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Abstract

Data analysis is a crucial analytical process essential for deriving insights from real-
world databases. As shown in Figure 1, the need for data analysis typically arises
from specific application scenarios, and requires diverse reasoning skills including
mathematical reasoning, logical reasoning, and strategic reasoning. Existing work
often focus on simple factual retrieval or arithmetic resolutions and thus are insuffi-
cient for addressing complex real-world queries. This work aims to propose new
resources and benchmarks on this crucial yet challenging and under-explored task.
Due to the prohibitively high cost of collecting expert annotations, we use large
language models (LLMs) enhanced by code generation to automatically generate
high-quality data analysis, which will later be refined by human annotators. We
construct the DACO dataset, containing (1) 440 databases (of tabular data) col-
lected from real-world scenarios, (2) ∼ 2k automatically generated query-answer
pairs that can serve as weak supervision for model training, and (3) a concentrated
but high-quality test set with human refined annotations that serves as our main
evaluation benchmark. Experiments show that while LLMs like GPT-4 exhibit
promising data analysis capabilities, they are still evaluated as less helpful than
human-written analysis on 58.1% cases. Leveraging our weak supervision data,
we experiment with various fine-tuning methods, including supervised fine-tuning
(SFT) and reinforcement learning from human feedback (RLHF). Our trained
model outperforms existing baselines for table question answering, and RLHF
further boosts the helpfulness of generated analysis on 58.5% cases. Data and code
are released at https://github.com/shirley-wu/daco.

1 Introduction

Data analysis is the process of systematically applying statistical and logical reasoning to comprehend
data and derive insights. Existing literature on table question answering has investigated answering
queries about information given by structural data (e.g., tables) [7, 26, 24]. However, they either
focus straightforward factual retrieval or short-form arithmetic resolutions over retrieved entities
while real-world data analysis can involve more complex analytical processes.

Take the scenario in Figure 1 as an example: a user is investigating potential age discrimination of a
shop. To effectively answer queries such as this one, a chain of mathematical and logical reasoning
and interacting with the data is required. For instance, finding 1 is inferred from the membership data
(‘member’ table) through mathematical and analytical reasoning, while finding and suggestion 2 are
derived from both ‘member’ and ‘happy_hour_member’ tables through mathematical and strategic
reasoning. These rigorous quantitative analyses eventually conclude the opposite to the user’s
hypothesis. As valuable as the conclusive suggestions such comprehensive analysis can bring, the
extensive labor-efforts, hinted by these examples, can hinder the efficiency of gaining intelligence
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Figure 1: Task overview. Given a user query driven by an application scenario, a data analysis system should
produce an answer containing findings and suggestions based on the database. This requires the system to
perform mathematical, logical and domain-specific reasoning, which can be done through invoking external
tools such as Python libraries. In this example, finding 1 is inferred from analyzing age distribution within
the membership data (‘member’ table) through mathematical reasoning and analytical reasoning. Finding 2 is
inferred by comparing the ages of the happy hours participants (using ‘member’ and ‘happy_hour_member’
tables) through mathematical reasoning, and suggestion 2 is further derived by relating the data to coffee shop
business setting through strategic reasoning.

from the data in a competitive business environment. It is thus imperative to devise a system that is
able to automate the aforementioned data analysis process.

To this end, we introduce a new dataset for this challenging task, DACO, data analysis via code
generation. DACO is constructed from a set of diverse real-world databases associated with curated
user queries. In light of the previously described labor-intensive challenge, we propose to leverage
LLMs with a multi-turn chained prompts to automatically curate the analytical answers for each
query. Specifically, our designed framework employs the code generation capabilities of GPT-4 [28]
for automating the statistical analysis, interleaved with its ability to interpret the obtained quantitative
results. The DACO dataset contains 440 databases and 1, 942 associated user queries, where each
query is annotated with an average of 3.3 coding steps and 1.9k lines of code during intermediate
steps and a final output of ∼ 10 bullet points. This resource can be used for both model fine-tuning
and evaluation. To provide a refined benchmarking resource, we curate a high-quality test set through
comprehensive human annotations on a subset of 100 samples. Detailed statistics are in Table 1.

We evaluate three types of methods on this new dataset: (1) existing methods designed for table QA
tasks, (2) prompt-based LLMs, and (3) fine-tuned LLMs. We use helpfulness as our main evaluation
metric, assessed through pair-wise comparison. We observe that proprietary LLMs such as GPT-4
demonstrate strong data analysis capabilities and significantly outperform table QA models. However,
they still fall short of human performance by 58.1% in pair-wise evaluations. Regarding fine-tuned
LLMs, via supervised fine-tuning (SFT) using automatically generated annotations that include both
code generation trajectories and the final answers. Inspired by the recent success of reinforcement
learning from human feedback (RLHF) [29, 35, 4, 5, 48, 38], we employ RLHF to further align
the SFT models with human preferences towards helpful data analysis. Our SFT model exhibits
promising data analyais capabilities and outperforms table QA baselines despite lagging behind
proprietary LLMs. On top of SFT, RLHF further enhances the output helpfulness in 58.5% of cases.

In summary, our contributions are as follows: (1) We explore the challenging task of data analysis,
where we construct the DACO dataset with our proposed multi-turn prompting technique on a diverse
set of real-world databases. (2) We curate a human-refined evaluation set for benchmarking models.
(3) We evaluate a diverse set of models on this challenging dataset, including existing models designed
for table QA, prompt-based LLMs, and fine-tuned LLMs with both SFT and RLHF. (4) Our dataset
and code are made publicly available at https://github.com/shirley-wu/daco.

2 Task Formulation

As shown in Figure 1, the input to our task consists of a database D and a query q, where the database
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D is a relational database containing multiple named tables. The output y is formatted as two lists:
findings and suggestions.

Inspired by recent work on tool usage and LLM agent [40, 41, 23], we allow the LLM to invoke tools
for multiple turns before producing the final output y. At the i-th turn, the action ai is generated by
the LLM, and the observation oi is produced by the environment after executing the corresponding
action ai. While the action a can involve various tools such as SQL executor or search engine, we
utilize Python due to its extensive mathematical libraries and programming flexibility.

To evaluate the quality of generated data analysis y, we use helpfulness as the primary metric.
Motivated by literature in the data analysis field [22], we define helpfulness as: (1) relevance to
the query, (2) effective and insightful data interpretation, and (3) diversity in terms of analysis
perspectives. We evaluate helpfulness through pairwise comparison following common approach
[29, 38, 45]. Given two analyses generated by two different systems, the annotator (either human or
simulated by LLM) selects the more helpful one based on our defined criteria. The winning rate of
each system is reported as helpfulness score. To obtain a comparable set of numbers for all models,
we report the winning rate of each model against the annotations, so a score of 50 would indicate the
model generations are perceived as helpful as annotations.

3 Dataset Construction

We construct our DACO dataset through four stages: (1) database collection, (2) query collection, (3)
automatic annotation collection, and (4) human refinement. The workflow is shown in Figure 2(a).

Database collection. We collect databases from two sources: Spider [42] and Kaggle (https:
//www.kaggle.com/datasets). There are 157 databases collected from Spider, which originally
come from university databases, DatabaseAnswers and Wikipedia. We then crawl and filter 5,830
databases from Kaggle. Despite the initial filtering, the quality of these databases remains low, often
containing noisy or unintelligible data. Therefore, we conduct a manual inspection and thereby select
a subset of 314 clean and interpretable databases to build our dataset. To maintain the diversity of the
resulting database set, 157 of the databases are deliberately chosen from the long tail of the topic
distribution. We employ BERTopic [11] to model the topic distribution, which produces in total
160 topics. We take its least frequent 80 topics as the long tail, which covers 26.79% of the total
databases.

Query collection. We generate 10 queries for each database by prompting ChatGPT to first assume
the role of a database stakeholder and then generate an application-driven query based on the role.
To ensure the quality of the query, we perform a manual filtering to the machine generated queries.
Specifically, we remove queries that are not driven by real-world applications or cannot be answered
by the given reference database. We train a group of 6 annotators to perform such a filtering process.
As a result, there are about 42% of the queries removed, where the removal agreement achieves a 0.62
cohen kappa score. After the aforementioned processes, we obtain in total 2,664 queries. Examples
of databases and the automatically generated queries are shown in Figure 8.

Automatic annotation collection. As shown in Figure 2(b), we design a pipeline that leverages the
code generation capability of LLMs to automate the answer annotation for our DACO dataset. Based
on the database and the query, we instruct the LLM to perform data analysis in multiple turns. At
each turn, the LLM will produce a python code snippet and take its execution outputs as evidences to
reason over and support its follow-up interpretation. After each turn, we prompt the model to decide
whether the analysis is sufficiently comprehensive; if deemed sufficient, it terminates the coding turns
and produces the final answer. With this pipeline, we instruct GPT-4 to automatically generate all the
answer annotations to each query of our dataset, for both the intermediate code and the final analysis
answering the queries. To improve the quality of such automatically constructed annotations, we
additionally allow GPT-4 to correct its own mistakes when its generated code leads to run-time or
syntax error, where only the corrected codes are kept. In total, we obtain 1.9k valid query-answer
pairs, each with roughly 3.3 intermediate coding steps.

Human refinement. The annotated analyses thus far have been algorithmically generated, where
their actual quality are to be further verified. We thus curate a human-refined subset containing 100
densely human-annotated query-answer pairs as illustrated in Figure 2(c). For each query, we sample
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Figure 2: An overview of DACO construction.



Table 1: Statistics of DACO dataset. Left: We report the size of each data split, including the number of
databases (# db), the number of queries (# queries), the number of bullet points (# bullets) and tokens (# tokens)
in output answer y, and the number of code steps and code lines in intermediate coding steps a. Train, Dev and
TestA sets are automatically generated with GPT-4, while TestH is the human refined subset and only contains
the final output answer. Right: We report more fine-grained statistics regarding the input databases and output
answers. For all databases in DACO, we report the number of tables, columns and rows within each database.
The numbers of rows and columns for each database are calculated by summing across all tables within the
database. For output answers in TestH , we report the number of findings, suggestions and tokens in each answer.

Train Dev TestA TestH Total
Input Statistics

# db 353 22 65 17 440
# queries 1558 100 284 100 1942

Annotation Statistics
# bullets 14.8k 996 2728 980 19.5k
# tokens 575k 36.6k 106k 42.3k 760k
# code steps 5086 346 948 - 6380
# code lines 3.0M 208k 555k - 3.7M

Med. Max Min
Detailed statistics for db

# tables 1 15 1
# columns 15 96 3
# rows 572 67.2k 4

Detailed statistics for answer
# findings 5 8 3
# suggestions 5 8 3
# tokens 397 864 202

3 different analysis candidates using the previously described automated method with GPT-4. We
ask the annotators to evaluate the quality of each machine generated bullet point and categorize each
point into one of not helpful, borderline helpful, or very helpful. The highest quality points from
the three candidates were combined and refined into a final gold-standard analysis. Concretely, the
annotators should first combine all very helpful points, remove duplicate points, reorder the points
to maintain coherence, and make necessary textual edits for fluency. Suppose the number of bullet
points are lower than our pre-defined lowest threshold (3 bullet points per answer), the annotators
should select additional bullet points ranked as borderline helpful to augment the answer. we ask
a group of 3 internal members to perform refinement. The agreement accuracy of the refinement
process (candidate point selection) is 0.83 and the Cohen’s Kappa is 0.67.

4 Data Statistics

DACO dataset includes training, development and test sets with annotations generated by GPT-4.
Furthermore, DACO features a human-refined testing subset. To differentiate the two test sets, we
denote the automatically annotated set as TestA and the human-refined set as TestH . Detailed statistics
are in Table 1.

Database statistics. In total, DACO comprises 440 databases, each of which contains on average 2.3
tables. To better visualize the major topic distribution of this selected subset, we again use BERTopic
but group these databases into 10 topics. The keywords for top 5 topics are shown in Figure 3. The
leading topic (topic 1) is associated with business setting and consists of 46.52% of the dataset.
The remaining nine topics exhibit a relatively even distribution, covering a broad range of domains,
including sports (topic 2), healthcare (topic 3), weather (topic 4), and education (topic 5).

Query statistics. In average, each database is accompanied by 4.4 different user queries. We show
the top 15 verbs and their top 3 direct noun objectives in Figure 4. The queries demonstrate a notable
level of diversity. The most common type of queries is to request analysis (such as “analyze data”
and “identify pattern”), followed by queries aiming to make decisions (such as “determine strategy”
and “make decision”). To quantatively verify the diversity of input queries, we measure the overlap
between queries over the same database using cosine similarity of Sentence-BERT [32] embeddings.
Based on manual inspection of various cases, we categorize the overlap between query pairs into low,
medium, and high at thresholds of 0.5 and 0.8. Representative examples are shown in Table 2. We
find that 45.6% of generated query pairs have low similarity, 52.4% have medium similarity, and only
2.0% are highly similar. The small percentage of highly similar pairs suggests high diversity of input
queries.

Annotation statistics. Figure 5 shows the distribution of the top 10 API functions invoked in the
generated code. Excluding the trivial print function, the most frequent APIs are pandas APIs
including table manipulation (e.g. groupby and merge) and mathematical computation (e.g. mean
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Figure 3: Domain distribution of databases in
DACO dataset. Upper section: distribution of the
10 topics of databases, showing a long-tail effect.
Lower section: keywords of the top five topics ex-
plaining the topics’ content.

Figure 4: Distribution of queries in DACO dataset.
We display the top 15 verbs and their top 3 direct noun
objectives, demonstrating the query diversity.

Table 2: Percentage and representative examples of query pairs with low, medium and high overlap. In the
representative examples, repetitive information and distinctive information are highlighted.

Overlap % Representative Examples
Low
(sim < 0.5)

45.6 Query 1: As an advertising executive, I want to select the channels for
targeted ad placements.
Query 2: As a platform developer, I want to analyze user behavior and
preferences to optimize the user experience.

Medium
(0.5 < sim < 0.8)

52.4 Query 1: As a farmer, I want to determine the suitable fruit varieties to
grow on my farm.
Query 2: As a fruit exporter, I want to identify the fruits that meet
export standards and have a longer shelf life.

High
(sim > 0.8)

2.0 Query 1: As a consultant for honey market, I want to study the honey
production trend to recommend business strategies for my clients.
Query 2: As a curious analyst, I want to study the production trend to
understand the US honey industry.

Figure 5: Top 10 API functions invoked in
the generated code.

Figure 6: Helpfulness of TestA annotations evaluated by
humans.

Figure 7: Helpfulness of TestH annotations evaluated by
humans.
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and sort_values). Figure 6 and 7 displays the human rating for each bullet points in TestA and
TestH collected during the human refinement stage. While automatic annotations significantly lag
behind manually refined ones, they still offer valuable knowledge that can be leveraged through
supervised fine-tuning, as demonstrated in the experiments section. For manually refined annotations,
mentioned in Section 3, the agreement accuracy is 0.83 and Cohen’s Kappa is 0.67, verifying their
quality. An example of human refinement is shown in Figure 2.

5 Experiments

5.1 Experimental Settings

Table QA baselines. We experiment with two models designed for table QA tasks, TAPAS [13] and
TAPEX [19]. TAPAS is a BERT-style model pre-trained to select relevant information from a table
based on user query. For our dataset, we first use TAPAS to select relevant information and then use
ChatGPT to interpret the selected information. TAPEX is a encoder-to-decoder model pre-trained on
table and SQL data. We fine-tune TAPEX with GPT-4-generated annotations.

Prompt-based LLMs. We evaluate the performance of ChatGPT and GPT-4 when enhanced by code
generation. For comparison, we also experiment with a baseline counterpart that does not include
code generation and instead directly takes raw table content as input.

Fine-tuned LLMs. With the answer annotation generated by GPT-4, we train a 6B CodeGeeX2-6B
[44] model through SFT, RLHF, and fine-grained RLHF (denoted as FG-RLHF) [38].

We begin by training the model with SFT, using either all annotations including code generation or
purely the final answer annotations. The former SFT model is further refined through RLHF with
an end goal of optimizing the final answer y’s helpfulness. We model the helpness of final answer
with an answer RM Ra. Concretely, Ra is trained on pairwise comparison data of output bullet
points annotated by ChatGPT. To encourage diversity, we additionally impose repetition penalty by
subtracting a similarity score between different bullet points from the final reward.

However, we observe that RLHF struggles to provide useful supervision signal to intermediate code
generation since its reward is only applied to the final answer. Recent work has shown that providing
dense reward for the intermediate steps can alleviate this issue [18, 38]. Thus, we propose to use
fine-grained RLHF [38], where we introduce two novel reward models to provide dense reward
signals for code generation: contribution RM Rc and regularization RM Rr. Rc encourages code
generation that better contributes to the final answer at each step, while Rr helps prevent reward
hacking. Concretely, we compute the similarity Sim(y,oi) between final answer y and the i-th
step observation oi to measure the contribution of generated code action ai. Using Sim(y,oi), we
can rank the contribution of different steps, and then use the comparison pairs (ai,aj) to train Rc.
However, this heuristic training of Rc may lead to the well-studied reward misspecification issue
termed reward hacking [34]. To mitigate this issue, we propose to regularize such behavior with Rr.
Given the misspecified reward model Rc, we first train an RL model until its generations start to
collapse to certain patterns, then we train Rr to detect such patterns and thus assign lower scores.

Evaluation. The main metric we use is pairwise comparison of helpfulness as in Section 2. We
use three LLM evaluators, GPT-4o mini, Claude 3.5 Sonnet, and Llama 3 8B [2], as well as trained
human annotators for the evaluation. We additionally report BLEU score, entailment score, and
helpfulness evaluation for each individual bullet point. These metrics cannot holistically measure the
analysis helpfulness, but can provide complementary insights for analyzing model performance. For
entailment, we use an off-the-shelf NLI model to compute the probability that the model generation
is entailed by the annotation. For point-wise evaluation, we ask the annotator to assign a score chosen
from 0 (not helpful), 1 (borderline helpful) and 2 (very helpful) to each bullet point using the same
standard as in human refinement of test set. Our human annotation achieves high agreement of
0.62 Cohen’s kappa for pairwise comparison of helpfulness, and 0.65 Cohen’s kappa for point-wise
helpfulness evaluation.

5.2 Results

The main results are in Table 3. The key conclusions are as follows:
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Table 3: Main results. We report helpfulness (Help.), entailment (Entail.), and BLEU on both automatically
annotated test set (TestA) and human curated test set (TestH ). The helpfulness score is the average of scores
evaluated by GPT-4o mini, Claude 3.5 Sonnet, and Llama 3 8B. Highest numbers in each section are highlighted
in bold. We also report the number of parameters (# para.) of each model. †: For ChatGPT and GPT-4, we report
the number of parameters based on our best estimation.

TestA TestH

Method # para. Code gen Help. Entail. BLEU Help. Entail. BLEU
TableQA
Baselines

TAPAS 337M ✗ 19.19 1.96 11.62 16.50 3.67 9.73
TAPEX 406M ✗ 15.08 3.34 14.60 9.00 3.50 13.81

Prompt-
based LLMs

ChatGPT 20B† ✗ 19.31 3.06 13.22 13.50 2.07 13.51
GPT-4 175B† ✗ 30.43 3.35 14.90 20.50 4.36 13.71
ChatGPT 20B† ✓ 26.51 2.74 14.22 21.38 2.59 14.51
GPT-4 175B† ✓ 50.79 4.59 17.77 43.92 3.26 17.54

Finetuned
LLMs

SFT 6B ✗ 18.96 2.30 14.47 11.33 2.65 13.63
SFT 6B ✓ 13.73 2.15 14.88 9.83 4.47 14.60
RLHF 6B ✓ 10.64 3.18 12.66 7.51 3.13 11.46
FG-RLHF 6B ✓ 19.42 3.65 13.13 12.50 5.98 11.80

Table 4: Human evaluation. We report human-rated and
LLM-rated helpfulness pairwise comparison of two pairs
of models: GPT-4 with v.s. without code generation, and
FG-RLHF v.s. SFT. We also report point-wise evaluation
scores scaled into 0 ∼ 2 rated by human annotators.

Pairwise comparison Point-
Human LLM wise

GPT-4 code gen v.s. 66.41 70.07 1.45
GPT-4 w/o code gen 33.59 29.93 1.36

FG-RLHF v.s. 57.72 58.49 1.42
SFT 42.28 41.51 1.30

Table 5: APIs ranked by its correlation with
contribution RM scores. Higher correlation
means that contribution RM assigns higher
scores to code snippets containing the API.

Top 4 APIs Bottom 4 APIs
API Corr. API Corr.
print 44.24 to_datetime -18.96
nlargest 20.06 isnull -17.76
mean 14.56 describe -12.02
sort_values 12.23 merge -10.83

Proprietary LLMs demonstrate strong data analysis capabilities but still lag behind human
performance. Proprietary LLMs, especially GPT-4, perform the best and significantly outperform
other models on almost all metrics, particularly when enhanced with code generation. However,
pairwise comparisons between model generation and human-refined annotations (TestH ) show that
even the best model only wins 41.88% of the time, indicating a gap in generating helpful data analysis.

The fine-tuned models show promising data analysis capabilities, demonstrating the usefulness
of our weak supervision data. By training with automatically generated annotations, SFT with code
generation achieves a reasonable helpfulness score and outperforms the TAPEX baseline. Though
RLHF negatively affects performance due to sparsity of reward signals, FG-RLHF with our dense
reward models significantly improves the performance, outperforming SFT by 7 points in helpfulness.
Despite the difference in model size, FG-RLHF outperforms ChatGPT without code generation in
helpfulness and entailment metrics. Human evaluation shows a 57.72% win rate of FG-RLHF over
SFT, as seen in Table 4. Our qualitative analysis indicates that FG-RLHF better focuses on user
queries, while SFT tends to display generic statistics less relevant to user queries.

The fine-tuned models show promising data analysis capabilities, demonstrating the usefulness
of our weak supervision data. By training with automatically generated annotations, SFT with
code generation achieves a reasonable helpfulness score and outperforms the TAPEX baseline.
Though RLHF negatively affect the performance due to the sparsity of reward signal, we see that
FG-RLHF with our designed dense reward models significantly boosts the generation helpfulness,
and outperforms SFT by 7 points on helpfulness, thus better aligning with human preference. Despite
the difference in model size, FG-RLHF outperforms ChatGPT w/o code generation on helpfulness
and entailment metrics. Human evaluation demonstrates a 57.72 win rate of FG-RLHF over SFT as
in Table 4. Our qualitative analysis shows that FG-RLHF better focuses on user query, while SFT
tends to display generic statistics that are less relevant to user query.

We analyze the behavior of two reward models to better understand their effects on FG-RLHF. The
contribution RM favors API calls that extract important information from tabular data but is vulnerable
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to reward hacking. As in Table 5, the functions rewarded most are related to extracting significant
features (nlargest, sort_values), aggregating results (mean), and displaying specific information
(print). In contrast, the least rewarded functions involve displaying generic statistics (describe)
and wrangling data (merge, to_datetime, is_null) since they cannot directly contribute to the
user query. However, the concerningly high correlation between print function and contribution
RM scores indicates the policy may exploit the correlation to hack reward, which can be mitigated by
employing the regularization RM.

Evaluation on external test sets. We further evaluate our fine-tuned models on two external test
sets: (1) InfiAgent-DA benchmark that focuses on complex but not application-driven data analysis
[14], and (2) free-form table question answering dataset FeTaQA [26]. We find that FG-RLHF
improves the accuracy over SFT on InfiAgent-DA (14.61 v.s. 12.92), especially over questions about
summary statistics (14.86 v.s. 10.80) and correlation analysis (21.57 v.s. 14.86), which aligns with our
evaluation results on FG-RLHF dataset. On FeTaQA, FG-RLHF retains similar performance (6.35
Rouge-L, 80.74 BERTScore) compared to SFT (6.39 Rouge-L, 80.68 BERTScore) since FG-RLHF
is not specifically trained to enhance information lookup capabilities.

6 Related Work

Table Analysis. Early work in table question answering (table QA) targets simple questions that
requires table lookup and cell aggregations [31, 46, 16, 42, 26]. Later benchmarks further require
free-form answer generation [26], multi-hop reasoning [7, 8] and mathematical reasoning [47, 9, 24].
Despite the similar formulation between our task and existing table QA work, their focus are different:
most existing table QA datasets focus on obtaining specific information, our data analysis queries can
be complex and requires query decomposition and reasoning. Some concurrent work further targets
comprehensive table analysis such as correlation analysis and causal reasoning [27, 14, 20]. The main
difference between this work to the concurrent work is our focus on addressing application-driven
and complex user queries, which requires more reasoning skills.

Code Generation. Code generation benchmarks have been proposed for general-purpose program-
ming [3, 12], math problems [3], and data science scenario [17, 15]. Similar to our work, some recent
work allows the language model to interact with a code execution environment and receive execution
outputs as feedback [39, 37]. The most relevant work is [10] that also addresses data analysis via
code generation. Given a data analysis query, they use GPT-4 to first generate code and then provide
an interpretation of the execution results. While their analysis queries are still relatively simple, this
is an early exploration aiming at automating data analysis.

LLM Agent. The notable capability of LLMs in reasoning and planning inspires many work to use
them as intelligent agents for complex tasks like Minecraft gaming [36], robotics control [1], and
web browsing [41]. In this work, our code generation pipeline can be considered as an adaptation
of ReAct [40], where the LLM iteratively generates code as actions and reads execution results as
observations. Although we have not yet explored more advanced agent designs, such as tool-crafting
agents [6, 43] or self-reflection agents [33, 25], these approaches could be adapted to our task by
redefining the action space as code generation and the observation space as execution results. We
leave this exploration for future work.

7 Conclusion

In this work, we propose a novel and challenging data analysis task, which involves decomposing user
query into multiple perspectives, grounding each perspective to the input data and performing logical
and mathematical reasoning. To support this task, we build the DACO dataset containing large-scale
annotations automatically generated by GPT-4 and a small but high-quality test set with human
curated annotations. We evaluate three types models on our dataset: table QA models, prompt-based
proprietary LLMs, and open LLMs fine-tuned on our automatically collected annotations. While
GPT-4 consistently performs the best, the fine-tuned models achieves reasonably good helpfulness
with much less computation. On top of the SFT model, we further show that fine-grained RLHF can
be employed to boost helpfulness perceived by humans.
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Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] Section C in the supplementary
materials

(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments (e.g. for benchmarks)...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] Code and data
are released at https://github.com/shirley-wu/daco

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Section 5 in the main content, and Section D in the supplementary
materials

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No] Did not perform experiments of multiple random seeds
due to resource constraints

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] Section D in the supplementary
materials

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] Section 3 in the main

content
(b) Did you mention the license of the assets? [Yes] Spider [42] releases their dataset using

Apache-2.0 license
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

Dataset is released at https://github.com/shirley-wu/daco
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes] The annotators are trained and we have obtained their consent
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [Yes] The data is public data and does not contain
personally identifiable information or offensive content

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [No] Annotations are done through internal annotators and instructions are
potentially confidential information

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [No] Annotations are done through internal annota-
tors and costs are potentially confidential information

A Appendix

Project website is at https://shirley-wu.github.io/daco/index.html. Data and code are
released at https://github.com/shirley-wu/daco. Croissant metadata record is at https://
github.com/shirley-wu/daco/blob/main/data/croissant.json. We license our resources
under Apache-2.0 license.
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We thereby state that we bear all responsibility in case of violation of rights, etc., and confirmation of
the data license.

B Dataset Documentation

Below are dataset documentation following the framework from datasheets for datasets:

Motivation:

• For what purpose was the dataset created? - For the novel task of data analysis as explained
in the main content.

• Who created the dataset and on behalf of which entity? - This dataset is created during a
collaboration of ByteDance AI Lab and University of California, Los Angeles.

• Who funded the creation of the dataset? - ByteDance

Composition:

• What do the instances that comprise the dataset represent? - Each instance contains a
database of tabular data, a question, a reasoning process including code snippets, and a final
answer. Everything is in text format, except the database is stored as pd.DataFrame

• How many instances are there in total? - As detailed in Table 1 in the main content.
• Does the dataset contain all possible instances or is it a sample of instances from a larger

set? - The dataset is not a sample from a larger set.
• What data does each instance consist of? - Raw data.
• Is there a label or target associated with each instance? - Yes, as explained in Section 3 in

the main content.
• Is any information missing from individual instances? - No
• Are relationships between individual instances made explicit? - N/A
• Are there recommended data splits? - Yes. We split the dataset randomly, and encourage

people to follow this split for reproductivity. We also curate human annotations only for the
test set.

• Are there any errors, sources of noise, or redundancies in the dataset? - Yes. The input
questions and answer annotations are generated by ChatGPT, which will inevitably contain
errors. We try to manage the affect by manually filtering the questions, and by curating a
test set of human refined answer annotations.

• Is the dataset self-contained, or does it link to or otherwise rely on external resources? -
Self-contained.

• Does the dataset contain data that might be considered confidential? - No.
• Does the dataset contain data that, if viewed directly, might be offensive, insulting, threaten-

ing, or might otherwise cause anxiety? - No.
• Does the dataset identify any subpopulations? - No.
• Is it possible to identify individuals, either directly or indirectly from the dataset? - No.
• Does the dataset contain data that might be considered sensitive in any way? - No.

Collection process: as described in Section 3 in the main content.

Preprocessing/cleaning/labeling: we release the raw text data and do not perform any preprocess-
ing/cleaning/labeling of the texts.

Uses:

• Has the dataset been used for any tasks already? - The data analysis task, as in the main
content

• Is there a repository that links to any or all papers or systems that use the dataset? -
https://github.com/shirley-wu/daco
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• What (other) tasks could the dataset be used for? - As in the main content

• Is there anything about the composition of the dataset or the way it was collected and
preprocessed/cleaned/labeled that might impact future uses? - N/A

• Are there tasks for which the dataset should not be used? - N/A

Distribution:

• Will the dataset be distributed to third parties outside of the entity on behalf of which the
dataset was created? - Yes

• How will the dataset will be distributed? - https://github.com/shirley-wu/daco

• When will the dataset be distributed? - Already released

• Will the dataset be distributed under a copyright or other intellectual property (IP) license,
and/or under applicable terms of use (ToU)? - Yes, Apache-2.0 license

• Have any third parties imposed IP-based or other restrictions on the data associated with
the instances? - No

• Do any export controls or other regulatory restrictions apply to the dataset or to individual
instances? - No

Maintanance:

• Who will be supporting/hosting/maintaining the dataset? - The dataset is not planned to be
a dynamic dataset, but the authors will keep maintaining the github repo

• How can the owner/curator/manager of the dataset be contacted? - Github or email
xueqing.wu@cs.ucla.edu

• Is there an erratum? - No

• Will the dataset be updated? - No unless to correct errors

• Will older versions of the dataset continue to be supported/hosted/maintained? - N/A

• If others want to extend/augment/build on/contribute to the dataset, is there a mechanism
for them to do so? - Yes, please feel free to do that as long as citing our work and following
the license

C Limitations

While we put forth to construct the first of its kind dataset, DACO, for the comprehensive data
analysis task, the challenging nature of the data analysis process (which often requires certain
domain expertise) itself presents two major limitations of this work: (1) It is expensive to build
expert-annotated dataset. In our work, the large-scale annotations are automatically generated by
GPT-4, and their quality cannot always be well guaranteed. Although we curate a test set refined
by humans, those answers are initially generated by GPT-4, which may introduce biases to human
annotators during the refinement process for the final answer. Annotations curated by experts from
scratch might have higher quality, but they are indeed quite costly and can create other sort of
alignment problems. (2) It is nontrivial to evaluate model generations. Evaluating the quality of
the analyses is by itself challenging and requires data science expertise. For automatic evaluation, we
use ChatGPT to rank the helpfulness of model generations, which can partially but not perfectly align
with human preference. Additionally, ChatGPT cannot always robustly evaluate the correctness of
model generations. We use an off-the-shelf NLI model to evaluate the entailment probability between
human-refined ground truths and the model generations, which can partially reflect the correctness of
model generations. However, the entailment probability prediction can sometime propagate errors
which lead to false positives or negatives. We make efforts to alleviate such an issue by additionally
collecting human evaluations, which are supposed to better reflect the answer quality, despite that
humans can occasionally exhibit subjective evaluation patterns. Notice that our annotators do not
fully check the correctness of the generated answers, where we task them to focus more on the
helpfulness metrics defined in this work.
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D Implementation Details

For zero-shot API-based systems including ChatGPT and GPT-4, we evaluate two settings, directly
reading the table content, and using code generation. For the former setting, we linearize the table
content into text representation as model input. Due to token limit, we feed the first 20 rows as input,
which covers the full content of 93% tables. For the code generation setting, we employ the pipeline
described in Figure 2(b) in the main content. When the generated code causes a syntax or runtime
error, we re-sample the model until the generated code can be executed. We allow up to 5 resamplings
for each turn. We use the gpt-3.5-turbo-16k-0613 API for ChatGPT and gpt-4-32k API for
GPT-4. We limit the number of total coding turns maximally at 9. For annotation generation where
GPT-4 self-correction is allowed, we limit the number of self-correction within 2 for each turn and 4
for the whole session.

For finetuned models including SFT, RLHF and fine-grained RLHF, we use CodeGeeX2-6B [44]
as the base model. We first train the SFT model using GPT-4 annotations, and then train our RLHF
models on top of the SFT model. When training Ra+c and Rr, we initialize the model from the SFT
model. When training our fine-grained RLHF model, we initialize the value model V from Ra+c,
and initialize the policy model π from the SFT model. In inference, we use nucleus decoding with
p = 0.9 and temperature = 1.0. Similarly, we allow up to 5 resamplings when the generated code
causes an error. The SFT model is trained with 8 A100 GPU for about 4 hours. The RLHF models
are trained with 8 A100 GPU for about 18 hours. Detailed hyper-parameters are in Table 6. The
only hyper-parameter we tune is λ for fine-grained RLHF. We experiment with 0.8, 0.9 and 1.0 and
discover that 1.0 works the best.

SFT RL
learning rate 1e-5 2e-6
gradient accumulation 4 4
total steps 600 200
λ - 1.0
γ - 1.0

Table 6: Hyperparameters.

E Details of LLM Evaluation

We adopt LLM for automatic evaluation due to the complexity of evaluating answer helpfulness. Prior
work has shown that LLMs can reliably evaluate text generation quality based on task description and
judging criteria [21]. However, it has been known that LLM evaluators favor their own generations
[30]. To mitigate this potential bias, we evaluate model helpfulness with multiple LLM evalua-
tors, including OpenAI’s gpt-3.5-turbo-0613 (now deprecated) and gpt-4o-mini-2024-07-18,
Anthropic’s claude-3-5-sonnet-20240620, and meta-llama/Meta-Llama-3-8B-Instruct
from Llama 3 family. The detailed evaluation results are in Table 7. We report the average scores
from GPT-4o mini, Claude 3.5 Sonnet and Llama 3 8B as the final score. Additionally, we show that
different LLM evaluators agree with each other, achieving a moderate to substantial inter-annotator
agreement of 0.45 Cohen’s kappa and a very high Spearman correlation of 0.90 in model performance
ranking. This further verifies the robustness of LLM-based evaluation.

F License Information

Based on Kaggle’s policy, it is allowed to use and redistribute datasets as long as adhering to each
dataset’s specific license. All datasets utilized in this study are publicly accessible. A majority, 65%,
are covered under various standardized licenses, all of which permit data redistribution for academic
purposes. All these licenses allow data redistribution for academic purposes. The remaining 35% are
licensed on an ad-hoc basis. We have manually reviewed their Kaggle descriptions to ensure there
are no restrictions against using their data. However, since some datasets have limited description or
licensing information, we will continue to monitor their status and will remove any dataset if issues
arise. Detailed license information is listed in Table 8.
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Table 7: LLM evaluation results. We report the helpfulness score on TestA and TestH evaluated by four
different LLM evaluators, GPT-3.5 Turbo (now deprecated), GPT-4o mini, Claude 3.5 Sonnet and Llama 3 8B.

TestA TestH

Code gen GPT-3.5 GPT-4o Claude 3.5 Llama 3 GPT-3.5 GPT-4o Claude 3.5 Llama 3
TAPAS ✗ 25.00 17.61 17.08 22.89 24.50 15.00 15.00 19.50
TAPEX ✗ 14.79 17.78 7.39 20.07 6.00 9.50 3.50 14.00
ChatGPT ✗ 25.18 20.60 18.31 19.01 18.50 16.00 9.00 15.50
GPT-4 ✗ 30.81 30.81 32.39 28.17 24.00 21.00 23.00 17.50
ChatGPT ✓ 35.74 22.89 24.70 31.93 27.27 18.69 19.19 26.26
GPT-4 ✓ 52.00 51.09 52.18 49.09 41.88 45.31 39.58 46.88
SFT ✗ 21.51 19.72 12.68 24.47 9.50 11.50 5.00 17.50
SFT ✓ 20.95 12.38 7.38 21.43 11.54 5.76 7.05 16.67
RLHF ✓ 15.18 14.51 3.13 14.29 8.79 7.14 0.55 14.84
FG-RLHF ✓ 28.54 20.71 9.51 28.05 21.05 13.82 7.24 16.45

License Count
CC0-1.0 123
Ad-hoc 110
DbCL-1.0 14
Attribution 4.0 International (CC BY 4.0) 14
CC-BY-NC-SA-4.0 13
CC-BY-SA-4.0 7
ODbL-1.0 6
GPL-2.0 4
CC BY 4.0 4
Community Data License Agreement - Permissive - Version 1.0 3
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) 3
MIT License 2
Open Government Licence v3.0 2
ODC Public Domain Dedication and Licence (PDDL) 2
ODbL 1
UN Data License 1
ODC Attribution License (ODC-By) 1
Creative Commons Attribution 4.0 International License 1
Open Use of Data Agreement v1.0 1
Attribution-NonCommercial-ShareAlike 3.0 IGO (CC BY-NC-SA 3.0 IGO) 1
Government Open Data License - India 1

Table 8: License information for Kaggle datasets used in our work.

G Qualitative Examples

We show a few examples of input databases and their associated queries in Figure 8. Though the
queries are automatically generated, they are of high quality, diverse, and relevant to the databases.

We show final answers generated by SFT and RLHF in Figure 9. RLHF better focuses on user query,
while SFT tends to display generic statistics that are less relevant to user query.

We show examples of code generations in Figure 10. We also report their reward scores from
contribution RM and regularization RM.

H Prompts

Prompt for query generation is in Table 9. Prompt for helpfulness annotation collection is Table 10.
Prompt for helpfulness evaluation is Table 11.

18



(a) Example 1.

(b) Example 2.

(c) Example 3.

Figure 8: Examples of input databases and their associated queries.
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Figure 9: Case study.

I have a database of [database title]. I am a stakeholder and I am analyzing the database to make a decision.
Who am I and what decision might it be? List 10 possibilities in a numbered list.

Each point should introduce who I am and briefly explain my intention in this format: As a/the [who I am], I
want to [explain my intention]

Examples:

Based on the extracurricular activities database:
1. As the dean of student affairs, I want to decide on extracurricular activities to promote or cut
2. As the department head, I want to decide on faculty advisor assignments
3. As the school administrator, I want to review and revise faculty activity engagement

Based on a diabetes database:
1. As a healthcare policy maker, I want to decide on healthcare resource allocation
2. As a NIH official, I want to decide on medical research funding
3. As a health insurance actuary, I want to improve health insurance pricing strategy
4. As a health provider, I want to decide on patient care and treatment

Based on an allergy database:
1. As a catering manager, I want to plan meal options
2. As the school principal, I want to plan allergy awareness programs
3. As an administrator in the Student Affairs or Housing department, I want to decide on housing assignments
4. As the school administrator, I want to improve campus emergency preparedness
5. As the school principal, I want to develop policies for allergy accommodations

Based on a Home Equity Line of Credit (HELOC) product database, you can:
1. As the credit risk manager, I want to modify the credit underwriting policy

The database is as follows:

Database `[title]`has [x] tables. Table names are: [aaa], [bbb], [ccc]

Table `[caption]`has [x] rows and [y] columns. Column are:
`[column name]`, example values: [value 1], [value 2], [value 3], [value 4], [value 5]
...

Table 9: Prompt for query collection.
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(a) A good case that receives high scores from both contribution RM and regularization RM.

(b) A bad case that receives low score from contribution RM and high score from regularization RM.

(c) A reward hacking case that receives high score from contribution RM and low score from regularization RM.

Figure 10: Qualitative examples of code generations, and their scores assigned by reward models.

I have a database of [database title]. As a [stakeholder role], I want to [describe intention].

Given below two findings/conclusions, which one is more helpful to my analysis?
* [answer bullet point 1]
* [answer bullet point 2]

Your response should be in the following format:
* Reasoning: <explain your reasoning here>
* Answer: <repeat the more helpful finding here>

Table 10: Prompt for helpfulness annotation collection.
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I have a database of [database title]. As a [stakeholder role], I want to [describe intention].

I have hired two data analysts to perform the analysis, and they gave me two different reports (listed below).
Each report consists of two lists, one for findings and one for suggestions. Which one is more helpful to
my analysis? When evaluating helpfulness, you should consider the following three rubrics in decreasing
priority: (1) relevance to my analysis goal; (2) insightfulness; and (3) diversity of perspectives, especially for
suggestions.

Your response should be in the following format. Note: <answer> should be either Report-1 or Report-2
* Answer: <answer>
* Reasoning: <explain your reasoning here>

The reports are as follows:

# Report-1

[report 1]

# Report-2

[report 2]
Table 11: Prompt for helpfulness evaluation.
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