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Abstract

In various scientific and engineering applications, there is typically an approximate
model of the underlying complex system, even though it contains both aleatoric
and epistemic uncertainties. In this paper, we present a principled method to
incorporate these approximate models as physics priors in modeling, to prevent
overfitting and enhancing the generalization capabilities of the trained models.
Utilizing the structural risk minimization (SRM) inductive principle pioneered by
Vapnik, this approach structures the physics priors into generalized regularizers.
The experimental results demonstrate that our method achieves up to two orders of
magnitude of improvement in testing accuracy.

1 Introduction

Learning from observation data is a crucial task in scientific machine learning (SciML). Deep neu-
ral networks have demonstrated to be highly effective in modeling complex systems in scientific
research fields such as physics[4, 9, 19], chemistry[13, 31, 1] and biology[12, 5]. To avoid over-
fitting and to improve generalization performance, regularization techniques such as L1 and L2
regularization[29], weight decay[6], dropout[25], batch normalization[10] and early stopping[16] are
commonly deployed during the training of models.

In many scientific machine learning applications, it is quite often that an approximate mechanistic
model of the underlying physical phenomenon is available, albeit with uncertainty. For example, the
motion in mechanical systems is governed by Newton’s Law, and can be mathematically described by
Hamiltonian mechanics[2], while the motion of fluid is governed by Navier–Stokes equations[27], and
the electric and magnetic fields are described by Maxwell equations[11]. The concept of integrating
physics models with more expressive neural network models was initially introduced decades ago[17,
20, 28]. More recent work among this “hybrid-model” or “grey-box” approach include [32, 26, 28,
18, 14, 3, 23, 15, 8, 21]. Among them, a notable work is [32], which proposed a method to integrate
simplified or imperfect physics models with deep learning models, by combining the two models
as additive right-hand-sides of the differential equations, while with focused applications on the
trajectory forecasting of complex systems.

In this paper, we present the analysis that integrating information of a physics model to deep grey-box
modeling can be achieved as a generalized regularizer. Recognizing that the simplified or imprecise
physics model is subject to both aleatoric (from data) and epistemic (from model) uncertainties,
we use Vapnik’s structural risk minimization[30] as the inductive principle to cast the generalized
regularization as an optimization problem.
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Problem Description

The observation data are represented by the tuple {(x̂j , ŷj)} with j = 1 . . . , Nd. The neural network
model is denoted by Gw(·) with w representing trainable weights. By applying the L2 norm, the
training of the model is equivalent to the empirical risk minimization(ERM) task below:

Ld =
1

Nd

Nd∑
j

(ŷj −Gw(x̂j))
2 (1)

When modeling the dynamic behavior of the physical system defined on [0, T ]×D → Rm, without
loss of generality, we include time as part of the input. Hence x̂j ∈ [0, T ]×D and ŷj ∈ Rm. As in
many scientific and engineering applications, we assume ŷj is subject to noise.

To avoid overfitting, Vapnik introduced the concept of structural risk in the seminal work of [30].
The purpose of including structural risk is to prevent the model from becoming too complex. By
penalizing models with large complexity under a given measure of the structural risk (e.g., VC-
dimension) in the training process, the structural risk minimization (SRM) ensures that the models
would not become too complex. The minimization is often realized on a sequence of nested structures
(or hypotheses) with increasing structural risk:

· · · ⊂ Sk−1 ⊂ Sk ⊂ Sk+1 ⊂ · · · (2)

with the recognition that more complex models with larger risks produce lower training loss (in the
form of empirical risk), but with the increased potential to overfit. A learned model with a balanced
trade-off between the empirical risk and structural risk will most likely to achieve good accuracy and
generalization performance.

A widely adopted SRM in deep learning is the weight decay[6], where the ERM is augmented by a
regularizer, which measures the L2 norm of the weights:

Lwd =
1

Nd

Nd∑
j

(ŷj −Gw(x̂j))
2 + λ∥w∥2 (3)

with λ as a hyper-parameter controlling the balance between the empirical and structural risk.

The motivation of our work is that in many SciML applications, it is quite common that a physics
model is available. However the physics model is only an approximate of the underlying physical
phenomenon of the complex system (otherwise we can simply use the mechanistic model itself).
The uncertainties of the mechanistic model with respect to the underlying complex system include
aleatoric uncertainties and epistemic uncertainties[24]. The former (or "data uncertainty") represents
the inherent variability in the data, while the latter (or "model uncertainty") represents the imperfect
model, which can due to the missing components in the model, or our lack of understanding of the
physical phenomenon.

We propose to utilize the information embedded in the approximate model in model training by
structuring the mechanistic model as a generalized regularizer. However unlike common L2-norm
regularizer, the parameter λ has stronger dependency on the disparity (or the empirical representation
of the epistemic uncertainty) of the physics prior, and should be optimized in a more comprehensive
way. Our method provides a different perspective to the deep grey-box modeling approach such as
[32]. The introduction of the generalized regularization also opens the door to other interesting means
of modeling training, such as the inclusion of multiple mechanistic models as physics priors with
multiple regularizers, and the co-optimization of mechanistic model coefficients along with the model
itself.

2 Physics Prior as Generalized Regularization

We refer to the (approximate) mechanistic model as the physic prior, it has the same support as the
observation data [0, T ]×D → u:

Fθ(u)(x) = 0 (4)
where u ∈ Rm. In the case where the physics prior is an ODE, proper initial condition should be
specified u(0) = u0. In the case the physics prior is a PDE, additional boundary condition is needed:
u(xb) = ub where xb ∈ ∂D.
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To include physics prior as a regularizer, we add additional collocation points in the support {xi}
where i = 1, · · · , Np and xi ∈ [0, T ]×D. We introduce a generalized regularization as:

Lp =
1

Np

Np∑
i

(Fθ(u)(xi))
2
=

1

Np

Np∑
i

(Fθ(Gw(xi))
2 (5)

The total loss is the combination of empirical loss in Eqn. 1 and Eqn. 5 1:

L (x̂j , ŷj , xi;w) = Ld + λLp =
1

Nd

Nd∑
j

(ŷj −Gw(x̂j))
2 +

λ

Np

Np∑
i

(Fθ(Gw(xi))
2 (6)

The loss function in Eqn. 6 can be depicted in the diagram shown in Fig. 1a.

(a) With one physics prior. (b) With two physics priors

Figure 1: Diagram of model with generalized regularization.

2.1 Information Injected by the Generalized Regularizer

Following the SRM inductive principle, the balance between the empirical loss in Eqn. 1 and the
structural loss in Eqn. 5 is crucial to ensure good accuracy and generalization performance. To
illustrate the essence of the structural loss, we assume the underlying complex system can be
described by an "oracle" (but completely unknown to us) model, as shown in Eqn. 7. Note here
we promiscuously use Fθ̃(·) to represent the oracle model. However in reality it may have no
resemblance to the approximate model Fθ at all.

Fθ̃(u)(x) = 0 ∀x ∈ [0, T ]×D (7)

We assume the model trained on the data {x̂j , ŷj}:

w∗ = argmin
w

Ld (8)

is the perfect representation of the oracle model Fθ̃. Hence

Fθ̃ (Gw∗(x)) = 0 ∀x ∈ [0, T ]×D (9)

To quantify the structural loss shown in Eqn. 5, we have:

Fθ (Gw∗(x)) = Fθ (Gw∗(x))−Fθ̃ (Gw∗(x)) (10)

=
(
Fθ(·)−Fθ̃(·)

)
(Gw∗(x)) ∀x ∈ [0, T ]×D (11)

Observe that Fθ(·)−Fθ̃(·) is the representation of the epistemic uncertainty of our physics prior Fθ

with respect to the oracle model of the underlying complex system, hence effectively the function
space in Eqn. 11 is a projection of the epistemic uncertainty onto the function space of the trained
model Gw. Furthermore the regularizer presented in Eqn. 5 is its empirical version, sampled at the
collocation points.

When the physics prior has no epistemic uncertainty, theoretically we have Fθ(·) ≡ Fθ̃(·). Since
there still exist aleatoric uncertainties in the observation data, the structural risk term in Eqn. 5 will
approach its minimum, but will not automatically become zero. Under this condition, the maximal
value of the regularization parameter λ will inject most information to the loss function.

1For notational simplicity, we included the losses from boundary/initial conditions of the priors in Ld.
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The immediate consequence of the above observation is that because we usually don’t have a concrete
metric on the epistemic uncertainty of the physics prior Fθ, we don’t have a good measure on the
amount of information our generalized regularizer in Eqn. 5 contains. Hence it is necessary to
optimize both the weights and the parameter λ:

w∗ = argmin
w,λ

L = argmin
w,λ

Ld + λLp (12)

In this study, we perform the optimization by two nested loops:
w∗ = argmin

λ
argmin

w
Ld + λLp (13)

Although the optimization of the model weights w and parameter λ outlined in Eqn. 12 and Eqn. 13
appears similar to the optimization of more traditional regularization techniques, such as weight
decay in Eqn. 3, we’d like to point out that the generalized regularization place a more strict structural
on the solution space of the trained model, hence it is much more cognizant to the behavior of the
underlying complex system. This is clearly demonstrated in the experimental results later in the
paper.

2.2 Regularization with Multiple Physics Priors

An immediate extension following the discussion above is that we can introduce multiple physics
priors as generalized regularizers. As the simplest format, these physics priors can be based on the
same family of the approximate models, but with different coefficients. The diagram with two physics
priors is shown in Fig. 1b. Mathematically the loss function becomes:
L = Ld + λ1Lp1 + λ2Lp2 (14)

=
1

Nd

Nd∑
j

(ŷj −Gw(x̂j))
2

︸ ︷︷ ︸
Ld

+
λ1

Np1

Np1∑
i

(Fθ1(Gw(xi))
2

︸ ︷︷ ︸
λ1Lp1

+
λ2

Np2

Np2∑
k

(Fθ2(Gw(xk))
2

︸ ︷︷ ︸
λ2Lp2

(15)

Again we promiscuously denote two physics priors as Fθ1(·) and Fθ2(·), even though they could be
based on completely different families of functions or different families of differential equations. The
learning process involves both the regularization parameters and model weights: In this study, we use
two nested loops for the optimization:

w∗ = argmin
λ1,λ2

argmin
w

Ld + λ1Lp2
+ λ2Lp2

(16)

Here we make the inductive assumption that the projections of the epistemic uncertainties of the two
physics priors should be summed algebraically to provide structural risk minimization. Since the
structural risk terms are non-negative, the overall outcome of the risk minimization can be interpreted
as a data-driven approach to "select" which physics prior should have a stronger influence on the
overall structural risk.

2.3 Inclusion of Physics Prior Coefficients

Our generalized regularization method can be further extended to include the coefficients (all or a
pre-selected subset) of the physics priors as part of the parameters. More specifically the learning
task becomes:

w∗ = argmin
λ,θ

argmin
w

Ld + λLp (17)

= argmin
λ,θ

argmin
w

[ 1

Nd

Nd∑
j

(ŷj −Gw(x̂j))
2 +

λ

Np

Np∑
i

(Fθ(Gw(xi))
2
]

(18)

This learning task can be interpreted as simultaneously adjusting the structure of the regularization by
optimizing the physics priors represented by θ and the "strength" of the structural risk by optimizing
λ. The byproduct of the optimization in Eqn. 18, θ∗, from:

θ∗ = argmin
λ,θ

argmin
w

Ld + λLp (19)
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can be interpreted as the physics prior with the smallest epistemic uncertainty, as the projection to the
function space of the trained model.

3 Experimental Results

In this section, we present experimental results based on our method. All experiments are written in
Pytorch. The training and evaluation are conducted on an Nvidia DGX-2 server with A100 GPUs.
More technical details are included in the supplemental materials section.

3.1 Implementation in Hamiltonian Neural Networks

In the first example, we forked the public repo of the Hamiltonian Neural Network(HNN)[7] and
implemented generalized regularizer. The elegant utilization of Hamiltonian mechanics in HNN
makes it straight-forward to implement generalized regularizer based on physics priors. For each case,
the physics prior is parameterized by another Hamiltonian Hθ, where θ represents the parameters of
physics models such as mass, length of the pendulum. We introduce the generalized regularization
by:

Lreg = λ ·
∥∥∥∥(∂Hw

∂p
− ∂Hθ

∂p

)
+

(
∂Hw

∂q
− ∂Hθ

∂q

)∥∥∥∥
2

(20)

while the original HNN loss is computed by:

LHNN =

∥∥∥∥∂Hw

∂p
− ∂q

∂t

∥∥∥∥
2

+

∥∥∥∥−∂Hw

∂q
− q

∂t

∥∥∥∥
2

(21)

where w denotes the trainable weights of the HNN model.

Results of three cases are presented in Tab. 1: mass-spring, ideal pendulum and real pendulum.
Improvements are illustrated in Fig. 2. In the last example, the training data are collected from
measurements of physical pendulum, which is subject to sensor noise, as well as epistemic uncer-
tainties such as frictions[22]. In all three cases, the generalized regularization demonstrated clear
improvements in both baseline model and HNN model. We want to point out that for ideal pendulum,
generalized regularization further improves the energy by 10×, in addition to 2× improvement of
HNN. In the case of real pendulum, in which a precise physics model is unknown, HNN demonstrated
an impressive 30× improvement in terms of energy (from 376.9 to 11.2), while the introduction of
physics prior can further improve the energy metric to 9.5, an additional 15% improvement.
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Figure 2: Performances of Hamiltonian NN with and without physics regularizers. Generalized
regularization implementation is based on the open-source repo of Greydanus et. al. "Hamiltonian
Neural Networks".
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Test Loss Energy
Task Baseline HNN Baseline HNN

Mass spring (original) 36.73± 1.86 35.91± 1.83 147.01± 19.30 0.376± 0.077
Mass spring (w/ reg.) 36.55± 1.85 35.90± 1.83 167.91± 20.50 0.364± 0.084
Ideal Pendulum (original) 35.32± 1.80 35.59± 1.82 41.83± 9.75 24.85± 5.42
Ideal Pendulum (w/ reg.) 35.11± 1.78 34.56± 1.74 34.56± 8.55 2.29± 0.47
Real Pendulum (original) 1.50± 0.23 5.80± 0.60 376.89± 72.50 11.22± 3.87
Real Pendulum (w/ reg.) 1.39± 0.20 5.79± 0.62 371.50± 74.30 9.46± 3.70

Table 1: Quantitative results of three tasks in Table 1 in Geydanus et. al. "Hamiltonian Neural
Networks". All values are multiplied by 103. Implementation is based on the Github repo by
Geydanus, although some values of the original models are slightly different from values reported in
the original paper. Bold entries indicate the best results.

(a) Case1: ground truth (b) Case1: with prior ρ = 5 (c) Case1: with prior ρ = 15

(d) Case2: ground truth (e) Case2: with prior ρ = 15 (f) Case2: with prior ρ = 25

Figure 3: Two cases of 1D reaction equation, including the ground truth and models with different
physics priors. The crosses indicate the collocation points of training data.

3.2 1D Reaction Equation

We study the one dimensional reaction equation that is commonly used to model chemical reactions.
It’s the simplification of the reaction-diffusion equations and is given by,

∂u

∂t
− ρu(1− u) = 0 , (22)

with the associated initial and (periodic) boundary conditions u(x, 0) = g(x), x ∈ D and u(0, t) =

u(2π, t), t ∈ (0, T ] respectively, with g(x) = exp
(
− (x−π)2

2(π/4)2

)
, with ρ being the reaction coefficient.

We generate two datasets by using two oracle reaction equations, shown in Fig. 3a and 3d respectively.
Fig. 3 also shows results of learned models with different physics priors, all are different from the
oracle models.

As a comparison, we also train the baseline models for the two reaction equation cases from observa-
tion data only, with and without using weight decay as regularization. The results are shown in Fig. 4.
Quantitative MSE from testing are tabulated in Tab. 2. Clearly our method outperforms weigh decay
in all but one case.
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(a) Reaction case 1 (b) Reaction case 2 (c) Convection case 1 (d) Convection case 2

Figure 4: Baseline performance without regularization (top row) and with weight decay (bottom row).
Left two columns represent reaction equation cases and the right two columns are convection cases.

Table 2: Testing MSE for 1D Reaction Equation

prior used baseline
w/o reg.

baseline
w/ weight decay

λ = λopt

case 1 ρ = 5
ρ = 15

1.87×10−2 3.61×10−3

3.61×10−3
6.67×10−3

2.31×10−3
λopt = 8.97×10−1

λopt = 4.51×10−2

case 2 ρ = 15
ρ = 25

1.88×10−2 3.98×10−3

3.98×10−3
1.66×10−3

2.00×10−3
λopt = 5.61×10−2

λopt = 1.13×10−2

3.3 1D Convection Equation
One-dimensional convection refers to the process of transport or flow of a fluid or a scalar quantity in
a 1D domain. It is commonly described by the following hyperbolic PDE:

∂u

∂t
+ β

∂u

∂x
= 0, x ∈ D, t ∈ [0, T ], (23)

with the initial condition u(x, 0) = sinx and periodic boundary condition u(0, t) = u(2π, t).

We repeat the experiment. The performance heatmaps are shown in Fig. 5 and quantitative testing
MSE tabulated in Tab. 3. Compared to the baseline models without regularization and with weight
decay, as shown in Fig. 4, our method demonstrated substantial improvements.

(a) Case1: ground truth (b) Case1: with prior β = 25 (c) Case1: with prior β = 35

(d) Case2: ground truth (e) Case2: with prior β = 45 (f) Case2: with prior β = 55

Figure 5: Two cases of 1D convection equation, including the ground truth and models with different
physics priors.
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Table 3: Testing MSE for 1D Convection Equation and associated optimal λ

prior used baseline
w/o reg.

baseline
w/ weight decay

λ = λopt

case 1 β = 25
β = 35

7.85×10−2 4.33×10−2 1.29×10−2

1.16×10−2
λopt = 8.42×10−2

λopt = 1.16×10−2

case 2 β = 45
β = 55

6.37×10−1 5.11×10−1 1.57×10−2

1.16×10−2
λopt = 2.42×10−2

λopt = 3.58×10−2

(a) With two physics priors. (b) With physics coef.

Figure 6: Performance heatmap of case 1 of convec-
tion equation

Finally we use case 1 of the convection equa-
tion experiment for demonstration of multi-
ple physics priors and optimization of physics
prior coefficients, shown in Fig. 6. In the first
experiment, two physics priors are specified
with β = 25 and β = 35. The optimal reg-
ularization parameters are λ∗

1 = 3.72×10−7

and λ∗
2 = 3.47×10−3 with testing MSE of

9.53×10−3. In the second experiment, the fi-
nal physics prior coefficient is β∗ = 29.67.
With an optimal λ∗ = 1.25×10−1, it achieves
the testing MSE of 5.04×10−3.

4 Conclusion and Future Work

In this paper we propose a principled method to incorporate the prior knowledge of an underlying
complex system, in the form of approximate physics models, into the data-driven deep grey-box
modeling. By structuring the imprecise physics models, or physics priors, as generalized regularizers,
we apply Vapnik’s structural risk minimization (SRM) inductive principle to balance the model
accuracy and model complexity. Our analysis indicates that the information in the physics priors is
bounded by the uncertainty, especially the epistemic uncertainty, of the physics priors. Experimental
results have shown that our method is highly effective in improving the test accuracy. For future
work, we plan to investigate the theoretical and practical implications when multiple physics priors
are included in the regularization.
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S1 Inclusion of Initial and Boundary Conditions in the Loss Function

When the initial and/or boundary conditions are available for the underlying dynamic system, they
should be included in the loss function, namely Ld in Eqn. (6) of the main text. More specifically the
component due to the initial conditions is:

LI =
1

NI

NI∑
j

(
ŷIj −Gw(

[
x̂I
j , 0

]
)
)2

(1)

and the component due to the boundary condition is:

Lb =
1

Nb

Nb∑
j

(
Gw(

[
0, t̂bj

]
)−Gw(

[
2π, t̂bj

]
)
)2

(2)

Here we explicitly separate temporal and spatial component in the input x̂j . These terms should be
combined with the Ld term in the overall loss function.

S2 Experiment Setup

All experiments are conducted on an Nvidia A100 GPU with 40GB of memory. The DL framework
used is PyTorch 1.10.1. The optimization is conducted using Bayesian Optimization routine in
Scikit-Optimize version 0.9.0. In both reaction and convection cases, the DNN model is an MLP
with 5 hidden layers, each with a width of 512, and tanh as the activation function. Adam is used as
the optimizer, with initial learning rate set to LR = 2×10−4.

S3 Details and Additional Results on 1D Reaction Equation

S3.1 Details of Experiment Setup

The reaction equation is specified as:

∂u

∂t
− ρu(1− u) = 0 (3)

We generate data points using "oracle" models which are also reaction equations. For each case, we
consider a mesh which consists of 100 time points between T = [0, 0.5], with 256 spatial points
at each time point. This results in a total of 25,600 grid points. All 256 spatial points for T = 0
are included in the loss function term related to the initial condition in Eqn. 1. Therefore, we have
([x̂I

j , 0], ŷ
I
j ), where ŷIj = u(x̂I

j , 0) for j = 1, 2, . . . , NI , and NI = 256. Similarly, we compute
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the boundary loss for the periodic boundary condition using Eqn. (2) for the boundary time points
[0, t̂b1], [0, t̂

b
2], . . . , [0, t̂

b
Nb

], with Nb = 100. Additional 50 data points are randomly chosen to be
included in the loss function Ld, with N (0, 0.1) noise added to the them. Two "oracle" models are
considered:

• Case 1: ρ = 10

• Case 2: ρ = 20

We want to emphasize that the oracle models are never used as the physics prior.

Finally we randomly choose 100 collocation points in the support to compute generalized regularizers
based on the physics priors. To provide quantitative measure on the accuracy of the learned model,
we use all remaining points to compute mean square error (MSE) of the trained models.

S3.2 Additional Experiments

Under this setting, we vary the regularization parameter λ using predefined values: λ =
{10−5, 10−3, 10−2, 10−1}. Only one physics prior is used, chosen from the following: ρ = {5, 15}
for Case 1 and ρ = {15, 25} for Case 2. We include weight decay as one of the baseline results. To
provide a fair comparison, we use four decay parameters {10−3, 10−4, 10−6, 10−8}, and choose the
best outcome.

The results are shown in Fig. S1, Fig. S2, Fig. S3 and Fig. S4 respectively. In each case, besides the
two baseline results (with and without weight decay), we also included the results from the optimal λ
from optimization. Quantitative comparisons are summarized in Tab. S1 and Tab. S2.

(a) Case 1: ground truth (b) Case 1: baseline (c) Case 1: weight decay (d) λopt = 8.97×10−1

(e) λ = 1×10−5 (f) λ = 1×10−3 (g) λ = 1×10−2 (h) λ = 1×10−1

Figure S1: Heatmap of predicted solutions for Case 1 of 1D reaction, with ρ = 5 as the physics prior.
Top row: (a) Exact solution, (b) Baseline solution (no physics prior, no weight decay), (c) Baseline
solution with weight decay, and (d) Solution obtained after tuning λ using BO with physics prior
ρ = 5. Bottom row: (e)-(h) Solutions for each pre-specified values of λ with physics prior ρ = 5.
Note that the quality of the output can be significantly enhanced when employing BO to tune the
values of λ as in (d). See Tables S1 and S2 for the corresponding test MSEs.
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(a) Case 1: ground truth (b) Case 1: baseline (c) Case 1: weight decay (d) λopt = 4.51×10−2

(e) λ = 1×10−5 (f) λ = 1×10−3 (g) λ = 1×10−2 (h) λ = 1×10−1

Figure S2: Heatmap of predicted solutions for case 1 of 1D reaction with ρ = 15 as the physics
prior. Top row: (a) Exact solution, (b) Baseline solution (no physics prior, no weight decay), (c)
Baseline with eight decay, and (d) Solution obtained after tuning λ using BO with physics prior
ρ = 15. Bottom row: (e)-(h) Solutions for each pre-specified values of λ with physics prior ρ = 15.
See Tables S1 and S2 for quantitative comparisons.

(a) Case 2: ground truth (b) Case 2: baseline (c) Case 2: weight decay (d) λopt = 5.61×10−2

(e) λ = 1×10−5 (f) λ = 1×10−3 (g) λ = 1×10−2 (h) λ = 1× 10−1

Figure S3: Heatmap of predicted solutions for Case 2 of 1D reaction with ρ = 15 as the physics prior.
Top row: (a) Exact solution, (b) Baseline solution (no physics prior, no weight decay), (c) Baseline
with weight decay, and (d) Solution obtained after tuning λ using BO with physics prior ρ = 15.
Bottom row: (e)-(h) Solutions for each pre-specified values of λ with physics prior ρ = 15.
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(a) Case 2: ground truth (b) Case 2: baseline (c) Case 2: weight decay (d) λopt = 1.13×10−2

(e) λ = 1×10−5 (f) λ = 1×10−3 (g) λ = 1×10−2 (h) λ = 1×10−1

Figure S4: Heatmap of predicted solutions for case 2 of 1D reaction with ρ = 25 as the physics prior.
Top row: (a) Exact solution, (b) Baseline solution (no physics prior, no weight decay), (c) Baseline
with weight decay, and (d) Solution obtained after tuning λ using BO with physics prior ρ = 25.
Bottom row: (e)-(h) Solutions for each pre-specified values of λ with physics prior ρ = 25.

Table S1: Testing MSE for 1D Reaction Equation. The last column indicates the optimal λ values
from optimization.

prior used baseline
w/o reg.

baseline
w/ weight decay

λ = λopt

case 1 ρ = 5
ρ = 15

1.87×10−2 3.61×10−3

3.61×10−3
6.67×10−3

2.31×10−3
λopt = 8.97×10−1

λopt = 4.51×10−2

case 2 ρ = 15
ρ = 25

1.88×10−2 3.98×10−3

3.98×10−3
1.66×10−3

2.00×10−3
λopt = 5.61×10−2

λopt = 1.13×10−2

Table S2: 1D reaction: Test MSE for prespecified values of λ and for the optimal λ.
Oracle Prior Baseline Weight decay λ = 1× 10−5 λ = 1× 10−3 λ = 1× 10−2 λ = 1× 10−1 λ = λopt

case 1
ρ = 5

1.87× 10−2 3.61× 10−3
7.68× 10−3 1.64× 10−2 6.39× 10−3 1.17× 10−2 6.67× 10−3

ρ = 15 1.63× 10−2 1.66× 10−2 6.58× 10−3 3.74× 10−3 2.31× 10−3

case 2
ρ = 15

1.88× 10−2 3.98× 10−3
8.83× 10−3 3.39× 10−3 5.12× 10−3 1.83× 10−3 1.66× 10−3

ρ = 25 1.45× 10−2 1.17× 10−2 2.43× 10−3 4.44× 10−3 2.00× 10−3
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S3.3 Experiments with Multiple Physics Priors and Co-optimization of Physics Coefficients

In addition, we use Case 2 of the reaction equation experiment for demonstration of multiple physics
priors and co-optimization of physics prior coefficients, as shown in Fig. S5. In the first experiment,
two physics priors are used, which are specified with ρ = 15 and ρ = 25. The optimal regularization
parameters are λ∗

1 = 1.10×10−7 and λ∗
2 = 7.65×10−3 with the testing MSE of 1.03×10−3. Observe

that the optimized λ of the second physics prior ρ = 25 is much larger than the parameter of the first
prior. Also note the testing MSE is smaller than the individual cases when only one physics prior is
used, as shown in Tab. S1.

In the second experiment, the final physics prior coefficient after optimization is ρ∗ = 19.95. With
an optimal λ∗ = 2.53×10−2, it achieves the testing MSE of 1.09×10−3. See Table S9 for details.

(a) Ground truth (b) Baseline (c) Weight decay

(d) With two physics priors (e) With physics coef.

Figure S5: Performance heatmap of case 2 of reaction equation. The first row represents the ground
truth and performance of baseline models (with and without weight decay). In the second row, (d)
shows results with two physics priors, while (e) with co-optimization of the physics coefficient ρ.

Table S3: Testing MSE for Case2 of 1D Reaction Equation: Multiple priors and Physics coefficients.
The last column indicates the optimal λ values, and the physics coefficients, respectively.

baseline
w/o reg.

baseline
w/ weight decay

λ = λopt

Multiple priors 1.88×10−2 3.98×10−3 1.03× 10−3 λopt1 = 1.10×10−7

(Prior 1: ρ = 15)
λopt2 = 7.65×10−3

(Prior 2: ρ = 25)

Optimizing phys coeffs. 1.88×10−2 3.98×10−3 1.09× 10−3 λopt = 2.53×10−2

ρopt = 19.95
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S4 Additional Experimental Results on 1D Convection Equation

The 1D convection equation is specified by:

∂u

∂t
+ β

∂u

∂x
= 0, x ∈ D, t ∈ [0, T ], (4)

The experiment setup is similar to that of the reaction case. We generated the data based on two
"oracle" models:

• Case 1: β = 30

• Case 2: β = 50

We repeat the same set of experiments as in the 1D reaction case. For Case 1, we choose the physics
prior from: β = {25, 35}. For Case 2, we choose physics prior from β = {45, 55}.

(a) Case 1: ground truth (b) Case 1: baseline (c) Case 1: weight decay (d) λopt = 8.42×10−2

(e) λ = 1×10−5 (f) β = 25, λ = 1×10−3 (g) β = 25, λ = 1×10−2 (h) β = 25, λ = 1×10−1

Figure S6: Heatmap of predicted solutions for case 1 of 1D convection with β = 25 as the physics
prior. Top row: (a) Exact solution, (b) Baseline solution (no physics prior), (c) Weight decay, and (d)
Solution obtained after tuning λ using BO with physics prior β = 25. Bottom row: (e)-(h) Solutions
for each pre-specified values of λ with physics prior β = 25. See Tables S4 and S5 for quantitative
results.

(a) Case 1: ground truth (b) Case 1: baseline (c) Case 1: weight decay (d) λopt = 1.16× 10−2

(e) λ = 1× 10−5 (f) λ = 1× 10−3 (g) λ = 1× 10−2 (h) λ = 1× 10−1

Figure S7: Heatmap of predicted solutions for case 1 of 1D convection with β = 35 as the physics
prior. Top row: (a) Exact solution, (b) Baseline solution (no physics prior), (c) Weight decay, and (d)
Solution obtained after tuning λ using BO with physics prior β = 35. Bottom row: (e)-(h) Solutions
for each pre-specified values of λ with physics prior β = 35.
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(a) Case2: ground truth (b) Case 2: baseline (c) Case 2: weight decay (d) λopt = 2.42× 10−2

(e) λ = 1× 10−5 (f) λ = 1× 10−3 (g) λ = 1× 10−2 (h) λ = 1× 10−1

Figure S8: Heatmap of predicted solutions for case 2 of 1D convection with β = 45 as the physics
prior. Top row: (a) Exact solution, (b) Baseline solution (no physics prior), (c) Weight decay, and (d)
Solution obtained after tuning λ using BO with physics prior β = 45. Bottom row: (e)-(h) Solutions
for each pre-specified values of λ with physics prior β = 45.

(a) Case2: ground truth (b) Case 2: baseline (c) Case 2: weight decay (d) λopt = 3.58× 10−2

(e) λ = 1× 10−5 (f) λ = 1× 10−3 (g) λ = 1× 10−2 (h) λ = 1× 10−1

Figure S9: Heatmap of predicted solutions for case 2 of 1D convection with β = 55 as the physics
prior. Top row: (a) Exact solution, (b) Baseline solution (no physics prior), (c) Weight decay, and (d)
Solution obtained after tuning λ using BO with physics prior β = 55. Bottom row: (e)-(h) Solutions
for each pre-specified values of λ with physics prior β = 55.

Table S4: Testing MSE for 1D Convection Equation and associated optimal λ

prior used baseline
w/o reg.

baseline
w/ weight decay

λ = λopt

case 1 β = 25
β = 35

7.85×10−2 4.33×10−2 1.29×10−2

1.16×10−2
λopt = 8.42×10−2

λopt = 1.16×10−2

case 2 β = 45
β = 55

6.37×10−1 5.11×10−1 1.57×10−2

1.16×10−2
λopt = 2.42×10−2

λopt = 3.58×10−2
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Table S5: 1D convection: Test MSEs for prespecified values of λ.
Oracle Prior Baseline Weight decay λ = 1× 10−5 λ = 1× 10−3 λ = 1× 10−2 λ = 1× 10−1 λ = λopt

Case 1
β = 25

7.85× 10−2 4.33× 10−2
4.50× 10−2 2.17× 10−2 5.88× 10−2 2.17× 10−2 1.29× 10−2

β = 35 5.15× 10−2 2.16× 10−2 1.65× 10−2 2.47× 10−2 1.16× 10−2

Case 2
β̃ = 45

6.37× 10−1 5.11× 10−1
2.35× 10−1 2.12× 10−2 1.94× 10−2 1.99× 10−2 1.57× 10−2

β̃ = 55 1.38× 10−1 2.44× 10−2 2.00× 10−2 3.34× 10−2 1.16× 10−2

1D Convection: Multiple Physics Priors and Co-optimization of Physics Coefficients

In addition, we use case 1 of the convection equation experiment for demonstration of multiple physics
priors and optimization of physics prior coefficients, shown in Fig. S10. In the first experiment, two
physics priors are specified with β = 25 and β = 35. The optimal regularization parameters are
λ∗
1 = 3.72×10−7 and λ∗

2 = 3.47×10−3 with testing MSE of 9.53×10−3. In the second experiment,
the final physics prior coefficient is β∗ = 29.67. With an optimal λ∗ = 1.25×10−1, it achieves the
testing MSE of 5.04×10−3. See Table S6 for details.

(a) Ground truth (b) Baseline (c) Weight decay

(d) With two physics priors (e) With physics coef.

Figure S10: Performance heatmap of case 1 of convection equation. The first row shows the ground
truth and performance of baseline models (with and without weight decay). In the last row, (d) shows
the results with two physics priors, while (e) shows results by co-optimizing physics coefficient β,
along with λ.

Table S6: Testing MSE for Case 1 of 1D Convection Equation: Multiple priors and Physics coeffi-
cients. The last column indicates the optimal λ values, and the physics coefficients, respectively.

baseline
w/o reg.

baseline
w/ weight decay

λ = λopt

Multiple priors 7.85×10−2 4.33×10−2 9.53× 10−3 λopt1 = 3.72×10−7

(Prior 1: β = 25)
λopt2 = 3.47×10−3

(Prior 2: β = 35)

Optimizing phys coeffs. 7.85×10−2 4.33×10−2 5.04× 10−3 λopt = 1.25×10−1

βopt = 29.67

S5 Details and Additional Results on 1D Reaction-Diffusion Equation

S5.1 Details of Experiment Setup

The reaction-diffusion equation is specified as:

∂u

∂t
− ν

∂2u

∂x2
− ρu(1− u) = 0 (5)
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(a) Case1: ground truth (b) Case1: with prior ρ = 5 (c) Case1: with prior ρ = 15

(d) Case2: ground truth (e) Case2: with prior ρ = 15 (f) Case2: with prior ρ = 25

Figure S11: Two cases of 1D reaction-diffusion equation, including the ground truth and models with
different physics priors. The crosses indicate the collocation points of training data.

(a) Case 1: no wd (b) Case 2: no wd (c) Case 1: with wd (d) Case 2: with wd

(e) Case 1: dropout (f) Case 2: dropout (g) Case 1: wd+dropout (h) Case 2: wd+dropout

Figure S12: Baseline performance for reaction-diffusion without regularization, with weight decay,
with dropout, and with dropout+wd.

with the associated initial and (periodic) boundary conditions u(x, 0) = g(x), x ∈ D and u(0, t) =

u(2π, t), t ∈ (0, T ] respectively, with g(x) = exp
(
− (x−π)2

2(π/4)2

)
, with ρ and ν being the reaction and

diffusion coefficients respectively. Here, we fix ν = 3 for all the experiments. We generate two
datasets by using two oracle reaction-diffusion equations, shown in Fig. S11a and S11d respectively.
Fig. S11 also shows results of learned models with different physics priors, all are different from the
oracle models.

As a comparison, we also train the baseline models for the two reaction-diffusion equation cases from
observation data only, with/without using weight decay as regularization. The results are shown in
Fig. S12. Quantitative MSE from testing are tabulated in Tab. S7. Clearly our method outperforms
weigh decay in all but one case.

Data generation. We generate data points using "oracle" models which are also reaction equations.
For each case, we consider a mesh which consists of 100 time points between T = [0, 0.5], with 256
spatial points at each time point. This results in a total of 25,600 grid points. All 256 spatial points for
T = 0 are included in the loss function term related to the initial condition in Eqn. 1. Therefore, we
have ([x̂I

j , 0], ŷ
I
j ), where ŷIj = u(x̂I

j , 0) for j = 1, 2, . . . , NI , and NI = 256. Similarly, we compute
the boundary loss for the periodic boundary condition using Eqn. (2) for the boundary time points
[0, t̂b1], [0, t̂

b
2], . . . , [0, t̂

b
Nb

], with Nb = 100. Additional 50 data points are randomly chosen to be
included in the loss function Ld, with N (0, 0.1) noise added to the them. Two "oracle" models are
considered:
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Table S7: Testing MSE for 1D Reaction-Diffusion Equation

prior used baseline
w/o reg.

baseline
w/ weight dacay

λ = λopt

case 1 ρ = 5
ρ = 15

1.60×10−2 9.74× 10−3 2.68×10−3

1.33×10−3
λopt = 1.12×10−3

λopt = 5.77×10−3

case 2 ρ = 15
ρ = 25

1.33×10−2 4.07× 10−3 9.22×10−4

6.33×10−4
λopt = 9.67×10−2

λopt = 3.95×10−3

Table S8: Testing MSE for 1D Reaction-Diffusion Equation

prior used baseline
w/ dropout

baseline
w/ wd+dropout

λ = λopt

case 1 ρ = 5
ρ = 15

5.59×10−3 1.68× 10−2 2.68×10−3

1.33×10−3
λopt = 1.12×10−3

λopt = 5.77×10−3

case 2 ρ = 15
ρ = 25

7.70×10−3 3.38× 10−2 9.22×10−4

6.33×10−4
λopt = 9.67×10−2

λopt = 3.95×10−3

• Case 1: ρ = 10

• Case 2: ρ = 20

We want to emphasize that the oracle models are never used as the physics prior.

Finally we randomly choose 100 collocation points in the support to compute generalized regularizers
based on the physics priors. To provide quantitative measure on the accuracy of the learned model,
we use all remaining points to compute mean square error (MSE) of the trained models.

S5.2 Experiments with Multiple Physics Priors and Co-optimization of Physics Coefficients

In addition, we use Case 2 of the reaction-diffusion equation experiment for demonstration of multiple
physics priors and co-optimization of physics prior coefficients, as shown in Fig. S13. In the first
experiment, two physics priors are used, which are specified with ρ = 15 and ρ = 25. The optimal
regularization parameters are λ∗

1 = 3.63×10−2 and λ∗
2 = 8.19×10−4 with the testing MSE of

8.43×10−4. Also note the testing MSE is smaller than the individual cases when only one physics
prior is used, as shown in Tab. S7.

In the second experiment, the final physics prior coefficient after optimization is ρ∗ = 19.06. With
an optimal λ∗ = 7.75×10−2, it achieves the testing MSE of 4.37×10−4. See Table S9 for details.

(a) Ground truth (b) Baseline (c) With two physics priors (d) With physics coef.

Figure S13: Performance heatmap of case 2 of reaction-diffusion equation. (a) represents the ground
truth, (b) shows the performance of baseline model (without weight decay), (c) shows results with
two physics priors, while (d) with co-optimization of the physics coefficient ρ.

S6 Repeatability Study

As a repeatability study, we choose Case 2 in the reaction experiment, and Case 1 in the convection
experiment. In each case, we repeated baseline training (with and without weight decay) and our
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Table S9: Testing MSE for Case2 of 1D Reaction-Diffusion Equation: Multiple priors and Physics
coefficients. The last column indicates the optimal λ values, and the physics coefficients, respectively.

baseline
w/o reg.

baseline
w/ weight decay.

λ = λopt

Multiple priors 1.33×10−2 4.07× 10−3 8.43× 10−4 λopt1 = 3.63×10−2

(Prior 1: ρ = 15)
λopt2 = 8.19×10−4

(Prior 2: ρ = 25)

Optimizing phys coeffs. 1.33×10−2 4.07× 10−3 4.37× 10−4 λopt = 7.75×10−2

ρopt = 19.06

method three times. The testing MSE are reported in Tab. S10 and Tab. S11 respectively. The first
value is the mean of the testing MSE, while the number in parenthesis is the standard deviation.

Table S10: Repeatability studies for Case 2 in Reaction Experiment. The first number is the average
testing MSE of three runs with random seeds, while the number in parenthesis is the standard
deviation.

Oracle Prior Baseline Weight decay λ = λopt

case 2
ρ = 15

1.62× 10−2 (2.72× 10−3) 3.34× 10−3 (4.81× 10−4)
1.53× 10−3 (6.59× 10−4)

ρ = 25 2.50× 10−3 (5.34× 10−4)

Table S11: Repeatability studies for Case 1 in Convection Experiment. The first value is the average
testing MSE while the value in parenthesis is the standard deviation.

Oracle Prior Baseline Weight decay λ = λopt

Case 1
β = 25

5.32× 10−2 (2.31× 10−2) 3.61× 10−2 (6.53× 10−3)
1.20× 10−2 (2.56× 10−3)

β = 35 9.82× 10−3 (8.87× 10−4)
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