithm
Data: Training set D, validation set Dv

Result: Evidential model fθ , Calibration weights ω = [ω1, .., ωK ] for K classes
1 //Training with random over-sampling.
2 Generate a balanced set D′ from D
3 for epoch in [1,2,...,Epochmax] do
4 Update θ by back-propagating L(D′)
5 if Accuracy of Dv stops increasing then
6 Break
7 end
8 end
9 //Post-hoc calibration.

10 Initialise grid search space W for ω.
11 Initialise the best UARbest = 0, ω = [1,1,...1].
12 for each ωt in W do
13 Initialise prediction list Ŷ and label list Y
14 for each (X(i), y(i)) in Dv do
15 α(i) = fθ(X

(i))

16 ŷ(i) = argmaxc α
(i) · ωt

17 Add ŷ(i) to Ŷ and add y(i) to Y
18 end
19 Calculate UAR by Ŷ and Y
20 if UAR>UARbest then
21 ω← ωt

22 end
23 end
24 Return θ and ω
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B Evaluation Metrics

The evaluation will be from three aspects:

• Classification: We report overall accuracy (ACC), the average of class-wise accuracy (UAR),
and the averaged recall for minority classes (RECmi).

• Confidence: Uncertainty-aware model can calibrate the model’s confidence, i.e., the confi-
dence should reflect the likelihood that the categorical prediction is correct. For this purpose,
we use the expected calibration error (ECE) [10].

• OOD detection: EDL is expected to detect distributional shifts. Hence, we include some
OOD data for testing and report the Area Under the receiver operating characteristic Curve
(AUCo) by using normalised DE as the indicator [4].

A detailed formulation is list as below,

ACC. Acc is the proportion of the correctly predicted samples, formulated by:

ACC =
1

Ntest

Ntest∑
i

1(ŷ(i) = y(i)), (5)

where 1(·) is the indicator function.

UAR. UAR is the averaged accuracy per class, which equals the mean of the dialog of the confusion
matrix. We denote this as:

UAR =
1

K

K∑
c

ACC(ŷ(i)|y(i) = c). (6)

RECmi. We term the class with the largest number of samples as the majority, while others are
minorities. RECmi is the averaged recall of all minority classes as follows,

RECi =
1

K − 1

∑
c∈Minority

ACC(ŷ(i)|y(i) = c). (7)

ECE. Expected calibration error measures the expected difference (in absolute value) between
accuracies and the predicted confidences on samples belonging to different confidence intervals. We
used M = 10 universal bins to calculate ECE as follows:

ECE =

M∑
m

|Bm|
Ntest

|ACC(Bm)− conf(Bm)|, (8)

where bin Bm covers the confidence interval (m−1
M , m

M ]. ACC(Bm) and conf(Bm) are the ACC
and the average predictive confidence for the samples having the predictive confidence within Bm.

AUCo. The area under the receiver operating characteristic (AUROC, shorted as AUC) is used to
measure the performance of OOD detection. We treat this as a binary classification task: OOD set
is a positive class while in-domain (ID) data is the negative class. We conduct min-max normalise
on the mixed ID and OOD testing set for the uncertainty measurement (for EDL methods, we use
DE, and for other baselines, we use Entropy), resulting in the normalised values ranging [0, 1] as
the OOD probabilities to calculate AUC.

DE. Differential entropy measures the expectation of the entropy for the categorical distribution
sampled from Dir(α) (after post-hoc calibration in our Hybrid-EDL). DE of a given sample is
formulated by

DE = EDir(α)[−In(p)] (9)

= InB(α) + (α0 −K)ψ(α0)−
K∑
c=1

(αc − 1)ψ(αc), (10)

where B is the beta function and ψ is the diagamma function. In practice, we use python scipy library
to calculate it2. We finally reported the averaged DE across the testing test,

DE =
1

Ntest

Ntest∑
i

DE(Dir(α(i))). (11)

2https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.dirichlet.html
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Entropy. For baseline models, Entropy of the categorical distribution is used as the measurement of
uncertainty, which is formulated by,

Entropy =
1

Ntest

Ntest∑
i

K∑
c

−p(i)c · log(p(i)c ). (12)

C Datasets and Architectures

The binary classification data was governed in a standard way in the two-dimensional space3. We
feed those training samplings (80% of the data) into an EDL model consisting of two fully connected
layers and two normalising flows with a depth of 6, and use the rest (20%) for validation. The testing
set consists of 500×500 data points in the [-10,10] region.

We also experimented with a benchmark and three real-world tasks with various data modalities. The
details are introduced below,

Benchmark. We used VGG16 on the CIFAR10 image dataset for classification [4].

• (ID) We used the original balanced testing set of 10,000 images and uniformly sampled
another 5,000 images from the original training set for validation. The rest part was used for
training, i.e., around 4500 images per class.

• (OOD) We employed the testing set (26,000 images) of SVHN database as an opening set
for CIHAR10, as they contain totally different categories.

Setting. To simulate the imbalanced data distribution, we downsampled the train-
ing set with the class ratio of: 1:0.9:0.8:0.7:0.6:0.5:0.4:0.3:0.2:0.1 (light im-
balance), 1:0.89:0.78:0.67:0.56:0.45:0.34:0.23:0.11:0.02 (mild imbalance), and
1:0.5:0.4:0.3:0.25:0.2:0.15:0.1:0.05:0.01 (heavy imbalance). We run the experiments five
times by down-sampling different classes to report the average performance. All images are cropped
to 32×32 before feeding into the model.

Task 1: Respiratory audio classification. We explored the state-of-the-art ResNet34-based acoustic
model to distinguish abnormal lung sounds from healthy sounds [7].

• (ID) ICBHI 2017 Respiratory Challenge4 published a dataset collected from multiple
microphones and stethoscopes [33]. The total 6,898 samples from 126 patients cover four
classes: normal lung sounds (52.8%), crackle only (27.0%), wheeze only (12.9%), and both
crackle and wheeze (7.3%).

• (Near OOD) A similar audio dataset named Stethoscope consists of 336 normal, crackle, and
wheeze ausio samples [6]. we used it as ICBHI’s co-variate shift counterpart, as although
this dataset covers the same pathology, it is collected from a 3M Littemann electronic
Stethoscope, differing from ICBHI.

• (Far OOD) ARCA23K is a dataset of labelled sound events originating from Freesound,
and each clip belongs to one of 70 typically audio classes including music, human sounds,
animal sounds, etc5. We used the validation set containing 2,264 clips.

Setting. For the ID data, we followed the official patient-independent training and testing splits of
the Challenge. Samples from 47 patients were used for testing, while for the rest of the patients,
we randomly divided them into five folds and hold out one fold per running to conduct five-fold
cross-validation. For all ID and OOD datasets, audio recordings were re-sampled to 4KHz and
divided into 8s clips. The clips were then transformed to Mel-spectrograms as the inputs of the model.
For data augmentation, concatenation-based spectrogram generation was applied to increase the size
for abnormal clips in the training folds [7].

Task 2: Skin lesion image classification. A DenseNet121 based image classification model was
used to detect skin lesions [29].

3https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html
4https://bhichallenge.med.auth.gr/
5https://zenodo.org/record/5117901#.YkCsRk3MJPY
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• (ID) HAM100006 contains 10,015 determatoscopic skin tumour images taken from multiple
devices and demographics [38]. Image size is 600×450. The skin condition is labelled
as one of the following classes: melanocytic nevi (67.1%), melanoma (11.1%), benign
keratosis-like lesion (11.0%), basal cell carcinoma (5.1%), actinic keratoses (3.3%), vascular
lesion (1.4%), or dermatofibroma (1.1%).

• (Near OOD) Another skin lesion dataset with 2,000 high-resolution varied-size images
published by ISIC 20176 was used [5]. It was collected by another institute with a varied
device from HAM10000, therefore we regard it as the near OOD.

• (Far OOD) The image classification benchmark CIFAR-10 with 10 non-skin classes was
utilised as the far OOD.

Setting. For ID data, 30% was held out as the testing set, and five-fold cross-validation was imple-
mented: four-fifths of the remaining 70% of the data for training and one-fifth for validation per
running. Image augmentation was conducted by slightly modifying the brightness of the images in
the minority classes for training. Images in ISIC2017 datasets were resized uniformly to 767×1,022
before feeding into the model.

Task 3: Heart signal classification. An electrocardiogram (ECG) is a simple test that can be used to
check the heart’s rhythm and electrical activity. A one-dimensional convolutional neural network
FCNet has been developed to detect cardiovascular diseases from ECG [2].

• (ID) ECG5000 is a 20-hour long one-channel ECG dataset, which has been split and
interpolated into equal-length (140) heart beats7. It consists of five classes: 58.4% are
normal, 35.3% have heat failure typed R-on-T, 3.9% PVC, 2.0% SP, and 0.5% UB.

• (Near OOD) Another dataset consisting of 200 ECG recordings with a length of 178 was
used as the near OOD8, because the data acquisition method is different from ECG5000 [27].

• (Far OOD) A non-invasive fetal ECG dataset consists of 1,965 heatbeats with a length of
7509. As electrodes were placed on the mother’s abdomen, the ECG is usually of lower
amplitude than the maternal’s, and thus we used it as the far ODD dataset.

Setting. We utilised a subset of 500 samples in the ID ECG5000 datasets for testing, and split the
rest into five folds uniformly for cross validation. We also up-sampled the monitory classes with
replacement to re-balance the training class distribution.

Architecture. Following the architecture of Posterior Network [4], in this paper, we used pre-trained
backbone models as provided by Pytorch. On top of the backbone model, fully connected (FC) layers
sized 64 with spectral normalisation (SN) and batch normalisation (BN) were included in DEL to
map the high-dimensional feature vector into the representation with a length of 64. Then, K (class
number) radial normalising flows with a depth of d are leveraged to estimate the density. We used d =
8, 8, 12, 10 for benchmark, Task 1, 2, and 3 respectively. The weight of the entropy regularisation in
Eq. (2) λ is set to 10e-5.

D Baselines

Baselines. We compare Hybrid-EDL with deterministic models and several state-of-the-art
uncertainty-aware approaches. A deterministic model utilises softmax on the logits yielded by
the backbone network to generate the predictive probabilities, which is a commonly used base-
line [12]. In the presence of imbalanced training data, we implement deterministic models with focal
loss [22] and carefully-designed task-specific data augmentation [7, 29, 2], named Softmax-FL and
Softmax-AG, respectively. Regarding uncertainty quantification, we implement Monte Carlo Dropout
method (MCDP) [8], deep ensemble learning (Ensemble) [17], and multi-head early exists ensemble
(EarlyExit) [32] as baselines. Those methods presented promising results from the literature but they
are not designed for imbalanced data. For a fair comparison, we implement them via the same task-
specific data augmentation as Softmax-AG. We also include the bagging-based ensemble approach

6https://challenge.isic-archive.com/data/
7https://timeseriesclassification.com/description.php?Dataset=ECG5000
8https://timeseriesclassification.com/description.php?Dataset=ECG200
9https://timeseriesclassification.com/description.php?Dataset=NonInvasiveFetalECGThorax1
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(a) Task1. (b) Task2. (c) Task3.

Figure 5: Performance of selective prediction: Accuracy (y-axis) on the testing sets with confidence
above a certainty threshold (x-axis).

(Bagging) [40]. This method was proposed for imbalanced binary classification, but we extend
it to the multi-class scenario. For the performance of OOD detection, built upon on Softmax-AG,
the state-of-the-art Mahalanobis distance-driven approach Mahalanobis that captures the feature
distribution in the hidden space is employed as an additional baseline [20]. More implementation
details can be found in Appendix C.

Data Augmentation. Baselines excluding softmax-FL and Bagging were implemented with task-
specific data augmentation. In Task 1, audio samples were transformed into Mel-spectrograms with 64
bins. Data augmentation was implemented by concatenating two randomly selected Mel-spectrograms.
For the crackle class, a Mel-spectrogram from normal and original crackle class were picked.
Similarly, for the wheeze class, a Mel-spectrogram from normal and original wheeze class were
used. For both crackle and wheeze classes, one crackle and one wheeze were mixed. After that, all
spectrograms were divided into 8s clips. We used 8s because 80% of the samples have a length shorter
than 8s. For those short ones, repeating padding was implemented. For Task 2, image augmentation
was conducted by slightly modifying the brightness of the images in all classes excluding melanocytic
nevi for training. We used OpenCV function with α = [0.9, 0.95], β = [0.05, 0.1]10. For Task 3, as it
is less challenging compared to other tasks proved by relatively high accuracy, over-sampling signals
with added Gaussian noise were leveraged.

Training. Other implementation details as summarised below,

• Softmax-AG: Following the backbone model, two FC layers with Relu and Softmax activate
function were used.

• Softmax-FL: When training the deterministic model, instead of using the general cross-
entropy loss, the focal loss was applied with γ = 2. We adapted the implementation from
this public repo11.

• MCDP: A dropout rate of 0.5 is used for all models during training. This is changed to 0.2
for inference to avoid an accuracy drop. The inference is run five times per sample to get the
averaged probabilities.

• Ensemble: We used five models to get the averaged probabilities.

• EarlyExit: We use the exits at the last five layers of the deterministic model.

• Bagging: Nb is the size of the smallest class for training. For Task 3, it is smaller than 100.
So we use Nb = 1000 with over-sampling of the minority classes, otherwise, the training
size is too small.

• Mahalanobis: We used the feature from the last five layers to obtain Gaussian distribution.
Unlike the original Mahalanobis score where a linear regression model is fit to identify OOD
samples, we assume OOD samples are not achievable during training. Instead. we use the
Mahalanobis distances from the validations set to normalise the corresponding score in the
testing set, and take an average of this distance as the final score.

For all the methods in this paper, we use a learning rate of 10e-5, an optimiser of Adam, a batch size
of 64, and a maximum epoch of 200. The best model is saved by the highest ACC on the validation set.

10https://opencv-laboratory.readthedocs.io/en/latest/nodes/core/convertScaleAbs.html
11https://github.com/gazelle93/Multiclass-Focal-loss-pytorch
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(a) Task 1. (b) Task 2. (c) Task 3.

Figure 6: Distribution of DE. Validation and testing sets have very similar and small DEs, while
near and far ODD sets show larger DEs.

Table 4: Ablation study performance. +ROS denotes that we implement the random over-sampling
during training, and +PC means the post-hoc calibration is conducted based on the vanilla EDL.

ACC↑ UAR↑ RECmi↑ ECE↓ AUCn
o↑ AUCf

o↑

Task 1

EDL 0.591 0.268 0.119 0.304 0.655 0.734
EDL+ROS 0.616 0.434 0.316 0.297 0.700 0.768
EDL+PC 0.601 0.428 0.312 0.302 0.689 0.747
Hybrid-EDL 0.610 0.442 0.340 0.284 0.733 0.832

Task 2

EDL 0.688 0.601 0.575 0.214 0.688 0.803
EDL+ROS 0.860 0.735 0.712 0.105 0.701 0.896
EDL+PC 0.798 0.722 0.701 0.150 0.700 0.875
Hybrid-EDL 0.855 0.750 0.722 0.102 0.744 0.990

Task 3

EDL 0.914 0.317 0.237 0.240 0.786 0.887
EDL+ROS 0.940 0.690 0.622 0.062 0.790 0.920
EDL+PC 0.915 0.647 0.588 0.172 0.789 0.902
Hybrid-EDL 0.940 0.743 0.672 0.059 0.816 0.958

ResNet-34 and DenseNet-121 are initialised by the pre-trained checkpoints while other parameters
are randomly initialised. All models are implemented by Pytorch 1.16 and we trained the models by
a single Nvidia GPU with 64G memory. Codes will be publicly available once the paper is accepted.

E Additional Results for Real Applications

E.0.1 Implications of Uncertainty.

We further explain how to leverage Hybrid-EDL for reliable predictions. First, corresponding to
the lowest ECE in Table 3, Hybrid-EDL calibrates probabilities: the probability can better reflect
the likelihood of a true prediction. Therefore, we are able to use the predicted probability as the
confidence to filter out some uncertain predictions. As shown in Figure 5, if we reject the predictions
with confidence under a threshold, the ACC climbs steadily as the increase of threshold. In addition,
Hybrid-EDL can identify undesired inputs via the uncertainty measurement DE, corresponding to
the promising AUCn

o and AUCf
o in Table 3. For this purpose, we showcase the distribution of DE in

Figure 6. It can be observed that the in-domain validation and testing set present similar uncertainty
distribution, while the OOD sets show different patterns with a higher median value of DE. Therefore,
we are able to choose a threshold according to the quantile of DE in the validation set: with DE larger
than this threshold, an input is highly suspicious of an OOD sample.

Overall, in practice when deploying Hybrid-EDL, we can leverage DE to filter out-of-distribution
inputs, and then for the rest, we could utilise the probabilities to make confidence-aware predictions.

E.0.2 Ablation Study.

Here, we study the individual components in our Hybrid-EDL framework and their influence on
the final performance. Table 4 summarises the ablation study results. As can be seen, each element
provides an independent performance gain across all metrics against the vanilla EDL. It is also noted
that random over-sampling can effectively improve the overall accuracy and uncertainty estimation.
Yet, as we hypothesised before, the model can still be biased because of the poor data coverage of the
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minority classes. This can be validated by the notable gap between ACC and UAR of EDL+ROS:
12.5%∼25.0 for the three tasks. When only post-hoc calibration is adapted, although the improvement
in terms of all metrics is not as good as those of EDL+ROS, the gap between ACC and UAR can be
reduced to 7.6%∼23.8%. Consequently, applying post-hoc calibration on the model trained with
over-sampling augmentation can compensate for the underestimated evidence for the minority classes,
leading to a better trade-off between classification and uncertainty estimation.
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