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Abstract
Causal machine learning has the potential to revo-
lutionize decision-making by combining the pre-
dictive power of machine learning algorithms with
the theory of causal inference. However, these
methods remain underutilized by the broader ma-
chine learning community, in part because current
empirical evaluations do not permit assessment
of their reliability and robustness, undermining
their practical utility. Specifically, one of the prin-
cipal criticisms made by the community is the
extensive use of synthetic experiments. We argue,
on the contrary, that synthetic experiments are
essential and necessary to precisely assess and
understand the capabilities of causal machine
learning methods. To substantiate our position,
we critically review the current evaluation prac-
tices, spotlight their shortcomings, and propose
a set of principles for conducting rigorous em-
pirical analyses with synthetic data. Adopting
the proposed principles will enable comprehen-
sive evaluations that build trust in causal machine
learning methods, driving their broader adoption
and impactful real-world use.

1. Introduction
Causal machine learning (Causal ML) uses Machine Learn-
ing (ML) algorithms to answer causal questions (Pearl &
Mackenzie, 2018). Despite its transformative potential for
decision-making, Causal ML has yet to achieve widespread
adoption in the broader ML community. Indeed, because
Causal ML methods are based on strong and often unfalsifi-
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able assumptions, their practical value is often questioned.
Practitioners argue that such assumptions are unrealistic for
real-world applications, while ML researchers, accustomed
to working with assumption-free methods, criticize the lim-
ited applicability of methods that require strict validation
of such assumptions. In this context, Loftus (2024) argued
that wide adoption of causal inference requires a mindset
shift towards human-centered scientific pragmatism, priori-
tizing utility by striking the right balance between flexible
hypothesis-free and “correct” (i.e., based on strong assump-
tions) models. However, a significant barrier to changing the
community mindset is the limitations of current evaluation
practices, which often fail to provide tangible evidence of
the practical utility of causal methods and how they would
perform under realistic conditions (Feuerriegel et al., 2024;
Curth et al., 2024; Berrevoets et al., 2024).

In predictive ML, researchers have increasingly criticized
current empirical practices, particularly the overreliance on
predictive performance as the sole metric of success (Her-
rmann et al., 2024; Karl et al., 2024; Dehghani et al., 2021).
They also argue that benchmarks often focus on narrow,
well-defined tasks, failing to evaluate models’ robustness,
interpretability, and real-world applicability (Geirhos et al.,
2020; Freiesleben & Grote, 2023; Longjohn et al., 2024).
While these predictive-ML-oriented critiques offer valuable
lessons for Causal ML, they need to be extended to meet
the particular challenges of Causal ML empirical analysis.

A core challenge in evaluating causal methods stems from
the fundamental problem of causal inference (Holland,
1986): for the same unit, it is impossible to observe the
outcome under both conditions: when it has acted and when
it has not. For example, in the case of vaccines, one can
observe the outcome for individuals who have received the
vaccine or for those who have not, but not both for the same
individuals. This fundamental limitation means that coun-
terfactual outcomes, as the basis of causal reasoning and
describing any causal queries, remain unobservable. Conse-
quently, evaluations of Causal ML methods rely predomi-
nantly on synthetic datasets (Geffner et al., 2024; Mahajan
et al., 2024; Javaloy et al., 2023).

In addition to the possibility of accessing fully observable
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ground truth, synthetic data provides the advantage of con-
trolled experiments, allowing researchers to rigorously eval-
uate methods within specific hypothesis settings. How-
ever, for many practitioners, the reliance on synthetic data
constitutes a major adoption limitation, as such datasets
often fail to represent the complexities of real-world scenar-
ios (Gentzel et al., 2019; Curth et al., 2024; Berrevoets et al.,
2024; Montagna et al., 2023).

We claim that synthetic data itself is not the root problem
but rather how it is used in empirical analyses. Notably,
we argue that synthetic experiments are essential and
necessary to precisely assess and understand the capa-
bilities of causal machine learning methods. Our work
aligns with the positions of Loftus (2024) and Herrmann
et al. (2024) for the general machine learning setting but
extends them by addressing practical challenges associated
with the analyses of Causal ML methods.

With this work, we aim to enrich the debate on rigorously
evaluating Causal ML methods to improve current practices.
We do believe that the most appropriate evaluation frame-
works will emerge through collaboration of both the Causal
ML community and the broader ML experimental design
community, as both causal inference and evaluation exper-
tise need to be combined. Thus, we see this paper as con-
tributing to this interdisciplinary dialogue.

To support our position, we highlight key limitations in the
current evaluation practices of Causal ML methods in Sec-
tion 2, empirically demonstrate some of them through tar-
geted experiments in Section 3, and propose a set of princi-
ples to carry out rigorous, reproducible, and rich empirical
analysis using synthetic data in Section 4.

Brief Background on Causal ML. While predictive ML
has transformed numerous fields by excelling at predic-
tion and uncovering patterns in the data, many real-world
challenges require causal reasoning (Pearl, 2009). Causal
questions are classified in three cognitive levels by the Pearl
Causal Hierarchy (PCH) (Pearl & Mackenzie, 2018). The
first level reasons about associations and passively observed
data. The second level investigates the effects of interven-
tions (e.g., determining the effect of a policy change). Fi-
nally, the third level is about counterfactuals, reasoning
about hypothetical situations that would have occurred un-
der different interventions, as opposed to actual events. In
contrast to predictive ML that answers first-level questions
using observational data only, Causal ML answers causal
questions, estimating a quantity of a higher level of the PCH
using data from a lower one (Pearl & Mackenzie, 2018).
However, lower-level data are almost never sufficient (Ibel-
ing & Icard, 2020; Bareinboim et al., 2022). Hence, it is
necessary to formulate explicit hypotheses about the higher
level. This is why, in order to obtain stronger causal impli-
cations, Causal ML needs to take on more assumptions than

predictive ML. This introduces a key theoretical property of
causal questions: identifiability. A causal query is said to
be identifiable if, under an appropriate set of assumptions,
it can be answered from lower-level data—that is, the an-
swer to the query exists and is unique. While identification
provides a theoretical guarantee of the ability to express a
causal query, it does not provide any information on the
ability to estimate it in practice. Appendix A presents key
concepts of causal inference and gives formal definitions of
the technical terms used in this paper.

2. Limitations of Current Empirical
Assessments of Causal ML Methods

Problem 1: Ground Truth Data Are Scarce. Col-
lecting evaluation data for Causal ML is inherently more
challenging than for predictive ML. In predictive tasks,
ground truth labels can be directly observed, but ground
truth causal queries often cannot be observed due to issues
such as the fundamental problem of causal inference (Hol-
land, 1986), confounding, and selection bias. Consequently,
the community relies on expert knowledge (Chevalley et al.,
2022; Sachs et al., 2005) or results of experimental stud-
ies (LaLonde, 1986; Shadish et al., 2008; Hill et al., 2004)
for causal datasets.

Expert knowledge is expensive and scarce, requiring collab-
oration with domain experts to define valid causal models
and assumptions. For example, Mooij et al. (2016) construct
causal discovery datasets using common sense knowledge
but their applicability is limited due to subjectivity and lack
of formal guarantees.

Experimental studies, such as Randomized Controlled Tri-
als (RCTs), are considered the gold standard to measure
causal effects in real-world scenarios (Fisher, 1936; Cochran
& Cox, 1948), providing a rigorous alternative. However,
RCTs are expensive, time-consuming, and often ethically
infeasible. In medical research, for instance, randomly as-
signing harmful treatments is not an option, forcing reliance
on observational data. Even when conducted, RCTs face
practical challenges such as non-random dropout (Green-
land & Brumback, 2002; Tennant et al., 2021) and limited
generalizability due to controlled settings, making them
insufficient for training causal machine learning models,
which require diverse data with broad covariate coverage.
To address these difficulties, a few studies (LaLonde, 1986;
Shadish et al., 2008; Hill et al., 2004) provide both obser-
vational and experimental datasets, enabling evaluation of
causal inference methods across real-world and controlled
conditions.

Also noteworthy is that no real dataset exists to evalu-
ate Causal ML methods aiming at answering counterfactual
questions, as counterfactual outcomes are inherently
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unobservable (Holland, 1986). As a result, ready-to-use
real datasets are missing. Moreover, relying on a few
datasets coming from specific domains hinders the ability
to draw general conclusions (Dehghani et al., 2021) or
assess Causal ML capabilities across different applications.

Problem 2: Synthetic and Semi-Synthetic Data Are
(Unintentionally) Biased. We refer to synthetic data
as any data drawn from a fully artificial causal model
such as a Structural Causal Model (SCM) or a Causal
Graphical Model (CGM), defined formally in Appendix A.
Synthetic data suffers from two sources of (unintentional)
bias (Gentzel et al., 2019). The first source of bias arises
from the fact that experiments are typically designed by
researchers with specific goals and expectations—often to
evaluate their own methods, hoping to demonstrate superior
performance over existing approaches. Consequently, de-
sign choices may be influenced by these expectations, which
can hinder comparability across studies (Poinsot et al., 2024;
Cheng et al., 2022) and introduce biases in performance es-
timation, favoring certain methods (Curth et al., 2021). The
second source of bias stems from the inherent limitations
of synthetic data: it can incorporate only the features that
researchers know how to model. As a result, “unknown
unknowns” are inevitably excluded (Gentzel et al., 2019).

While these criticisms have largely been directed at synthetic
data, semi-synthetic data are equally susceptible to the same
biases. Semi-synthetic data are widely used in causal infer-
ence evaluation as an intermediary between purely synthetic
and real-world data. They enable practitioners to evalu-
ate Causal ML methods under controlled conditions while
retaining certain characteristics of real-world data.

An example of semi-synthetic data is causal discovery
datasets, which are constructed by fitting CGMs to real
observational data while assuming a ground truth causal
graph derived from expert knowledge (Lucas et al., 2005;
Lauritzen & Spiegelhalter, 1988; Spiegelhalter et al., 1993;
Beinlich et al., 1989; Onisk, 2003; den Bulcke et al., 2006;
Schaffter et al., 2011; Smith et al., 2011; Göbler et al., 2024).
These datasets inherit biases from both the choice of fit-
ted CGMs and the assumptions embedded in the expert-
defined causal graph. Similar concerns have been raised
in other areas of ML, where dataset construction choices
can implicitly favor certain methods, in particular, the ones
using similar modeling assumptions (Acharki et al., 2023;
Curth et al., 2024; Feuerriegel et al., 2024).

A similar challenge arises in semi-synthetic datasets for
evaluating CATE estimators, where CGMs are again fit-
ted to real data, under assumed structural constraints (Neal
et al., 2020; Parikh et al., 2022; Athey et al., 2024; de Vas-
simon Manela et al., 2024). Here, the true Conditional
Average Treatment Effect (CATE) is typically unknown and

is either derived from the learned CGM or specified by the
user. This approach introduces a new issue in addition to
implicit bias: the potential non-identifiability of the query
of interest. If the dataset and assumptions do not satisfy
the necessary conditions for identification, these methods
will still converge to an estimate as if a unique solution
existed (Petersen, 2024). This is particularly problematic
in real applications, where identification assumptions are
often unverifiable or even unfalsifiable (Ibeling & Icard,
2020; Bareinboim et al., 2022). Although this limitation
is theoretically acknowledged (Parikh et al., 2022; Athey
et al., 2024; de Vassimon Manela et al., 2024), no work has
systematically evaluated the bias it introduces or how dif-
ferent methods might converge to specific representations.
This is why we decided to experimentally illustrate, in Sec-
tion 3.1, that such methods can induce unintentional bias
in benchmarks. Another approach to constructing a semi-
synthetic dataset for CATE estimation involves generating
artificial observational datasets from an RCT (Keith et al.,
2023; Gentzel et al., 2021; Hill, 2011; Zhang & Bareinboim,
2021). This is done by non-randomly sampling data points
from the RCT to introduce confounding bias. In this case,
the bias comes directly from the researchers’ choices in the
sampling strategy, which can significantly impact evaluation
outcomes.

Finally, synthetic outcome datasets (Curth et al., 2021; Dorie
et al., 2019; Shimoni et al., 2018; Hill, 2011) modify real
observational datasets by replacing the outcome variable
with a synthetic value generated from a fully synthetic causal
mechanism. Although this approach ensures that the ground
truth CATE is known, it introduces the same biases as fully
synthetic data, as the generated outcomes reflect researcher-
imposed assumptions rather than true causal mechanisms.

In summary, researcher design choices (whether in defining
synthetic mechanisms, selecting sampling strategies, or
modeling causal effects) introduce biases that affect both
synthetic and semi-synthetic datasets. These biases limit
comparability across studies and can distort performance
evaluations of Causal ML methods.

Problem 3: Synthetic Experiments Lack Sufficient Com-
plexity to Encourage Adoption of Causal ML. Synthetic
experiments used to evaluate Causal ML methods are fre-
quently criticized for their over-simplicity (Curth et al.,
2024; Poinsot et al., 2024; Cheng et al., 2022; Gentzel et al.,
2019). First, synthetic experiments are typically derived
from overly simplistic causal models. For instance, additive
noise models (Hoyer et al., 2008), despite concerns about
their suitability for empirical evaluation (Reisach et al.,
2021), remain widely used (Mahajan et al., 2024; Bach
et al., 2024; Huang et al., 2024; Curth & Van Der Schaar,
2023; Javaloy et al., 2023; Acharki et al., 2023). Addition-
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ally, several recent works further restrict their analyses to
quadratic (Huang et al., 2024; Curth & Van Der Schaar,
2023) or generalized linear causal mechanisms (Mahajan
et al., 2024; Bach et al., 2024).

Secondly, synthetic experiments often lack sources of ran-
domness, i.e., some simulation parameters, such as the
causal graph or level of confounding, are fixed, which re-
stricts the scope of the analysis. Although some efforts
have been made to introduce randomly generated causal
models for evaluation (Rudolph et al., 2023; Gupta et al.,
2023; Kalainathan et al., 2020), this practice has not yet
been widely adopted (Poinsot et al., 2024). Finally, robust-
ness analyses are largely neglected. Causal ML methods are
typically evaluated on datasets that strictly adhere to all the
assumptions required by the method itself (Gentzel et al.,
2019; Hutchinson et al., 2022; Petersen, 2024; Bouvier et al.,
2024), offering little insight into real-world applicability un-
der imperfect conditions. In Section 3.2, we use experiments
to illustrate how robustness analysis can provide valuable
information to practitioners and researchers.

We acknowledge the value of simple, didactic examples in
research papers. They help clarify theoretical contributions.
However, such examples alone cannot serve as evidence of
a method’s general utility. This lack of rigorous evaluation
contributes to reluctance to adopt Causal ML methods by
practitioners, who may consider these methods to perform
well only in idealized settings.

Summary and Impact on Adoption. Real-world datasets
for evaluating Causal ML methods are scarce due to the high
cost, technical complexity, and ethical concerns of collect-
ing experimental data. As a result, the community primarily
relies on synthetic and semi-synthetic experiments to as-
sess model performance. However, these evaluations suffer
from two key limitations. First, the high degree of free-
dom inherent in (semi-) synthetic experiments introduces
biases that can distort conclusions and hinder comparability
across studies. Secondly, the synthetic evaluations often
lack sufficient realism to encourage the adoption of Causal
ML. These two shortcomings are direct consequences of
how synthetic experiments are currently designed and ana-
lyzed. We do not claim that rigorous synthetic evaluation
alone will guarantee the broader adoption of Causal ML.
Rather, we argue that such evaluation is a necessary step for
its adoption by ML researchers and practitioners.

3. Empirical Demonstrations of Problems in
Causal ML Evaluation

The experiments1 in this section demonstrate how the prob-
lems identified in Section 2 can arise in practice. We do not
provide an explicit experiment for Problem 1 (Section 2)

related to real-data scarcity since that constraint, by def-
inition, cannot be bypassed experimentally. Instead, we
focus on bias in semi-synthetic experiments as discussed
in Problem 2 (Section 2) and the lack of complexity in syn-
thetic experiments as discussed in Problem 3 (Section 2).
Our experiments spotlight key issues rather than provide
exhaustive evaluations or benchmarks.

3.1. Demonstrating Problem 2: Examining Bias in
Semi-Synthetic Datasets

Curth et al. (2021) demonstrated that experiments using
synthetic outcomes can be biased. To do so, they altered the
IHDP semi-synthetic benchmark (Hill, 2011) by modifying
the outcome functions to make the treatment effect linear—
the relationship between treated and untreated outcomes
was changed while leaving the covariates identical. This
small change in the data-generating process significantly
shifted the relative method rankings. Their findings un-
derscore how seemingly minor design choices in synthetic
and semi-synthetic datasets can reverse conclusions about
method performance (including which method is “best”),
highlighting implicit biases from the choice of data genera-
tive process.

Following the same logic as Curth et al. (2021), we demon-
strate that semi-synthetic methods, such as RealCause (Neal
et al., 2020), which fit causal models to real data, can also in-
troduce systematic biases. While other works, such as those
by de Vassimon Manela et al. (2024), Athey et al. (2024),
and Parikh et al. (2022), also investigate generative eval-
uation techniques, we focus on RealCause because it has
been widely used in recent research for evaluating causal
inference methods (Pros & Vitria, 2024; Bozorgi, 2021; Ter-
Minassian et al., 2024; Shoush & Dumas, 2024; Mahajan
et al., 2024; Zhang et al., 2024; van der Laan et al., 2024),
making it an ideal candidate for illustrating the potential
limitations of current generative evaluation methods. Real-
Cause creates new “realistic” datasets with user-specified
causal effects by training a generative model on existing
input data. These generated datasets are intended for bench-
marking causal inference methods. In this experiment, we
investigate whether such benchmarks may implicitly favor
certain approaches over others.

First, we replicate the Average Treatment Effect (ATE) er-
ror on the IHDP dataset reported in the original RealCause
paper and confirm a point-estimate ATE error of 0.17, com-
pared to the true ATE of 4.02. However, when we fix the
realization used in the original experiment and vary the ran-
dom seed (20 seeds for a single realization), we observe a
mean ATE error of 0.38± 0.39, with some seeds yielding
errors as high as 1.77. In contrast, when we fix the seed

1The code for our experiments can be found at
https://github.com/panispani/causalml-needs-synth-eval
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(e.g., seed 123) and vary the realization (across 100 real-
izations), the error increases substantially, with a mean of
0.95± 1.36, and some realizations yielding errors as high
as 9.45, leading to estimated ATEs that are multiple times
larger than the true value. Finally, when computing the
mean ATE error for each of 100 realizations (each averaged
over 20 random seeds), we find extreme variability; in one
case, the error reaches 6.209± 11.318, with the true ATE
being −0.604. More details are provided in Appendix B.

These results reveal two fundamental issues: high error
and extreme variance, both across seeds and across dataset
realizations. Relying on a single seed conceals this variabil-
ity, making benchmarks fragile and potentially misleading.
More critically, the ranking of causal inference methods pro-
duced by RealCause is itself unstable—what appears to be
the best method under one seed or one realization may rank
among the worst under another. This instability, combined
with a high ATE error for some realizations, raises a seri-
ous concern: RealCause does not merely introduce noise;
it could systematically bias rankings favoring methods that
align with the errors induced by its own generative assump-
tions. Hence, if one wants to use RealCause responsibly,
further experiments need to be performed to understand
which features of the datasets make RealCause more or less
stable and accurate.

3.2. Demonstrating Problem 3: Testing Beyond the
Identification Domain

As noted in Problem 3 (Section 2), synthetic evaluations
often use data generation processes that align closely
with the assumptions of the tested methods, potentially
obscuring their weaknesses when these assumptions do
not hold. In this section, we use Causal Normalizing
Flows (CausalNF) (Javaloy et al., 2023) to show how study-
ing methods beyond their identification domain can yield
valuable insights for practitioners and researchers. We se-
lected CausalNF because it is a state-of-the-art Causal ML
method for counterfactual estimation. As a result, its eval-
uation relies exclusively on (semi-) synthetic experiments.
While many other approaches could be explored, we focus
on CausalNF to illustrate our perspective, leaving broader
evaluations for future work. Full experimental details can be
found in Appendix C. CausalNF has been developed under
a strong assumption: the causal mechanisms of the SCMs
generating the data are diffeomorphic (i.e., differentiable
and bijective with differentiable inverses). By deliberately
violating these idealized conditions, we reveal potential
limitations and robustness of CausalNF, opening up new
questions and highlighting the importance of realistic evalu-
ations.

When Assumption Violations Do Not Affect Perfor-
mance. For the first experiment, we adopt the

TriangleNLIN SCM from the original paper (Javaloy et al.,
2023) and slightly change the original causal mechanisms.
We apply a transformation to the noise—either a segmented
linear function or a sinusoidal function—deliberately vio-
lating the diffeomorphism assumption while preserving all
other aspects of the structural equations. The results (see Ap-
pendix C) show that CausalNF remains robust against these
specific violations: root-mean-square errors for counterfac-
tual predictions did not significantly increase. This result
should not be interpreted as concluding that “diffeomor-
phism violations never matter.” Instead, it demonstrates how
method-friendly choices in synthetic datasets (e.g., minimal
noise-parent interactions) can allow a method to perform
well despite violations.

When Assumption Violations Deteriorate Performance.
For the second experiment, we test CausalNF on a non-
identifiable counterfactual example by Nasr-Esfahany &
Kiciman (2023), where CausalNF is trained on two dis-
tinct SCMs sharing the same observational distribution but
different counterfactual ones (see Appendix C). The results
show that CausalNF consistently defaults to learning one
variant of the two structures, resulting in large errors when-
ever the true variant is the alternative. Although it is the-
oretically expected that the algorithm cannot distinguish
these two variants with observational data alone, we dis-
cover here that CausalNF tends to converge to only one of
them, leading to a consistently biased error.

Conclusions. While this study is not exhaustive, it un-
derscores the importance of conducting thorough evalua-
tions beyond the standard identification domain of Causal
ML methods. As demonstrated with CausalNF, behavior
under assumption violations is difficult to predict. Such
evaluations serve two key purposes. First, when empirical
evaluations show robustness properties, they can guide theo-
retical advancements by consistently identifying properties
or structures that perform well under specific conditions.
Secondly, when they show failure modes, they enable practi-
tioners to better understand the circumstances under which
models can be trusted and where they might fail, supporting
informed decision-making and encouraging broader adop-
tion of Causal ML methods.

4. Principles for Rigorous Causal ML
Synthetic Evaluation

This section develops a set of concrete and actionable prin-
ciples for evaluating Causal ML methods through synthetic
experiments. These principles are designed to empirically
assess the utility of Causal ML methods, specifically their
ability to answer causal questions from a dataset under a
particular set of assumptions. To achieve this, a Causal ML
method must be rigorously evaluated (cf. Principle 1) using
different indicators (cf. Principle 3), in a methodical man-
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ner (cf. Principle 4), regarding its ability to answer causal
questions under different sets of assumptions (cf. Principle
2).

4.1. Principle 1: Synthetic Data Is Necessary to Derive
Rigorous and Precise Conclusions

First, as highlighted in Problem 1 (Section 2), synthetic
data is the only reliable source of ground truth for causal
queries given that real-world datasets cannot provide access
to counterfactual outcomes. Without ground truth, it is hard
to objectively measure the accuracy of Causal ML methods.
Secondly, synthetic experiments allow full control over the
data-generating process, enabling researchers to systemati-
cally vary parameters such as noise levels, confounding, or
structural complexity. Hence, they enable researchers to run
randomized controlled experiments for more comprehen-
sive experiments, rigorously assessing how specific factors
influence a method’s performance—this is unattainable with
real or semi-synthetic datasets. Finally, relying on real or
semi-synthetic data ties evaluations to the idiosyncrasies
of specific problems, limiting the scope and reliability of
conclusions.

While we argue that synthetic data is necessary for rigor-
ous evaluation, we do not claim that synthetic data alone is
sufficient or the only valid way of evaluating a Causal ML
method. For instance, semi-synthetic data can introduce a
degree of realism that is valuable in certain contexts. How-
ever, such data also originates from Causal ML generation
methods, which must themselves be rigorously evaluated
before they can be relied upon. Our concern centers on
temporality rather than significance: we argue that semi-
synthetic data generation methods should first be rigorously
evaluated using synthetic data to identify their limitations.
Only after this evaluation can these methods be more widely
adopted, ensuring that their advantages are leveraged while
being aware of the potential biases inherent in them.

4.2. Principle 2: Synthetic Design Choices Must Be
Clearly Stated to Mitigate Unconscious Bias

As shown in Problem 2 (Section 2), one major limitation
of (semi-) synthetic experiments relies on the fact that the
researchers’ high degree of freedom in experimental design
choices leads to biased results and conclusions. We argue
that bias is not necessarily unwelcome given that finding
the overall most performing method is, in general, not rele-
vant to researchers or practitioners (Lim et al., 2000; Belkin
et al., 2019; Liao et al., 2021; Hutchinson et al., 2022; Lones,
2024). Instead, we argue that unconscious, unknown, or
untracked bias is problematic because it increases the risk
of drawing incorrect or misleading conclusions. One way to
mitigate this issue is to make all experiment design choices
transparent, to be clear on the domain of validity of the

drawn results. The need for transparency of experimental
conditions for reproducibility and rigor has long been rec-
ognized in the experimental sciences as well as in the ML
community (Gigerenzer, 2018; Calin-Jageman & Cumming,
2019; Marie et al., 2021). In this section, our goal is to
clarify what it concretely means for synthetic experiments
on Causal ML methods. To make our point more specific,
we propose the following classification of design choices.

We claim that any Causal ML method experimentation
should at least make explicit the following five elements:
(i) the set of causal models studied, (ii) the set of causal
queries of interest, (iii) the set of training data, (iv) the
generation algorithm producing the synthetic causal mod-
els, queries, and datasets, and (v) the distribution that the
generation algorithm implies on the space of synthetic ex-
amples defined by the elements (i), (ii), and (iii). These five
components must be described in such a way that anyone
can reproduce the same synthetic experiments and interpret
the results without having to make any additional assump-
tions. An example of design choice description following
this classification is given through the CausalNF example
later in this section.

In particular, the set of causal models must be defined by a
conditional expression. The set of queries must specify the
causal quantity studied, its PCH level, the variables, and the
values considered. The set of training data must be defined
not only by the dimension of the dataset but also the level
of the PCH to which it belongs, as well as any potential
perturbations it may have undergone (such as measurement
error, selection bias, hidden variables, presence of outliers).

All too often omitted, the algorithm for generating synthetic
examples and the distribution it induces on the space of
synthetic examples are crucial elements to describe. In-
deed, there exist many ways of generating synthetic ex-
amples. One may decide to sample synthetic examples
according to a predefined distribution. This approach re-
quires using a perfect sampling algorithm to guarantee that
the distribution of the sampled elements corresponds ex-
actly to the desired upstream distribution (Propp & Wilson,
1998; Fotakis et al., 2022). Although progress has been
made in this field, notably on perfect sampling of Directed
Acyclic Graphs (DAGs)s (Talvitie et al., 2020; Harviainen &
Koivisto, 2024), as far as we know, no perfect algorithm ex-
ists for sampling elements as complicated as a set of causal
models, causal queries, and datasets. This is why one may
also decide to explore the synthetic space rather than sam-
ple elements from it. Using a random walk, a grid search,
or even optimizing for a predefined criterion are possible
options. However, each exploration strategy may induce
different distributions over the space of synthetic examples,
which can have a major influence on the results. Indeed,
when aggregating results (e.g., mean, median), if the dis-
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tribution of the synthetic elements considered is different,
the aggregated quantities and the conclusions derived from
them could be very different. Hence, not accounting for the
effect of the distribution creates a potential bias that remains
unaccounted for in the analysis of the experiments. This is
why, to derive rigorous analyses, the distribution considered
over the space of synthetic examples needs to be clearly
presented. In particular, if no expression can be derived
from the exploration algorithm to describe the distribution,
the latter should at least be evaluated empirically.

CausalNF Example. Assume that one wants to extend
the experiments carried out in Section 3.2 on the robustness
of CausalNF (Javaloy et al., 2023) against violation of the
bijectivity assumption. One could, for example, define the
following synthetic experimental design choices (see Ap-
pendix D for a formal description):
(i) Set of causal models: The SCMs such that their causal
graphs are DAGs, their causal mechanisms are fully con-
nected neural networks, and their distributions of the exoge-
nous variables are uniform over [0, 1].
(ii) Set of queries: The counterfactual distributions of any
endogenous variable, under the intervention of any other
variable, to an observed value of the training set, given the
factual realization of any sample in the training set.
(iii) Set of training data: The observational datasets of
size 1000 are drawn from the entailed distribution of the set
of SCMs without perturbation.
(iv) Generation algorithm: (1) Uniform sampling of a
set of control parameters (i.e., the parameters defining
the SCMs, queries, and datasets), (2) uniform sampling
of a DAG (Talvitie et al., 2020) given the set of control
parameters, (3) initialization of the neural networks weights
and bias following the Glorot uniform (Glorot & Bengio,
2010) given the set of control parameters resulting in a fully
defined SCM, (4) dataset creation from sampling 1000 ob-
servations from the SCM, (5) query creation by randomly
picking the outcome and intervened variables from the en-
dogenous variables, and (6) randomly sampling from the
training set the intervention value and factual realizations.
(v) Induced distribution: The joint distribution of the con-
trol parameters of the SCMs, queries, and datasets is, by def-
inition, multivariate uniform with independent components.
However, the distribution of observable characteristics, such
as the bijectivity of the causal mechanisms or the existence
of interaction between endogenous and exogenous variables,
is not straightforward to determine. Hence, for the charac-
teristics that may be relevant to consider when studying the
behavior of CausalNF when the bijectivity assumption is
violated, it will be necessary to carry out an empirical anal-
ysis of their distribution by analyzing the SCMs sampled by
the generation algorithm.

4.3. Principle 3: Going Beyond Aggregated Accuracy in
the Identification Domain with Comprehensive
Experiments

Evaluating Across and Beyond the Identification Do-
main. Herrmann et al. (2024) and Karl et al. (2024) empha-
size the importance of designing empirical research beyond
narrowly defined contexts to probe robustness and general-
ization across diverse settings. This is particularly relevant
to Causal ML, where models often rely on strong assump-
tions within their identification domains. To fully evaluate
their capabilities, methods must also be tested in scenarios
that challenge these assumptions, such as shifts in causal
structures. Evaluating models both within and beyond their
identification domains exposes failure modes and provides
insights into their limits under real-world conditions. There-
fore, we encourage researchers to define large synthetic
experimentation spaces, i.e., large sets of causal models and
datasets as defined in Principle 1 (Section 4).

It Is Not Only About Accuracy. An overemphasis on pre-
dictive performance, as criticized by Karl et al. (2024), leads
to unhealthy research incentives that prioritize superficial
improvements over meaningful progress. Notably, reducing
evaluation to accuracy risks ignoring critical dimensions
such as robustness, scalability, stability, and interpretabil-
ity (Freiesleben & Grote, 2023; Geirhos et al., 2020; Crabbé
et al., 2022). This is all the more important for Causal ML
given its growing use in sensitive decision-making domains.
Moreover, practical considerations such as computational
efficiency, cost of data collection, and the cost of validating
causal assumptions must be integrated into evaluation frame-
works. A shift toward more comprehensive analyses will
ensure that Causal ML methods are not only theoretically
sound but also practically viable in diverse and uncertain
real-world scenarios.

Focusing on Insights Rather Than Aggregate Perfor-
mance Metrics. Herrmann et al. (2024) advocate for
“insight-oriented exploratory research”, which prioritizes
understanding over mere incremental performance im-
provements. Focusing solely on performance metrics can
lead to biased evaluations and a misleading perception
of progress (Balduzzi et al., 2018). This perspective is
essential for Causal ML, where the scarcity of diverse,
representative datasets makes it problematic to rely solely
on aggregate performance metrics for model selection. By
systematically documenting negative results, exploring
edge cases, and analyzing failure scenarios, researchers
can uncover deeper knowledge that drives theoretical and
practical advancements (Karl et al., 2024). Such practices
promote a culture of transparency and scientific rigor,
shifting the focus from benchmarking competitions to
discovering meaningful insights.
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Capturing Real-World Complexities with Synthetic Ex-
periments. To manage the complexity of simulations
that aim to mirror real-world conditions, we recommend
a progressive approach to increasing simulation complex-
ity. Begin with a simple, intuitive experiment, e.g., a small
graph, simple mechanisms, binary variables, sufficient data,
and no assumption violations. Gradually introduce one new
complexity at a time, e.g., hidden confounders, selection
bias, small datasets, or mixtures of SCMs. For each added
complexity, carefully analyze its impact on the method’s
performance before adding the next one. This approach
allows for the isolation of the effects of previously added
complexities while progressively increasing the overall ex-
periment sophistication. Additional complexities to consider
include the presence of outliers, violation of the ignorability
assumption, erroneous causal graph, or adjustment sets.

4.4. Principle 4: Developing Standardized Evaluation
Frameworks to Promote Best Practices

As discussed in Problem 2 (Section 2), (semi-) synthetic
evaluations of Causal ML methods have limited compara-
bility. Such a lack of consistency undermines both replica-
bility and the ability to draw meaningful conclusions across
studies (Herrmann et al., 2024). Standardized evaluation
frameworks are critical in addressing this challenge. In-
deed, by providing a structured approach to making design
choices for researchers, standardized evaluation frameworks
favor thorough documentation of data generation processes,
assumptions, and potential biases. They also enable re-
searchers to extract, share, and reproduce design choices
easily (Dehghani et al., 2021).

There exist two open-source platforms for benchmarking
Causal ML methods: CauseMe (Runge et al., 2019) and
CausalBench (Kapkiç et al., 2024). CauseME is dedicated
to causal discovery in time series data; CausalBench encom-
passes a broader scope of causal tasks, such as treatment
effect estimation. By providing pre-coded datasets, models,
metrics, and evaluation algorithms, they make evaluation
procedures more transparent, fair, and easy to use. Although
these platforms represent fundamental and valuable work
to promote the standardized evaluation of Causal ML meth-
ods, much work remains to be done to implement all the
recommendations of the three principles introduced in Sec-
tions 4.1 to 4.3. For instance, neither platform currently
includes counterfactual estimation tasks. In addition, infor-
mation on datasets, particularly (semi-) synthetic ones, lacks
sufficient details to comply with Principle 2 (Section 4).

This is why we encourage the community to continue this
effort and enrich the existing frameworks. However, we
would like to highlight two critical concerns. First, it is
important to avoid overly narrow standardization, where
benchmarks unintentionally encourage models to exploit

dataset artifacts, undermining generalization (Geirhos et al.,
2020; Curth et al., 2021). Secondly, it is essential not to
multiply the number of frameworks and platforms, which
would run counter to the goal of homogenization. We there-
fore encourage extending and refining existing frameworks
wherever possible rather than developing new specialized
frameworks. Ultimately, in order to assess Causal ML meth-
ods, evaluation frameworks need to balance consistency and
flexibility, promoting open collaboration while accommo-
dating diverse metrics and perspectives. By doing so, they
can facilitate the adoption of best practices and accelerate
meaningful progress in Causal ML research and its adoption
by the broader ML community.

5. Limitations of Our Position
While the principles outlined in Section 4 address significant
gaps in current evaluation practices of Causal ML methods,
several challenges remain that require careful consideration
and ongoing effort to overcome.

One key challenge lies in achieving adherence to the pro-
posed principles by the Causal ML community. The suc-
cess of any standardized approach hinges on collective effort
and widespread application within a community. Without
such collaboration, these principles risk remaining underuti-
lized, limiting their potential to drive comprehensive evalua-
tions, which are necessary for a broader adoption of Causal
ML by the machine learning community. Encouraging com-
pliance with the principles will require not only consensus-
building but also clear demonstrations of the developed
framework’s value across diverse applications.

Another consideration is the resource intensity to imple-
ment the principles. Rigorous evaluation requires signifi-
cant computational resources, which may be unavailable
for researchers and organizations with constrained budgets.
Addressing this limitation calls for innovation in resource-
efficient methodologies, ensuring that the benefits of these
practices are broadly available without creating barriers to
participation.

Finally, synthetic data, while indispensable for controlled
experimentation, has an inherent limitation: its inability to
capture unknown unknowns—phenomena or dynamics
outside the scope of the data-generating process (Gentzel
et al., 2019). This limitation underscores the importance of
complementing synthetic data evaluations with real-world
experiments and alternative methodologies to ensure com-
prehensive and robust assessments ( as discussed in Sec-
tion 6).

Acknowledging these challenges does not diminish the im-
portance of rigorous synthetic evaluation but highlights
the collective work required to fully realize the potential
of Causal ML and ensure its broad adoption.
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6. Alternative Views
Throughout this paper, we showed why synthetic experi-
ments are necessary and how to use them appropriately to
rigorously evaluate Causal ML methods. However, because
of their intrinsic inability to model unknown unknowns (Sec-
tion 5), synthetic experiments are insufficient to completely
assess real-world performance. While semi-synthetic ex-
periments are convenient for building synthetic data similar
to real ones, they also suffer from the same modeling lim-
itation, see Problem 2 (Section 2). As a result, one could
argue that the community should instead focus on real
experiments because of their realism and unique abil-
ity to encapsulate unknown unknowns. Although this
alternative vision is orthogonal to our position, it is also
complementary and, therefore, of great interest.

The major difficulty with real experiments resides in the fact
that the amount and diversity of real datasets to evaluate
Causal ML methods are limited, as discussed in Problem
1 (Section 2). Indeed, controlled experiments (Fisher, 1936;
Cochran & Cox, 1948) are resource-intensive, sometimes
unethical, or even impossible to implement in practice. Be-
low, we propose a number of research directions aiming to
reduce this limitation.

First, the community could put more effort into gathering
more RCTs data coupled with observational datasets (Curth
et al., 2024; Cheng et al., 2022). An important considera-
tion would be to prioritize the diversity of existing bench-
marks. Today, biology and social sciences are overrepre-
sented, while physics, for instance, is underrepresented. In
addition, designing an experiment requires knowledge of
the domain of interest to make sure the unconfoundedness
assumption holds. There is a need for interdisciplinary
collaboration (e.g., across healthcare, engineering, and eco-
nomics) to collect diverse, high-quality datasets that reflect
real-world complexities.

Secondly, finding new ways to exploit information
sources that are less rigorous than RCTs, such as quasi-
experiments (Angrist & Pischke, 2009) or unproven expert
knowledge, is also a promising direction. The challenge
resides in the ability to account for ground truth uncertainty
in the evaluation of Causal ML methodologies. This could
be done, for instance, by developing new evaluation metrics
or analysis frameworks.

Another research direction consists of designing new exper-
imental procedures to go beyond the simple measurement
of causal effects made by RCTs and move toward counter-
factual measures. In other words, experimental procedures
need to be refined to reduce the current randomization and
aggregation to approach counterfactual outcomes and pro-
vide partial counterfactual ground truths.

7. Conclusion
This work addresses the critical barriers that hinder the adop-
tion and practical utility of causal machine learning methods,
emphasizing the need for rigorous and systematic evaluation
practices. By critically examining current evaluation limita-
tions and their consequences, we argue that synthetic exper-
iments, often criticized, are indispensable for understanding
and assessing the capabilities of causal machine learning
methods. To this end, we propose principles for pragmatic
synthetic evaluation that prioritize transparency, compre-
hensive analyses, and standardization, fostering trust and
reliability in causal machine learning research. While vari-
ous challenges remain, including resource constraints and
the intrinsic limitations of synthetic data to model unknown
unknowns, the proposed framework lays out a foundation
for advancing best practices and enabling the responsible
deployment of causal machine learning methods across di-
verse, real-world applications. We hope that this work will
encourage the Causal ML community to give more consid-
eration to empirical evaluation and will inspire debate and
research aimed at addressing the outlined limitations and
refining the general principles proposed here to foster the
adoption of Causal ML methods.

Impact Statement
This work addresses a critical barrier to the broader adop-
tion and responsible application of causal machine learning
methods: the lack of rigorous and systematic evaluation
practices. While causal methods hold immense potential
to revolutionize decision-making by integrating predictive
models with causal inference, unreliable evaluations hinder
their practical utility. For example, in healthcare, poorly
assessed models can lead to unsafe or inequitable treatment
recommendations; in policymaking, they can unintention-
ally perpetuate discrimination or exacerbate societal inequal-
ities.

This work provides a foundation for enhancing trust in
causal machine learning by promoting more comprehen-
sive and reliable evaluation practices. Beyond mitigating
risks in sensitive applications, it establishes a pathway for
ethical deployment and broader adoption of these methods,
inspiring both collaboration and innovation within the field.
This shift has the potential to shape how causal models are
assessed, trusted, and deployed across diverse real-world
settings.
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Hüllermeier, E., Boulesteix, A.-L., and Bischl, B. Posi-
tion: Why we must rethink empirical research in machine
learning. In International Conference on Machine Learn-
ing, 2024.

Hill, J. L. Bayesian nonparametric modeling for causal infer-
ence. Journal of Computational and Graphical Statistics,
20(1):217–240, 2011.

Hill, J. L., Reiter, J. P., and Zanutto, E. L. A compar-
ison of experimental and observational data analyses.
Applied Bayesian Modeling and Causal Inference from
Incomplete-Data Perspectives: An Essential Journey with
Donald Rubin’s Statistical Family, pp. 49–60, 2004.

Holland, P. W. Statistics and causal inference. Journal of
the American Statistical Association, 81(396):945–960,
1986.

Hoyer, P., Janzing, D., Mooij, J. M., Peters, J., and
Schölkopf, B. Nonlinear causal discovery with addi-
tive noise models. In Advances in Neural Information
Processing Systems, 2008.

Huang, Y., Leung, C. H., Siyi, W., Li, Y., and Qi, W. Un-
veiling the potential of robustness in selecting conditional
average treatment effect estimators. In Advances in Neu-
ral Information Processing Systems, 2024.

Hutchinson, B., Rostamzadeh, N., Greer, C., Heller, K., and
Prabhakaran, V. Evaluation gaps in machine learning
practice. In ACM Conference on Fairness, Accountability,
and Transparency, pp. 1859–1876, 2022.

Ibeling, D. and Icard, T. Probabilistic reasoning across
the causal hierarchy. In AAAI Conference on Artificial
Intelligence, 2020.

Javaloy, A., Sanchez-Martin, P., and Valera, I. Causal nor-
malizing flows: from theory to practice. In Oh, A., Nau-
mann, T., Globerson, A., Saenko, K., Hardt, M., and
Levine, S. (eds.), Advances in Neural Information Pro-
cessing Systems, volume 36, pp. 58833–58864, 2023.

11



Position: Causal Machine Learning Requires Rigorous Synthetic Experiments for Broader Adoption

Kalainathan, D., Goudet, O., and Dutta, R. Causal discovery
toolbox: Uncovering causal relationships in python. Jour-
nal of Machine Learning Research, 21(37):1–5, 2020.
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A. Fundamentals on Causal Inference
A.1. Identification Versus Estimation

A causal inference tasks have two distinct phases: identification that transforms causal queries into statistical ones by
relying on theoretical assumptions and estimation that uses finite data and statistical models to approximate the transformed
causal queries. Identification consists in showing whether a causal query is identifiable. Formally, given a class of
causal models M (see Appendix A.2 for examples), an Li-query Q(M) of a model M ∈ M is identifiable from Lj-data,
1 ≤ j < i, if for any pair of models M1 and M2 from M, Q(M1) = Q(M2) whenever M1 and M2 match in all Lj

queries (Pearl, 2009). In other words, a causal query is said to be identifiable if, under an appropriate set of assumptions, it
can be answered from lower-level data. Hence, the answer to the query exists and is unique. Once a query has been proven
to be identifiable, it can be expressed in terms of statistical terms that can be estimated by combining statistical algorithms.
The choice and application of statistical algorithms comprised the estimation phase.

While identification ensures a method is theoretically sound, it does not guarantee robustness in real-world settings, where
assumptions are frequently violated or unfalsifiable (i.e., impossible to verify using only observable data (Bareinboim et al.,
2022)). Therefore, it is essential to assess the ability of causal inference methods to approximate causal queries under
practical constraints.

A.2. Mathematical Tools to Answer Causal Questions

Among the mathematical frameworks used in causal inference, Structural Causal Models (SCMs) provide a repre-
sentation allowing reasoning on the three levels of the PCH. A Structural Causal Model (Pearl, 2009) is a tuple
M := {V,U,F , P (U)}. V constitutes the set of endogenous variables {V1, V2, ..., Vd}. They are the modeled variables.
U is a set of exogenous variables {U1, U2, ..., Ul}. These variables represent the un-modelled causes of the endogenous
variables. Hence, each endogenous variable Vi is fully determined by a subset of variables in V ∪U, denoted PA(Vi) ∪Ui

where PA(Vi) ⊆ V\Vi are the parents of Vi and Ui ⊂ U are the exogenous (or latent) causes of Vi. F is a set of
functions {f1, f2, . . . , fd} called structural equations or causal mechanisms. Each function fi computes the variable Vi

from its parents and latent causes PA(Vi) ∪Ui. P (U) is a probability function over the exogenous variables U. An SCM
characterizes a unique distribution over its endogenous variables, PM(V ), called the entailed distribution. The causal
graph G of an SCM represents the cause-effect relationships between the variables. G’s nodes are the SCM’s variables
V ∪U, and a directed edge A −→ Vi belongs to G whenever A is a direct cause of Vi A ∈ PA(Vi) ∪Ui . From an SCM M,
one can derive any intervention and counterfactual distributions.

An intervention do(Vk = v) represents the action of setting the variable Vk to the value v in an arbitrary way (i.e.,
independently of any other variable) (Pearl, 2009). By manipulating the SCM M and defining a new SCM Mdo(Vk=v),
changing the causal mechanism of Vk to fk := v, the intervention distributions PM(V|do(Vk = v)) can be computed as
the entailed distribution of Mdo(Vk=v), PMdo(Vk=v)

(V). Using intervention distributions, one can create causal measures
summarizing information about interventions. For instance, the Average Treatment Effect (ATE) of the variable T when
intervened to the value t instead of c on another variable Y is defined as the expectation of the difference between the
intervention distributions PM(Y |do(T = t)) and PM(Y |do(T = c)), i.e., E[Y |do(T = t)] − E[Y |do(T = c)] (resp.
E[Y |do(T = t),X = x] − E[Y |do(T = c),X = x]). Another commonly used query in the literature is the CATE.
The CATE of the variable T when intervened to the value t instead of c on another variable Y given that other variables X
equal x is defined as the expectation of the difference between the intervention distributions PM(Y |do(T = t),X = x) and
PM(Y |do(T = c),X = x), i.e., CATE = E[Y |do(T = t),X = x]− E[Y |do(T = c),X = x].

A counterfactual consists of reasoning about the effect of an intervention in a context described by a factual realization (Pearl,
2009). Formally, given a factual realization VF = vf and an intervention do(Vk = v), the counterfactual distribution
P

VF=vf

M (V|do(Vk = v)) correspond to the entailed distribution of the SCM MVF=vf

do(Vk=v) whose exogenous distribution
equals the exogenous distribution of M given the factual realization VF = vf , i.e., P

M
VF =vf
do(Vk=v)

(U) = PM(U|VF = vf ),

and whose causal mechanism of the variable Vk has been modified to fk := v.

Another commonly used class of causal models are Causal Graphical Models (CGMs). Unlike SCMs, CGMs only allow
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reasoning up to the second level of the PCH. A Causal Graphical Model (Peters et al., 2017) is a tuple M := {V,P}
where V = {V1, V2, ..., Vd} constitutes the set of endogenous variables and P is a set of distributions {p1, p2, . . . , pd}
called conditionals. Each distribution pi computes the probability of the variable Vi given its parents PA(Vi). A CGM also
induces a causal graph and an entailed distribution from which interventions can be computed similarly to SCMs.

B. RealCause Experiment Details
B.1. RealCause ATE Bias Over 100 Realizations and 20 Seeds

The following table presents the results of training RealCause on 100 different IHDP realizations, each evaluated across 20
random seeds. For each combination of realization and seed, the Average Treatment Effect (ATE) bias and the true ATE are
recorded to illustrate the variability in performance.

Realization Index ATE Bias (µ± σ) True ATE
1 0.377 ± 0.216 4.051
2 0.296 ± 0.206 4.099
3 0.373 ± 0.352 4.274
4 0.583 ± 0.332 4.162
5 0.395 ± 0.247 4.004
6 0.262 ± 0.244 3.991
7 0.364 ± 0.277 3.854
8 2.533 ± 3.390 10.466
9 1.483 ± 1.650 4.586
10 0.451 ± 0.416 3.948
11 0.704 ± 0.633 4.161
12 4.194 ± 3.085 12.649
13 0.337 ± 0.211 3.861
14 0.636 ± 0.358 3.908
15 0.384 ± 0.258 4.533
16 0.787 ± 0.501 3.637
17 0.286 ± 0.227 3.769
18 0.422 ± 0.330 3.941
19 0.337 ± 0.300 4.236
20 1.252 ± 0.861 3.155
21 0.443 ± 0.249 4.087
22 0.468 ± 0.275 4.313
23 0.512 ± 0.459 3.835
24 0.739 ± 0.450 4.596
25 2.683 ± 1.742 4.413
26 0.503 ± 0.239 3.756
27 5.298 ± 5.206 10.470
28 0.566 ± 0.426 3.745
29 0.577 ± 0.541 4.385
30 0.422 ± 0.340 4.336
31 0.491 ± 0.235 4.023
32 0.572 ± 0.404 4.157
33 4.315 ± 2.810 6.789
34 0.436 ± 0.407 3.756
35 0.607 ± 0.464 4.882
36 1.235 ± 1.645 3.343
37 0.613 ± 0.447 4.043
38 1.298 ± 1.240 6.221
39 0.547 ± 0.667 4.390
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Realization Index ATE Bias (µ± σ) True ATE
40 0.461 ± 0.260 4.230
41 0.356 ± 0.279 3.994
42 0.457 ± 0.342 4.499
43 0.771 ± 0.534 3.781
44 0.671 ± 0.702 3.299
45 0.966 ± 0.863 4.827
46 0.872 ± 0.901 5.066
47 0.350 ± 0.256 3.842
48 0.656 ± 0.315 4.395
49 0.575 ± 0.551 3.905
50 0.504 ± 0.344 4.306
51 0.412 ± 0.275 4.351
52 1.863 ± 1.232 5.791
53 0.891 ± 0.741 4.432
54 0.430 ± 0.248 3.740
55 0.333 ± 0.321 4.031
56 0.458 ± 0.286 4.085
57 0.452 ± 0.496 4.524
58 0.302 ± 0.329 4.242
59 1.055 ± 1.049 4.015
60 0.315 ± 0.236 4.082
61 0.396 ± 0.185 3.901
62 0.443 ± 0.211 4.480
63 0.450 ± 0.382 3.262
64 0.697 ± 0.490 4.177
65 0.353 ± 0.350 4.198
66 0.454 ± 0.340 4.051
67 2.595 ± 2.189 9.513
68 0.328 ± 0.240 3.814
69 0.300 ± 0.183 4.019
70 0.957 ± 0.782 5.857
71 0.382 ± 0.229 3.998
72 0.323 ± 0.285 3.838
73 0.325 ± 0.232 3.997
74 0.261 ± 0.172 3.996
75 0.854 ± 0.724 5.159
76 0.189 ± 0.187 4.147
77 0.422 ± 0.201 4.018
78 0.289 ± 0.170 4.196
79 0.462 ± 0.243 3.971
80 2.813 ± 2.990 9.524
81 1.187 ± 0.935 2.972
82 0.725 ± 0.580 4.152
83 1.533 ± 1.356 2.554
84 6.209 ± 11.319 -0.604
85 2.194 ± 1.979 5.888
86 0.437 ± 0.380 4.912
87 0.264 ± 0.209 3.983
88 0.602 ± 0.427 3.946
89 0.532 ± 0.379 3.945
90 0.329 ± 0.262 3.917

16



Position: Causal Machine Learning Requires Rigorous Synthetic Experiments for Broader Adoption

Realization Index ATE Bias (µ± σ) True ATE
91 0.403 ± 0.280 3.570
92 3.097 ± 3.135 8.456
93 0.506 ± 0.408 4.239
94 0.443 ± 0.349 3.850
95 0.702 ± 0.612 4.087
96 0.508 ± 0.339 4.355
97 1.374 ± 0.917 6.806
98 0.425 ± 0.415 4.134
99 0.349 ± 0.350 4.032

100 0.386 ± 0.251 4.016

B.2. Realism Checks

RealCause provides post hoc realism checks, such as Kolmogorov-Smirnov (KS) tests, which can help guide model selection.
However, these checks are neither enforced nor required. Poor performance may coincide with failed realism tests. To
evaluate the effectiveness of these realism checks in improving model performance, we compare the distribution of ATE
bias across all seeds to that of the subset passing realism checks.

Specifically, we use the following approach:

• We apply 100 univariate two-sample KS tests separately to treatment and outcome variables, comparing the generated
data’s marginal distributions to those of the real data. This results in 100 p-values for each variable (treatment and
outcome).

• We aggregate these p-values and consider a model to pass the realism check if at least 70% of them exceed a 0.05
threshold, indicating no significant difference between generated and real data distributions (as done in RealCause).

• For each IHDP dataset realization, we train 20 models with different random seeds and compare the full set of ATE
biases to the subset corresponding to models that pass the realism check.

Next, we performed Welch’s t-test to assess whether the realism filter led to statistically significant differences in ATE bias.
Our results showed that only 1 out of 100 realizations exhibited a statistically significant difference (at a 0.05 significance
level). This suggests that realism checks rarely identify subsets with meaningfully lower ATE bias.

We emphasize that our goal is not to explain the source of ATE errors. Instead, we aim to highlight that poor realism often
correlates with high ATE error, but the reverse is not guaranteed. This behavior aligns with the Causal Hierarchy Theorem,
which states that agreement at the level of observational distributions does not imply agreement on intervention distributions.
Therefore, filtering models based on realism—i.e., fit to observational data—may not consistently lead to improved ATE
estimation.

C. CausalNF Experiment Details
The TriangleNLIN (Javaloy et al., 2023) SCM is defined as follows:

x1 = f1(u1) = g(u1) + 1,

x2 = f2(x1, u2) = 2x2
1 + g(u2),

x3 = f3(x1, x2, u3) =
20

1 + e−x2
2+x1

+ g(u3),

where ui ∼ N(0, 1) and g(ui) is the identity mapping in the original formulation. For the experiments of Section 3.2, we
introduce two modifications to g(ui) to violate diffeomorphic assumptions of the mechanisms:
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1. Segmented Linear Function:

g(U) =


U if U < c1,

c1 if c1 ≤ U < c2,

U − (c2 − c1) if U ≥ c2.

This creates a non-bijective region within the interval [c1, c2], violating bijectivity and introducing non-differentiability at
the interval boundaries.

2. Sinusoidal Function:

g(U) = sin(2πfU),

where f is a frequency. This function keeps the mechanism differentiable but is entirely non-bijective, with periodic overlaps
that map multiple noise values to the same output.

Table 2 shows the RMSE performance across different configurations of g(U) and parameter settings. We hypothesize that
these results stem from the specific structure of the tested SCM, where the noise variables do not directly interact with the
causal parents (non-bijective collisions have little additive effect on the outcome). For example, although the segmented
linear function introduces regions where multiple ui values map to the same g(ui), selecting an incorrect ui has no impact
on performance. This is because the transformation maps back to the same g(ui), and the value of ui does not otherwise
influence the functions. Moreover, the non-bijectivity of the noise transformation might actually simplify the learning
process by reducing the number of distinct mappings that need to be modeled.

Table 2. Performance of CausalNF under various modifications to the noise function g(U). SEG-LINEAR-0.2 represents a segmented
linear function with a non-bijective interval of length 0.2 centered at 0.5, while SINUSOID-0.25 represents a sinusoidal function with a
frequency of 0.25. The table reports the mean and standard deviation of the RMSE for counterfactual estimation. Results averaged over
five runs.

SCM Variant RMSE CF (Mean ± Std. Dev)

TRIANGLENLIN 0.127± 0.021
SEG-LINEAR-0.2 0.132± 0.026
SEG-LINEAR-0.4 0.115± 0.014
SEG-LINEAR-0.6 0.108± 0.016
SEG-LINEAR-0.8 0.092± 0.009
SEG-LINEAR-1.0 0.083± 0.012
SINUSOID-0.25 0.061± 0.015
SINUSOID-0.30 0.063± 0.012
SINUSOID-0.35 0.060± 0.008
SINUSOID-0.40 0.062± 0.007
SINUSOID-0.45 0.067± 0.011
SINUSOID-0.5 0.069± 0.014
SINUSOID-1.0 0.062± 0.006
SINUSOID-2.0 0.081± 0.013
SINUSOID-4.0 0.078± 0.010
SINUSOID-6.0 0.066± 0.011
SINUSOID-8.0 0.064± 0.011
SINUSOID-10.0 0.085± 0.020

Details on the Non-Identifiable Counterfactual Experiment

We adopt a counterexample from Nasr-Esfahany & Kiciman (2023), in which two structurally distinct SCMs (denoted as
CTF1 and CTF2) share the same observational distribution but differ in their counterfactual distributions, meaning that the
counterfactual queries are not identifiable. The adapted SCMs form a simple chain structure and are defined as:
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Table 3. Performance of CausalNF on chain SCMs with differing f2 functions. Results averaged over five runs.

SCM RMSE CF (Mean, ± Std. Dev.)

CHAIN[CTF1] 0.158 ± 0.009
CHAIN[CTF2] 0.583 ± 0.011

x1 = u1,

x2 = f2(x1, u2),

x3 = f3(x2, u3),

where f3(x2, u3) = x2 + u3 is fixed for both SCMs, and f2 differs between two variants:

f2(x1, u2) =

{
u2 if x1 ≥ 0,

u2 − 1 if x1 < 0,
(defining CTF1),

or

f2(x1, u2) =

{
u2 if x1 ≥ 0,

−u2 if x1 < 0.
(defining CTF2).

The function f2 is diffeomorphic everywhere except at x1 = 0, where it is discontinuous and not invertible. However, it
remains invertible with respect to u2.

CTF1: x1 = u1,

x2 =

{
u2, if x1 ≥ 0,

u2 − 1, if x1 < 0,

x3 = u3 + x2.

CTF2: x1 = u1,

x2 =

{
u2, if x1 ≥ 0,

−u2, if x1 < 0,

x3 = u3 + x2.

Training CausalNF on these two SCMs reveals a stark contrast in performance. As summarized in Table 3, the RMSE for
counterfactual estimation is significantly higher for CTF2 than for CTF1, suggesting that CausalNF consistently defaults to
learning the structure of CTF1 regardless of the true underlying SCM.

We extend this experiment by modifying f3 to introduce a similar noise-parent interaction. Specifically:

f3(x2, u3) =

{
u3 if x2 ≥ 0,

u3 − 1 if x2 < 0,

and

f3(x2, u3) =

{
u3 if x2 ≥ 0,

−u3 if x2 < 0.

resulting in two new SCMs: CTF3 and CTF4 in which f2 and f3 have similar structure.
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Table 4. Performance of CausalNF on chain SCMs with additional noise-parent interaction in f3. Results averaged over five runs.

SCM RMSE CF (Mean ± Std. Dev.)

CHAIN[CTF3] 0.147 ± 0.010
CHAIN[CTF4] 1.037 ± 0.013

CTF3: x1 = u1,

x2 =

{
u2, if x1 ≥ 0,

u2 − 1, if x1 < 0,

x3 =

{
u3, if x2 ≥ 0,

u3 − 1, if x2 < 0.

CTF4: x1 = u1,

x2 =

{
u2, if x1 ≥ 0,

−u2, if x1 < 0,

x3 =

{
u3, if x2 ≥ 0,

−u3, if x2 < 0.

The results, shown in Table 4, demonstrate even more pronounced failure for CTF4, where CausalNF erroneously models f2
and f3 both as the simpler f2 variant of CTF1, doubling the error.

D. Extending the CausalNF Experiments
Say one wants to extend the experiments carried out in Section 3.2 on the robustness of CausalNF (Javaloy et al., 2023)
against violation of the bijectivity assumption. One could, for example, define the following synthetic experimental design
choices:

i) Set of causal models: The SCMs M = {M := {GM,F ,P (U)}} such that GM is a DAG, F is a set of fully-connected
neural networks and P (U) ∼ U([0, 1]). GM is parametrized by its size |V| (i.e., the number of endogenous variables)
and F by its depths, numbers of neurons and activation functions.

ii) Set of queries: Counterfactuals over M given the dataset D, QM,D = {PV=vf

M (Y |do(Vk = vk)) | Y ∈ V, Vk ∈
V \ Y, vf ∈ D, vk ∈ Dk} where Dk is the realizations of Vk in the dataset D

iii) Set of training data: Datasets of size N drawn from the entailed distribution of M without perturbation, DM =
{D = {vi}Ni=0 ∼ PM(V)}

iv) Generation algorithm:

1- uniform sampling over the ranges of all the control parameters (i.e., GM size, F depths, numbers of neurons and
activation functions, dataset sizes)

2- uniform sampling of a DAG of size |V| (Talvitie et al., 2020)
3- initialization of the neural networks weights and bias following the Glorot uniform (Glorot & Bengio, 2010)
4- dataset creation from sampling N observations from M
5- query creation by randomly picking the variables Y and Vk from the sets V and V \ Y
6- randomly sampling from the training set vf and vk as realizations of V and Vk

v) Induced distribution: The joint distribution of the control parameters of the SCMs, queries, and datasets is, by
definition, multivariate uniform with independent components. However, the distribution of observable characteristics,
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such as the bijectivity of the causal mechanisms or the existence of interaction between endogenous and exogenous
variables, is not straightforward to determine. Hence, for the characteristics that may be relevant to consider when
studying the behavior of CausalNF when the bijectivity assumption is violated, it will be necessary to carry out an
empirical analysis of their distribution by analyzing the SCMs sampled by the generation algorithm.
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