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Abstract

We introduce a formulation for learning dimensionality-reducing representations1

of unlabeled feature vectors, when a prior knowledge on future prediction tasks2

is available. The formulation is based on a three-player game, in which the first3

player chooses a representation, the second player then adversarially chooses a4

prediction task, and the third player predicts the response based on the represented5

features. The first and third player aim is to minimize, and the second player to6

maximize, the regret: The minimal prediction loss using the representation com-7

pared to the same loss using the original features. Our first contribution is theoret-8

ical and addresses the mean squared error loss function, and the case in which the9

representation, the response to predict and the predictors are all linear functions.10

We establish the optimal representation in pure strategies, which shows the effec-11

tiveness of the prior knowledge, and the optimal regret in mixed strategies, which12

shows the usefulness of randomizing the representation. We prove that optimal13

randomization requires a precisely characterized finite number of representations,14

which is smaller than the dimension of the feature vector, and potentially much15

smaller. Our second contribution is an efficient gradient-based iterative algorithm16

that approximates the optimal mixed representation for a general loss function,17

and general classes of representations, response functions and predictors.18

1 Introduction19

A common practice in modern data-science is to collect as much data as possible, even without20

an exact knowledge of a subsequent prediction task it will be used for. The data collected is an21

unlabeled set of feature vectors {xi} ⊂ Rd . Then, when a specific prediction task becomes of22

interest, responses yi ∈ Y are collected, and a learning algorithm is trained on the pairs {(xi,yi)}.23

Modern sources, such as high-definition images or genomic sequences, have high dimension d, and24

this raises the question of dimensionality-reduction, either for a better generalization [1], for stor-25

age/communication savings [2–4], or for interpretability [5]. The goal is thus to find a representation26

z = R(x) ∈ Rr, where d� r, that preserves the relevant part of the features, without a full knowl-27

edge of their utility for future prediction tasks. In this paper, we propose an unsupervised-learning28

game-theoretic framework for this goal, whose central aspect is an assumption of prior knowledge29

on the class of future prediction tasks. Our contributions are a theoretical solution in a fully linear30

setting, under the mean squared error (MSE) loss, and an algorithm for the general setting.31

Popular approaches to dimensionality reduction are oblivious to prior knowledge on the prediction32

task. Most prominently, principal component analysis (PCA) [6–9], and non-linear extensions such33

as kernel PCA [10] and auto-encoders (AE) [11–13, 1], aim that the representation z will maximally34

preserve the variation in x. Nonetheless, prior knowledge may indicate that the highly varying di-35

rections in the feature space are irrelevant for future prediction tasks. From the supervised learn-36
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ing perspective, it is well established that efficient representations are inherent to efficient learning37

[14, 15]. In this respect, the information bottleneck (IB) principle [16–19] was used to postulate38

that efficient supervised learning learns representations which are both low-complexity and relevant39

[20–24] (this spurred a debate, e.g., [25, 26]). The original IB formulation is based on the mutual in-40

formation functional [27], which is difficult to estimate (especially in high dimensions), and ignores41

complexity constraints on the representation or prediction [28, 29]; see a review in Appendix B. Us-42

ing the notion of usable information, introduced in [28], optimal representations for the supervised43

learning setting were explored in [29] via a two-player game between Alice, which selects a pre-44

diction problem of y given x, and Bob, which then selects the representation z. Alice then uses an45

empirical risk minimizer with the standard goal of minimizing the expected risk. It was established46

in [29] that ideal generalization is obtained for representations that optimize the decodable IB.47

In this paper, we build upon [29], and propose a three-player game for unsupervised representation-48

learning, chosen without a specific prediction problem (Section 2). First, the representation player49

reduce x ∈ Rd to a representation z ∈ Rr, where r < d. Second, the response function player50

chooses a response (label) y rule f for x, from a given known class of (random) response functions51

F . The choice of this class manifests the prior knowledge available on the type of prediction prob-52

lems that the representations will be used for. Third, the predictor player optimally predicts y from53

z. The value of the game is determined by the regret: The prediction loss based on the representation54

z compared to prediction loss based on x. The first and last player cooperate in order to minimize55

the regret, whereas the response function player aims to maximize it. In other words, the represen-56

tation is chosen to minimize the worst-case prediction loss for any response in F . The output of this57

game is the representation chosen by the first player. In order to focus on the representation aspect58

we side-step the generalization problem, and assume that sufficient labeled data will be provided to59

the predictor later on in order to accurately estimate the prediction rule.60

This formulation directly addresses the relevance of a “direction” in the feature space to the pre-61

diction tasks in F , rather than its variability, as in standard unsupervised learning (e.g., PCA and62

AE). Compared to [29], the representation is chosen based only on the class of possible response63

functions, rather than a specific one. Such knowledge on F may stem from various considerations:64

Domain specific, imposed by privacy or fairness constraints, or stem from transfer or continual65

learning setting; see Appendix A for an extended discussion. Technically, the game in [29] replaces66

the order of the first (representation) and second (response) players. From a different perspective,67

our method is a self-supervised learning method, for which the prior knowledge on F serves as a68

“self-defined signal” for choosing an optimal representation, without any labeled data (see, e.g., [30]69

and [31] for recent surveys). In addition, our game formulation naturally leads to a mixed strategies70

solution [32], that is, allowing the representation player to randomized the representation rule, in71

order to mix up the adversarial response player. This randomization is an inherent aspect of the IB72

formulation, but its usage there is not rigorously justified. By contrast, for standard unsupervised73

learning, mixed representation does not improve the regret (see Proposition 14 in Appendix E.1 for74

the PCA setting). In Appendix B we provide a thorough discussion of related work.75

Contributions76

• Theoretical: We address the fundamental setting in which the representation, the response, and77

the prediction are linear functions, under the MSE loss function (Section 3). The prior knowledge78

on F is represented by a symmetric matrix S that determines the principal directions of the function79

in the feature space. We establish the optimal representation and regret in pure strategies, which80

shows the utility of the prior information, and in mixed strategies, which shows that randomizing the81

representation yields strictly lower regret. We prove that randomizing between merely `∗ different82

representation rules suffices, where r + 1 ≤ `∗ ≤ d is a precisely characterized effective dimension.83

• Algorithmic: We develop an iterative gradients-based algorithm that approximates the optimal84

mixed representation (Section 4) for general representations/response/predictors and loss functions.85

The algorithm is greedy, and alternates between finding a new representation rule and an adversarial86

function. We empirically verify that the output mixed representation has close-to-optimal regret87

in the linear MSE setting. To optimize the weights of the representation, we essentially solve a88

minimax two-player games, and to this end, we utilize the classic multiplicative weights update89

(MWU) algorithm [33] (which is essentially a follow-the-regularized-leader [34, 35]).90
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2 Problem formulation91

We use mostly conventional notation that is detailed in Appendix C. Specifically, the eigenval-92

ues of a positive-semidefinite matrix S are denoted as λmax(S) ≡ λ1(S) ≥ · · · ≥ λd(S) =93

λmin(S) and vi(S) denotes an eigenvector corresponding to λi(S) such that V = V (S) :=94

[v1(S), v2(S), · · · , vd(S)] ∈ Rd×d and S = V (S)Λ(S)V >(S) is an eigenvalue decomposition.95

For a matrix W ∈ Rd×d we let Wi:j := [wi, . . . , wj ] ∈ R(j−i+1)×d denote the matrix comprised of96

the columns indexed by {i, . . . , j}. We denote the probability law of a random variable x as L(x).97

Let x ∈ X be a random feature vector, where Px := L(x) is known. Let y ∈ Y be a corresponding98

response drawn according to a probability kernel y ∼ f(· | x = x), where for brevity, we will refer99

to f as the response function. We assume f ∈ F for some known class F . Let z := R(x) ∈ Rr be100

an r-dimensional representation of x where R:X → Rr is chosen from a class R of representation101

functions, and let Q:Rr → Y be a prediction rule from a class Q, with the loss function loss:Y ×102

Y → R+. The regret of the representation R for the response function f is103

regret(R, f | Px) := min
Q∈Q

E [loss(y, Q(R(x)))]− min
Q:Rd→Y

E [loss(y, Q(x))] . (1)

The minimax regret in mixed strategies is defined via the worst case response function in F as104

regretmix(R,F | Px) := min
L(R)∈P(R)

max
f∈F

E [regret(R, f | Px)] , (2)

where P(R) is a set of probability measures on the possible set of representations R. The minimax105

regret in pure strategies restricts P(R) to degenerated measures (deterministic), and so the expec-106

tation in (2) is removed. Our main goal is to determine the optimal representation strategy, either107

in pure R∗ ∈ R or mixed strategies L(R∗) ∈ P(R). To this end, we will also utilize the maximin108

version of (2). Specifically, let P(F) denote a set of probability measures supported on F , and109

assume that for any R ∈ R, there exists a measure in P(R) that puts all its mass on R. Then, the110

minimax theorem [32, Chapter 2.4] [36] implies that111

regretmix(R,F | Px) = max
L(f)∈P(F)

min
R∈R

E [regret(R,f | Px)] . (3)

The right-hand side of (3) is the maximin regret in mixed strategies, and the maximizing prob-112

ability law L(f∗) is known as the least favorable prior. In general, regretmix(R,F | Px) ≤113

regretpure(R,F | Px), and the inequality can be strict. We mention that the use of expectation114

in the definition of the mixed regret over the randomized representation, implies that the empirical115

performance of a system based on this randomized representation achieves the mixed minimax re-116

gret value in the limit of large number of repeating representation games. The size of the dataset for117

each of these games should be large enough to allow for accurate learning of f to be used by the118

predictor. By contrast, the pure minimax regret guarantee is valid for a single representation, and119

thus more conservative from this aspect.120

3 The linear setting under MSE loss121

In this section, we focus on linear classes and the MSE loss function. The response function class122

is characterized by a quadratic constraint, to wit, the class F is specified by a matrix S ∈ Sd++ that123

represents the relative importance of each direction in the feature space in determining y.124

Definition 1 (The linear MSE setting). Assume that X = Rd, that Y = R and the loss function is125

the MSE, loss(y1, y2) = |y1 − y2|2 . Assume that E[x] = 0 and let Σx := E[xxT ] ∈ Sd++ be its126

invertible covariance matrix. The classes of representations, response functions, and predictors are127

all linear, that is: (1) The representation is z = R(x) = R>x for R ∈ R := Rd×r where d > r; (2)128

The response function is F ∈ F ⊂ Rd , and y = f>x + n ∈ R, where n ∈ R is a heteroscedastic129

noise that satisfies E[n | x] = 0, and given some specified S ∈ Sd++130

f ∈ FS :=
{
f ∈ Rd: ‖f‖2S≤ 1

}
, (4)

where ‖f‖S := ‖S−1/2f‖2= (f>S−1f)1/2 is the Mahalanobis norm; (3) The predictor is Q(z) =131

q>z ∈ R for q ∈ Rr. Since the regret will depend on Px only via Σx, we will abbreviate the132

notation of the pure (resp. mixed) minimax regret to regretpure(F | Σx) (resp. regretmix(F | Σx)).133
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In Appendix E.1 we show that standard PCA can be similarly formulated, by assuming that F134

is a singleton containing the noiseless identity function, so that y = x surely holds, and x̂ =135

Q(z) ∈ Rd. Proposition 14 therein shows that the pure and mixed minimax representations are both136

R = V1:r(Σx), and so randomization is not unnecessary. We begin with the pure minimax regret.137

Theorem 2. For the linear MSE setting (Definition 1)138

regretpure(FS | Σx) = λr+1

(
Σ1/2

x SΣ1/2
x

)
. (5)

A minimax representation matrix is139

R∗ := Σ−1/2
x · V1:r

(
Σ1/2

x SΣ1/2
x

)
, (6)

and the worst case response function is140

f∗ := S1/2 · vr+1

(
Σ1/2

x SΣ1/2
x

)
. (7)

The optimal representation thus whitens the feature vector x, and then projects it on the top r141

eigenvectors of the adjusted covariance matrix Σ
1/2
x SΣ

1/2
x , which reflects the prior knowledge that142

f ∈ FS . The proof is deferred to Appendix E.2, and its outline is as follows: Plugging the op-143

timal predictor into the regret results a quadratic form in f ∈ Rd, determined by a matrix which144

depends on the subspace spanned by the representation R. The worst-case f is the determined via145

the Rayleigh quotient theorem [37, Theorem 4.2.2], and the optimal R is found via the Courant–146

Fischer variational characterization [37, Theorem 4.2.6] (see Appendix D for a summary of useful147

mathematical results). We next consider the mixed minimax regret.148

Theorem 3. For the linear MSE setting (Definition 1)149

regretmix(FS | Σx) =
`∗ − r∑`∗

i=1 λ
−1
i

, (8)

where λi ≡ λi(S1/2ΣxS
1/2) and `∗ is any member of150 {

` ∈ [d]\[r]: (`− r) · λ−1
` ≤

∑̀
i=1

λ−1
i ≤ (`− r) · λ−1

`+1

}
(9)

(with λd+1 ≡ 0). Furthermore:151

• The covariance matrix of the least favorable prior of f : Let Λ` := diag(λ1, . . . , λ`∗ , 0, · · · , 0),152

and let V ≡ V (S1/2ΣxS
1/2). Then, the covariance matrix of the least favorable prior of f is153

Σ∗f :=
V >Λ−1

`∗ V∑`∗

i=1 λ
−1
i

. (10)

• The probability law of the minimax representation: Let A ∈ {0, 1}`
∗×(`

∗
r ) be a matrix whose154

columns are the members of the set155

A := {a ∈ {0, 1}`
∗
: ‖a‖1= `∗ − r} (11)

(in an arbitrary order). Let b = (b1, . . . , b`∗)
> be such that156

bi = (`∗ − r) · λ−1
i∑`∗

j=1 λ
−1
j

. (12)

Then, there exists a solution p ∈ [0, 1](
`∗
r ) with support size at most `∗+1 toAp = b. For j ∈ [

(
`∗

r

)
],157

let Ij := {i ∈ [`∗]:Aij = 0} be the zero indices on the jth column of A, and let VIj denote the r158

columns of V whose index is in Ij . A minimax representation is159

R∗ = Σ−1/2
x VIj (13)

with probability pj , for j ∈ [
(
`∗

r

)
].160
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Interestingly, while the eigenvalues λi(Σ
1/2
x SΣ

1/2
x ) = λi(S

1/2ΣxS
1/2) are equal, the pure mini-161

max regret utilizes the eigenvectors of Σ
1/2
x SΣ

1/2
x whereas the mixed minimax regret utilizes those162

of S1/2ΣxS
1/2, which are possibly different. The proof of Theorem 3 is also in Appendix E.2, and163

is substantially more complicated and longer than for the pure regret. We use a two-step indirect164

approach, since it seems challenging to directly maximize over L(R). First, we solve the maximin165

problem (3), and find the least favorable prior L(f∗). Second, we propose a probability law for the166

representation L(R), and show that its regret equals the maximin value, and thus also the minimax.167

With more detail, in the first step, we show that the regret only depends on L(f) via Σf = E[ff>],168

and we explicitly construct a probability law that is both fully supported on FS and has this co-169

variance matrix. This reduces the problem from optimizing L(f) to optimizing Σf , whose solution170

(Lemma 16) leads to the least favorable Σ∗f , and then to the maximin value. In the second step,171

we explicitly construct a representation that achieves the maximin regret. Concretely, we construct172

representation matrices that use r of the `∗ principal components of Σ
1/2
x SΣ

1/2
x , where `∗ > r.173

The defining property of `∗ (9) established in the maximin solution is utilized to find weights on the174 (
`∗

r

)
possible representations, that achieves the maximin solution, and thus also the minimax. The175

proof uses Carathéodory’s theorem (see Appendix D) which also establishes that the optimal {pj}176

is supported on at most `∗ + 1 matrices, much less than
(
`∗

r

)
. We next make a few comments:177

1. Computing the mixed minimax probability: This requires solving A
>
p = b for a probability178

vector p, which is a linear-program feasibility problem that is routinely solved [38]. For illustration,179

if r = 1 then A ∈ {0, 1}`∗×`∗ is a square all ones matrix, except for a zero diagonal, and pj =180

1 − (`∗ − 1)λ−1
j /(

∑`∗

i=1 λ
−1
i ) for j ∈ [`∗]. Similarly, the case `∗ = r + 1 is solved by setting181

pj = (λ−1
j )/(

∑`∗

j′=1 λ
−1
j′ ) on the `∗ standard basis vectors. Nonetheless, the dimension of p is

(
`∗

r

)
182

and thus increases fast as Θ((`∗)r) , and this approach may be intractable. However, in this case the183

algorithm we present in Section 4 can be used. As we empirically show, it approximately achieves184

the optimal regret, and the number of atoms is not much larger than `∗ + 1.185

2. Required randomness: The regret formulation (2) assumes that the actual realization of the rep-186

resentation rule is known to the predictor. Formally, this can be conveyed to the predictor using an187

small header of less than log2(`∗ + 1) ≤ log(d + 1) bits. Practically, this is unnecessary and an188

efficient predictor can be learned from a labeled data set (z,y).189

3. The rank of Σ∗f : The rank of the covariance matrix of the least favorable prior is an effective190

dimension, satisfying (see (8))191

`∗ = arg max
`∈[d]\[r]

1− (r/`)
1
`

∑`
i=1 λ

−1
i

. (14)

By convention, {λ−1
i }i∈[d] is a monotonic non-decreasing sequence, and so is the partial Cesàro192

mean ψ(`) := 1
`

∑`
i=1 λ

−1
i . For example, if λi = i−α with α > 0 then ψ(`) = Θ(`α). If, e.g.,193

ψ(`) = `α, then it is easily derived that `∗ ≈ min{α+1
α r, d}. So, if α ≥ r

d−r is large enough and194

the decay rate of {λi} is fast enough then `∗ < d, and otherwise `∗ = d. As the decay rate of195

{λi} becomes faster, the rank of Σ∗f decreases to r. Importantly, `∗ ≥ r + 1 always holds, and so196

the optimal mixed representation is not deterministic even if S1/2ΣxS
1/2 has less than r significant197

eigenvalues (which can be represented by a single matrix R ∈ Rd×r). Hence, the mixed minimax198

regret is always strictly lower than the pure minimax regret. Thus, even when S = Id, and no199

valuable prior knowledge is known on the response function, the mixed minimax representation is200

different from the standard PCA solution of top r eigenvectors of Σx.201

4. Uniqueness of the optimal representation: Since one can always post-multiply R>x by some202

invertible matrix, and then pre-multiply z = R>x by its inverse, the following simple observation203

holds: WhenR andQ are not further restricted, then if R is a minimax representation, andW (R) ∈204

Rr×r is an invertible matrix, then R ·W (R) is also a minimax representation.205

5. Infinite-dimensional features: Theorems 2 and 3 assume a finite dimensional feature space, but206

as we show in Appendix F, the results can be easily generalized to an infinite dimensional Hilbert207

space X , in the more restrictive setting that the noise n is statistically independent of x.208

Example 4. Assume S = Id, and denote, for brevity, V ≡ V (Σx) := [v1, . . . , vd] and Λ ≡209

Λ(Σx) := diag(λ1, . . . , λd). The optimal minimax representation in pure strategies (Theorem 2) is210
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Figure 1: Left: Pure and mixed minimax regret and `∗ for Example 4, for d = 50, r = 25, with
λi = σ2

i ∝ i−α. Right: Pure and mixed minimax regret and `∗ for Example 5, for d = 50, r = 25,
with σ2

i ∝ i−α and si ∝ i2. The trend of `∗ is reversed for α > 2.

then211

R∗ = Σ−1/2
x · V1:r = V Λ−1/2

x V >V1:r = V Λ−1/2
x · [e1, . . . , er] =

[
λ
−1/2
1 · v1, . . . , λ

−1/2
r · vr

]
,

(15)

which is comprised of the top r eigenvectors of Σx, scaled so that v>i x has unit variance. By212

Comment 4 above, V1:r is also an optimal minimax representation. The worst case response is213

f = vr+1(Σx) and, as expected, since R uses the first r principal directions214

regretpure(F | Σx) = λr+1. (16)
The minimax regret in mixed strategies (Theorem 3) is different, and given by215

regretmix(F | Σx) =
`∗ − r∑`∗

i=1 λ
−1
i

, (17)

where `∗ is determined by the decay rate of the eigenvalues of Σx (see (9)). The least favorable216

covariance matrix is given by (Theorem 3)217

Σ∗f =

[
`∗∑
i=1

λ−1
i

]−1

· V diag
(
λ−1

1 , . . . , λ−1
`∗ , 0, · · · , 0

)
· V >. (18)

Intuitively, the least favorable Σ∗f equalizes the first `∗ eigenvalues of ΣxΣ∗f (and nulls the other218

d− `∗) so that the representation is indifferent to these `∗ directions. As evident from the regret, the219

“equalization” of the ith eigenvalue adds a term of λ−1
i to the denominator, and if λi is too small220

then vi is not chosen for the representation, as agrees with Comment 3 above (a fast decay of {λi}221

reduces `∗ away from d). The mixed minimax representation sets222

R∗ = Σ−1/2
x · VIj =

[
λ
−1/2
ij,1

· vij,1 , . . . , λ
−1/2
ij,r

· vij,r
]

(19)

with probability pj , where Ij ≡ {ij,1, . . . , ij,r} (the derivation is similar to (15)). Thus, the optimal223

representation chooses a random subset of r vectors from {v1, . . . , v`∗}. See the left panel of Figure224

1 for a numerical example.225

Example 5. To demonstrate the effect of prior knowledge on the response function, we assume226

Σx = diag(σ2
1 , . . . , σ

2
d) and S = diag(s1, . . . , sd), where σ2

1 ≥ σ2
2 ≥ · · · ≥ σ2

d (but {si}i∈[d]227

are not necessarily ordered). Letting f = (f1, . . . , fd), the class of response functions is FS :=228

{f ∈ Rd:
∑d
i=1(f2

i /si) ≤ 1}, and so coordinates i ∈ [d] with a large si have large influence on229

the response. Let (i(1), . . . , i(d)) be a permutation of [d] so that σ2
i(j)si(j) it the jth largest value of230

(σ2
i si)i∈[d]. The pure minimax regret is (Theorem 2)231

regretpure(F | Σx) = σ2
ir+1

sir+1 . (20)

The optimal representation is R = [ei(1) , ei(2) , . . . , ei(r) ], that is, uses the most influential coordi-232

nates, according to {si}, which may be different from the r principal directions of Σx. For the233

minimax regret in mixed strategies, Theorem 3 results234

regretmix(F | Σx) =
`∗ − r∑`∗

j=1(sijσ
2
ij

)−1
(21)

6



for `∗ ∈ [d]\[r] satisfying (9), and the covariance matrix of the least favorable prior is given by235

Σ∗f =

∑`∗

j=1 σ
−2
ij
· eije>ij∑`∗

j=1(sijσ
2
ij

)−1
. (22)

That is, up to a scale factor (
∑`∗

i=1 s
−1
i σ−2

i )−1, the matrix is diagonal so that the kth term on the236

diagonal is Σ∗f (k, k) = σ−2
k if k = ij for some j ∈ [`∗] and Σ∗f (k, k) = 0 otherwise. As in237

Example 4, Σ∗f equalizes the first `∗ eigenvalues of ΣxΣf (and nulls the other d− `∗). However, it238

does so in a manner that chooses them according to their influence on f>x. The random minimax239

representation in mixed strategies is240

R∗ =
[
σ−1
ij,1
· eij,1 , . . . , σ−1

ij,r
· eij,r

]
(23)

with probability pj . Again, all the first `∗ coordinates are used, and not just the top r. See the right241

panel of Figure 1 for a numerical example. We finally remark that, naturally, in the non-diagonal242

case, the minimax regret will also depend on the relative alignment between S and Σx.243

4 An iterative algorithm for general classes and loss functions244

In this section, we develop an iterative algorithm for finding the optimal representation in mixed245

strategies, i.e., solving (2) for general classes and loss functions. Since optimizing general probabil-246

ity measures over R is formidable, we restrict the optimization to finite mixed representations, i.e.,247

assume that R = R(j) ∈ R with probability p(j), where j ∈ [m] (which suffices for the linear MSE248

setting of Section 3, but possibly sub-optimal in general). Furthermore, the algorithm’s operation249

will require randomization also for the response player, and so we set f = f (i) ∈ F with probability250

o(i) where i ∈ [m], and m = m0 + m for some m0 ≥ 0. The resulting optimization problem then251

becomes252

min
{p(j),R(j)∈R}

max
{o(i),f(i)∈F}

min
{Q(j,i)∈Q}

∑
j∈[m]

∑
i∈[m]

p(j) ·o(i) ·E
[
loss(f (i)(x), Q(j,i)(R(j)(x)))

]
, (24)

under the constraints p(j) ≥ 0 and
∑
j p

(j) = 1, and o(i) ≥ 0 and
∑
i o

(i) = 1. Note that the253

prediction ruleQ(j,i) is determined based on bothR(j) and f (i), and that the ultimate goal of solving254

(24) is just to extract the optimal R.255

A high level description of the algorithm is to gradually add more representations to the support size256

of R up tom, where next k will denote the current number of representations, k ∈ [m]. Initialization257

requires an representation R(1), as well as a set of functions {f (i)}i∈m0
, so that the final support258

size of f will be m = m0 + m. Finding this initial representation and the set of functions is based259

on the specific loss function and a possible set of representation/predictors. At iteration k ∈ [m], the260

main loop of the algorithm has two phases. In the first phase, a new adversarial function is added261

to the set of functions, as the worse function for the current random representation. In the second262

phase, a new representation atom is added to the set of possible representations. This representation263

is determined based on the given set of functions. Concretely, the two phases operate as follows:264

• Phase 1 – Given k representations {R(j)}j∈(k) with weights {p(j)}j∈[k], the algorithm determines265

the function f (m0+k) as the worst function for this random representation (optimal adversarial action266

of the response function player). Specifically,267

regk := regretmix({R(j), p(j)}j∈[k],F | Px) (25)

:= max
f∈F

min
{Q(j)∈Q}j∈[k]

∑
j∈[k]

p(j) · E
[
loss(f(x), Q(j)(R(j)(x)))

]
(26)

is solved, and f (m0+k) is set to be the maximizer. This simplifies (24) in the sense thatm is replaced268

by k, the random representation R is kept fixed, and f ∈ F is optimized as a pure strategy (the269

previous functions {f (i)}i∈[m0+k−1] are ignored).270
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• Phase 2 – Adding a representation atom: Given fixed {f (j)}j∈[m0+k] and {R(j)}j∈[k], a new271

representationR(k+1) is found as the most incrementally valuable representation atom. Specifically,272

min
R(k+1)∈R

regretmix({R(j1)}j1∈[k+1], {f (j2)}j2∈[m0+k] | Px)

:= min
R(k+1)∈R

min
{p(j1)}j1∈[k+1]

max
{o(j2)}j2∈[m0+k]

min
{Q(j1,j2)∈Q}j1∈[k+1],j2∈[m0+k]∑

j1∈[k+1]

∑
j2∈[m0+k]

p(j1) · o(j2) · E
[
loss(f (j1)(x), Q(j1,j2)(R(j1)(x)))

]
(27)

is solved, the solution R(k+1) is added to the set of representations, and the weights are updated to273

the optimal {p(j1)}j1∈[k+1]. Compared to (24), here the response functions and current k represen-274

tations are kept fixed, and only their weights {p(j1)} {o(j2)} are optimized, along with R(k+1).275

The procedure is described in Algorithm 1, where, following the main loop, m∗ =276

arg mink∈[m] regk representation atoms are chosen and the output is {R(j), p(j)}j∈[m∗]. Algorithm277

1 relies on solvers for the Phase 1 (26) and Phase 2 (27) problems. In Appendix G we propose two278

algorithms for these problems, which are based on gradient steps for updating the adversarial re-279

sponse and the new representation, and on the MWU algorithm [33] (follow-the-regularized-leader280

[35]) for updating the weights. In short, the Phase 1 algorithm updates the response function f via281

a projected gradient step of the expected loss, and then adjusts the predictors {Q(j)} to the updated282

response function f and the current representations {R(j)}j∈[k]. The Phase 2 algorithm only up-283

dates the new representation R(k+1) via projected gradient steps, while keeping {R(j)}j∈[k] fixed.284

Given the representations {R(j)}j∈[k+1] and the functions {f (i)}i∈[m0+k], a predictor Q(j,i) is then285

fitted to each representation-function pair, which also determines the loss for this pair. The weights286

{p(j)}j∈[k+1] and {o(i)}i∈[m0+k] are updated towards the equilibrium of the two-player game deter-287

mined by the loss of the predictors {Q(j,i)}j∈[k+1],i∈[m0+k] via the MWU algorithm.

Algorithm 1 Solver of (24): An iterative algorithm for learning mixed representations.
1: input Px,R,F ,Q, d, r,m,m0 . Feature distribution, classes, dimensions and parameters
2: input R(1) , {f (j)}j∈[m0] . Initial representation and initial function (set)
3: begin
4: for k = 1 to m do
5: phase 1: f (m0+k) is set by a solver of (26) and

regk ← regretmix({R(j), p(j)}j∈[k],F | Px) (28)

. Solved using Algorithm 2
6: phase 2: R(k+1), {p(j)

k }j∈[k+1] is set by a solver of (27) . Solved using Algorithm 3; step
can be removed if k = m

7: end for
8: set m∗ = arg mink∈[m] regk
9: return {R(j)}j∈[m∗] and pm∗ = {p(j)

k }j∈[m∗]

288

We next outline two examples, where full details can be found in Appendix H.289

Example 6. We validate that efficiency of Algorithm 1 in the linear MSE setting (Section 3), for290

which a closed-form solution exists. We ran Algorithm 1 on randomly drawn diagonal Σx, and291

computed the ratio between the regret obtained by the algorithm to the theoretical value. The left292

panel of Figure 2 shows that the ratio is between 1.15−1.2 in a wide range of d values. We mention293

again that Algorithm 1 is useful even for this setting since finding an (`∗ + 1)-sparse solution to294

Ap = b is computationally difficult when
(
`∗

r

)
is very large. For example, in the largest dimension295

of the experiment, the potential number of representation matrices is
(
d
r

)
=
(

19
5

)
= 11, 628.296

Our next example pertains to a logistic regression setting, under the cross-entropy loss function.297

Definition 7 (The linear cross-entropy setting). Assume that X = Rd, that Y = {±1} and that298

E[x] = 0. Assume that the class of representation is linear z = R(x) = R>x for some R ∈ R :=299
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Figure 2: Results of Algorithm 1. Left: r = 5, varying d. The ratio between the regret achieved by
Algorithm 1 and the theoretical regret in the linear MSE setting. Right: r = 3, varying d. The regret
achieved by Algorithm 1 in the linear cross entropy setting, various m.

Rd×r where d > r. Assume that a response function and a prediction rule determine the probability300

that y = 1 via logistic regression modeling, as f(y = ±1 | x) = 1/[1 + exp(∓f>x)]. Assume301

the cross-entropy loss function, where given that the prediction that y = 1 with probability q results302

the loss loss(y, q) := − 1
2 (1 + y) log q − 1

2 (1− y) log(1 − q). The set of predictor functions is303

Q :=
{
Q(z) = 1/[1 + exp(−q>z)], q ∈ Rr

}
. As for the linear case, we assume that f ∈ FS304

for some S ∈ Sd++. It is not difficult to show that the regret is then given by the expected binary305

Kullback-Leibler (KL) divergence306

regret(R, f | Px) = min
q∈Rr

E
[
DKL

(
[1 + exp(−f>x)]−1 || [1 + exp(−q>R>x)]−1

)]
. (29)

Example 8. We ran Algorithm 1 on empirical distributions of features drawn from an isotropic307

normal distribution, in the linear cross-entropy setting. Algorithm 1 is suitable in this setting since308

gradients of the regret have closed-form (see Appendix H). The right panel of Figure 2 shows the309

reduced regret obtained by increasing the support size m of the random representation, and thus the310

effectiveness of mixed representations.311

We refer the reader to Appendix I for additional experiments with Algorithm 1.312

5 Conclusion313

We proposed a game-theoretic formulation for learning representations of unlabeled features when314

prior knowledge (or assumptions) on the class of future prediction tasks is available. We focused on315

the fundamental of linear MSE setting, and derived the optimal solution. Beyond the lower regret316

that is directly obtained from utilizing the prior knowledge, our results also revealed the importance317

of using randomized representations. We have then proposed an iterative algorithm suitable for318

general classes of functions and losses, and exemplified its effectiveness.319

We next discuss limitations and potential future research: (1) We have focused on the elementary and320

simplified class FS = {f : ‖f‖S≤ 1}, mainly for theoretical investigations. A natural refinement to321

non-linear functions is the general class FSx := E
[
‖∇xf(x)‖2Sx

]
≤ 1, where {Sx}x∈Rd is now322

locally specified (somewhat similarly to the regularization term used in contractive AE [39], though323

for different reasons). (2) Since the proposed iterative algorithm includes optimization over three324

players, it is of interest to develop version of the algorithm with lower computational optimization325

cost. (3) We have assumed that FS is given in advance, and a natural follow-up goal is to efficiently326

learn S from previous experience, e.g., improving S from one episode to another in a meta-learning327

setup [40]. (4) It is interesting to evaluate the effectiveness of the learned representation in our328

formulation, as an initialization for further optimization when labeled data is collected. One may329

postulate that since our learned representation is uniformly good for all response functions in the330

class, it may serve as a universal initialization for such training.331

9



Broader impact332

The research described in this paper is foundational, and does not aim for any specific application.333

Nonetheless, the learned representation is based on a prior assumption on the class of response334

functions, and the choice of this prior may have positive or negative impacts: For example, a risk335

of this choice of prior is that the represented features completely ignore a viable feature for making336

future predictions. A benefit that can stem from choosing a proper prior is that the representation337

will null the effect of features that lead to unfair advantages for some particular group, in future338

predictions. Anyhow, the results presented in the paper are indifferent to such future utilization, and339

any usage of these results should take into account the aforementioned possible implications.340
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