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Abstract
The COVID-19 pandemic has highlighted the critical need for advanced technology in healthcare. Clinical Decision Support
Systems (CDSS) utilizing Artificial Intelligence (AI) have emerged as one of the most promising technologies for improving
patient outcomes. This study’s focus on developing a deep state-space model (DSSM) is of utmost importance, as it addresses
the current limitations ofAI predictivemodels in handling high-dimensional and longitudinal electronic health records (EHRs).
The DSSM’s ability to capture time-varying information from unstructured medical notes, combined with label-dependent
attention for interpretability, will allow for more accurate risk prediction for patients. As we move into a post-COVID-19 era,
the importance of CDSS in precision medicine cannot be ignored. This study’s contribution to the development of DSSM for
unstructured medical notes has the potential to greatly improve patient care and outcomes in the future.

Keywords Longitudinal electronic health records · Artificial intelligence · Deep state-space models · Clinical decision
support

1 Introduction

Nowadays, there exists an accumulating focus on health, par-
ticularly in thewakeof theCOVID-19pandemic.COVID-19,
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also recognized as SARS-CoV-2, is an acute respiratory
disease characterized by a substantial initial mortality rate
during its outbreak (Wu et al., 2020; Roy et al., 2020;
Habib and Kayani, 2023). In the early stages of the pan-
demic, a notable number of COVID-19 patients experienced
clinical deterioration necessitating hospitalization or admis-
sion to intensive care units (ICUs), profoundly straining
national healthcare systems in a remarkably brief span
(McMahon et al. 2020; Buonsenso et al. 2021). To address
this challenge, more cutting-edge technologies have been
introduced. Decision support systems (DSS) have found
application across diverse industries, including businessmar-
keting investment (Scheepers and Scheepers, 2008), social
media (Sadovykh and Sundaram, 2019; Meske and Bunde,
2023), transportation management (He et al., 2014), and oth-
ers industries (Zolbanin et al. 2020; Tanergüçlü et al. 2012;
Pessoa et al., 2022).

To confront the multifaceted challenges encountered
within the healthcare sector, clinical decision support sys-
tems (CDSS) have exhibited substantial promise in aiding
healthcare professionals to deliver precise and efficient diag-
noses and treatments, thereby advancing the principles of
precision medicine (Tutun et al., 2022; Huang et al., 2020;
Wijnhoven, 2022; Karthikeyan et al., 2021; Murri et al.,
2022). In COVID-19, CDSS has proven effective in dis-
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ease diagnosis and enhancing overall hospital operational
efficiency (Mourad et al., 2021; Abbaspour Onari et al.,
2021; Govindan et al., 2020). CDSS represents a computer-
based tool designed to furnish healthcare professionals with
patient-specific information and knowledge, serving as a
valuable resource for clinical decision-making (Kawamoto
et al., 2005). These systems can be seamlessly integratedwith
electronic health records (EHRs), offering real-time access
to critical patient data, encompassing medical notes, medi-
cation history, laboratory test results, and medical imaging
studies. Furthermore, Artificial Intelligence (AI) or Machine
Learning (ML)-based CDSS benefited from large volumes
of EHR data, has been used to enhance healthcare delivery
and make more precise medical decisions, showing poten-
tial in treating the COVID-19 pandemic (Wijnhoven, 2022;
Singh et al., 2021; Qjidaa et al., 2020; Karthikeyan et al.,
2021). Therefore, in this study, we present a novel CDSS
model applied to EHRs for disease risk predictive modelling
aimed at advancing the existing Machine Learning for Deci-
sion Support Theory. This theory utilizes machine learning
algorithms to analyze historical EHR data to predict patients’
outcomes, thereby aiding decision-making processes.

However, most of the aforementioned CDSSs primarily
focus on acute disease risk diagnosis. In the current world,
taking America as an example, nearly half (approximately
45%, or 133 million) of all Americans suffer from at least
one chronic disease (Raghupathi and Raghupathi, 2018), and
they cause 41 million deaths each year, equivalent to 74%
of all deaths globally (Organization et al., 2022). This indi-
cates the urgency for currentCDSS to include chronic disease
diagnosis from patients’ longitudinal hospital visit informa-
tion. Typical chronic diseases include hypertension, diabetes,
stroke, etc. In addition, the majority of current CDSSmodels
(Xu et al., 2018; Choi et al., 2016; Ma et al., 2017) mainly
process structured sequential EHRs, neglecting the abun-
dant clinical information embedded in unstructured medical
notes. This paper focuses on inventing an AI-based CDSS
to implement the typical task of risk prediction in precision
medicine, using unstructured longitudinal medical notes col-
lected during multiple hospital visits for the prediction of
acute disease risks, chronic disease risks, and mixed dis-
ease risks. To achieve this goal, we first need to address two
research problems:

Q1) How can a CDSS effectively capture time-varying
information from longitudinal EHR data?

Q2) How can a CDSS effectively extract clinically use-
ful information contained in large volumes of unstructured
medical notes for predictive model construction?

For the first problem, various CDSS models have been
developed. Shang et al. (2019) proposed various recurrent

neural networks (RNNs) and attention-based models for
learning temporal information. However, despite their pre-
dictive power in various prediction tasks such as disease
risk prediction, disease diagnosis, and length of hospital
stay, the hidden states learned from these RNNs-based mod-
els cannot provide a probabilistic interpretation to represent
patients’ health states as they are pure data-driven black-box
approaches (Krishnan et al., 2017). Hidden Markov Model
(HMM)—based disease progressionmodels have been inves-
tigated to explicitly model state transitions of patients (Alaa
et al., 2017). Based on neural networks andHMM,deep state-
space models, parameterising both state transition function
and observation function using neural networks, have been
developed (Li et al., 2021; Oezyurt et al., 2021; S. Niu et al.,
2024; Niu et al., 2024). Themain advantages of these models
include the formal integration of patients’ latent states and
diverse observations, the ability to track the changes of latent
states by learning dynamic representations, the construction
of a generative model to predict future representations and
generate future observations, and the provision of a state
transition model considering the impacts of external inter-
ventions. Therefore, this paper focuses on developing a deep
state-space-based CDSS model for longitudinal patient data.
From the summarization of recent CDSS models in Table 1,
our model is one of the first attempts to apply deep state-
space modelling to unstructured text datasets, different from
most of the existing works.

To address the second problem, an increasing number
of feature extraction methods are being developed, such
as Clinical-BERT (Alsentzer et al., 2019). Among them,
attention-based models, such as Recurrent Attentive and
Intensive Modelling (RAIM) (Xu et al., 2018) and Mul-
timodal Attentional Neural Network (MNN) (Qiao et al.,
2019), are widely used. Recently, several studies (Mullen-
bach et al., 2018; Wang et al., 2018; Niu et al., 2021a, b,
2024) have adopted a label-dependent approach based on
the attention mechanism to integrate the information from
both medical notes and disease risk labels for improving pre-
diction performance and achieving interpretability. In these
models, the descriptions of labels and words from medical
notes are jointly embedded and integrated via the atten-
tion mechanism. In this paper, we adopt the label-dependent
attention approach into our CDSS to encode unstructured
medical notes into latent representations at each time step,
where the deep state-space model will update these latent
representations.

Our model is named Deep State-space with Label-
dependent Attention Model (DSLAM), which is composed
of three modules: the prior module to learn the transition of
patients’ latent states, the posterior module to approximate
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Table 1 The list of recent CDSS models

Model Data type Longitudinal Core methods

RETAIN (Choi et al., 2016) Discrete sequence � RNNs

DIPOLE (Ma et al., 2017) Discrete sequence � RNNs

RAIM (Xu et al., 2018) Time-series & Discrete sequence � RNNs

MNN (Qiao et al., 2019) Textual & Discrete sequence � RNNs

HiTANet (Luo et al., 2020) Discrete sequence � Time-aware attention

AC-TPC (Lee and Van Der Schaar, 2020) Time-series � Predictive clustering

AttDMM (Ozyurt et al., 2021) Time-series � Deep Markov model

CausalHMM (Li et al., 2021) Visual � Casual Markov model

Ours Textual � Deep state-space model

the posterior distribution of latent states via the label-
dependent attention mechanism, and the likelihood module
to generate predictions from latent states. Figure 1 illustrates
the input (medical notes and description of risk labels) and
output (disease risk prediction) of our model. The colored
arrows indicates that the medical terms inmedical notes have

semantic relation with the descriptions of risk labels. The
main contributions can be summarized as follows:

• Our work introduces a pioneering CDSS approach for
disease risk prediction using longitudinal medical notes,

Fig. 1 An example is provided to illustrate the input and output of our
model for predicting a patient’s risks. The input comprises unstructured
medical notes gathered from three hospital visits for the patient, along

with descriptions of risk labels, where the label descriptions are series
of textual phrases. The output is represented as a vector indicating the
presence of different types of risks for the patient, denoted by 0/1
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viewing patient risks as outcomes of a state-space tran-
sition process.

• We emphasize the importance of accurately capturing
latent states in studying longitudinal EHRs, providing
clear guidance for future disease risk research and clini-
cal decision-making, especially for patientswithmultiple
hospital visits.

• Our model is the first work that is tailored for unstruc-
tured longitudinalmedical notes, combiningprobabilistic
models with deep neural networks. It enhances predictive
efficacy and interpretability through a label-dependent
attention mechanism.

• To substantiate the effectiveness of our model, we
conduct rigorous evaluations on two real-world EHR
datasets, namely MIMIC-III (Johnson et al., 2016) and
N2C2-2014 (Kumar et al., 2015) for both quantitative
and qualitative evaluations.

2 RelatedWork

2.1 AI/ML-based Clinical Decision Support System

AI/ML-based CDSS have become increasingly popular in
healthcare due to their potential to improve diagnostic accu-
racy, treatment planning, and patient outcomes by using
different types of EHR data. Park et al. (2022) shows that
adopting a CDSS can significantly reduce hospital readmis-
sion rates for heart failure, acute myocardial infarction, and
pneumonia patients, underscoring the importance of using
accurate and comprehensive EHR data. Miotto et al. (2018)
investigated different AI-based DSS selections in terms of
various EHR data, demonstrating better accuracy for disease
diagnosis compared to human-crafted models. Berge et al.
(2023) utilized anAI-basedDSS to identify and classify aller-
gies of concern for anesthesia and intensive care, resulting in
increased detection of patient allergies and improved qual-
ity of practice and patient safety during surgery or intensive
care unit stays. These studies collectively illustrate that the
effectiveness of AI/ML-based CDSS in the medical process
is influenced by several key factors: the quality and compre-
hensiveness of input data, appropriate AI/ML algorithms in
CDSS for different EHR types, and the integration of DSS
into actual clinical workflows.

2.2 Clinical Decision Support System Across
Different EHRModalities

In terms of processing unstructured medical notes, word-
embedding-based deep learning models (Mullenbach et al.,

2018; Wang et al., 2018; Qiao et al., 2019) combined with
various attention mechanisms (Vaswani et al., 2017) are
used to assist disease diagnosis. In addition, pre-trained lan-
guage models (PLM) have been widely adopted to process
different kinds of downstream natural language processing
(NLP) tasks, as well as for clinical decision support making.
For example, Niu et al. (2021a, b) applied Clinical-BERT
(Alsentzer et al., 2019) to extract features from medical
notes for disease risk prediction. For laboratory testing
results, RNNs-based models are used to process time-series
numerical data. For example, RAIM (Xu et al., 2018) used
multi-channel RNNs to extract hidden states from labora-
tory testing results and electrocardiogram (ECG) waveform
for ICUs length of stay prediction and patient mortality pre-
diction. Ozyurt et al. (2021) built an attentive deep Markov
model based on RNNs for mortality prediction using dif-
ferent laboratory testing measurements. For medical image
data, convolutional neural networks (CNNs)-based models
are often applied to capture visual information. Arevalo et al.
(2016) applied CNNs for the detection of tumours and their
classification into benign andmalignant.Monshi et al. (2021)
built a CNNs-based deep learning model, CovidXrayNet, for
the diagnosis of COVID-19. Even though this researchworks
for different types of EHR data achieved comparable accu-
racy, there are only limited works that notice the longitudinal
information hidden in patients’ multiple hospital visits that
could be used to improve the clinical decision-making accu-
racy for prolonged diseases.

2.3 Modelling Longitudinal EHR Data

EHRs have become a valuable resource for researchers and
clinicians due to the longitudinal data they contain regard-
ing patients’ medical histories. Deep learning models have
been developed to capture and analyze the complex longitu-
dinal information present in EHR data. These models have
various applications, such as medication recommendation,
health risk prediction, disease risk prediction, and disease
progression understanding. One example of a deep learning
model used in EHR analysis is RNNs. Shang et al. (2019)
developed amodel that usesRNNs to recommendmedication
from successive drug codes across multiple hospital visits of
a patient. In addition, Ma et al. (2020) used the time-aware
attention mechanism to predict health risks. Luo et al. (2020)
built aHiTANetmodel that uses a time-aware attention-based
transformer to predict disease risks. Another model used in
EHR analysis is Deep Predictive Clustering (DPC), which
clusters RNNs encoded time-series data over time for tempo-
ral phenotyping. Lee and Van Der Schaar (2020) used DPC
to understand disease progression. Deep state-space mod-
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els have also been developed for longitudinal data analysis.
For instance, Oezyurt et al. (2021) built an attentive Deep
Markov Model to trace patients’ latent status and predict
patient risks using laboratory testing data. Li et al. (2021)
proposed a causal hidden Markov model to learn separate
latent representations, in which different supervised tasks,
including medical image reconstruction and risk prediction,
were used to learn separate representations. Despite these
recent advancements, few studies have focused on employing
deep state-space models to analyze unstructured longitudi-
nal medical notes in EHR data. The development of such
models could lead to new insights into disease progression
and improve patient outcomes. Therefore, there is a need for
further research in this area.

2.4 AttentionMechanism for Explainable AI

The attention mechanism has gained popularity in interpret-
ing the outputs produced by deep neural networks (Vaswani
et al., 2017). In the field of predictive medicine and clini-
cal decision-making, interpretability is a crucial factor that
cannot be ignored. Hence, the attention mechanism is often
implemented in various ways to provide explainability and
reasons for clinical decision-making. For instance, RAIM
(Xu et al., 2018) designed a multi-channel attention and
recurrent attention mechanism to comprehend the contribu-
tion of different input features from EHR data. MNN (Qiao
et al., 2019) employed attentional bidirectional RNNs to
identify essential features from medical notes and codes.
Similarly, Choi et al. (2016); Ma et al. (2017) utilized atten-
tionmechanismswithRNNs to determine vital hospital visits
of patients and significant input features for disease diag-
nosis. Additionally, a label-dependent attention mechanism
was introduced to identify more phrases related to the target
disease from medical records. The label-dependent attention
method involves embedding the names or descriptions of
the prediction task labels and data features and then integrat-
ing their embeddings through the cross-attentionmechanism.
For example, Akata et al. (2015); Radford et al. (2021) intro-
duced a function to learn image and label embeddings for
zero-shot image classification jointly. In Mullenbach et al.
(2018), a convolutional attention mechanism was proposed
for medical note classification, which utilized label embed-
dings. Similarly, in Wang et al. (2018), a joint word and
label embedding were developed for text data classification.
In Niu et al. (2021a), label embeddings were used to guide
the integration of medical notes and time-series health status
indicators for disease risk prediction. However, the use of
label-dependent attention has not been extensively explored

in modelling longitudinal medical notes generated during
multiple hospital visits.

3 Method

In this section, we introduce our model, DSLAM, which
is specifically designed for modelling longitudinal unstruc-
tured medical notes in order to predict disease risk. Our
model DSLAM builds upon the existing Machine Learning
for Decision Support Theory and demonstrates superior per-
formance in risk prediction. The clinical decision-making
process is illustrated in Fig. 2, which involves collecting lon-
gitudinal medical notes from EHRs, preprocessing the data
by eliminating noise from the medical notes, modelling the
longitudinal EHRs, and generating disease risk predictions.

In the subsequent sections, we provide the preliminaries
of our deep state-space method for modelling longitudinal
EHRs, a formal definition of our problem, followed by an
overview of our model, and a general description of the deep
state-space model. We then provide detailed explanations of
individual components, including the prior, posterior, and
likelihood modules. Specifically, we will comprehensively
explain the label-dependent attention mechanism adopted in
the posterior module for text data encoding.

3.1 Preliminary

3.1.1 Variational Autoencoders (VAEs)

Variational Autoencoders (VAEs) (Kingma&Welling 2013)
is a type of generative model that combines the autoencoder
framework with probabilistic graphical models to learn a
probabilistic representation of input data. A typicalVAE con-
sists of two crucial components: an encoder and a decoder.
The encoder qφ(z | x) is used to approximate the true pos-
terior distribution pφ(z | x) by mapping the input data x
into a probabilistic distribution z. The decoder is the like-
lihood of the process of data generation that results in the
data x from z, denoted as pθ (x | z). Here, φ and θ represent
learnable parameters through encoder neural networks and
decoder neural networks, respectively.

To approximate the posterior distribution of the encoder,
we have:

log qφ(z | x) = logN (z;μ, σ 2I), (1)

where μ and σ represent the mean and standard deviation of
the approximate posterior, generated through the encoding
of the input data via a neural network.
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Fig. 2 The workflow of the clinical decision support system involves
processing longitudinal medical notes to generate disease risk predic-
tions. Initially, the unstructured medical notes undergo a noise and

non-English character removal process. Subsequently, they are sequen-
tially input into our deep state-space-based CDSS model to generate
predictions for disease risks at each visit

To sample latent variable from the posterior distribution
z, we often use the re-parameterization trick (Kingma &
Welling 2013) to address the non-differentiable issue of sam-
pling during the training process:

z = μ + ε � σ . (2)

Here, � represents element-wise multiplication, and ε ∼
N (0, I). Finally, we can obtain the likelihood pθ (x | z) by
maximizing the evidence lower bound (ELBO):

LELBO = −DKL(qφ(z | x) || pθ (z)) +Eqφ [log pθ (x | z)].
(3)

Here, DKL represents the Kullback-Leibler (KL) diver-
gence. The common choice of the prior distribution pθ (z) is
a standard Gaussian distribution N (0, 1).

3.1.2 Deep State-space Model

The deep state-space model utilizes the basic framework of
VAEs. Figure 3 illustrates the structure of the deep state-space
model. Suppose we have {1, .., t, .., T } states that need to be
modeled. The prior distribution pθ (zt ) is generated by a prior
network as the transition function for different latent states,
denoted as pθ (zt | zt−1).

For the generic deep state-space model (Rangapuram
et al., 2018; Li et al., 2021), the posterior distribution of
qφ(zt | zt−1, xt ) is generated by an encoding posterior net-
work that encodes and samples from the input data xt and the
last previous latent state zt−1. In the context of patients’ lon-
gitudinal EHRs, the chronic disease diagnosis can often be
related to all previous hospital visits. Therefore, the posterior
distribution can be represented as qφ(zt | [z1, ..., zt−1], xt ).

For the likelihood of the deep state-space model, instead
of generating the original input xt , there is often an objective
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Fig. 3 The structure of deep state-space model, which includes prior networks, posterior networks, and likelihood networks

yt to be predicted by a likelihood network, denoted as pθ ( yt |
zt ).

To infer the parameters and latent states, the Bayesian
variational learning approach is applied, where the learning
objective is defined by the evidence lower bound on the log
data likelihood (ELBO) (Krishnan et al., 2017):

LELBO =Eqφ(z1|x1)[log pθ ( y1 | z1)]
− K L(qφ(z1 | x1) || pθ (z1))

+
T∑

t=2

[Eqφ(zt |Zt−1,xt )[log pθ ( yt | zt )]

−
T∑

t=2

K L(qφ(zt | Zt−1, xt ) || pθ (zt | zt−1))],

(4)

where Zt−1 = [z1, .., zt−1], and K L(.) measures the
Kullback-Leibler divergence between two distributions. pθ

( yt | zt ) is the likelihood of observing yt given latent state
zt . When t > 1, qφ(zt | Zt−1, xt ) and pθ (zt | zt−1) are the
posterior and the prior of zt , respectively. For z1, its prior and
posterior are represented as pθ (z1) and qφ(z1 | x1). Here,
we adopt a Gaussian variational approximation approach
such that the distribution of the latent state follows a Gaus-
sian distribution, where the mean and standard deviation are
approximated by xt . In the following subsections, a detailed
implementation of neural networks for approximating the
prior, posterior, and likelihood will be explained.

3.2 Problem Definition

In the longitudinal study, each patient n is characterized by
a sequence of observations: M(n) = {M(n)

1 , ..., , M(n)
t , ...,

M(n)
T }, where each element M(n)

t represents the medical

notes containing N (n)
t words collected at the t th hospital

visit, and T is the total number of visits. Suppose each
word of M(n)

t is represented as a one-hot | V |-dimensional
vector, where | V | is the size of the vocabulary V . Let
us use LY = {L1, ..., Lv, ..., LNy } to denote the descrip-
tions of all diagnosed disease risk labels, where Ny is the
total number of diagnosed disease risks. Each word from
the description of the vth risk (i.e. Lv) is represented as a
one-hot vector. To distinctly and conveniently observe the
prediction performance of our model on a coarse-grained
disease risks, we formulate Ny disease risks to NY predic-
tive objectives (i.e. acute disease risk, chronic disease risk,
and mixed disease risk), where Ny > NY . Therefore, we

assume y(n) = { y(n)
1 , ..., y(n)

t , ..., y(n)
T } indicate the presence

of different types coarse-grained disease risks observed dur-
ing multiple visits, where each NY dimensional vector y(n)

t
contains 1 or 0 values. Thus, in the problem of disease risk
prediction, both M(n) and LY will be used to predict the val-
ues of y(n). For simplicity, the superscript (n)will be omitted
in the following descriptions. All notations to be used in the
following subsections are listed in Table 2.

3.3 The Overview of Our Deep State-space Model

The approach of sequential Bayesian updating involves uti-
lizing the latest observation to update the current latent
state by computing its posterior distribution based on the
Bayes rule, incorporating the up-to-date prior from the state
transition model and the likelihood. In our study, we have
implemented this approach to estimate the health state of
patients, denoted by zt , during each visit t . An overview of
the DSLAMmodel can be seen in Fig. 4, which consists of a
prior module that generates the prior distribution of the latent
state zt , a posterior module that uses a label-dependent atten-
tion mechanism to encode information from xt = (Mt , LY )

to approximate the posterior distribution of zt , and a likeli-
hood module that measures the probability of generating the
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Table 2 Notations and
descriptions

Notation Description

Nt The number of words in medical notes of a patient at visit t

Ny The number of all diagnosed disease risks

NY The number of coarse-grained disease risks

D The embedding size of medical notes

t The index of hospital visit

Mt ∈ R
Nt The medical notes of a patient at each visit t

LY ∈ R
NY The descriptions of diagnosed disease risk labels

xt The combination input of medical notes and label descriptions

at each visit t

yt The indicator of disease risks for a patient at each visit t

ŷt The predicted indicator of disease risks for a patient at each visit t

zt ∈ R
D The latent state of a patient at each visit t

Zt−1 ∈ R
(t−1)×D The latent states of all past visits for a patient

μ
q
zt ∈ R

D The mean of the posterior distribution of zt

σ
q
zt ∈ R

D The standard deviation of the posterior distribution of zt

μ
p
zt ∈ R

D The mean of the prior distribution of zt

σ
p
zt ∈ R

D The standard deviation of the prior distribution of zt

EM
t ∈ R

D×Nt The embedding of medical notes for a patient at visit t

EY ∈ R
D×NY The embedding of label descriptions

Gt ∈ R
Nt×Nt The scaled-dot similarity matrix to represent the

similarity between tokens from EM
t and EY

gt ∈ R
Nt The score vector generated from Gt via max-pooling

and softmax activation

et ∈ R
D The cross-attention weighted medical embedding derived

from EM
t , EY , and gt

ct ∈ R
D The aggregated representation of medical notes containing

information from both the current and previous visits

ẑt ∈ R
D The sampled latent state derived from a Gaussian distribution

with mean equal to μ
q
zt and standard deviation equal to σ

q
zt

ε ∼ N (0, I) The random noise

f c∗() The fully connected networks

f g() The forget gate layer

BERT The Clinical-BERT medical notes encoder

GRU The Gate Recurrent Unit network

BiGRU The Bidirectional GRU

LELBO The evidence lower bound (ELBO) related loss

observation yt . The parameters and latent states of DSLAM
are inferred by the ELBO mentioned in Eq. 4.

3.4 The Prior Module

In the priormodule, neural networks are used as the transition
function to generate the prior distribution of the latent state

zt from the posterior of zt−1. The prior of zt is represented
as:

pθ (zt | zt−1) ∼ N (μp
zt , σ

p
zt ), (5)

where μ
p
zt and σ

p
zt are the mean and standard deviation of

the prior, obtained from the gated recurrent unit (GRU) (Cho
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Fig. 4 The overview of our DSLAM model. It consists of three mod-
ules: the prior module generates the prior distribution of the current
latent state from the previous time step, the posterior module introduces
a label-dependent attention mechanism to approximate the posterior of
latent states, and the likelihood module generates predictions of risks.
Keyvariables are described as follows:Mt is themedical notes of patient

n at time t ; LY is descriptions of all target risks; zt−1 is the patient latent
state at the t − 1th hospital visit; Zt−1 contains all latent states from 1
to t − 1 for patient n; μp

zt and σ
p
zt are the mean and standard deviation

of the prior; μ
q
zt and σ

q
zt are the mean and standard deviation of the

posterior; ŷt refers to the predicted risks

et al. 2014) and fully connected networks f c1 and f c2:

μp
zt = f c1(GRU (zt−1)) (6)

σ p
zt = f c2(GRU (zt−1)) (7)

3.5 The Posterior Module

In the posterior module, the variational approximation of the
posterior qφ(zt | Zt−1, xt ) is:

qφ(zt | Zt−1, xt ) ∼ N (μq
zt , σ

q
zt ), (8)
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where μ
q
zt and σ

q
zt denote the mean and standard deviation

of the posterior obtained from the label-dependent attention
network and fully connected networks using Zt−1 and xt .

The label-dependent attention network encodes xt via
1) jointly embedding Mt and LY , and 2) integrating their
embeddings via the cross-attention mechanism. For the
embedding step, the text encoder, Clinical-BERT (Alsentzer
et al., 2019), is used to transform medical notes and descrip-
tions of labels into latent representations denoted as:

EM
t = BERT (Mt ) (9)

EY = AvgPool(BERT (LY )), (10)

For the integrating step, the similarity between EM
t and

EY are measured first, giving a scaled-dot similarity matrix
Gt ∈ R

Nt×Ny :

Gt = ( f c3(EM
t ))T f c4(EY )√

D
(11)

where f c3 and f c4 are two fully connected networks, and
(.)T is the matrix transpose operator. To assist the capture of
information contained in consecutive words, a max-pooling
layer together with the softmax activation is then adopted
to generate an attentive embedding vector of medical notes
et ∈ R

D:

gt = Sof tMax(Max Pool(Gt )) (12)

et =
Nt∑

n=1

gt,nEM
t [:, n] (13)

where gt ∈ R
Nt is the cross-attention score vector, EM

t [:, n]
is the nth column of EM

t , gt,n is the nth element of gt . With
et containing the integrated information from Mt and LY ,
the next step is to combine et with Zt−1 to generate ct via:

ct = f c5( f g(et ⊕ BiGRU ([Zt−1]))) (14)

where f c5 is a fully connected network, f g is the forget
gate inspired from LSTM (Hochreiter & Schmidhuber 1997)
to filter important latent states, BiGRU is the bidirectional
GRU, and ⊕ is the concatenation operator. By passing ct
into two parallel fully connected networks f c6 and f c7, the
mean and standard deviation of the posterior of zt can be then
approximated. We can get a sampled state vector from:

ẑt = μq
zt + ε � σ q

zt , (15)

where ε ∈ N (0, I) is the random noise.

3.6 The LikelihoodModule

In the likelihood module, a fully connected network f c8 is
used to get the predictive values of risks ŷt ∈ R

NY :

ŷt = f c8( ẑt ). (16)

The log-likelihood can be then defined as:

log pθ ( yt | zt ) = − 1

NY

NY∑

j=1

(yt, j · log(ŷt, j ))

+ (1 − yt, j ) · log(1 − ŷt, j )) (17)

The training procedure to optimize DSLAM by maximiz-
ing the ELBO defined in Eq. 4 is shown in Algorithm 1.

4 Experiments

4.1 Experimental Dataset

4.1.1 MIMIC-III Dataset

We applied our model to the publicly accessible EHR dataset
MIMIC-III (Johnson et al., 2016) to demonstrate its effec-
tiveness. MIMIC-III is a critical care dataset comprising
de-identified health data from over 40,000 patients admit-
ted to ICUs at the Beth Israel Deaconess Medical Center
between 2001 and 2012. It includes comprehensive clinical
information such as vital signs, laboratory tests, medications,
diagnoses, and procedures. The dataset has been used to eval-
uate various prediction models, such as RAIM, GAMENet,
MNN, and AttDMM (Xu et al., 2018; Shang et al., 2019;
Qiao et al., 2019; Oezyurt et al., 2021). In this study, to assess
the impact of using data from multiple visits, we extracted
a subset of MIMIC-III containing 9,759 unstructured med-
ical notes from patients with two or more hospital visits,
with an average number of visits of 2.61 days. The medical
notes include part of the de-identified patients’ demographic
information, such as age and gender, and the brief course
of patients during hospital visits. The average length of stay
for patients in ICUs is 4.9 days, and the mean gap length of
two successive visits is 349.5 days. There are a total of 25
different risks; the types of disease risks can be grouped into
three types of risk, i.e., acute, chronic, and mixed risks. To
provide an intuitive and comprehensive evaluation result on
three types of disease risks, we streamline 25 disease risk
prediction objectives into three prediction objectives, i.e.,
acute, chronic, and mixed risks. We used the tool described
in Harutyunyan et al. (2019) to extract medical notes and
risk indicators from the MIMIC-III data and removed stop-
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Algorithm 1 Deep state-space modelling with label-dependent attention model.
1: Input Given the patient data xt = (Mt ,LY ) for t ∈ {1, ..., T }, where Mt refers to the medical notes and LY represents the descriptions of risk

labels.
2: while not converge do
3: for Each batch do
4: for Each patient n do
5: for Each time t do
6: Calculate the mean and standard deviation of the prior latent state using (6), and (7), respectively.
7: Embed Mt and LY to get EM

t , and EY using (9) and (10).
8: Calculate the cross-attention score vector gt and generate the attention weighted vector et using (11), (12), and (13).
9: Generate ct via the forget gate layer and a fully connected network using (14).
10: Sample the latent state vector ẑt from its posterior distribution based on (15).
11: Get the prediction results ŷ based on (16).
12: end for
13: end for
14: Update parameters by maximizing the ELBO defined in Eq. 4 .
15: end for
16: end while

words and non-alphabet characters from the notes. We used
the same data splitting strategy as Harutyunyan et al. (2019)
to obtain training and test datasets with a ratio of 4:1 for
performance evaluation.

4.1.2 N2C2-2014 Dataset

The N2C2-2014 (Kumar et al., 2015) dataset is utilized
to focus on the de-identification of longitudinal medical
records. This dataset de-identified a set of 1,304 longitudinal
medical records belonging to 296 patients, with an average
count of hospital visits amounting to 4.41. The primary data
type within the N2C2-2014 dataset consists of unstructured
medical notes, which include a few de-identified patients’
demographic information and a hospital brief course. To
enhance data quality, we implemented various data pre-
processing techniques aimed at removing noise, stop-words,
and other irrelevant elements. The target objective diseases
include hyperlipidemia, hypertension, coronary artery dis-
ease, and diabetes. The entire dataset is partitioned into a 4:1
ratio for training and testing purposes.

4.2 Baseline Methods

To enhance the precision of the proposed method, we per-
formed a comparative analysis of DSLAM against baseline
methods from twoprimary categories.Class 1methods solely
depend on the data collected during the current hospital visit,
while Class 2 methods combine information from previous
hospital visits with the current visit.

The Class1 baseline methods are listed as follows:

• XGBOOST and SVM: Two conventionalmachine learn-
ing methods XGBOOST and SVM are applied to con-

struct predictive models using the word2vec representa-
tions of medical notes.

• CAML: It adopts a cross-attention mechanism to encode
information contained in medical notes and labels (Mul-
lenbach et al., 2018).

• CAML−: The cross-attention module in CAML is
replace by the self-attention (Vaswani et al., 2017) .

• CAML+B: The word2vec layer in CAML is replaced by
Clinical-BERT.

• CAML−+B: The cross-attention module in CAML+B
is replace by the self-attention.

The Class2 baseline methods are listed as follows:

• G+CAML+B: GRU is added toCAML+B formodelling
longitudinal medical notes.

• G+CAML−+B: Based on CAMLL−+B, GRU is added
for modelling longitudinal medical notes.

• RETAIN: RETAIN (Choi et al., 2016) is a representative
RNNS-based disease risk prediction model for longitu-
dinal EHRs by employing a reverse time-aware attention
module.

• RETAIN+B: The encoder layer of RETAIN is replaced
with Clinical-BERT.

• DIPOLE: DIPOLE (Maet al., 2017) upgrades the perfor-
mance of longitudinal EHRs modelling by utilizing the
Bi-directional RNNs with a dual time-aware attention
mechanism to replace the reverse time-aware attention
mechanism RETAIN.

• DIPOLE+B: In the interest of fairness in comparisons,
we substitute the encoder layer of DIPOLEwith Clinical-
BERT.

• DSLAM: This is the deep state-space model with label-
dependent attention proposed in this paper.
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• DSLAM−: The label-dependent attention module of our
DSLAM model is replaced by self-attention.

The comparative models used the following hyperparam-
eters: a learning rate of 1e−5, a token length of 300, an
embedding size of 768 for Clinical-BERT, and a latent state
size of 384. The ADAM optimizer was selected for model
training. Additionally, a dropout strategy with a dropout rate
of 0.3 was employed. To ensure robustness, all comparative
modelswere trainedfive timeswith afixed set of fivedifferent
seeds, and the average indicator performance was reported.
The implementation of all models was done using PyTorch
on an NVIDIA TESLA V100 GPU. The source code of our
model is publicly available1.

4.3 EvaluationMetrics

The performance of risk prediction is represented by the pre-
cision, recall, F1 scores, and ROCAUC scores:

• Precision: Precision is a metric that measures how many
of the positive predictions a model makes are correct. It
is defined as the ratio of true positives (TP) to the sum of
true positives and false positives (FP). The formula for
precision is:

Precision = T P

T P + FP
(18)

• Recall: Recall is a metric that measures how many of
the actual positive instances in a dataset are correctly
identified by a model. It is defined as the ratio of TP to
the sum of true positives and false negatives (FN). The
formula for the recall is:

Recall = T P

T P + FN
(19)

• F1 score: The F1 score is a metric that balances precision
and recall by taking their harmonic mean. It is defined as:

F1 = 2 ∗ Precision ∗ Recall

Precision + Recall
(20)

• ROCAUC score: ROCAUC score is a popular metric
used to evaluate the performance of binary classification
models. ROC stands for Receiver Operating Characteris-
tic, which is a plot of the true positive rate (TPR) against

1 https://github.com/Healthcare-Data-Mining-Laboratory/DSLAM.
git

the false positive rate (FPR) at different classification
thresholds. AUC stands for Area Under the Curve, which
represents the area under the ROC curve. The ROCAUC
score can range from 0 to 1, with a score of 0.5 indicating
that the model performs no better than random chance,
and a score of 1 indicating perfect classification perfor-
mance.

In the case of multi-class risk prediction, we adopt micro
and macro averaging methods for precision, recall, F1 score,
and ROCAUC score calculation to obtain comprehensive
evaluation results of our model:

Micro Precision =
∑

i T Pi∑
i T Pi + ∑

i F Pi
,

Micro Recall =
∑

i T Pi∑
i T Pi + ∑

i FNi
,

Micro F1 = 2 ∗ Micro Precision ∗ Micro Recall

Micro Precision + Micro Recall
,

Macro Precision =
∑

i

Precisioni/L,

Macro Recall =
∑

i

Recalli/L,

Macro F1 = 2 ∗ Macro Precision ∗ Macro Recall

Macro Precision + Macro Recall
,

(21)

where i indicates the class index and L is the number of
classes.

TheMicroROCAUCscore computes the overall ROCAUC
score by taking into account all theTPRandFPRof all classes
and their corresponding weights. It is useful when the classes
are imbalanced, and it is important to evaluate the overall
performance of the model.

For theMacro ROCAUC score, it computes the ROCAUC
score for each class separately and then averages them. This
score is useful when each class is equally important, and we
want to evaluate the performance of the model for each class.

4.4 The Performance of Risk Prediction

Theperformance of all comparativemodels in the risk predic-
tion task was evaluated based on several metrics, including
Precision, Recall, F1 score, and ROCAUC score, which are
presented in Tables 3, 4, and Fig. 5. From the results, several
observations can be made.
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Table 3 We conducted a comparative analysis on the MIMIC-III dataset by assessing our DSLAM model against all baseline models and ablated
models, utilizing measures of Micro and Macro Precision, Recall, F1 score, and ROCAUC score

Models Evaluation metrics on MIMIC-III
Micro Macro
Precision Recall F1 ROCAUC Precision Recall F1 ROCAUC

SVM 0.7735 0.9998 0.8722 0.5004 0.7735 0.9998 0.8703 0.5003

XGBOOST 0.7736 0.9999 0.8723 0.5005 0.7736 0.9999 0.8705 0.5003

CAML 0.8131 0.9582 0.8797 0.7810 0.8100 0.9539 0.8760 0.7540

CAML− 0.8173 0.9521 0.8795 0.7767 0.8143 0.9465 0.8750 0.7538

CAML+B 0.8467 0.9294 0.8860 0.8350 0.8464 0.9229 0.8796 0.8165

CAML−+B 0.8144 0.9666 0.8841 0.8319 0.8119 0.9626 0.8806 0.8219

G + CAML+B 0.8371 0.9604 0.8945 0.8406 0.8355 0.9567 0.8918 0.8237

G + CAML−+B 0.8658 0.9186 0.8934 0.8345 0.8640 0.9153 0.8918 0.8179

RETAIN 0.8473 0.9206 0.8824 0.8131 0.8452 0.9176 0.8799 0.7956

RETAIN+B 0.8336 0.9499 0.8879 0.8349 0.8326 0.9457 0.8848 0.8289

DIPOLE 0.8401 0.9323 0.8904 0.8317 0.8384 0.9445 0.8879 0.8226

DIPOLE+B 0.8581 0.9355 0.8948 0.8470 0.8572 0.9335 0.8929 0.8283

DSLAM− 0.8414 0.9602 0.8969 0.8684 0.8396 0.9574 0.8946 0.8514

DSLAM 0.8734 0.9267 0.8992 0.8763 0.8719 0.9240 0.8972 0.8646

The best prediction results are in bold

Table 4 We conducted a comparative analysis on N2C2-2014 dataset by assessing our DSLAM model against all baseline models and ablated
models, utilizing measures of Micro and Macro Precision, Recall, F1 score, and ROCAUC score

Models Evaluation Metrics on N2C2-2014
Micro Macro
Precision Recall F1 ROCAUC Precision Recall F1 ROCAUC

SVM 0.6068 0.9972 0.7539 0.5074 0.6063 0.9973 0.7441 0.5073

XGBOOST 0.6062 0.9948 0.7540 0.5080 0.6070 0.9948 0.7437 0.5076

CAML 0.6846 0.8502 0.7565 0.7433 0.6525 0.8142 0.7078 0.6672

CAML− 0.7417 0.7204 0.7475 0.7396 0.7270 0.6734 0.6933 0.6368

CAML+B 0.8908 0.9136 0.9007 0.9338 0.8893 0.9022 0.8949 0.9301

CAML−+B 0.8788 0.9229 0.9003 0.9332 0.8758 0.9147 0.8923 0.9291

G + CAML+B 0.8844 0.9194 0.9016 0.9468 0.8874 0.9114 0.8975 0.9306

G + CAML−+B 0.8856 0.9158 0.9004 0.9399 0.8885 0.9061 0.8953 0.9270

RETAIN 0.7556 0.8466 0.7949 0.8194 0.7392 0.8162 0.7716 0.7949

RETAIN+B 0.8859 0.9118 0.8994 0.9204 0.8902 0.9023 0.8973 0.9082

DIPOLE 0.7669 0.8341 0.7990 0.8253 0.7546 0.8000 0.7715 0.8118

DIPOLE+B 0.8961 0.9201 0.9036 0.9376 0.8975 0.9128 0.8977 0.9226

DSLAM− 0.8968 0.9391 0.9175 0.9446 0.8937 0.9267 0.9094 0.9300

DSLAM 0.9316 0.9018 0.9165 0.9476 0.9365 0.8851 0.9073 0.9318

The best prediction results are in bold
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Fig. 5 ROCAUC score for acute disease risk, chronic disease risk, and mixed disease risk on MIMIC-III dataset

• Effectiveness of utilizing longitudinal models: Longi-
tudinalmodels havebeen shown tobe effective in improv-
ing disease risk predictions by incorporating information
from multiple visits over time. Among the different
types of models, deep neural network-based models have
demonstrated superior performance when compared to
conventional machine learning models. However, Class
1 models such as XGBOOST and SVM tend to have
higher recall values at the expense of precision, resulting
in lower F1 and ROCAUC scores. On the other hand,
Class 2 models that take into account longitudinal infor-
mation generally achieve higher ROCAUC scores and a
more balanced precision and recall. The use of multiple
visits medical notes data can provide important contex-
tual information that can help improve the accuracy of
disease risk predictions. This observation suggests that
the effectiveness of utilizing longitudinal models for dis-
ease risk prediction is evident, as they provide a more
comprehensive understanding of the disease progression
over time.

• Comparingdeep state-spacemodelswithotherRNNs-
basedmodels: From Tables 3 and 4, our findings suggest
that our deep state-space models DSLAM outperform
RNNs-based models, such as RETAIN, DIPOLE, and
CAML with GRU, in terms of disease risk prediction
accuracy. The superior performance of DSLAM is evi-
dent from the higher F1 score and ROCAUC score
obtained for both micro and macro versions on the
MIMIC-III dataset and the N2C2-2014 dataset. Fur-
thermore, we also compared our model DSLAM with
DIPOLE+B on the MIMIC-III dataset for different types
of disease risks, respectively. As shown in Fig. 5, our
model exhibits superior performance to DIPOLE+B, as
evidenced by occupying a larger area under the ROC
Curve and achieving a higher ROCAUC score for all

acute, chronic, and mixed disease risks. This observation
highlights the effectiveness of deep state-space models
over conventionalRNNs-based approaches formodelling
longitudinal medical notes. Regarding the N2C2-2014
dataset, it should be noted that it only includes records
for chronic disease risks. As a result, there would not
be any separate analyses conducted for different types of
disease risks within this dataset.

• Effectiveness of the label-dependent attention: In
Tables 3 and 4, we can observe that the label-dependent
attention module, such as CAML, CAML+B, and
G+CAML+B, outperformed their counterparts with the
module replaced (CAML−, CAML−+B), and
G+CAML−+B in terms of F1 and ROCAUC values,
respectively. This observation suggests that the label-
dependent attention module can help improve a model’s
ability to identify risks and increase its overall predic-
tive power. Furthermore, our evaluation of the DSLAM
model equipped with the label-dependent attention mod-
ule showed higher ROCAUC values and comparable F1
values when compared to DSLAM− without the mod-
ule on both the MIMIC-III dataset and the N2C2-2014
dataset. Our findings suggest that the label-dependent
attention module can be a valuable tool in improving
a model’s overall evaluation performance and, thus, its
ability to detect risks accurately.

To conclude, our deep state-space-based model DSLAM
outperformed all baseline models for the disease risk predic-
tion task. The label-dependent attention module was found
to be a valuable tool in improving a model’s ability to iden-
tify risks and increase its overall predictive power, with
higher recall values for risk prediction tasks in the health-
care domain.
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5 Discussion

Our DSLAM model offers a high degree of interpretability,
which is crucial for clinical decision-making. To illus-
trate this interpretability, we randomly selected a patient
from the evaluation dataset who had multiple hospital vis-
its and used our model to analyze their medical records. The
label-dependent cross-attention module learned in the risk
prediction task generates attention scores that indicate the
importance of different words. In Fig. 6, we highlight the
top 30% words ranked by their attention scores in fragments
of medical notes using yellow colour. In addition to medical
notes, Fig. 6 also shows the observed risks at each visit for
the selected patient, which can help investigate whether the
top words used in the risk prediction are clinically relevant
to the observed risks. For instance, in the first hospital visit,
the patient had the disease risks of acute and chronic. The
specific diagnosed diseases are “respiratory disease", “res-
piratory failure", “coronary atherosclerosis", and “diabetes
mellitus". Regarding the medical notes, our model assigns
higher attention scores to the patient’s symptoms such as
“pulmonary", “fever", “cough", and “sputum", which are
primary symptoms of respiratory diseases (Farzan, 1990).
Furthermore, medications such as “insulin", “metoprolol",
and “simvastatin" are also highlighted, of which “insulin"
is a widely adopted treatment for diabetes (Wilcox, 2005),
“metoprolol" is a standard β-blocker for treating coronary
atherosclerosis (Joseph et al., 2019), and “simvastatin" is
commonlyused for treatingheart diseases (Niazi et al., 2020).

All these diseases are recorded in the patient’s EHRs. Similar
observations can be made for other hospital visits. By exam-
ining the disease risks recorded in multiple hospital visits,
we find that this patient has persistent problems, including
“respiratory disease" and “diabetes mellitus". We highlight
the common words from the yellow highlighted fields that
appeared inmore than one visit using red color. “Pulmonary"
and “insulin", which are associated with persistent diseases,
are found to be important across almost all hospital visits.
Based on these findings, we can conclude that our model can
produce clinically interpretable results.

6 Limitation and FutureWork

In the paper, the theoretical framework is based on the
Machine Learning forDecision Support Theory,which lever-
agesmachine learning algorithms to analyze historical EHRs
for predicting patient outcomes and aiding in decision-
making processes. We propose a novel algorithm applied to
EHRs aimed at advancing existing theories in this domain.
The study’s conceptual framework revolves around develop-
ing a CDSS that utilizes a deep state-space model to process
longitudinal EHR data effectively. This involves:

1. Capturing time-varying information from the longitu-
dinal EHR data.

2.Extract clinically useful information in unstructured
medical notes for predictive model construction.

Fig. 6 This case study demonstrates the interpretable results produced
by DSLAM. The medical notes collected from four hospital visits of
a randomly selected patient and the associated observed risks are pre-

sented in the figure. The top 30%words, ranked by their attention scores
generated from the label-dependent attention, are highlighted in yellow.
Common words that appeared in multiple visits are highlighted in red
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3. Addressing the absence of specialized longitudinal
CDSS capable of effectively tracing patients’ latent health
states across multiple hospital visits for predicting various
types of disease risks.

Furthermore, we also emphasize the model’s capability
to offer interpretable insights into the factors driving dis-
ease risk predictions at a fine-grained level by leveraging a
label-dependent attention network. However, a limitation is
acknowledged where the latent states captured by the model
are challenging to interpret directly and connect with real-
world medical domain concepts, particularly for supporting
clinical decisions at a broader, more coarse-grained level.

For future work, we plan to focus on the development of
a deep and interpretable state transition model that aims to
unveil the underlying medical attributes associated with the
latent states. This would enhance the comprehensibility of
disease risk prediction results and their practical application
in the medical domain. Additionally, as EHRs encompass
abundant multimodal data-not just medical notes but also
time series lab test results, patient demographic informa-
tion, Chest X-rays (CXR) images, etc., we intend to integrate
more types of EHR data. This integration will consider the
joint effects of diagnoses made by doctors from different
departments or perspectives, leading to a more comprehen-
sive evaluation of patient’s health states and generating more
accurate clinical decision-making.

7 Conclusion

TheCOVID-19 pandemic has brought about significant chal-
lenges for the healthcare industry, including an increase in
demand for medical resources, the need for rapid and accu-
rate diagnosis, and the development of effective treatment
strategies. To improve clinical decision-making processes
and patient outcomes, there is growing interest in leverag-
ing emerging technologies, such as the CDSS.

This paper proposes a deep state-space-based label-
dependent attention model for clinical decision-making. Our
proposed CDSS model uses longitudinal unstructured med-
ical notes and disease risk label descriptions from EHRs to
predict disease risks. It combines the representation power
of deep neural networks with the structured representations

of probabilistic models to model unstructured medical notes
generated frommultiple hospital visits effectively. Themodel
also uses a label-dependent attention mechanism to improve
predictive performance and generate interpretable results.

Compared to traditional CDSS models, our proposed
model offers several advantages for clinical decision-making
processes. Firstly, it can analyze large volumes of patient
data and trace latent health state trajectories across multiple
hospital visits. Secondly, the system can provide trustwor-
thy decision support to clinicians, enabling them to make
more informed decisions with explainable evidence, ulti-
mately improving patient outcomes.

We evaluated the effectiveness of our proposed CDSS
model using two real-world EHR datasets, MIMIC-III and
N2C2-2014, and the results demonstrate its strong predictive
power. The model also shows the ability to identify medi-
cal words or phrases with large attention scores, which are
clinically meaningful and provide interpretable results. This
feature is particularly important in the post-COVID-19 era,
as clinicians must make more complex decisions based on a
greater volume of patient data.

In summary, the proposed deep state-space-based label-
dependent attention model presents a promising solution
to the challenges facing the healthcare industry in the
post-COVID-19 era. By leveraging the power of emerg-
ing technologies such as AI, this model can analyze large
volumes of patient data and provide trustworthy decision
support to clinicians. Themodel’s ability to effectivelymodel
unstructured medical notes generated from multiple hospital
visits and provide interpretable results enables clinicians to
makemore informed decisions, ultimately improving patient
outcomes. The use of CDSS in clinical decision-making is
likely to becomemore prevalent in the coming years, and our
proposed model offers insight into the future development of
CDSS that can address the healthcare industry’s most press-
ing challenges.

AppendixA: Introduction toAlgorithmAppli-
cation

In this study, we introduce a deep state-space-based label-
dependent attention model for clinical decision-making. In

Fig. 7 The workflow illustrates how to use our model DSLAM for disease risk prediction
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this section, as Fig. 7 illustrates, we provide an overview of
how to use the algorithm, the quality requirements for input
data, and how to interpret the output results:

1. Data Preparation:Download theMIMIC-III dataset via
https://physionet.org/content/mimiciii/1.4/ and N2C2-
2014 dataset via https://portal.dbmi.hms.harvard.edu/
projects/n2c2-2014/.

2. Data Preprocessing: Apply the data preprocessing
methods and techniques introduced in Section 4.1. Retain
onlymedical notes and target diseases and its descriptions
in your dataset, and ensure to keep the hospital visit ID
("hadm_id") of each patient as the index of longitudinal
information.

3. Model Training: Use the longitudinal medical notes
and risk descriptions as model input and feed them into
our model, DSLAM. The code for the model is pro-
vided via https://github.com/Healthcare-Data-Mining-
Laboratory/DSLAM.git. The model will learn to capture
latent health states and the relationships between vari-
ous clinical variables over time, generating disease risk
predictions.

4. Understanding Results: Our model will generate a
three-dimensional output representing the probability of
three types of risk: acute disease risk, chronic disease
risk, and mixed disease risk.
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