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Abstract

We study a class of Gaussian processes for which the posterior mean, for a particular choice
of data, replicates a truncated Taylor expansion of any order. The data consist of derivative
evaluations at the expansion point and the prior covariance kernel belongs to the class
of Taylor kernels, which can be written in a certain power series form. We discuss and
prove some results on maximum likelihood estimation of parameters of Taylor kernels. The
proposed framework is a special case of Gaussian process regression based on data that is
orthogonal in the reproducing kernel Hilbert space of the covariance kernel. Furthermore,
we construct a probabilistic version of the standard quadratic trust-region method.

1 Introduction

Taylor’s theorem is among the most fundamental results in analysis. In one dimension, Taylor’s theorem
states that any function f: R — R that is sufficiently smooth at a € R can be written as

f(x) = Tn,a(x) + Pn,a(x)a (11)

where T), o(z) = ZZ:O ﬁ f®)(a)(x — a)P is the nth order Taylor polynomial and P, ,(x) a remainder term
which has the property that P, ,(z) = O(|z — a|™*") as |z — a| — 0. Multidimensional generalisations are
readily available and will be introduced in Section 2. Approximations derived from (1.1), in particular the

first and second order Taylor approximations

f(@) = f(a) + f'(a)(z —a) and  f(z)~ f(a)+ [(a)(z —a)+ %f”(a)(ﬂc —a)?,

play an important role in numerical algorithms for a number of reasons. Firstly, Taylor approximations provide
a straightforward and principled means of linearising a function of interest, which can often dramatically
accelerate otherwise costly computations. Secondly, they require only information about a function and its
derivatives at a single point; information that particular algorithms may already be collecting. Particular
applications of Taylor’s theorem in numerical algorithms include optimisation (Moré, 1978; Conn et al.,
2000), state estimation (Siarkka, 2013, Ch. 5), ordinary differential equations (Hairer et al., 1993, Ch. II), and
approximation of exponential integrals in Bayesian statistics (Raudenbush et al., 2000), to name but a few.
A crucial challenge when applying Taylor series in this way, however, is their locality. The approximation is
valid only near a, and apart from trivial examples approximation quality decays rapidly away from this point.
When a numerical algorithm attempts to use a Taylor approximation to explore function behaviour around a
particularly novel point, far from a, the behaviour of the algorithm can be difficult to predict and control.

This paper proposes a remedy for this by introducing a Gaussian process (GP) model (Rasmussen and
Williams, 2006) whose posterior mean, given the derivative data (f(a), f'(a),..., f™(a)), is exactly the
Taylor polynomial T}, ,, and whose posterior variance plays a role analogous to the remainder term P, ,.
In the spirit of probabilistic numerics (Diaconis, 1988; Cockayne et al., 2019b; Hennig et al., 2022), the
posterior variance can then be used for principled probabilistic quantification of epistemic uncertainty in
the Taylor approximation f(z) ~ T, .(z) at = # a, which can be exploited and propagated forward. In
effect, the variance may be used to encode into algorithms a degree of “scepticism” about the validity of
the Taylor approximation away from a. Taylor approximation thus joins the ranks of classical numerical
methods, such as algorithms for spline interpolation (Diaconis, 1988; Kimeldorf and Wahba, 1970), numerical
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quadrature (Diaconis, 1988; Karvonen and Sarkké, 2017; Karvonen et al., 2018), differential equations (Schober
et al., 2014; 2019; Teymur et al., 2016), and linear algebra (Cockayne et al., 2019a; Hennig, 2015), that can
be cast as statistical inference. Even though the use of derivative information in Gaussian process modelling
is rather standard and the prior that we use is relatively well known, we are unaware of any prior attempts at
deriving the Taylor approximation in a Gaussian process framework.

1.1 Related Literature

The Gaussian process priors we use to construct a probabilistic Taylor expansion are determined by positive-
definite and non-stationary Taylor kernels which, at an expansion point a, take the form

Kq.(z,y) = K(x —a,y —a), where K(x,y) 2022
p=0

cpAP »
) (12)

for non-negative constants c, and positive parameters ¢ and A. For multidimensional input points, the index
p € Ny is replaced with a multi-index a € N and zy usually with the Euclidean inner product; see Section 2.1
for details. The canonical example is the exponential kernel

K(z,y) =0 ;(my)p = o” exp(Azy), (1.3)
p=0 ="

which is obtained by setting ¢, = p! in (1.2). The exponential kernel is closely connected to the popular
Gaussian kernel K (z,y) = o2 exp(—=A2(x — y)?/2).

Taylor kernels, often under the name power series kernels, have been used—and their approximation properties
analysed—in the numerical analysis and scattered data approximation literature; see Dick (2006); Zwicknagl
(2009); De Marchi and Schaback (2010); Zwicknagl and Schaback (2013) and Fasshauer and McCourt (2015,
Sec. 3.3.1). Section 1 in Zwicknagl and Schaback (2013) has been of particular inspiration for the present
work. The Szegd kernel and the Bergman kernel K (x,y) = 1/(1 —zy) and K (x,y) = 1/(1 —xy)?, respectively,
are particularly well studied in the approximation theory literature because their reproducing kernel Hilbert
spaces (RKHSs) are important in complex analysis; see, for example, Larkin (1970); Richter-Dyn (1971b;a)
and Oettershagen (2017, Sec. 6.2). These kernels are defined on the open interval (—1,1) and obtained
from (1.2) by setting (Szegd) ¢, = (p!)? and (Bergman) co, = (p!)? and cop41 = 0 for p € Ny in (1.2).

Taylor kernels occasionally appear in the machine learning and statistics literature but, to the best of our
knowledge, have not been used in conjunction with derivative data in the way proposed here. We refer to
Minka (2000, Sec. 4); Steinwart and Christmann (2008, Example 4.9) and (Liang and Rakhlin, 2020) for a
few of their appearances. Gaussian process regression based on derivative evaluations has been explored (e.g.,
Solak et al., 2002; Prither and Séarkké, 2016; Wu et al., 2017a; Eriksson et al., 2018), though typically for
“standard” kernels such as the Gaussian kernel. The approach in this paper differs from the prior Gaussian
process literature in two key ways, which enable a probabilistic replication of the Taylor expansion: First, for
kernels used in the literature the posterior mean cannot coincide with the Taylor polynomial. Secondly, in
the literature the data typically consist of function and derivative evaluations at a number of different points,
whereas we are specifically interested in derivatives at a single point.

1.2 Contributions

The main contributions of the paper are contained in Sections 2 and 3. In Section 2, we derive a probabilistic
Taylor expansion and a basic error bound; these results are given in Theorems 2.1 and 2.3. We also discuss
how inclusion of observation noise affects probabilistic Taylor expansions. In Section 3, we derive expressions
for maximum likelihood estimates of the Taylor kernel parameters ¢ and A. Perhaps the most interesting
result that we obtain is Theorem 3.2, which states that derivative data that could have been generated by
a constant function yield the estimate Ay = 0. As mentioned above, the exponential kernel is related to
the Gaussian kernel. In Section 4, we show how to derive closed form expression for the posterior mean and
covariance given derivative data when the covariance kernel is Gaussian. Section 5 outlines generalisations of
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probabilistic Taylor expansions derived in Section 2 for data that are orthogonal in the reproducing kernel
Hilbert space of the covariance kernel. Fourier coefficients constitute an example of orthogonal data when
the kernel is periodic. Some simple numerical toy examples are included in Section 6, while in Section 7 we
show how to use probabilistic Taylor expansions to build a concrete numerical algorithm by constructing a
Gaussian process based version of the standard quadratic trust-region method.

1.3 Notation

We use Ny to denote the set of non-negative integers and N& to denote the collection of non-negative
d-dimensional multi-indices a = (a(1),...,a(d)), where a(j) € Ny is the jth index of . We also use the
standard notation |a| = (1) + -+ + a(d) and a! = a(1)! x .-+ x a(d)!.

2 A Probabilistic Taylor Expansion

In this section, we derive a probabilistic Taylor expansion using Gaussian processes. We discuss a generalisation
of this derivation for orthogonal data in Section 5.

2.1 Taylor Kernels

Let a € R? and 7 € (0, 00]. Define Qg = {x € R? : ||z — al|, < r}. A multidimensional Taylor kernel on
Qq.r X Qg is defined as

aA
Carl 2oy, (2.1)

Ko(z,y) = K(x —a,y—a) for K(fcvy)ZUQZ(a!)

aeNg

where 0 > 0 and A € R‘i are kernel hyperparameters. The coefficients ¢, are non-negative constants such
that co > 0 for infinitely many o € N¢ and

CaA™ 2| x| . CaA” || : _
Z (a!)Qr <oo if r<oo or Zia!\/ae < oo if r=o0. (2.2)

aeNd aeNg

The conditions (2.2) are sufficient to ensure the series defining K, via (2.1) converges absolutely for all
x,y € (g, which, together with co > 0 for infinitely many o, guarantees that Taylor kernels are positive-
definite (Zwicknagl and Schaback, 2013, Thm. 2.2). If only finititely many ¢, are positive, the kernel is
positive-semidefinite. However, co > 0 is not necessary for positive-definiteness of K in (2.1) (see Zwicknagl,
2009, Sec. 2). To ensure that the diagonal covariance matrix in (2.11) is invertible we always assume that

ca >0 forevery o€ Ng

Note that o and A could be subsumed into the coefficients c¢o. However, as we shall see in Section 3, the
parametrisation that we use leads to convenient and useful hyperparameter estimation. Specifically, maximum
likelihood estimation of the parameters o and A is possible and the estimators have some intuitive properties.
In contrast, it is either useless or impossible to estimate the coefficients ¢, which should therefore be fixed.

An important subclass of Taylor kernels are inner product kernels, defined by

K(z,y) = 0"

d
<m7y>l))\a where <may>)\ = ZAM%% (23)

=1

NE
Sl

Il
=)

pl)?
It is easy to show that inner product kernels are Taylor kernels: From the multinomial theorem we have

oo o0 d P o0 |
— 52 p _ 2 p _ 2 Cp P
Ko =03 @l =o' S g (S ) =*3 gy 3 fpvanye
p=0 p =1 p=0 p

!
p=0 2 lec]=p

:0_2 Z Cla| )\amaya’
allal!

aeNg

p
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which we recognise as a Taylor kernel in (2.1) with cq = ¢jq@!/|a]!. We will discuss estimation of the
parameters o and A (as well as the coefficients ¢,) in Section 3; for now, we assume the parameters are given
and proceed to show how Taylor kernels may be used to derive a probabilistic Taylor expansion.

The multidimensional version of the exponential kernel in (1.3) is
— 1
K(w,y) = o* exp((2,y)a) = 02 3 ~(z,m)x. (2.0
=0

The exponential kernel is defined on Qg , = R?. In Section 4, we discuss a close connection that the
exponential kernel has to the commonly used Gaussian kernel. By setting ¢, = 1 we obtain the Bessel kernel
K(x,y) = o? Yoo, ¥)3/(p)? = Ih(2(z, y)i/Q), where I is the modified Bessel function of the first kind,
which is another Taylor kernel defined on the whole of R<.

2.2 Gaussian Process Regression with Derivative Data

A Gaussian process fgp ~ GP(m, R) characterised by mean function m: Qg , — R and covariance kernel
R: Qg x Q4 — Ris a stochastic process such that for any points xi,...,xny € Qg , the joint distribution
of (fep(x1),..., fep(xn)) is an N-dimensional Gaussian with mean vector (m(z1),...,m(zy)) € RV
and covariance matrix R = (R(z;, x;)),—;, € RV*N (Rasmussen and Williams, 2006). In particular,
E[fep(x)] = m(x) and Cov[f(z), f(y)] = R(z,y) for all z,y € Qq,. Let f: Qq, — R be an n times

differentiable function on g ,, meaning that the partial derivatives

olel f

Df=—+———
922D . 925 @

exist for all @ € N¢ such that || < n. Suppose also that the prior mean m is n times differentiable and that

R is n times differentiable in both arguments, in the sense that the derivative

fra Plel+18l
DyDzR(@,y) = 5 <5 glilv,w)|

w=y

exists for all ¢,y € g, and all multi-indices o and 8 such that |a|, |B| < n. The noiseless derivative data
are

fa=(D%f(a))jaj<n = D* f(a),...,D M f(a)), (2.5)
where we use an arbitrary ordering of the set {a,... ,OlNg} = {a € N¢ : |a| < n}, which contains
a_ (n+d\ (n+d)!
N = ( n ) ~ nld

elements. When conditioned on these derivative data, the posterior fcp | fq is a Gaussian process (Sarkka,
2011; Travelletti and Ginsbourger, 2022). That is, fep | fao ~ GP(Sn e, Pn,e) with mean and covariance

Here R, € RV2*Ni and ro(x) € RN are each given by

(Ra)l.j = Dgi’DgiR(w,y)’zzg and (ra(w))l = DZiR(m,y)| (2.7)

y=a’

where subscripts denote the differentiation variable, and mg = (D®'m(a),...,D*¥im(a)). When f has
multidimensional range, one may model each of its components independently, though we note that this
modelling choice may be readily generalised using vector-valued Gaussian processes (Alvarez et al., 2012).
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2.3 Replicating the Taylor Expansion Using Taylor Kernels

The next theorem combines what was described in Sections 2.1 and 2.2 to give a probabilistic version of the
Taylor expansion.
Theorem 2.1. Let K, be a Taylor kernel defined as in (2.1). Let fop ~ GP(m, Kq) and fo = (D f(a))|a)<n-
Then fcp | fa ~ GP(sn.a, Pn.a), where
D*[f(a) —m(a)]
Snal®) =m(@)+ D o (@-a)* and Pya(z,y) =0 Y

|| <n |e|>n

Ca\™
(al)?

(x—a)%(y—a)®. (2.8)

If m is a polynomial of degree at most n, then

Sn,a(x) = Z %'(a)(m —a)%, (2.9)
lee|<n '

which is identical to the multidimensional version of the Taylor polynomial in (1.1).

Proof. 1t is straightforward to compute that, for any 8, € Ng,

DADY K, (x,y) = 0 caX*(z —a)* Py —a)* 7
yPEulm) =" ),

where B Ay = (max{B(1),v(1)},...,max{B(d),v(d)}). If x = a or y = a, all terms with o« — 8 # 0 or
o — v # 0, respectively, in (2.10) vanish. Therefore in the context of (2.7) we have

, (2.10)

o
9 Co; A%

(Ra)ij = ozcai)\aiéij and (rq(x));=0 (x —a)™. (2.11)

Consequently, the matrix R, is diagonal and the ith element of the row vector rq(z)T R, in (2.6) is
(a;!) " (x — a)™i. Tt follows that the posterior mean and covariance are as in (2.8). From (2.1) we recognise
the covariance P, , as the remainder in the kernel expansion. To prove (2.9) it is sufficient to observe that
m(x) =3 4 1<n Dmn(a)(a!)~(x — a)® when m is a polynomial of degree at most n. By inspection it is
clear that s, ¢ in (2.9) is identical to the Taylor expansion given in (1.1) (and its multivariate version), which
completes the proof. O

Note that the covariance is not identically zero—in fact, P, qo(x, ) — 00 as || — a||, — oco. Furthermore,
while P, q(x,vy) takes the form of an infinite sum, provided K, has a closed form it can be computed by
subtracting the terms with || < n in the summation form of K, from that closed form. For illustration,
some posterior processes are displayed in Figure 1.

Whether or not the explosion of the posterior variance away from a is desirable depends on what one is
trying to achieve and what kind of prior information is available. If one is trying to extrapolate, it seems
entirely natural to us, at least in the absence of additional knowledge about f, that the variance should be
very large far away from a. But if there is additional prior information that the function f has, for example,
approximately the same magnitude everywhere on its domain, then it may make sense to use a stationary
kernel for which the variance tends to a constant value as the distance to the nearest data point increases.

The expressions in (2.8) for the posterior mean and covariance show that computational complexity of
inference with Taylor kernels and derivative data is linear in the number of data points, N,‘f, if the derivatives
of m are cheap to compute (e.g., if m is a polynomial). A generic kernel for which no special structure is
present in the covariance matrix R, incurs cubic computational cost because a linear system of equations
needs to solved when the mean and variance are computed directly from (2.6). This seeming advantage of
Taylor kernels is lost if the data do not consist of derivatives at a single point.

Remark 2.2. Recall that in Section 2.1 we assumed that ¢, > 0 for every a € N&. However, from (2.11) we
easily see that Theorem 2.1 remains valid as long as ¢, > 0 for all || < n because this ensures that the
diagonal covariance matrix R, is invertible. Section 2.1 therefore applies also to polynomial kernels, which
are Taylor kernels with finitely many non-zero coefficients ¢, if n remains sufficiently small.
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2.4 Error Bounds

Each positive-semidefinite kernel R on g , X 4 is associated to a unique reproducing kernel Hilbert space
(RKHS), H(R), equipped with inner product (-,)3(r) and norm |[|-|[;;(z). The RKHS is a Hilbert space
of functions f: Q4 , — R such that R(-,x) € H(R) for every « € Qg and in which the kernel R has the
reproducing property

f(m) = <fv R(am»H(R) for all f € H(R) and x € Qa,r-

See Berlinet and Thomas-Agnan (2004) for more information on RKHSs. It is often difficult to characterise
the functions which lie in the RKHS. Fortunately, for Taylor kernels one may use results such as Theorem 9
in Minh (2010) to show that

H(Ka) = {f(w) =0 Y 1Yo ) ey = 3 2 oo}.

aeNg aeNg

See also Zwicknagl and Schaback (2013) and Paulsen and Raghupathi (2016, Sec. 2.1). For example, all
polynomials are contained in the RKHS of any Taylor kernel for any a € R<.

The next theorem shows that the posterior variance has a similar interpretation to the Taylor remainder
term if f is in H(K,).

Theorem 2.3. Let fcp | fa be as in Theorem 2.1, and let the assumptions of that theorem hold. If f € H(K,),
then s, q and P, o satisfy

= sn.a(®)] < | fllyyx,) Pral, = Cnyr iy Iz = ally™ :
|f(x) = sn,a(@)] < ||f] Poa(x,@)'? < Cprofl |z —al (2.12)

for all ® € Qq ., where (Cp »)2%, s a positive sequence such that Cp, , — 0 as n — oco.

Proof. By the standard equivalence between Gaussian process regression in the noiseless setting and worst-case
optimal approximation (e.g., Scheuerer et al., 2013; Kanagawa et al., 2018) the posterior mean s,, o € H(Kg)
is the minimum-norm approximant of f such that D®s,, o(a) = D*f(a) for every || < n and the posterior
standard deviation at x, P, o(z, :c)l/ 2. equals the worst-case approximation error at = in the RKHS. Hence

|f(.’13) - Sn,a(m” < ”f - SaHH(KQ) Pn,a(wa m)l/Q < ”fHH(Ka) Pn,a(ma x)l/Z

for all @ € Qg if f € H(K,) (e.g., Wendland, 2005, Thm. 16.3). To prove the upper bound for the posterior

variance observe that from the general inequality || < Ha:HLZ" < Ha:|||2°‘| for z € R% and o € N¢ it follows
that, for any € Qq ., = {z € R? : ||z — al|, <7},

Poa(@,®)=0® 3 Thg(@ - a)™
|| >n ’
CaA\™ CaA™
= 02< Z (al)? (x —a)** + Z al)? (x— a)2°‘>
|a|=n+1 |a|>n+1
CaA® 2(n+1 CaA” 2|
302< Y. tamplle—al™+ >0 s le—all
|a|=n+1 ’ |a|>n+1 ’
2 2(n+1 CaA” CaA” 2|a|—2(n+1
= 0% || — af 2" ( S Gt X Gy lle el ))
|a|=n+1 |a|>n+1
2(n+1 CaA™ —2(n CaA® o
<atle-alf ) (3 N 5 ),
|a|=n+1 ’ |a|>n+1 ’
=Cn,7‘
The summability assumption (2.2) ensures that C,, . is finite and that C), , — 0 as n — oco. O
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Figure 1: Gaussian process posterior means and 95% credible intervals given derivative data for f(x) = sin(7x)
at a = 0. The priors have m = 0 and use either (blue) the exponential kernel K (z,y) = o2 exp(\zy) with
A = 3/2 or (orange) the Gaussian kernel K (z,y) = 02 exp(—\%(z — y)?/2). Maximum likelihood estimation
was used to select the scaling parameter o. We shall revisit this example in Section 6.

The bound (2.12) is valid for every element of H(K,). However, the bound is uncomputable because it is not
possible to compute the norm || f]| H(Ka) from the derivative data f, without some additional information
about the function f. For example, when d = 1 and a = 0, the functions

fi@) =1+2c+ 322 +42® + 52 and  fo(x) = 14 22 + 32° + 4% + ca”

are different if ¢ # 0 but provide the same derivative data whenever n < 3. In practice, what one has to
do is estimate the parameters of K, in a data-dependent way, use the standard deviation P, 4(z, w)l/ 2 to
compute, say, the 95% credible interval around the point estimate s, q(x) of f(x), and conclude that it
is likely that f(x) falls within the resulting credible interval. Any such uncertainty estimates are bound
to fail occasionally—and the severity of the failure can be arbitrary. For example, when n = 3, credible
intervals formed from derivative data generated the function fs above do not depend on ¢ even though
|f2(z) — s30(x)| = ca” does.

2.5 Noisy Observations

Suppose that the observations are corrupted by Gaussian noise. That is, the data vector is fo = (Ya)ja|<n,
where yo = D¥f(a) + zo with independent zo ~ N(0,€2) for e > 0. While unrealistic in practice, the
assumption that the noise terms are independent allows for explicit computation of the posterior mean and
variance. In this setting the posterior mean and covariance for a general sufficiently differentiable prior mean
m and covariance kernel R are

Sna(®) = m(@)+7a(2) (Ra+E) " (fa—ma) and Py qo(x,y) = R(®,y) —re(x)" (Ra+E) 'ra(y), (2.13)

where E is a diagonal N¢ x N9 matrix containing the noise variances €2 and 74(z), Ra, and m, were
defined in Section 2.2. Recall then from Section 2.3 that when R is a Taylor kernel K, we have

(Ra)ij = 0'2Cai)\ai5ij and (ra(m))i = JZL/\I(CC — Cl,)ai.

OLZ‘!

Therefore (Rq + E)™" = (0%cq, A% 4 €2,,) 10,5, and plugging this into (2.13) yields

S o =

( - a)®

lee|<n
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and

2.2 \2a
o°CLA

(02caA™ +€2)

(o7

Pn,a(xvy) :Ka(w7y) _02 Z (OL')Q (w_a)a(y_a)

lee|<n

CaA® 022 \20
- 02[ > et - - Y e e ey - a)Q]

a)2(02ca A + £2)

le|<n

? Ca)\aei (e « Ca® « a
=0 [;ﬂ (a!)Q(g%a)\a + Ega) (.’1} — a) (y - CL) + Z W(m — a) (y — a) ] .

|a|>n

Note that by setting e, = 0 for every a € N¢ such that || < n we recover the noiseless posterior mean and
covariance in (2.8).

3 Parameter Estimation

Observe from (2.8) that, although they do not affect the posterior mean, proper selection of the Taylor kernel
parameters X and o is a prerequisite for useful and meaningful uncertainty quantification via the posterior
variance P, q(x, ). In this section we consider maximum likelihood estimation of these parameters. For
the Gaussian process model in Section 2.2, the negative log-likelihood function that is to be minimised with
respect to a generic vector of kernel hyperparameters 6 is

1 1 N
(o) = E(fa - ma)TRc:l(fa —mg) + 9 logdet Rq + Tn log(2m).
By discarding terms and coefficients that do not depend on 6 and using (2.11) we see that for a Taylor kernel
the maximum likelihood estimate (MLE) @y is any minimiser of the function

i _01 Z (Da[f(Z);am(a)])Q +folog02+ Z log A% + Z Cor- (3.1)

la|<n la|<n || <n

In principle, every coefficient ¢ of a Taylor kernel in (2.1) may be considered a free parameter to be estimated.
However, maximum likelihood estimation of these coefficient is either useless or impossible: From (2.8) we
see that the posterior process depends on cq only for || > n. However the objective function (3.1) does
not depend on these ¢, making it impossible to estimate those parameters that actually influence posterior
uncertainty. We encountered a simple example of this phenomenon in Section 2.4.

3.1 Estimation of ¢

From (3.1) it is easy to calculate om, the maximum likelihood estimate of o, for any fixed A € RY and
n € Ny by differentiating ¢ and setting its derivative to zero. This gives

ot = o 3 OO @) 52)

" la|<n

3.2 Estimation of \

Estimation of X for a fixed o is more complicated and the maximum likelihood estimate does not appear to
admit a closed form expression akin to that for om in (3.2). However, something interesting can be said. We
write A = (A1, ..., Aq)-

Lemma 3.1. Suppose that n > 1 and let 1 <i < d. Then limy, o I{(A) = —0 if D*[f(a) — m(a)] =0 for
every |a| < n such that a(i) > 0 and limy, 0 £(A) = oo otherwise.
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Proof. Assume first that D¥[f(a) — m(a)] = 0 for every |a| < n such that o(i) > 0. It follows that the
first term in (3.1) does not depend on A;. Because }_ |, log A* — —oc0 as A; — 0, we have {(A) — —o0 as
A; — 0. Assume then that DP[f(a) — m(a)] # 0 for some |B| < n such that B(i) > 0. Therefore

ol f(a) —m(a)])? Bl f(a) —m(a)])?
;Z (Delf(e) ~mia) 5> e > OO n@) | 5y e

2%4— Z log A®

le|<n

for a certain positive constant C' and A\; < 1. Since 1/x + alogz — oo for any a > 0 as z — 0 from the right,
we conclude from the above lower bound that £(A) — oo as A; — 0. This concludes the proof. O

Lemma 3.1 states that /(\) attains a minimum at A; = 0 when the data are consistent with m being equal to
f up to constant along dimension i. From Lemma 3.1 and the fact that g()\) can tend to negative infinity
only if a component of A tends to zero we obtain the following theorem, which is essentially a special case of
Theorem 5.2 in Karvonen and Oates (2023). See also Proposition 4.3 in Ben Salem et al. (2019).

Theorem 3.2. Suppose that n > 1 and let 1 <i < d. Fix \j for j # 4. Then

Ai,ML = arg min g((/\l7 o A) =0
X;>0

if and only if D*[f(a) — m(a)] =0 for every |a| < n such that a(i) > 0. In particular, if d = 1, then

AML = arg min 17()\) =0
A>0

if and only if f®)(a) —m®P) (a) =0 for every 1 < p < n.

For simplicity, let d = 1. If A = 0, we see from (2.8) that P, ,(z,y) = 0 for all z,y € R. Moreover, if
f®(a) —m®)(a) =0 for every 1 < p < n, then

" @ (q) = m®
smae) = 3 LI (o f0) — (o
p=0

for every x € R. That is, s, , is a constant function. The interpretation of Theorem 3.2 is thus that when
the data look like they could have been generated by the function f(z) = m(z) + ¢ for some ¢ € R (i.e.,
by a constant shift of the prior), maximum likelihood estimation returns Ay = 0 because this value of A
both explains the data and yield the simplest model, one of zero variance. When the posterior covariance
is identically zero, the resulting degenerate posterior fep | fo ~ GP(f(a) — m(a),0) does not provide useful
uncertainty quantification as it is unreasonable to expect perfect predictions from a finite set of data.

3.3 On Simultaneous Estimation of o and \

The purpose of this section is to demonstrate that simultaneous maximum likelihood estimation of o and A is
likely to cause problems. We consider inner product kernels of the form (2.3) with coefficients co = cjqj!/|a|!
and n = 1. Let 97 f(x) denote the pth order partial derivative of f at @ with respect to the ith coordinate.

Note from cq = ¢jo@!/ |a|! that co = co for a = 0 and co = ¢; when || = 1. By differentiating (3.1) with

respect to the sth component of A we see that to obtain Ami = (A ML, ..., Ae,mL) We need to solve

1 a(i)(D*[f(a) — m(a])? « _ (0i[f(a) —m(a)])?

=Y e - > ali)= o ~1=0 (3.3)

l|<1 < la|<1 ¢
for each i = 1,...,d. Equation (3.3) readily gives the maximum likelihood estimates
0;[f(a) — m(a)])?
o = P@) ~m(@) )
g“cy
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for a fixed o > 0. Inserting these to the expression for the maximum likelihood estimate o3, in (3.2) yields

d
e (a)
2 _
o= i (HE - L
which is solved by oy, = [f(a) — m(a)]?/co. By plugging this in (3.4) we obtain the final estimates

[f(a) ~ m(a)? o (2lfte) —mia)) } (35

= ————— d A,
ML Co an ML f(a) —m(a)
It is clear what the problem is: If |f(a) — m(a)| is small relative to |9;[f(a) — m(a)]| for some i (i.e., m ~ f

but 9;m % 0;f at a), the estimate for A becomes large, which may cause numerical problems and yields a
large posterior variance. For example, let d = 1 and insert the estimates in (3.5) to the posterior variance

n (2.8). This gives
-3 (paar) (PO Gt

In practice it is therefore safest to fix one of the parameters and estimate the other. In the examples in
Sections 6 and 7 we fix A and estimate o.

(a)])z)_ 1 ([f(a)m(a)]2

d 2
di1 Co + UML)a

01)\1 ML

4 Comparison to the Gaussian Kernel

It is common to condition a Gaussian process defined by the Gaussian kernel on evaluations of a function and
its derivative at a number of different points (Solak et al., 2002; Prither and Sarkké, 2016; Wu et al., 2017a).
However, no convenient expressions for the posterior mean and variance are available in this setting. The
purpose of this section is to exploit an expression from Xu and Stein (2017) and derive explicit expressions for
the mean and variance when in the setting of Section 2.2 (i.e., when the data consist of derivative evaluations
at a single point). Because the Gaussian kernel is not a Taylor kernel, the posterior mean and variance,
although available in closed form, are more complicated than the ones for Taylor kernels in (2.8).

Let |||l = -, -)a. It is well known that the ubiquitous Gaussian kernel

1
Rla.y) = e (= 3o =l )

is closely connected to the exponential kernel in (2.4) via the equation

Rlavy) = e (= Slle.)s 2w + e.0n] ) —esp (-~ o1} ) st vinenn (- 5 vl ).

Given such a relationship to a Taylor kernel it should come as no surprise that, given derivative data, the
posterior mean and covariance in (2.6) are available in closed form for the Gaussian kernel—even though the
matrix R, is not diagonal.

Let us consider the univariate case. We get

oo

Z 2pp| l+] ng |

2
D; D) R(z,y)|e=a= (—1)" D7 exp (— )\222)

r=
y=a

z=0

When i 4 j is odd, all derivatives in the sum vanish, so that in this case D! D R(z, Y)|e= z=a= 0. Ifi+j=2k
for k € Ny, we have
A2k (2k)!
7 1+k
D D]R($ y) m g ( 1) 2kk| .

10
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)

This provides us with a relatively straightforward expression for the matrix R, in (2.7). From the Rodrigues
formula Hy(z) = (f1)7‘76752/2D$e’“”2/2 for the probabilist’s Hermite polynomials it is easy to compute 7, (x):

(ro(z)); = D;R(x,y)yy:az D}, exp (— %Q(x - y)2> = Aexp (— %Q(x - a)2> H,(Mz —a)). (4.1

y=a

Finding s, , and P, , requires the inverse of R,. Fortunately, Xu and Stein (2017, Proposition 3.2)
have computed the Cholesky decomposition of the inverse of R,.! The inverse of R, has the Cholesky
decomposition R;! = LLT, where L € RHDX(n+1) §g g Jower triangular matrix with non-zero elements
(L)ij = Vil/(Vj ( M) when ¢ > j and i + j is even. Here 4!! is the double factorial, the product of positive
integers up to i that have the same parity as ¢. Thus

n

_ —(i+j .. N p'
(R;7Y); = (LLT);; = A-0HDQ(i,5),  where Q(z,y)—p_mg;‘{ij} T = T (4.2)

p—+i is even

Consequently, inserting (4.1) and (4.2) in (2.6) gives the convenient closed form expressions

n n

. Z ) (a
bnalw) = 32 S (B, s V) = ep (~ o = ) 3 LT S L 3o - )

=0 j=0 7=0 =0

and

In particular, the posterior variance is

Prals) =1 — 0= 3 QI g 30— ) H, (A — a)).

These expressions resemble those in (2.8) for Taylor kernels. However, a notable difference is that for Taylor
kernels the posterior variance blows up as |« — a| grows but for the Gaussian kernel the variance tends to a
constant as |z — a] — 0o. As discussed in Section 2.3, both posterior variances which blow up and those that
remain bounded have their uses. Similarly, the posterior mean for Taylor kernels is unbounded, while for the
Gaussian kernel the mean reverts to zero (i.e., the prior mean; recall that we set m = 0) far away from a.

5 General Orthogonal Data

In this section we discuss how simple posterior formulae analogous to those derived in Section 2.3 are available
for any data that are orthogonal in the sense that the data are obtained by taking RKHS inner products of f
with respect to functions that are orthogonal in the RKHS.

5.1 Generic Construction

Let © be an arbitrary non-empty set, P a countable index set, and (¢,)pep a collection of linearly independent
basis functions on Q2 such that 37 _p [¢,(x 2))? < oo for every z € Q. We may then define (at least formally) a
Gaussian process fgp on Q) by setting fep(x) = ZPEP Zpop(x) for every o € Q, where Z, are i.i.d standard
normal random variables. It is then straightforward to compute that

Elfop(z)] =0 and  R(x,y) = Cov[fop(2), fop(v)] = D ép(2) (5.1)

peEP

INote that the denominator in Equation (3.1) of Xu and Stein (2017) should have (i — j)!! in the place of (i — 7).

11
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The kernel R is positive-semidefinite. Assume that (¢,)pcp are an orthonormal basis of the RKHS #H(R) (see
Section 2.4 for RKHSs).? Then each f € H(R) has the pointwise convergent expansion f(x) = > pep [rop(T)
for the coefficients f, = (f, ¢p)w(r)- Suppose that one observes 7, f, for p in a finite collection N' C P of
indices and some constants . These data are orthogonal because they are obtained by taking inner products
of f with a collection of functions v,¢, that are pairwise orthogonal in the RKHS. That is, each observation
vYpfp may be written as

Yofp = (fs Yp®p)u(r) for functions such that  (y,¢p,740¢)1(r) =0 if p#q.

The orthogonality of v,¢, implies that the corresponding covariance matrix is diagonal. A derivation similar
to that in Section 2.3 then shows that the posterior mean and covariance are simply

= Z fptp(x) = Z pfp¢p( z) and  P(x,y) Z Op( (5.2)

peN peEN PEP\N

for all z,y € Q. See (Wendland, 2005, Ch. 16) and (Oettershagen, 2017, Cor. 3.6) for general formulae
when the data consists of applications to f of arbitrary linear functionals. Orthogonal data are known to be
optimal in a certain sense and settings (Novak and Wozniakowski, 2008, Sec. 4.2.3). To connect (5.2) to the
derivations for Taylor kernels, suppose for instance that f: R — R has the Taylor expansion

Zf( p—prczsp where ¢p<x>=m/;!’7””” and f:jy(ix)

In this case we therefore have the index set P = Ny. Observing the N first derivatives f)(0) = 4, f,, so that
N ={0,1,...,N} and v, = 0V, A, and using (5.2) yields (2.8) with d = 1, a = 0, and m = 0. Moreover,
Cov[fep (), far(y)] = 2020 dp(2)¢p(y) = K(z,y) for K the univariate Taylor kernel in (1.2). We mention
two other of examples orthogonal data.

5.2 Mehler Kernel

Let P = Ny and © = R. Let H, be the pth probabilist’s Hermite polynomial and p € (0,1). Set
dp(x) = oV pP(p!) " H,(z). Then Mehler s formula yields the Mehler kernel

2

N (a 2y~ Py P y) 2y
xy)—p2::0¢p() 2;) ! ) 1 p( 2(1 - p?) )

_p2

See Irrgeher and Leobacher (2015) and Oettershagen (2017, Sec. 3.6.4) for the Mehler kernel in the context of
kernel-based approximation. If f(x) = Zp o fp®p(x), then by the orthogonality with respect to Gaussian
integration, other basic properties of the Hermite polynomials, and properties of Gaussian integrals of
derivatives (e.g., Bogachev, 1998, Rmk. 1.3.5),

x? 22
Yofp = \/7/ flx Z) exp (— ) dz = 27r f(p) x) exp (— ) dz, where v, =0p".

Here orthogonal data are therefore obtained by Gaussian integration of the derivatives of f.

5.3 Periodic Kernel
Let P =7, Q= [0,1], and s € N. Set ¢,,(x) = 0v/2(27p)~* cos(27mpx) and ¢_,(x) = o+/2(27p)~* sin(27px)

for p € N. Moreover, set ¢9 = o. Then we obtain the periodic Sobolev kernel (or the Korobov kernel)

2) = 0,010, = (142 Z con(zmple — 1)) = o(1+ (i W) 63

= (2s)!

2Any functions (¢p)pep for which the expansion of the kernel R in (5.1) converges pointwise are a Parseval frame for the
RKHS H(R) (Paulsen and Raghupathi, 2016, Thm. 2.10).

12
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Figure 2: Left: Posterior means and 95% credible intervals given derivative data for f(z) = sin(rz) at
a = 0. The zero-mean prior uses the exponential kernel K (z,y) = 0% exp(Azry) with A = 3/2 and scale o
set using maximum likelihood. Right: Maximal absolute errors max,e(—1,1][f(2) — 8p,a(7)| and half-widths
1.96 X max,e[—1,1] V Pna(7, z) of the 95% credible interval over the domain 2 = [~1,1].

for x,y € [0, 1], where Bog is the Bernoulli polynomial of degree 2s; see, for example, Wahba (1990, Sec. 2.1).
If f:[0,1] — R has the expansion f(z) =3, fp¢p(), then it is straightforward to compute that

1 1
Volp = 2/ f(x)cos(2mpx)dz and f_, = 2/ f(z)sin(2rpx)dx for peN (5.4)
0 0
for 4, = 0v/2(2mp)~* and o fo = fol f(z)dz for v = 0. These orthogonal data are the Fourier coefficients.

6 Two Toy Examples

This section contains two numerical toy examples. Figure 2 displays a number of posterior processes and
the behaviour of maximal error and standard deviation when a zero-mean Gaussian process with the Taylor
kernel K (z,y) = o2 exp(Ary) with A = 3/2 is used to infer the function f(x) = sin(rz) based on noiseless
derivative evaluations at a = 0, as described in Section 2. See also Figure 1. The scaling parameter o was
taken to be the maximum likelihood estimate in (3.2). From the right panel we see that the Gaussian process
model is well-calibrated in the weak sense that, except for small n, f(z) is never further away from the
posterior mean than maximal half-width of the 95% credible interval over the domain © = [—1, 1] of interest:

maxge(—1,1] |f(2) = sp,a(®)] < 1.96 X max,e;_1.1) V Pra(z, ).

Our second example uses the periodic kernel (5.3) with s = 2 and scaled Fourier data in (5.4), so that the
posterior mean and covariance are given by (5.2). We use index sets of the form V' = {-n,...,—1,0,1,...,n}
for n € N and again use maximum likelihood to set the scaling parameter, which in this case simply yields

o = #ﬂ Zzz—n(%fp)2' The function being inferred is f(x) = exp(z), and we compute that

Yolp = Sp2empsin(2mp) + ecos(2np) — 1] and vy, f_, = sp[27p + esin(27p) — 2emp cos(27p)]

for p € N, where s, = 2/(47?p* + 1), and o fo = e — 1. Figure 3 depicts some of the resulting posterior
processes. Except at the boundaries where the Gibbs phenomenon caused by the non-periodicity of f occurs,
the posteriors fare well and appear to provide reasonable quantification of predictive uncertainty.

7 A Trust-Region Method
Quadratic trust-region methods (Conn et al., 2000, Ch. 6) are optimisation methods for finding local minima

of a function f: RY — R. Given an estimate x; of the minimum point of f, they iteratively construct a
better estimate, xx41, by minimising the local quadratic approximation

Ty, () = fa) + (@ — 20) TV @) + o (1 — 2) V2 () 2 — ), (1)

13
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Figure 3: Posterior means and 95% credible intervals given Fourier data for f(z) = exp(x) on Q = [0, 1]. The
zero-mean prior uses the periodic kernel in (5.3) with s = 2 and scale ¢ set using maximum likelihood.

where V2 f(x;) denotes the Hessian matrix at xj. However, as the approximation T o, () =~ f(x) can
only be expected to be valid in the vicinity of xj, the minimisation is done under the constraint that
|z — 2k, < Ay for some Ay > 0 which determines the size of the trust-region. The trust-region radius Ay, is
adjusted heuristically based on observed validity of the quadratic model. Trust-region methods have been
used to solve a variety of optimisation problems arising in machine learning, statistics and engineering (Hsia
et al., 2017; Lin et al., 2008; Liu and Chen, 2004; Schulman et al., 2015; Wu et al., 2017b; Zhang and Leithead,
2005).

In this section we use probabilistic Taylor expansions to develop Gaussian process based version of a quadratic
trust-region method. Our purpose is not to find an example and a performance metric in which this method
outperforms some existing competitors (in the logistic regression example that we give there is no difference
in performance). Rather, we simply desire to demonstrate that useful numerical algorithms can arise from
the Gaussian process interpretation of Taylor expansions.

7.1 A Gaussian Process Based Trust-Region Method

As we have seen in Section 2, the posterior of a Gaussian process with a Taylor kernel is equal to the quadratic
approximation in (7.1) if the data consists of function, gradient and Hessian evaluations at @j. It is thus
natural to select the next point by minisiming the posterior mean under the constraint that the posterior
variance at this point is not too large. A description of the proposed method (GPTRM) is contrasted with
the standard trust-region method (TRM) in Algorithm 1. We next discuss these algorithms in more detail.

In our experience, the most practical approach is to use a Taylor kernel with a fixed A and fit the scaling
parameter ¢ in Step (2) using maximum likelihood. By (3.2), the maximum likelihood estimate at step k is

o f(xg) — my(xs)])? [ f(xg) — Tomp_, (xr)])?
UfﬂL,kZ% Z (D[f (k) k(xx)]) :ﬁ Z (D*[f(zk) — T2, (xk)]) 72)

Cal® CaA® ’

" al<2 " al<2

where T 5, , is the local approximation used on step k& — 1. The maximum likelihood estimate therefore
measures how good the previous local approximation was: when o,%,”_, i is small, the numerators in (7.2) are

small which means that 75 5, , approximated f well at ;. Then the variance constraint in Step @) is
CaA®
Pz, (x, ) = O—I%/IL,k Z %(3’3 — xp)* < 0. (7.3)
|ae|>2 (a)

The feasible region for (7.3) is analogous to the trust-region {x € R? : ||z — @x||, < Ax} in Step @) of the
TRM. In particular, if the Taylor kernel is of the inner product form with (z,y)x = Ax,y)2 the feasible
region for (7.3) is {z € R? : ||z — xx||, < AP} for a unique (and easily computable) virtual trust-region

14
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Standard trust-region method (TRM) GP-based trust-region method (GPTRM)

(D) Select starting point xo, initial trust-region ra- | (1) Select starting point xg, initial variance tolerance

dius Ag > 0 and other parameters. Set k = 0. dg > 0, a Taylor kernel K and other parameters.
Set k=0 and mo = f(x0).

Until convergence: Until convergence:

(2) Construct the quadratic approximation 15 2, (2) Model f as GP(my, K, ), condition on the data

in (7.1). S, = (D*f(xk))|a|<2 and fit kernel parameters.

The posterior mean sy 5, = 15 4, is the approxima-
tion in (7.1) and the variance Py 4, is given in (2.8).
(3 Find a candidate point @&y, by minimising | 3) Find a candidate point &;,; by minimising
T2,931c (:B) s.t. ||w - w/@HQ < Ag. T27wk (33) s.t. P2,mk (IE,ZL‘) < Jk.

(4 Compute (4) Use some criterion to accept (T41 = Tgy1) O
~ reject (xgy1 = o) the candidate point.
f(r) — f(@rt1)

Pk = =
f(@r) = Tom, (Tr41)
and use it to decide if the candidate point is accepted
(Lp41 = &p41) Or nOt (Tpy1 = Tg).
(B) Set A1 based on py and Ay. (®) Select d;, 1 and set myy 1 = 52,y -

Table 1:
Algorithm 1. The standard quadratic trust-region algorithm and its Gaussian process variant.

radius AL” > 0 such that
cpAP
a’%ﬂL,k Z (;')2 (ASP)QP = 6k (74)

p>2 M

Therefore a large 0,%,“_’,“, which results from T3 5, , having been a poor approximation to f at xj, yields a

small AP and vice versa. If K is an inner-product kernel, Steps (3) of both methods in Algorithm 1 are
equivalent, except for the trust-region radius that is used.

Steps (@) and (B) of the TRM are typically carried out as follows (though many variants are possible). Given
parameters 0 < 1; < 72 < 1 the step is termed very successful if pr, > 2, successful if py € [n1,72) and
unsuccessful if pr < n1. Let 41 € (0,1) and 72 > 1 be parameters. The candidate point is accepted if the step
is very successful or successful and the trust-region radius is updated as

A1 =70k if pp > m25 Appr = Ap i pr € [n1,m2); Arpr = 1Ak if pr < 1. (7.5)

Because pi, > 1 is equivalent to f(&x41) < To,2, (€x+1), this procedure accepts the candidate point if sufficient
decrease in f relative to excepted decrease was achieved according to 11, and updates the trust-region radius
if necessary. We propose using the same heuristic method in Step (4) of the GPTRM to accept or reject the
candidate point. Observe that an update similar to (7.5) is implicitly present in the GPTRM because the
virtual trust-region solves (7.4) and 0',%,”_’ . encodes how good an approximation 15 5, , was. However, unlike
pr the maximum likelihood estimate U,%/”_Jc does not measure if sufficient reduction in f was achieved, and so
an update rule for §;; equivalent to (7.5) should be included.

As both trust-region methods in Algorithm 1 use the same local objective function, their only difference
is in the behaviour of their trust-regions. From (7.5) it is seen that the trust-region of the TRM grows
exponentially fast if there is a succession of very successful steps, which typically happens when the method
is near a local minimum and taking small steps. In contrast, the GPTRM is much more conservative in
updating its virtual trust-region. For example, by (7.4) the virtual trust-region A$” is of order log(omi x0k)
if the kernel is exponential. This does not usually cause noticeably difference in the performance of the
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Figure 4: Trust-region and virtual trust-region radii Ay and A$P of the TRM and GPTRM (left) and the
scale maximum likelihood estimates U,%,”_’k (right) for the logistic regression objective function in (7.6). The
value of Ag has no effect on the results after the first few steps.

methods, but suggests that the GPTRM may perform better in some situations and that its trust-regions are
more interpretable.

7.2 Example: Logistic Regression

We compare the trust-region methods described above using a logistic regression classification problem to
which Lin et al. (2008) have applied the TRM. The objective function is given by

l
F@) = 3 el + 3 log (1 + exp(~yiaz0), (76)

=1

where z; € R? are training instances, y; € {—1, 1} their labels and C > 0 a constant. We consider the a9a
data set® obtained from the UCI (Dua and Graff, 2017) Adult Data Set*. After preprocessing this gives rise
to [ = 32,561 training instances in dimension d = 124. We are interested in comparing the behaviour of the
trust-region methods in a realistic optimisation problem, not in classification accuracy which has been studied
in Lin et al. (2008). We follow Lin et al. (2008) and Hsia et al. (2017) and set 7, = 0.25, 2 = 0.75, 71 = 0.25,
72 = 4.0 and @y = (0,...,0). We initialise the trust-region with Ag = ||V f(xo)||, ~ 44,674, the value used
in Lin et al. (2008), and A = 1.0. As a convergence criterion we use ||V f(zx)||, < 0.0025 ||V f(x0)l,. To
ensure that the methods have similar initial behaviour we set dp such that ASP = Ag. The trust-region
subproblems in Step (2) are solved using a constrained conjugate gradient (Lin et al., 2008, Alg. 2). In case
of the GPTRM we also experimented with using the expected improvement objective function common in
Bayesian optimisation. This resulted in slower convergence.

Results for the trust-region radii Ay, and Agp and the maximum likelihood estimates af,”_,k are displayed
in Figure 4 for the exponential kernel (2.4) with A € {0.2,0.5,1.0,2.0,5.0}. Each method converged in 133
identical steps, but the trust-regions for the GPTRM are significantly more conservative. From the left figure
it is seen that, while the virtual trust-regions A" remain reasonable and are clearly related to the maximum
likelihood estimates of o in the right figure, Ay immediately achieves its user-specified maximal value (1000).

8 Conclusion

We have proposed a Gaussian process model based on Taylor kernels which gives rise to a probabilistic version
of the classical Taylor expansion when the data consist of derivative evaluations. Using Taylor kernels in
Bayesian optimisation (Snoek et al., 2012) would be an interesting future application, where they might be

Shttps://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/a9a
4nttps://archive.ics.uci.edu/ml/datasets/adult
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expected to inherit properties from both standard Bayesian optimisation algorithms based on commonly
used stationary kernels, such as the Gaussian and Matérns, and classical optimisation algorithms. Because
their uncertainty explodes away from the expansion point, Taylor kernels might prove a useful alternative to
stationary kernels which have a tendency to be over-exploitative in Bayesian optimisation (Bull, 2011).
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