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ABSTRACT

Knowledge distillation (KD) has become a fundamental technique for model com-
pression in object detection tasks. The data noise and training randomness may
cause the knowledge of the teacher model to be unreliable, referred to as knowl-
edge uncertainty. Existing methods only transfer this knowledge and could limit
the student’s ability to capture and understand the potential “dark knowledge”.
In this work, we introduce a new strategy that explicitly incorporates knowl-
edge uncertainty, named Uncertainty-Driven Knowledge Extraction and Transfer
(UET). Given that the knowledge distribution is unknown and high-dimensional in
practice, we introduce a simple yet effective sampling method with Monte Carlo
dropout (MC dropout) to estimate the teacher’s knowledge uncertainty. Lever-
aging information theory, we integrate knowledge uncertainty into the conven-
tional KD process, allowing the student model to benefit from knowledge diver-
sity. UET is a plug-and-play method that integrates seamlessly with existing distil-
lation techniques. We validate our approach through comprehensive experiments
across various distillation strategies, detectors, and backbones. Specifically, UET
achieves state-of-the-art results, with a ResNet50-based GFL detector obtaining
44.1% mAP on the COCO dataset—surpassing baseline performance by 3.9%.

1 INTRODUCTION

Deep learning-based object detectors have demonstrated strong performance in fundamental tasks
LeCun et al. (2015); Girshick et al. (2014), but their large-scale parameters limit deployment in
resource-constrained, real-world applications. Knowledge distillation (KD) Hinton et al. (2015)
offers an effective model compression strategy, leveraging well-trained teacher model’s dark knowl-
edge to guide student models. In object detection, aligning the intermediate representations between
teacher and student models is a common practice Cao et al. (2022); Yang et al. (2022c); Zhang &
Ma (2023); Kang et al. (2021), often following the “Knowledge Extraction-Transfer (ET)” paradigm.
However, a key question arises: Is the teacher’s knowledge always reliable for distillation?

The answer might be negative. In real-world scenarios, uncertainty is intrinsic to knowledge and
critically affects knowledge transfer Szulanski (2000). In object detection, uncertainty arises from
noisy training data and the inherent randomness of model training. Despite careful annotation,
imprecise bounding boxes introduce aleatoric uncertainty Kendall & Gal (2017), particularly in
complex scenarios like occlusions. Additionally, model design and training randomness contribute
to epistemic uncertainty Kendall & Gal (2017). Together, these uncertainties shape the teacher’s
knowledge, which is often overlooked in traditional distillation paradigms, potentially limiting the
student model’s ability to learn latent knowledge. To explore this further, we conducted repeated
training on the COCO 2017 dataset Lin et al. (2014) using the same teacher detector Li et al. (2020),
resulting in two distinct teacher models, A and B (Fig. 1 (a)). Both achieved nearly identical perfor-
mance (mAP 44.9, Fig. 1 (c)). However, when distilling knowledge from these teachers to students
C and D using FGD Yang et al. (2022c), although their performance was similar, their feature rep-
resentations varied significantly (Fig. 1 (b)). This suggests that: (1) their feature representations
differ due to aleatoric and epistemic uncertainties, which we refer to as knowledge uncertainty in
this work, and (2) both teachers A and B contribute valuable knowledge. It is well known that
knowledge distillation relying on multiple teachers’ knowledge can offer diverse insights and has
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mAP AP50 AP75
Teacher A 0.449 0.631 0.490
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Figure 1: Why rely on a single teacher’s deterministic knowledge when both teachers or even ad-
ditional ones, may offer diverse insights? (a): is the representation of the training process. (b):
Heatmap visualization of teacher A and B. (c): Compared with teacher A and B. (d): Compared
with student C and D.

been extensively studied Son et al. (2021); Wu et al. (2021); Pham et al. (2023); Liu et al. (2020).
Traditional ET paradigms align only the deterministic knowledge from one teacher, treating it as a
“hard label” providing valuable knowledge, which also limits the student model’s ability to learn
potential “dark knowledge”. While uncertainty quantification has proven beneficial in fields like
segmentation Holder & Shafique (2021) and localization Yang et al. (2022b), the high-dimensional
and unknown distribution of teacher knowledge makes direct quantification challenging. Ensemble
models can capture uncertainty but are computationally expensive and impractical in many cases.

In this work, we propose a novel distillation paradigm, Uncertainty-driven Knowledge Extraction
and Transfer (UET). Unlike the conventional ET approach, UET integrates both deterministic and
uncertain knowledge based on information theory, allowing the student model to benefit from both
the precision of deterministic knowledge and the diversity of uncertain knowledge. To estimate the
teacher’s knowledge uncertainty, we employ Monte Carlo dropout (MC dropout) Gal & Ghahramani
(2016), offering a simple yet effective way to capture and integrate uncertainty into the distillation
process. Importantly, UET is a plug-and-play method that integrates seamlessly with existing distil-
lation techniques. We validate the effectiveness of UET through extensive experiments on the MS
COCO dataset, applying it across various distillation strategies, detectors, and backbone architec-
tures. When using FGD as the baseline, ResNet50-based detectors such as GFL Li et al. (2020),
Faster R-CNN Ren et al. (2015), RetinaNet Lin et al. (2017b), and FCOS Tian et al. (2020) achieve
mAP scores of 44.1%, 40.8%, 39.9%, and 42.9% respectively, outperforming prior state-of-the-art
KD methods. In summary, the contributions of this paper can be summarized:

• We propose a new paradigm of “Uncertainty-Driven Knowledge Extraction and Transfer”,
for the feature-based distillation methods. This approach integrates deterministic knowl-
edge and uncertain knowledge based on the information theory, which can effectively guide
the student detector’s training.

• We propose a simple yet effective method for uncertainty estimation by combining Monte
Carlo dropout, enabling the capture of the teacher model’s uncertainty during the knowl-
edge distillation process. This method seamlessly integrates with existing distillation meth-
ods, delivering improvements without any additional complexity.

• We conduct extensive experiments on the COCO dataset to verify the effectiveness of the
proposed paradigm across various distillation strategies, detectors, and backbone architec-
tures, achieving SoTA performance.

2 RELATED WORKS

2.1 OBJECT DETECTION WITH KNOWLEDGE DISTILLATION

Object detection is one of the most fundamental tasks in image processing. Due to the advancements
in deep learning, detectors based on convolutional neural networks (CNNs) have achieved remark-
able results Li et al. (2020); Lin et al. (2017b); Tian et al. (2020); Ren et al. (2015). Additionally,
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recent developments have introduced anchor-free methods (like FCOS Tian et al. (2020)) to reduce
the detector’s reliance on anchors. In this work, we explore the effectiveness of the proposed method
across different types of detectors.

Knowledge distillation aims to transfer knowledge from a well-trained but cumbersome teacher
detector to a lightweight student detector. Currently, KD in object detection can be categorized
into feature-based distillation Cao et al. (2022); Yang et al. (2022c); Zhang & Ma (2023); Kang
et al. (2021); Huang et al. (2023); Yang et al. (2022d); Zhu et al. (2023); De Rijk et al. (2022)
and logit-based distillation Zheng et al. (2023); Wang et al. (2023); Yang et al. (2023); Zhao et al.
(2022). Due to its simpler and more uniform form, feature-based knowledge distillation is popular
in object detection. Presently, feature-based knowledge distillation follows the paradigm of “ET”.
Most works focus on the design of discriminative knowledge extraction modules (such as scale-
aware knowledge Zhu et al. (2023), relationship-related knowledge Tian et al. (2020), etc.) and
transfer methods (Pearson Correlation Coefficient Cao et al. (2022), SSIM De Rijk et al. (2022),
etc.). In contrast to other works, we consider the uncertainty of knowledge in the teacher model and
propose a novel UET paradigm for feature-based distillation. We aim to improve the existing feature
distillation procedure by following UET to help the student model explore potential knowledge.

2.2 UNCERTAINTY ESTIMATION

Uncertainty often arises from insufficient knowledge and data during model training, prompting
the need for robust uncertainty estimation methods to quantify prediction reliability Gal & Ghahra-
mani (2016); Hüllermeier & Waegeman (2021); Kendall & Gal (2017); Kononenko (1989); Jalonen
(2012); Duncan et al. (2017); Sun et al. (2017); Milanés-Hermosilla et al. (2021); Ledda et al. (2023).
Recent research has witnessed a surge in exploring uncertainty in the knowledge distillation task.
For instance, the UNIX Xu et al. (2023a) proposed to reduce computation costs by combining un-
certainty sampling and adaptive mixup to prioritize informative samples. Uncertainty distillation
method Holder & Shafique (2021), on the other hand, aimed to quantify prediction uncertainty by
training a compact model to mimic the output distribution of a large ensemble of models, enabling
efficient and reliable uncertainty estimation. Similarly, the Uncertainty-aware Contrastive Distilla-
tion (UCD) Yang et al. (2022a) method attempts to alleviate catastrophic forgetting in incremental
semantic segmentation by contrasting features between new and frozen models. PAD Zhang et al.
(2020) proposed prime-aware adaptive distillation, which incorporates uncertainty learning to iden-
tify prime samples in distillation and adaptively emphasize their impact. Similarly, AKD Zhang
et al. (2023) strived to generate inference ensemble models from a teacher model and adaptively
adjust their contribution to knowledge transfer using an uncertainty-aware factor, refining the pre-
vious distillation methods for dense prediction tasks. Despite these advances, existing uncertainty
estimation methods often require fine-grained modeling, and there has been limited exploration in
the object detection domain. To address this limitation, we introduce knowledge uncertainty into the
KD framework for object detection, guiding students to learn more potential knowledge to enhance
its detection performance.

3 METHODS

In this section, we first present the conventional ET paradigm of distillation. Next, we formulate
our proposed UET paradigm, which aims to introduce knowledge uncertainty into the feature dis-
tillation process. Additionally, we provide the pseudocode of the UET paradigm in the Appendix
A.4. Besides, we introduce a simple yet effective knowledge uncertainty modeling method based
on the MC dropouts. Finally, we proposed a joint uncertain and deterministic knowledge distillation
method in our UET paradigm. The overview of UET is represented in Figure 2.

3.1 KD METHOD IN ET PARADIGM

In object detection, we typically construct a multi-scale feature using the FPN network Lin et al.
(2017a) to enhance the detector’s perception of features at different scales. In feature-based knowl-
edge distillation, knowledge transfer usually occurs on multi-scale features and follows the ET
paradigm. For simplicity, we focus on single-level feature distillation in this section. Specifically,
knowledge extraction methods fE(·) are first used to extract the discriminative knowledge that the
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Figure 2: The overview of the proposed UET paradigm.

student model is expected to learn from the multi-scale features of the teacher model, such as the
GC module Cao et al. (2023) used in the FGD method Yang et al. (2022c) for extracting pixel-wise
relationships. Then, a designed constraint function dT(·) is used to minimize the difference between
the discriminative knowledge of the teacher and student models, such as the SSIM De Rijk et al.
(2022), to complete knowledge transfer. This process can be formalized as:

argmin
θ

LKD(θ) =
1

N

∑
i

dT(fE(F
T (xi)), fE(g(F

S(xi, θ)))), (1)

where xi is the input image from training data, θ is the parameters of the student detector, FT (x) and
FS(x) represent the FPN network’s output features of the teacher and student models, respectively.
Additionally, g(x) denotes the adaptive function typically used to align the multi-scale features of
the teacher and student models. It is worth mentioning that during the training process, only the
parameters of the student model are updated through back-propagation.

3.2 FORMULATION OF KD WITH KNOWLEDGE UNCERTAINTY

As mentioned earlier, the inevitable uncertainty in the knowledge of the teacher model arises from
data noise and the randomness of training. However, the ET paradigm overlooks the inherent uncer-
tainty in the knowledge of the teacher model, which may limit the student’s ability to learn potential
“dark knowledge”. To incorporate the knowledge uncertainty of the teacher model into the KD pro-
cess, we assume that the teacher’s knowledge, (x,FT ), follows a distribution U over X × Y , where
X is the input instance space and Y represents the knowledge space. Given this assumption, the
teacher’s knowledge can be better represented by leveraging a sample, {FT

j (x) | j = 1, . . . ,M}, if
available. Based on this, the KD objective can be formulated as:

argmin
θ

L̂KD(θ) = EUx{dT(fE(
1

M

M∑
j

FT
j (x)), fE(g(F

S(x, θ))))}, (2)

where 1
M

∑M
j FT

j (x) represents the empirical mean of the teacher’s knowledge for input x. By
minimizing this objective, the student model incorporates the uncertainty inherent in the teacher’s
knowledge during optimization.
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3.3 JOINT KNOWLEDGE DISTILLATION OF DETERMINISTIC AND UNCERTAINTY

After formulating the feature distillation with knowledge uncertainty, we can make use of the
teacher’s knowledge uncertainty in the training process of the student model. However, the con-
ditional distribution of the teacher’s knowledge is unknown, which results in sampling from this dis-
tribution is also challenging. Modeling the uncertainty of the deep learning model has been a topic
of considerable attention Hüllermeier & Waegeman (2021); Kendall & Gal (2017). Especially, Gal
& Ghahramani (2016) establishes a theoretical connection between dropout training in deep neural
networks and Bayesian inference in deep Gaussian processes. More importantly, they introduced a
Monte Carlo estimate method based on the dropout, referred to as MC dropout, which can realize the
estimating of uncertainty. There has been a lot of work Zhang et al. (2023); Yelleni et al. (2024); Xu
et al. (2023b) estimating uncertainty through MC dropout and achieving outstanding performance
in specific fields. Inspired by this, we utilize MC dropout to estimate the uncertain knowledge of the
teacher models. More specifically, we perform M -times the teacher’s forward process with dropout
and denote the teacher’s knowledge of the j-th run as DropoutTj (x). We also discuss the impact of
the MC dropout on training time in Section A.5. The set {DropoutTj (x)|j = 1, . . . ,M} is used as
a sample of the uncertain knowledge FT as in Equation 2. Then, we have

UK(x) ≈ 1

M

M∑
j=1

DropoutTj (x). (3)

Based on Equation 3, we can incorporate the teacher model’s knowledge uncertainty into the dis-
tillation process. While this uncertain knowledge introduces diversity, it focuses less on prediction
performance and inevitably brings in random noise. However, the original teacher’s deterministic
knowledge is the result of careful training and is precision-driven. Therefore, it is crucial to guide the
training of the student detector using diverse uncertain knowledge and precision-driven determinis-
tic knowledge. Motivated by this, we combine the original teacher knowledge with the estimated
uncertainty knowledge UK (similar to residual structure), enhancing the student’s training process.
Our proposed UET paradigm for feature distillation in object detection can be summarized as:

argmin
θ

LKD(θ) =
1

N

∑
i

dT(fE(UK(x) + FT (xi)), fE(g(F
S(xi, θ)))). (4)

Although Equation 4 allows us to distill a joint of deterministic and uncertain knowledge, one ques-
tion: how to balance these two types of knowledge? To address this, we connect this with the in-
formation entropy theory. Motivated by previous work Lin et al. (2024); Sun et al. (2022); Kendall
& Gal (2017), we assume that the knowledge of the teacher model follows a Gaussian distribution:
FT ∼ N (µ, σ2). The entropy of the teacher’s knowledge can be calculated as follows:

H(FT ) = −E[logN (µ, σ2)]

= −E[log[(2πσ2)−1/2 exp(− 1

2σ2
(f − µ)2)]]

= log(σ) +
1

2
log(2π) +

1

2

=
1

2
log(2πeσ2).

(5)

We can assume that each knowledge after dropout (DropoutTj (x)) follows an independent Gaussian
distribution. Therefore, the obtained uncertain knowledge UK(x) can be modeled as a Gaussian
distribution:

UK(x) ∼ N (µ,
σ2

M
). (6)

Using Equation 5, we can calculate the entropy of the obtained uncertainty knowledge:

H(UK(x)) =
1

2
log(

1

M
2πeσ2). (7)

Equation 7 demonstrates that the entropy of the uncertain knowledge is inversely proportional to
M . This implies that as M increases, the entropy of the uncertain knowledge UK(x) will decrease,
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Table 1: Comparison results in GFL framework on MS COCO. Black highlighted fonts represent
the highest values. We set M to 10, choose the b) as ratio strategy, and only introduce knowledge
uncertainty into the teacher side in this experiment. The values highlighted in blue are those that
have increased the most. * denotes our reproduced results.

Method Backbones Schedule mAP AP50 AP75 APS APM APL

GFL (T) R101 24 44.9 63.1 49.0 28.0 49.1 57.2
GFL (S) R50 12 40.2 58.4 43.3 23.3 44.0 52.2

FitNets R50 12 40.7 (+0.5) 58.6 (+0.2) 44.0 (+0.7) 23.7 (+0.4) 44.4 (+0.4) 53.2 (+1.0)

Inside GT Box R50 12 40.7 (+0.5) 58.6 (+0.2) 44.2 (+0.9) 23.1 (-0.2) 44.5 (+0.5) 53.5 (+1.3)

Defeat R50 12 40.8 (+0.6) 58.6 (+0.2) 44.2 (+0.9) 24.3 (+1.0) 44.6 (+0.6) 53.7 (+1.5)

Main Region R50 12 41.1 (+0.9) 58.7 (+0.3) 44.4 (+1.1) 24.1 (+0.8) 44.6 (+0.6) 53.6 (+1.4)

FGFI R50 12 41.1 (+0.9) 58.8 (+0.4) 44.8 (+1.5) 23.3 (+0.0) 45.4 (+1.4) 53.1 (+0.9)

GID R50 12 41.5 (+1.3) 59.6 (+1.2) 45.2 (+1.9) 24.3 (+1.0) 45.7 (+1.7) 53.6 (+1.4)

MGD* R50 12 42.1 (+1.9) 60.3 (+1.9) 45.8 (+2.5) 24.4 (+1.1) 46.2 (+2.2) 54.7 (+2.5)

SKD R50 12 42.3 (+2.1) 60.2 (+1.8) 45.9 (+2.6) 24.4 (+1.1) 46.7 (+2.7) 55.6 (+3.4)

ScaleKD R50 12 42.5 (+2.3) - - 25.9 (+2.6) 46.2 (+2.2) 54.6 (+2.4)

PKD* R50 12 42.5 (+2.3) 60.9 (+2.5) 46.0 (+2.7) 24.2 (+0.9) 46.7 (+2.7) 55.9 (+3.7)

LD R50 12 43.0 (+2.8) 61.6 (+3.2) 46.6 (+3.3) 25.5 (+2.2) 47.0 (+3.0) 55.8 (+3.6)

BCKD R50 12 43.2 (+3.0) 61.6 (+3.2) 46.9 (+3.6) 25.7 (+2.4) 47.3 (+3.3) 55.9 (+3.7)

FGD* R50 12 43.4 (+3.2) 61.7 (+3.3) 47.0 (+3.7) 26.2 (+2.9) 47.4 (+3.4) 56.4 (+4.2)

CrossKD* R50 12 43.6 (+3.4) 61.9 (+3.5) 47.4 (+4.1) 26.1 (+2.8) 47.9 (+3.9) 56.4 (+4.2)

FGD+Ours R50 12 44.1 (+3.9) 62.3 (+3.9) 47.8 (+4.5) 26.6 (+3.3) 48.2 (+4.2) 56.9 (+4.7)

thereby reducing the knowledge diversity introduced by the uncertainty. Based on this, we only
need to find the proper number of sampling times M to balance the deterministic and uncertain
knowledge.

Compared to the traditional ET paradigm, UET adopts the joint distillation with the uncertain and de-
terministic knowledge to guide the student’s training process. Unlike the complex uncertainty quan-
tification methods typically used, our approach does not require explicit quantification of knowledge
uncertainty. Instead, we introduce a simple yet effective method that integrates knowledge uncer-
tainty into the student model’s training with minimal computational cost, which is almost negligible.
Additionally, our method functions as a plug-and-play solution for other distillation models, enhanc-
ing the performance of the student model without additional complexity.

4 EXPERIMENTS

4.1 SETTINGS

To validate the effectiveness of our methods, we conduct extensive experiments on the MS-COCO
dataset across various detectors, KDs, and different backbones. We use the 120k images of datasets
to train the models and 5k val images for evaluating the experiments. We report mean Average
Precision (mAP) as the evaluation metric along with AP at different scales and thresholds, including
AP50, AP75, APS , APM , and APL. All experiments are conducted on a machine equipped with
2 NVIDIA GeForce RTX 3090 GPUs. Additionally, we select FGD Yang et al. (2022c) as our
baseline, completing the “ET” process in our proposed “UET” paradigm. All experiments were
implemented using the mmdetection Chen et al. (2019) and PyTorch framework. Except for setting
the batch size to 8, we follow the training settings of FGD Yang et al. (2022c). In this paper, 1×,
2×, and ms respectively denote 12 epochs, 24 epochs, and multi-scale training. Unless otherwise
specified, we set M=5 in our experiments. The first group employs a ratio strategy with an initial
ratio of 0.05 and a common difference of 0.05. In these experiments, we introduce knowledge
uncertainty solely on the teacher’s side.

4.2 MAIN RESULTS

Comparison experiments with GFL framework. To demonstrate the superiority of our approach,
we conduct comparisons with the previous SoTA KD methods on the popular GFL framework. In
this experiment, we utilize a ResNet101 backbone for the GFL, trained for 24 epochs with multi-
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Table 2: Results in different type framework on MS COCO.

Method Schedule mAP AP50 AP75 APS APM APL

Two-stage detectors
Faster R-CNN-Res101 (T) 2× 39.8 60.1 43.3 22.5 43.6 52.8
Faster R-CNN-Res50 (S) 2× 38.4 59.0 42.0 21.5 42.1 50.3
FitNet Romero et al. (2015) 2× 38.9 59.5 42.4 21.9 42.2 51.6
FRS Zhixing et al. (2021) 2× 39.5 60.1 43.3 22.3 43.6 51.7
FGD Yang et al. (2022c) 2× 40.5 - - 22.6 44.7 53.2
DiffKD Huang et al. (2023) 2× 40.6 60.9 43.9 23.0 44.5 54.0
Ours+FGD 2× 40.8 (+2.4) 61.0 44.5 23.5 44.9 53.7

One-stage detectors
RetinaNet-Res101 (T) 2× 38.9 58.0 41.5 21.0 42.8 52.4
RetinaNet-Res50 (S) 2× 37.4 56.7 39.6 20.6 40.7 49.7
FitNet Romero et al. (2015) 2× 37.4 57.1 40.0 20.8 40.8 50.9
FRS Zhixing et al. (2021) 2× 39.3 58.8 42.0 21.5 43.3 52.6
CrossKD Wang et al. (2023) 2× 39.7 58.9 42.5 22.4 43.6 52.8
FGD Yang et al. (2022c) 2× 39.7 - - 22.0 43.7 53.6
DiffKD Huang et al. (2023) 2× 39.7 58.6 42.1 21.6 43.8 53.3
Ours+FGD 2× 39.9 (+2.5) 59.0 42.7 22.1 43.9 53.4

Anchor-free detectors
FCOS-Res101 (T) 2×, ms 40.8 60.0 44.0 24.2 44.3 52.4
FCOS-Res50 (S) 2×, ms 38.5 57.7 41.0 21.9 42.8 48.6
FRS Zhixing et al. (2021) 2× 40.9 60.3 43.6 25.7 45.2 51.2
CrossKD Wang et al. (2023) 2× 41.3 60.6 44.2 25.1 45.5 52.4
DiffKD Huang et al. (2023) 2× 42.4 61.0 45.8 26.6 45.9 54.8
FGD Yang et al. (2022c) 2× 42.7 - - 27.2 46.5 55.5
Ours+FGD 2× 42.9 (+4.4) 61.6 46.3 27.1 46.8 54.7

scale training, as our teacher network. As for the student model, we employ a ResNet50 backbone
for the GFL, trained for 12 epochs. Without resorting to any elaborate techniques, our method
achieves new SoTA performance, as depicted in Table 1. Specifically, our approach achieves an
mAP of 44.1%, surpassing the previous SoTA distillation methods CrossKD Wang et al. (2023)
(43.6% mAP) and BCKD Yang et al. (2023) (43.2% mAP), as well as the baseline FGD Yang et al.
(2022c) (43.4% mAP). Moreover, our method exhibited a notable improvement of 3.9% over the
original student model (40.2% mAP).

Comparison experiments with other detectors. To further explore the possibility of our proposed
method across different types of detectors, we conduct comparative experiments on Faster R-CNN
(two-stage detector), RetinaNet (anchor-based detector), and FCOS (anchor-free detector). The
experimental results, as presented in Table 2, demonstrate that our method, when incorporated on
top of FGD, achieves SoTA performance across three different types of detectors. Specifically,
within the Faster R-CNN framework, we attain a 40.8% mAP, marking a 2.4% improvement over
the student model. Similarly, in the RetinaNet detector, we achieve a 39.9% mAP, representing a
2.5% improvement over the student model. Furthermore, within the FCOS detector, we achieve a
42.9% mAP, reflecting a 4.4% improvement over the student model.

Comparison with other uncertainty-based methods. To ensure a fair and comprehensive compar-
ison, we adopt the experimental setup described in Section 4.1. Since AKD Zhang et al. (2023) is an
enhanced version of PAD Zhang et al. (2020), we focus on comparing our method with AKD in this
analysis. When integrated with FGD, AKD enables the student detector to achieve an mAP of 43.9.
In contrast, our proposed method achieves a higher mAP of 44.1, demonstrating a 0.2 mAP im-
provement and a relative performance gain of 28.5% over AKD. Moreover, our method narrows the
gap to the teacher model to only 0.8 mAP, which is a substantial improvement in the context of KD.
This performance gain can be attributed to two key factors: a). while AKD emphasizes handling
uncertain knowledge, it overlooks the deterministic knowledge from the teacher model, whereas our
method explicitly integrates both deterministic and uncertain knowledge to exploit their comple-
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Table 3: Performance comparison of other
uncertainty-based methods.

Method mAP AP50 AP75 APS APM APL

FGD 43.4 61.7 47.0 26.2 47.4 56.4
+AKD 43.9 62.3 47.6 26.5 48.2 56.8
+Ours(M=10) 44.1 62.3 47.8 26.6 48.2 56.9

Table 4: Sensitivity analysis of the ratios strat-
egy. The M is uniformly set to 5.

Strategy mAP AP50 AP75 APS APM APL

a) 44.0 62.2 47.8 27.0 48.3 56.7
b) 44.0 62.3 47.5 26.7 48.2 57.0
c) 44.0 62.4 47.8 26.9 48.2 56.9

Table 5: Sensitivity study of the M . We em-
ploy the strategy b) as the ratio policy and
teacher’s knowledge uncertainty.

M mAP AP50 AP75 APS APM APL

0 43.4 61.7 47.0 26.2 47.4 56.4
1 43.9 62.1 47.5 26.4 48.1 57
5 44.0 62.3 47.5 26.7 48.2 57.0
10 44.1 62.3 47.8 26.6 48.2 56.9
15 43.8 61.9 47.6 26.5 48.0 57.0

Table 6: Effect of knowledge sources. T:
teacher’s knowledge uncertainty, S: student’s
knowledge uncertainty, R: residual structure.

T S R mAP AP50 AP75 APS APM APL

43.4 61.7 47.0 26.2 47.4 56.4
✓ ✓ 43.6 61.8 47.3 26.1 47.8 56.8

✓ ✓ 44.0 62.2 47.7 26.8 48.4 57.0
✓ 43.5 61.7 46.9 26.0 47.7 56.4
✓ ✓ ✓ 44.0 62.3 47.5 26.7 48.2 57.0

mentary strengths. b). AKD utilizes an uncertainty-weighted loss to adaptively balance uncertain
predictions during distillation, whereas our method employs a novel feature distillation mechanism
that jointly captures deterministic and uncertain knowledge, enhancing the transfer of both fine-
grained and global information. We also provide more comparisons in the Section A.7.

These experiments validate that following our proposed UET paradigm effectively enhances the
learning potential of student detectors during the KD process. Furthermore, we demonstrate that our
paradigm is adaptable to various styles of detectors.

4.3 ABLATION ANALYSIS

In this part, we primarily investigate the impact of dropout on student learning, such as dropout ratio
and frequency. Here we adopt the GFL framework, and the experimental settings are consistent with
Section 4.2. Next, we will delve into these aspects in detail.

Sensitivity analysis of the ratios strategy. We design three different strategies to investigate the
impact of dropout ratio on the model: a) where M groups of ratios are all fixed at 0.15; b) where
the first group has a ratio of 0.05 with a common difference of 0.05; c) which builds upon b) by
increasing with epochs, at a growth rate of 0.025 per epoch. These results, as shown in Table 4,
indicate that our network is not sensitive to different ratio strategies. Particularly, when adopting
strategy c), after 10 epochs of training, with a dropout ratio ranging from 0.3 to 0.5, our method still
maintains an mAP of 44.0%.

Sensitivity study of the M . To explore the influence of the sampling count M in MC dropout on
the model, we conduct comparative experiments using different M , as presented in Table 5. Ac-
cording to Section 3.3, M plays a pivotal role in balancing these two types of knowledge. As M
increases the influence of uncertain knowledge also diminishes, reducing the diversity introduced by
this uncertainty. When we perform only one dropout, uncertain knowledge, and original determin-
istic knowledge work together, resulting in a student model mAP of 43.9%. When increasing M to
10, we observe the model’s reaching 44.1% mAP, a 0.7% enhancement compared to the pure FGD
method. However, as M increases from 10 to 15, the influence of uncertain knowledge continues
to diminish, reducing the diversity introduced by this uncertainty, which leads to the student model
reaching 43.8% mAP.

Effect of knowledge sources. We conduct comparative experiments on introducing uncertainty
from different knowledge sources. As shown in Table 6, when uncertainty is exclusively integrated
into the teacher’s knowledge, the mAP reaches 44.0%. Similarly, when it is introduced solely into
the student knowledge, the mAP is 43.6%. In both cases, these values represent enhancements of
0.6% and 0.2% respectively compared to the pure FGD method. This suggests that considering and
incorporating knowledge uncertainty into the KD process benefits the learning process of the student

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 7: Generalization to different KDs across different detectors. * denotes our reproduced results.

Method Schedule mAP AP50 AP75 APS APM APL

GFL-Res101 (T) 2×, ms 44.9 63.1 49.0 28.0 49.1 57.2
GFL-Res50 (S) 1× 40.2 58.4 43.3 23.3 44.0 52.2

LD* Zheng et al. (2023) 1× 41.0 (+0.8) 58.6 44.2 23.4 45.0 53.1
LD+ours 1× 41.2 (+1.0) 58.7 44.5 24.4 45.1 52.9
MGD* Yang et al. (2022d) 1× 42.1 (+1.9) 60.3 45.8 24.4 46.2 54.7
MGD+Ours 1× 43.0 (+2.8) 61.3 46.4 26.1 47.1 55.7
PKD* Cao et al. (2022) 1× 42.5 (+2.3) 60.9 46.0 24.2 46.7 55.9
PKD+Ours 1× 42.6 (+2.4) 60.6 46.1 23.9 46.7 55.8
FGD* Yang et al. (2022c) 1× 43.4 (+3.2) 61.7 47.0 26.2 47.4 56.4
FGD+Ours 1× 44.0 (+3.8) 62.2 47.7 26.8 48.4 57.0

RetinaNet-Res101 (T) 2×, ms 38.9 58.0 41.5 21.0 42.8 52.4
RetinaNet-Res50 (S) 1× 37.4 56.7 39.6 20.6 40.7 49.7

MGD* 1× 39.3 (+1.9) 58.6 41.9 22.3 43.2 52.3
MGD+Ours 1× 39.6 (+2.2) 58.6 42.5 22.3 43.8 52.6
PKD* 1× 39.6 (+2.2) 58.8 42.7 22.3 43.8 54.1
PKD+Ours 1× 39.8 (+2.4) 58.8 42.6 22.2 43.9 53.9

model. When knowledge uncertainty is simultaneously introduced to the teacher and student, the
student remains at 44.0% mAP.

Effect of original deterministic knowledge. We also investigate the effect of residual structures,
with the results presented in Table 6. When the original knowledge isn’t introduced, the student
detector achieves an mAP of 43.5%, which is 0.5% lower than when it is included. This is because
uncertain knowledge introduces diversity but places less emphasis on prediction accuracy. In con-
trast, the teacher’s raw feature maps come from a carefully trained, precision-driven model, which
contributes significantly to improving the student’s detection performance. This finding underscores
the importance of combining both deterministic and uncertain knowledge in the distillation process,
revealing the synergistic effect that enhances the student model’s learning.

4.4 GENERALIZATION TO DIFFERENT KDS

To further explore the universality of the proposed “UET” paradigm, we conduct a series of ex-
periments by introducing the knowledge uncertainty into different KD methods across different
detectors. Similarly, we employ the GFL and RetinaNet frameworks for this section, following the
configurations outlined in Section 4.2. Moreover, M was set to 5, with a ratio strategy of b) for
our uncertainty introducing. Specifically, we conduct the generalization experiments on three ad-
vanced feature distillation methods at the GFL framework, (MGD Yang et al. (2022d), PKD Cao
et al. (2022), and FGD Yang et al. (2022c)), as shown in Table 7. Upon introducing knowledge un-
certainty, MGD, PKD, and FGD yielded improvements of 2.8%, 2.4%, and 3.8%, respectively, for
the student model, surpassing their corresponding pure versions of KDs. Besides, using MGD for
knowledge distillation on RetinaNet improves the student model’s mAP from 37.4 to 39.3 (+1.9).
Adapting MGD to the UET paradigm further enhances the performance to 39.6 (+2.2). Similarly,
PKD increases the mAP to 39.6 (+2.2), which is further improved to 39.8 (+2.4) with the UET
adaptation. These results confirm the applicability of the proposed paradigm across different KD
situations and also suggest that incorporating knowledge uncertainty can optimize the KD process.

Extended to logits-based distillation. In Section 4.4, we reveal that introducing knowledge uncer-
tainty into the feature-based distillation process would contribute to student learning. A pertinent
question arises: Could the knowledge uncertainty also be applied to logits-based distillation? Com-
pared to feature-based distillation, logit-based distillation directly transfers the output results of the
teacher detector, such as classification scores and detection positions. LD Zheng et al. (2023) is one
of the representative logits-based distillation methods, which designs a valuable localization region
to distill the student detector in a separate distillation region manner. Following the uncertainty es-
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Table 8: Classification performance with our
method on ImageNet dataset. T and S mean the
teacher and student, respectively.

Method Top-1 Top-5

ResNet-50 (T) 76.55 93.06
MobileNet (S) 69.21 89.02
MGD 72.35 90.71
MGD+Ours 72.83 (+0.48) 91.14 (+0.43)

Table 9: Semantic segmentation performance
with our method on Cityscapes val set. T and
S mean teacher and student, respectively.

Method Input Size mIoU

PspNet-Res101 (T) 512 × 1024 78.34
PspNet-Res18 (S) 512 × 512 69.85
MGD 512 × 512 73.63
MGD + Ours 512 × 512 74.15 (+0.52)

timation manner in feature-based distillation, we introduce it in the output features of the teacher
detector’s FPN network and then feed them into the head to obtain predicted logits, as shown in
Table 7. As expected, after introducing our method, the detector’s mAP reached 41.2%, compared
to the original LD’s mAP of 41.0%. This result further illustrates the importance of introducing
knowledge uncertainty for knowledge distillation in object detection.

4.5 EXTENDED TO OTHER POPULAR TASKS

Extended to classification tasks. We extend the proposed UET to the classification task and validate
its effectiveness on the ImageNet dataset, as shown in Table 8. Using ResNet-50 as the teacher and
MobileNet as the student, our method improves both Top-1 and Top-5 accuracies based on the MGD.
Specifically, the Top-1 accuracy increases from 72.35% to 72.83%, a gain of 0.48%, while the Top-5
accuracy improves from 90.71% to 91.14%, a gain of 0.43%. These results demonstrate that UET
consistently enhances performance in classification, reinforcing its applicability across tasks.

Extended to segmentation tasks. We extend the proposed UET to the semantic segmentation task
and validate its effectiveness on the Cityscapes dataset, as shown in Table 9. Specifically, following
the experimental configuration of MGD, we use PspNet-Res101 as the teacher model, trained for
80k iterations with an input size of 512 × 1024. For the student models, we use PspNet-Res18, each
trained for 40k iterations with 512 × 512. We set the number of samplings to 5 in this experiment.
After introducing our method, the mIoU of MGD can reach 74.15 for PspNet-Res18, which is 0.52
higher than the original MGD’s 73.63. These results demonstrate that our method is also applicable
to semantic segmentation.

4.6 EXTENDED TO OTHER BACKBONES

Extended to the backbone of the different types. Inspired by these prior meaningful works Miles
et al. (2024); Song et al. (2022), we further evaluate the RetinaNet detector with both heteroge-
neous and homogeneous backbones, including Transformer-CNN, CNN-CNN, and Transformer-
Transformer configurations. Detailed results are provided in A.3.

Extended to lightweight Backbones. To further explore the impact of the knowledge uncertainty
in lightweight Backbones, we conduct experiments using the GFL framework, and the analysis and
discussion of the results are provided in A.1. We also analyze the impact of introducing knowledge
uncertainty on the model’s convergence in lightweight detectors in A.2.

Visualization of detection results. We validate the effectiveness of our proposed method through
visualization evidence, and more details are listed in A.6.

5 CONCLUSIONS

In this paper, we investigate the significance of introducing knowledge uncertainty from teacher
models in object detection distillation and its impact on the learning process of student detectors.
Building upon this, we propose a novel UET general distillation paradigm, aimed at facilitating the
acquisition of latent knowledge by student models, while easily being adaptable to other distilla-
tion methods. Additionally, we present a simple yet effective uncertainty estimation approach by
integrating MC dropout, which seamlessly introduces uncertainty knowledge at minimal computa-
tional cost. Extensive experiments validate the effectiveness of following the UET paradigm across
various types of KDs, detectors, and backbones. In summary, we demonstrate that utilizing teacher
knowledge uncertainty enhances the learning capabilities of student models in the KD process.
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A APPENDIX

A.1 EXTENDED TO LIGHTWEIGHT BACKBONES

Expanding to lightweight detectors presents additional challenges in KD, as the knowledge gap
between teachers and students tends to be larger. Furthermore, due to the limitations in learning
capacity, student models may not fully comprehend the knowledge of the teacher model. This im-
plies that knowledge incomprehensible to these student models may affect their learning process as
noise. Therefore, introducing knowledge uncertainty in the teacher model may be more crucial in
the KD process for lightweight detectors. To further explore this, we conduct experiments using the
GFL framework, and the results are presented in Table 10. Compared with the setting of Section
4.1, we only alternate the ResNet50 with a lightweight backbone in the student detector. As hypoth-
esized, introducing knowledge uncertainty is crucial in lightweight detectors, leading to significant
improvements. When the student model with ResNet34 as the backbone, introducing knowledge un-
certainty results in a detector achieving 41.9% mAP, which is 2.2% higher than the 39.7% obtained
with pure FGD.

Table 10: Quantitative results for lightweight detectors.

Student FGD Ours mAP AP50 AP75 APS APM APL

Res18
35.8 53.1 38.2 18.9 38.9 47.9

✓ 33.3 (-2.5) 49.2 36.0 20.3 36.1 42.7
✓ ✓ 37.9 (+2.1) 54.9 41.0 21.9 41.5 49.3

Res34
38.9 56.6 42.2 21.5 42.8 51.4

✓ 39.7 (+0.8) 57.1 43.0 23.0 43.7 51.2
✓ ✓ 41.9 (+3.0) 59.6 45.3 24.3 46.0 54.4

A.2 CONVERGENCE ANALYSIS

We also analyze the impact of introducing knowledge uncertainty on the model’s convergence in
lightweight detectors. As illustrated in Figure 3, when we introduce knowledge uncertainty during
training, the model’s convergence speed significantly improved. Particularly, with ResNet34 as the
backbone, the student model following our paradigm even outperformed the baseline’s performance
in the third epoch. This indicates that introducing knowledge uncertainty in KD detection not only
enhances student learning ability but also accelerates the convergence speed.

1 2 3 4 5 6 7 8 9 10 11 12
FGD 9.3 11.4 12.2 12.8 13.6 13.1 21.6 25.0 31.8 32.2 32.8 33.3
Ours 10.3 11.7 12.9 24.6 27.9 30.1 31.6 31.9 37.0 37.3 37.5 37.9
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(a) The lightweight detector with ResNet18.

1 2 3 4 5 6 7 8 9 10 11 12
FGD 12.3 14.3 21.0 29.7 30.6 32.1 33.2 33.7 38.8 39.0 39.3 39.7
Ours 26.1 30.8 32.8 35.3 35.4 37.1 37.6 37.7 41.3 41.4 41.6 41.9
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(b) The lightweight detector with ResNet34.

Figure 3: Convergence analysis for the lightweight detectors

A.3 EXTENDED TO THE BACKBONE OF THE DIFFERENT TYPES

We conduct experiments on the RetinaNet detector with both heterogeneous and homogeneous back-
bones, and the results are presented in Table 11. Unsurprisingly, regardless of the backbone config-
uration being heterogeneous or homogeneous, the FGD method demonstrates stronger knowledge
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transfer capabilities after following the UET paradigm. For instance, under the heterogeneous back-
bone setting of SwinT Liu et al. (2021), the student detector achieves 37.7% mAP after introducing
knowledge uncertainty, surpassing the 37.4% obtained with pure FGD.

Considering the superior performance of Transformers in object detection, we followed prior mean-
ingful works Miles et al. (2024); Song et al. (2022) to conduct homomorphic experiments on Reti-
naNet with Transformer-based architectures. Specifically, we used SwinT-tiny as the teacher back-
bone and SwinT-nano as the student backbone. When employing PKD for distillation, the student
network achieves an mAP of 32.2. By integrating the proposed UET module, the mAP of the stu-
dent model is further improved, reaching 32.5. These findings further confirm the generalization
capability of UET in Transformer-based situations.

Table 11: Experiments for detectors with Heterogeneous and homogeneous backbone.

Methods Schedule mAP AP50 AP75 APS APM APL

SwinT (T) 1× 37.3 57.5 39.9 22.7 41.0 49.6
Res50 (S) 1× 36.5 55.4 39.1 20.4 40.3 48.1

FGD 1× 37.4 (+0.9) 56.8 39.9 22.6 41.3 48.7
FGD+Ours 1× 37.7 (+1.2) 57.2 40.2 21.9 41.7 59.0

SwinT-tiny (T) 1× 37.3 57.5 39.9 22.7 41.0 49.6
SwinT-nano (S) 1× 31.4 50.5 32.9 18.0 34.0 41.5

PKD 1× 32.2 (+0.8) 50.5 34.2 17.2 34.9 45.3
PKD+Ours 1× 32.5 (+1.1) 50.8 34.4 18.6 35.2 45.5

Res50 (T) 1× 36.5 55.4 39.1 20.4 40.3 48.1
Res50 (S) 1× 36.5 55.4 39.1 20.4 40.3 48.1

FGD 1× 37.4 (+0.9) 56.7 39.7 20.6 40.9 49.0
FGD+Ours 1× 37.9 (+1.4) 57.3 40.4 21.2 41.6 50.1

A.4 THE PSEUDO-CODE OF OUR UET PARADIGM

In comparison to the ET paradigm, we introduce the UET paradigm by incorporating knowledge
uncertainty. Building upon the ET paradigm, we estimate the uncertainty in the teacher detector’s
knowledge using Eq. 3 and then perform knowledge transfer according to Eq. 4. Existing fea-
ture distillation methods can transform from the ET to the UET paradigm with minimal additional
computational overhead (only requires a change in the high light parts of code).

Algorithm 1 UET Paradigm

1: Require: Training data xi{i=1,...,n},
FPN network of student detector Sdet,
FPN network of teacher detector Tdet,

2: Uniformly sample a minibatch of training data B(t)

3: for xi ∈ B(t) do
4: FT = Tdet(xi);
5: FS = Sdet(xi);
6: procedure UET PARADIGM(FT , FS)
7: Estimate Uncertainty: UK(x) ≈ 1

M

∑M
j=1 Dropoutj(F

T (x))
8: KD with Knowledge uncertainty:

argminθ LKD(θ) = dT(fE(UK(x) + FT (x)), fE(g(F
S(x, θ)))),

9: end procedure
10: end for

A.5 IMPACT OF DROPOUT ON TRAINING TIME

Our method does not require multiple runs of the teacher network, thereby avoiding significant
computational overhead. That is because multiple runs of the teacher network with dropout can
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be simplified to a single run of the teacher network followed by multiple dropout applications.
Moreover, we also further analyze the impact of applying dropout multiple times in our method
on training time, as shown in Figure 4. Using the experimental setup described in Section 4.1 of
the paper, we analyze the effect of the number of dropout applications. Without introducing any
uncertainty knowledge, the training time per iteration for FGD is 0.7571 seconds. When the number
of dropouts is set to 1, 5, 10, and 15, the training times for FGD are 0.7579 seconds, 0.7618 seconds,
0.7673 seconds, and 0.7720 seconds, respectively. These results indicate that our method does not
significantly increase the training time.

0 2 4 6 8 10 12 14
N Values

0.650

0.675

0.700

0.725

0.750

0.775

0.800

0.825

0.850
Av

er
ag

e 
Ite

ra
tio

n 
Ti

m
e 

(s
/it

er
)

0.75710.7579 0.7618
0.7673 0.7720

Average Iteration Time vs N Values
Average Iteration Time

Figure 4: Impact of Dropout on Training Time.

A.6 VISUALIZATION OF DETECTION RESULTS

We provide visual evidence to validate the effectiveness of our proposed method by presenting
detection results from the val2017 set of MS COCO Lin et al. (2014). Figure 5 shows that following
our UET paradigm allows FGD to outperform the original FGD in detecting more high-quality
bounding boxes. This suggests that our method effectively enhances the learning potential of student
detectors during the KD process.
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Figure 5: Visualization of detection results of Our method.
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A.7 COMPARISON RESULTS WITH THE AKD IN DIFFERENT TYPE FRAMEWORK ON MS
COCO.

We perform additional comparison experiments with AKD, following the setup outlined in Table 2.
The results, summarized in Table 12, demonstrate the consistent superiority of our method across the
Faster R-CNN and FCOS detectors. Specifically, our approach achieves an mAP of 40.8 on Faster
R-CNN, surpassing AKD’s 40.6, and 42.9 on FCOS, outperforming AKD’s 42.7. These results
highlight the effectiveness of UET in enhancing the KD process.

Table 12: Comparison Results with the AKD in different type framework on MS COCO.

Method Schedule mAP AP50 AP75 APS APM APL

Two-stage detectors
Faster R-CNN-Res101 (T) 2× 39.8 60.1 43.3 22.5 43.6 52.8
Faster R-CNN-Res50 (S) 2× 38.4 59.0 42.0 21.5 42.1 50.3
FGD 2× 40.5 - - 22.6 44.7 53.2
+AKD 2× 40.6 60.2 43.9 22.8 44.3 53.6
+Ours 2× 40.8 61.0 44.5 23.5 44.9 53.7

One-stage detectors
FCOS-Res101 (T) 2×, ms 40.8 60.0 44.0 24.2 44.3 52.4
FCOS-Res50 (S) 2×, ms 38.5 57.7 41.0 21.9 42.8 48.6
FGD 2× 42.7 - - 27.2 46.5 55.5
+AKD 2× 42.7 61.4 46.1 26.9 46.5 54.6
+Ours 2× 42.9 61.6 46.3 27.1 46.8 54.7

18


	Introduction
	Related works
	Object detection with knowledge distillation
	Uncertainty estimation

	Methods
	KD method in ET paradigm
	Formulation of KD with knowledge uncertainty
	Joint knowledge distillation of deterministic and uncertainty

	Experiments
	Settings
	Main results
	Ablation analysis
	Generalization to different KDs
	Extended to other popular tasks
	Extended to other backbones

	Conclusions
	Appendix
	Extended to lightweight Backbones
	Convergence Analysis
	Extended to the backbone of the different types
	The pseudo-code of our UET paradigm
	Impact of Dropout on Training Time
	Visualization of detection results
	Comparison Results with the AKD in different type framework on MS COCO.


