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SOIL: Contrastive Second-Order Interest Learning for
Multimodal Recommendation
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ABSTRACT
Mainstream multimodal recommender systems are designed to
learn user interest by analyzing user-item interaction graphs. How-
ever, what they learn about user interest needs to be completed
because historical interactions only record items that best match
user interest (i.e., the first-order interest), while suboptimal items
are absent. To fully exploit user interest, we propose a Second-Order
Interest Learning (SOIL) framework to retrieve second-order in-
terest from unrecorded suboptimal items. In this framework, we
build a user-item interaction graph augmented by second-order
interest, an interest-aware item-item graph for the visual modal-
ity, and a similar graph for the textual modality. In our work, all
three graphs are constructed from user-item interaction records
and multimodal feature similarity. Similarly to other graph-based
approaches, we apply graph convolutional networks to each of the
three graphs to learn representations of users and items. To improve
the exploitation of both first-order and second-order interest, we op-
timize the model by implementing contrastive learning modules for
user and item representations at both the user-item and item-item
levels. The proposed framework is evaluated on three real-world
public datasets in online shopping scenarios. Experimental results
verify that our method is able to significantly improve prediction
performance. For instance, our method outperforms the previous
state-of-the-art method MGCN by an average of 8.1% in terms of
Recall@10.

CCS CONCEPTS
• Information systems → Recommender systems;Multime-
dia and multimodal retrieval.

KEYWORDS
Multimodal Recommendation, Second-Order Interest, Attractive-
ness Score, Contrastive Learning

1 INTRODUCTION
In recent years, mainstream online service providers have offered
online services that integrate multimedia information (e.g., images,
texts, and videos) and have established multimodal recommender
systems. A typical multimodal recommender system consists of a
group of users, a series of items, and the corresponding multime-
dia data for each item. Service providers design various solutions
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Compare

Interaction List
I want to buy a 
fashion dress.

Idea Search

Candidates List

Buy

Like：

Like：
It satisfies me.

Pay!

Figure 1: Illustration of user behaviors in online shopping.
Mainstream multimodal methods only use items in the in-
teraction list to represent user interest, yet items in the can-
didate list are also an essential part of user interest.

to predict possible user-item pairs based on historical user-item
interactions [23, 29].

Among these multimodal recommendation solutions, most of
them are graph-based approaches that utilize graph neural networks
to exploit the relationship between user-item interactions and mul-
timodal item embeddings [4, 18, 20, 23, 24, 26, 28]. Graph-based
approaches generally begin by constructing an interaction-based
user-item graph and an item-item relationship graph, and then
perform graph convolutional learning on these graphs separately.
Finally, the outputs of two graph convolutional networks are fused
to predict the user-item matching pairs. Experimental results in re-
cent reports have demonstrated that learning on interaction-based
graphs improves prediction accuracy significantly.

Despite the great success of interaction-based graph learning
methods, more attention must be paid to the fact that relying solely
on historical user-item interaction records is insufficient to repre-
sent user interest. For better understanding, we illustrate a typical
sequence of user behaviors in the online shopping scenario in
Figure 1. As illustrated in Figure 1, a person who is looking for
fashionable spring clothing will first choose the candidate items
that attract her and then click or buy the item that best matches her
interest (In this paper, we refer to this phenomenon as the Best-
Match Trading Principle.). The user behavior sequence indicates
that items in the candidate list are part of user interest and that the
user is likely to select these items in the future. For example, when
an item that we have previously purchased is out of stock, we tend
to select one from the candidate list for purchase. The experimental
results in Figure 6 also verify that users do purchase the items in the
candidate list reconstructed in this paper. Recommender systems
that only use items in the interaction list are agnostic about the
items in the candidate list, thus degrading recommendation per-
formance. Taking into account this phenomenon, a recommender
system should simultaneously manage the items on the interaction
and candidate lists to thoroughly understand user interest. How-
ever, most previous studies failed to utilize these candidate items
because they were not recorded in interaction logs.

To fully exploit user interest, we aim to identify potential can-
didate items for each user utilizing multimodal information. By

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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investigating previous studies, we outline three critical issues in
mainstream multimodal recommendation solutions:

(1) Incomplete User-Item Graph: The absence of interaction
information between users and candidate items in the user-
item graph leads to insufficient learning of user interest and
thus degrades the recommendation performance.

(2) Interest-agnostic Item-Item Graph: The absence of user
interest information in the item-item graph leads to a vulner-
able relationship between users and multimodal information,
deteriorating recommendation performance.

(3) Limited Interest Consistency: Inconsistency in user inter-
est between multimodal embeddings and user-item embed-
dings for the same interaction record will lead to low ranking
weights and degrades recommendation performance.

To challenge these issues, we propose a solution to retrieve
potential candidate items for each user and optimize the recom-
mendation model with contrastive learning techniques, named the
Second-Order Interest Learning (SOIL) framework. In this pa-
per, for each user, we denote all items on the interaction list
as first-order interest and all items on the candidate list as
second-order interest. In the proposed SOIL framework, we ex-
plicitly construct a second-order user-item interaction graph and
interest-aware item-item graphs, and propose to enhance interest
consistency with a user-item level contrastive learning module
and an item-item level contrastive learning module. Technically,
to handle the challenge of incomplete user-item graph, we
first calculate the attraction score for each potential user-item pair
based on the similarity of multimodal features, and then construct
the augmented user-item interaction graph that incorporates both
attraction scores and interaction logs. To handle the challenge
of interest-agnostic item-item graph, we first compute interest
representations for each user through multimodal features, and
then construct an interest-aware item-item graph based on the sim-
ilarity between multimodal features and interest representations.
To handle the challenge of limited interest consistency, we
first design a contrastive learning module at the user-item level to
enhance user interest for each user in a self-supervised learning
manner. Furthermore, we design an item-item level contrastive
learning module to maintain the consistency of user interest be-
tween user-item embeddings and multimodal embeddings.

In summary, the contributions of our work are as follows:
(1) We identify that due to the best-match trading principle, user-

item interactions contain only the items that best match the
user interest, while suboptimal items are absent. To mitigate
this problem, we propose a Second-Order Interest Learning
(SOIL) framework to exploit the second-order interest from
unrecorded suboptimal items.

(2) We propose to augment the user-item graph with second-
order interest and construct interest-aware item-item graphs
through user interest. With these graphs, we conduct con-
trastive learning at both the user-item and item-item levels
to enhance user interest.

(3) We conduct extensive experiments on three public datasets in
online shopping scenarios. Experimental results demonstrate
that our method is able to significantly outperform state-of-
the-art methods by an average of 6.8% in terms of Recall@10.

2 RELATEDWORK
2.1 Multimodal Recommendation
Multimodal recommendation models utilize multimedia informa-
tion (e.g., images, texts, and videos) and user-item interactions to
provide personalized recommendation services [2, 21, 24, 25]. Tra-
ditional multimodal recommendation methods mainly incorporate
multimodal information into collaborative filtering [15] or matrix
factorization [12] models to improve prediction performance [6, 11].
Among them, VBPR [6] is a method based on matrix factorization
that employs pre-trained convolutional neural networks to extract
visual features, which are then integrated into item embeddings.
MAML [10] is designed to exploit user preferences with an atten-
tion network. This method first estimates the user attention for
each item and then incorporates the attention information into
matrix factorization models. Inspired by graph convolution net-
works (GCNs) [9], researchers have proposed various graph-based
methods to learn user preferences [18, 20, 21, 24, 29]. Among them,
MMGCN [21] is a representative method that constructs a bipar-
tite user-item graph for each modality to implicitly exploit the
multimodal item relationship. To directly exploit the item-item
relationship, Zhang et al. [24] specifically designed an item-item
graph to utilize multimodal features. Recent studies [4, 23, 26, 28]
have verified that explicitly constructing item-item graphs sig-
nificantly improves recommendation performance. Among them,
FREEDOM [28] demonstrates that dynamic item-item graphs will
degrade recommendation performance and presents a denoising
framework with a fixed item-item graph.

2.2 Graph-based Recommendation
Graph-based recommendation models treat the information in rec-
ommender systems as various graphs and leverage graph convolu-
tion networks to embed user-item interactions [22]. LightGCN [7]
is a representative graph-based recommendation method that sim-
plifies the vanilla graph convolution network to satisfy the require-
ments of recommender systems. In multimodal recommender sys-
tems, graph-based recommendation methods have demonstrated
extensive ways to construct graphs. For instance, GRCN [20] con-
structs a dynamic interaction graph and adaptively refines the
structure of the interaction graph based on the training status.
DualGNN [18] constructs a bipartite user-item graph and a user
co-occurrence graph to exploit dynamic user preferences. LAT-
TICE [24] presents a modality-aware structure learning network to
exploit the item relationship for each modality and constructs an
item-item graph based on the learned item relationship. MGCN [23]
constructs an item-item graph for each modality and performs
graph convolution learning on these graphs separately. Similarly,
DRAGON [26] first constructs an item-item graph for each modality
and then fuses these modality graphs into a multimodal item-item
graph. LGMRec [4] learns hypergraphs for each modality to exploit
the dependency relationship between items.

Our work aims to build graphs that incorporate interaction
records and multimodal features to capture user interest in a com-
prehensive way. To this end, we construct a user-item graph that
contains both first-order and second-order interest. Furthermore,
we propose to incorporate user interest into the item-item graph to
leverage user preferences across various modalities.



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

SOIL: Contrastive Second-Order Interest Learning for Multimodal Recommendation ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

+

ℒ𝐵𝐵𝐵𝐵𝐵𝐵

ℒ𝑢𝑢𝑢𝑢 ℒ𝑢𝑢𝑢𝑢Interactions 𝑅𝑅+ +

𝑢𝑢

𝑖𝑖

𝑖𝑖

+

+

𝑢𝑢

𝑖𝑖
𝑖𝑖

𝑖𝑖

𝑖𝑖

𝑖𝑖
𝑖𝑖

𝑖𝑖

𝒢𝒢𝑢𝑢𝑢𝑢1 𝒢𝒢𝑢𝑢𝑢𝑢2

𝒢𝒢𝑢𝑢𝑢𝑢𝑣𝑣

𝒢𝒢𝑢𝑢𝑢𝑢𝑡𝑡

𝒢𝒢𝑢𝑢𝑖𝑖𝑣𝑣

𝒢𝒢𝑢𝑢𝑖𝑖𝑡𝑡

+
GCN Module
(User-Item)

+
GCN Module

(Visual)

+
GCN Module

(Text)

Attention
Fuser

: First Order Graph

𝑢𝑢 𝑖𝑖
𝑢𝑢 𝑖𝑖

𝑢𝑢 𝑖𝑖
𝑢𝑢 𝑖𝑖
𝑢𝑢 𝑖𝑖

𝑢𝑢 𝑖𝑖
𝑢𝑢 𝑖𝑖

𝑢𝑢 𝑖𝑖
𝑢𝑢 𝑖𝑖
𝑢𝑢 𝑖𝑖

𝒢𝒢𝑢𝑢𝑢𝑢1

𝒢𝒢𝑢𝑢𝑢𝑢2

𝒢𝒢𝑢𝑢𝑢𝑢𝑣𝑣

𝒢𝒢𝑢𝑢𝑖𝑖𝑣𝑣

𝒢𝒢𝑢𝑢𝑢𝑢𝑡𝑡

𝒢𝒢𝑢𝑢𝑖𝑖𝑡𝑡

: Second Order Graph

: Item Visual Graph

: Interest Text Graph

: Item Text Graph

: Interest Visual Graph

: Visual Features

: Textual Features

: Item Embeddings

: User Embeddings

𝑖𝑖

Figure 2: Illustration of the Second-Order Interest Learning framework. The proposed framework consists of three distinct
graphs: a user-item interaction graph augmented by second-order interest, an interest-aware item-item relationship graph
for the visual modality, and a similar graph for the textual modality. In this framework, graph convolutional networks are
initially deployed on each of the three graphs to learn representations of users and items. Subsequently, contrastive learning is
applied at both the user-item and item-item levels to effectively capture user interest.

3 PROPOSED METHOD
3.1 Problem Formulation
A typical multimodal recommendation system generally consists of
a group of users, a series of items, and corresponding multimedia
data for each item. In our work, we denote the set of𝑚 users by
U = {𝑢1, 𝑢2, ..., 𝑢𝑚}, and the set of 𝑛 items by I = {𝑖1, 𝑖2, ..., 𝑖𝑛}. We
denote the multimodal data of 𝑛 items by M = {𝑀1, 𝑀2, ..., 𝑀𝑛},
where 𝑀𝑖 = {𝑀𝑣

𝑖
, 𝑀𝑡

𝑖
} refers to the visual and textual features of

the 𝑖-th item. The interaction matrix R ∈ {0, 1} |U |× |I | is a collection
of all user-item interactions, where 𝑟𝑢,𝑖 ∈ {0, 1} indicates whether
user 𝑢 interacts with item 𝑖 . Note that R is also referred to as the
first-order interaction matrix in this paper.

For better understanding, we illustrate the proposed Second-
Order Interest Learning (SOIL) framework in Figure 2. In this frame-
work, we construct an augmented user-item interaction graph that
contains both first-order and second-order interest, an interest-
aware item-item relationship graph for the visual modality, and
an interest-aware item-item graph for the textual modality. The
three graphs are built using user-item interaction records and mul-
timodal features, and the process of constructing these graphs will
be detailed in the subsequent sections. With these three graphs,
graph convolutional networks can be implemented to learn the rep-
resentations of users and items. To enhance the exploitation of user
interest and maintain consistency in user interest across the three
graphs, we implement contrastive learning modules at both the
user-item and item-item levels for user and item representations.
Finally, we optimize the whole model with the pairwise Bayesian
personalized ranking loss.

3.2 Second-Order Interaction Graph
As illustrated in Figure 1, we identify that the items on the candi-
date list are not recorded. However, these candidates are crucial

aspects of user interest that can improve recommendation perfor-
mance. In this paper, we denote all candidate items of a user as
the second-order interest of that user. To retrieve candidate items
and exploit the second-order interest, we first compute the attrac-
tiveness score for each potential user-item pair and then append
potential user-item pairs to the interaction graph by taking attrac-
tiveness scores as edge weights. The augmented interaction graph
is depicted in Figure 3, with dashed lines representing the newly
added edges and the weights corresponding to the scores of the
items that attract users. For instance, path “𝑢2- -𝑖3” indicates that
item 𝑖3 has an attractiveness score of 0.85 for user 𝑢2.

In our work, the attractiveness score is calculated by the similar-
ity between an item and the first-order interest of a user. We first
calculate the similarity of the features for each modality to obtain
attractiveness scores. The similarity matrix 𝑆 ∈ R𝑛×𝑛 consists of
𝑛 × 𝑛 similarity scores, where the element 𝑠𝑖, 𝑗 in row 𝑖 and column
𝑗 is calculated with a cosine similarity function as follows:

𝑠𝑖, 𝑗 =
𝑀𝑖 ·𝑀T

𝑗

∥𝑀𝑖 ∥∥𝑀𝑗 ∥
, (1)

where𝑀𝑖 and𝑀𝑗 refer to the multimodal features of item 𝑖 and item
𝑗 . In our work, we calculate the similarities of visual and textual
features separately and denote them as 𝑠𝑣

𝑖, 𝑗
and 𝑠𝑡

𝑖, 𝑗
.

Based on Eq.(1), we calculate feature similarity matrices 𝑆𝑣 and
𝑆𝑡 for visual and textual modalities. In our work, the attractiveness
score matrix is calculated by the dot product of 𝑆𝑣 and 𝑆𝑡 , denoted
as 𝑆𝑎 = 𝑆𝑣 · 𝑆𝑡 . Each element 𝑠𝑎

𝑖,𝑗
in the matrix 𝑆𝑎 represents the

similarity between the item 𝑖 and the item 𝑗 . With matrix 𝑆𝑎 , we
select items similar to the first-order interest as the second-order
interest for each user. The process of selecting second-order interest
for user 𝑢 is formulated as follows:

𝑆𝑂𝐼 -𝑊 (𝑢, 𝑖), 𝑆𝑂𝐼 -𝐼 (𝑢) = top-𝑘
({
𝑆𝑎𝑖,: |𝑟𝑢,𝑖 = 1, 𝑟𝑢,𝑖 ∈ R

})
, (2)
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Figure 3: Illustration of the second-order interaction graph.

where 𝑆𝑂𝐼 -𝐼 (𝑢) refers to the set of selected items for user 𝑢, and
𝑆𝑂𝐼 -𝑊 (𝑢, 𝑖) records the attractiveness score for each 𝑖 ∈ 𝑆𝑂𝐼 -𝐼 (𝑢),
top-𝑘 (·) refers to the function to select the maximum 𝑘 elements,
𝑆𝑎
𝑖,: refers to the 𝑖-th row in attractiveness matrix, 𝑟𝑢,𝑖 = 1 indicates
that item 𝑖 is in the first-order interest of user 𝑢. This equation
shows that the second-order interest is made up of 𝑘 items that are
most similar to the first-order interest.

With Eq.(2), we are able to build the second-order interaction
matrix R𝑎 as follows:

R𝑎𝑢,𝑖 =

{
𝑆𝑂𝐼 -𝑊 (𝑢, 𝑖), 𝑖 ∈ 𝑆𝑂𝐼 -𝐼 (𝑢),
0, otherwise.

(3)

The second-order interaction matrix R𝑎 shares the same shape with
the first-order interaction matrix R, allowing them to be integrated
into the user-item interaction graph to learn collaborative repre-
sentations. In our work, we implement a light graph convolutional
network (lightGCN) [7] to compute collaborative information on
the user-item interaction graph. The computation of the 𝑙-th layer
is formulated as follows:

E𝑙𝑢𝑖 = (L)E𝑙−1𝑢𝑖 , (4)

where E𝑙
𝑢𝑖

refers to the embedding matrix of the 𝑙-th layer. For
the first layer, the initial embedding matrix 𝐸0

𝑢𝑖
= 𝐸𝑢 ⊕ 𝐸𝑖 is the

concatenation of the user embedding matrix 𝐸𝑢 and the item em-
bedding matrix 𝐸𝑖 . L refers to the sum of the Laplacian matrix for
the first-order interaction graph and the Laplacian matrix for the
second-order interaction graph. It is formulated as follows:

L = D1
−1/2A1D1

−1/2 + D2
−1/2A2D2

−1/2,

A1 =

���� 0 R
RT 0

���� , A2 =

���� 0 Ra

(Ra)T 0

���� , (5)

where D1 is the diagonal degree matrix of R, whose 𝑖-th element is
the sum of the 𝑖-th row in R. Similarly, D2 is the diagonal degree
matrix of Ra. Note that we compute the Laplacian matrices of the
two graphs separately to maintain the original structures inside the
two graphs.

3.3 Interest-aware Item-Item Graph
According to Section 2.2, previous multimodal recommendation
approaches have constructed various item-item graphs based on
feature similarity and 𝑘NN sparsification [1, 23, 24, 28]. However,
these graphs are agnostic to interest and are not able to learn user
interest to improve recommendation performance. To enhance the
relationship between multimodal features and users, we propose to
create interest-aware item-item graphs for each modality.

In our work, we propose to construct interest-aware graphs with
feature similarity matrices 𝑆𝑣 and 𝑆𝑡 , which are calculated with
Eq.(1). With 𝑆𝑣 and 𝑆𝑡 , we denote user interest by the sum of feature
similarities, which is formulated as follows:

𝑆𝑣 (𝑢) =
∑︁

𝑆𝑣𝑖,:, 𝑖 ∈ 𝐼 (𝑢),

𝑆𝑡 (𝑢) =
∑︁

𝑆𝑡𝑖,:, 𝑖 ∈ 𝐼 (𝑢),
(6)

where 𝐼 (𝑢) = {𝑖 |𝑟𝑢,𝑖 = 1, 𝑟𝑢,𝑖 ∈ R} refers to the set of items that user
𝑢 has interacted with, 𝑆𝑣 (𝑢) refers to the sum of visual similarity of
all items in 𝐼 (𝑢), and 𝑆𝑣 (𝑢) has the shape of 1 × 𝑛. 𝑆𝑡 (𝑢) refers to
the sum of textual similarity. With 𝑆𝑣 (𝑢) and 𝑆𝑡 (𝑢), we are able to
select top-𝑘 items to represent user interest. The process of selecting
top-𝑘 items is formulated as follows:

𝐼 𝑣 (𝑢) = top-𝑘
(
𝑆𝑣 (𝑢)

)
, 𝐼𝑡 (𝑢) = top-𝑘

(
𝑆𝑡 (𝑢)

)
, (7)

and we denote the concatenation set of 𝐼 𝑣 (𝑢) and 𝐼𝑡 (𝑢) by 𝐼𝑎 (𝑢) =
𝐼 𝑣 (𝑢) ∪ 𝐼𝑡 (𝑢).

With top-𝑘 items representing user interest, we construct the
interest-aware graphs as follows:

𝑆𝑣𝑖, 𝑗 =

{
𝑆𝑣
𝑖, 𝑗
, 𝑖 ∈ 𝐼 (𝑢) and 𝑗 ∈ 𝐼𝑎 (𝑢),

0, otherwise.

𝑆𝑡𝑖, 𝑗 =

{
𝑆𝑡
𝑖, 𝑗
, 𝑖 ∈ 𝐼 (𝑢) and 𝑗 ∈ 𝐼𝑎 (𝑢),

0, otherwise,

(8)

where 𝑆𝑣
𝑖, 𝑗

and 𝑆𝑡
𝑖, 𝑗

refer to the interest-aware graphs for visual and
textual modalities, respectively. To maintain the latent relationship
among multimodal features, we conduct 𝑘NN sparsification [1] on
𝑆𝑣 and 𝑆𝑡 to construct similarity graphs as follows:

𝑆𝑣𝑖, 𝑗 =

{
𝑆𝑣
𝑖, 𝑗
, 𝑗 ∈ top-𝑘 (𝑆𝑣

𝑖,:),
0, otherwise.

𝑆𝑡𝑖, 𝑗 =

{
𝑆𝑡
𝑖, 𝑗
, 𝑗 ∈ top-𝑘 (𝑆𝑡

𝑖,:),
0, otherwise.

(9)

In our work, we normalize 𝑆𝑣
𝑖, 𝑗
, 𝑆𝑡

𝑖, 𝑗
, 𝑆𝑣

𝑖, 𝑗
and 𝑆𝑡

𝑖, 𝑗
in the same

way to guarantee robust graph convolutional learning. Taking 𝑆𝑣
𝑖, 𝑗

as an example, the normalization process is expressed as 𝑆𝑣
𝑖, 𝑗

=

(𝐷)−
1
2 𝑆𝑣

𝑖, 𝑗
(𝐷)−

1
2 , where 𝐷𝑖𝑖 =

∑
𝑗 𝑆

𝑣
𝑖, 𝑗
is the diagonal degree matrix

of 𝑆𝑣
𝑖, 𝑗
. Once the normalization is done, we merge the interest-aware

graphs and similarity graphs for each modality into the interest-
aware item-item graphs as follows:

G𝑣 = 𝑆𝑣𝑖, 𝑗 + 𝑆
𝑣
𝑖, 𝑗 , G𝑡 = 𝑆𝑡𝑖, 𝑗 + 𝑆

𝑡
𝑖, 𝑗 . (10)

To learn interest-aware multimodal representations, we imple-
ment graph convolutional networks on G𝑣 and G𝑡 , and formulate
the computation of the 𝑙-th layer as:

E𝑙𝑖𝑣 = (G𝑣)E𝑙−1𝑖𝑣 , E𝑙𝑖𝑡 = (G𝑡 )E𝑙−1𝑖𝑡 , (11)

where E𝑙
𝑖𝑣

and E𝑙
𝑖𝑣

refer to the embedding matrices of the 𝑙-th
layer for visual and textual modalities. For the first layer, initial
embeddingmatrices 𝐸0

𝑖𝑣
and 𝐸0

𝑖𝑡
are calculated by fusingmultimodal

features with item embeddings as follows:

𝐸0𝑖𝑣 = 𝐸𝑖 ·𝑀𝐴𝑃-𝑉 (M𝑣), 𝐸0𝑖𝑡 = 𝐸𝑖 ·𝑀𝐴𝑃-𝑇 (M
𝑡 ), (12)
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where 𝑀𝐴𝑃-𝑉 (·) and 𝑀𝐴𝑃-𝑇 (·) are linear mapping functions or
networks for visual and textual features,M𝑣 andM𝑡 are multimodal
features for all items in visual and textual modalities.

Based on interest-aware multimodal representations 𝐸𝑖𝑣 and 𝐸𝑖𝑡
derived from Eq.(11), we integrate them with interaction graphs
to enhance user interest in multimodal features. The process of
integration is formulated as follows:

𝐸𝑣𝑢𝑖 = (G𝑢𝑖𝐸𝑖𝑣) ⊕ 𝐸𝑖𝑣, 𝐸𝑡𝑢𝑖 = (G𝑢𝑖𝐸𝑖𝑡 ) ⊕ 𝐸𝑖𝑡 , (13)

where G𝑢𝑖 = R + R𝑎 refers to the interaction graph that contains
both first-order and second-order interest, ⊕ refers to the concate-
nate operation. Finally, we fuse multimodal representations of all
modalities with an attention mechanism [17, 19, 23, 26], which is
formulated as follows:

𝐸𝑢𝑖 = 𝐸
𝑣
𝑢𝑖 + 𝐸

𝑡
𝑢𝑖 − (𝛼 · 𝐸𝑣𝑢𝑖 + (1 − 𝛼) · 𝐸𝑡𝑢𝑖 ), (14)

where𝛼 = softmax(𝑄 (𝐸𝑣
𝑢𝑖
)⊕𝑄 (𝐸𝑣

𝑢𝑖
)) refers to the attentionweights,

and 𝑄 (·) refers to the widely used linear attention layer [17, 23].

3.4 Pairwise Contrastive Optimization
As mentioned in Section 1, the inconsistency of user interest be-
tween user-item embeddings and multimodal embeddings seriously
degrades recommendation performance. To handle this challenge,
we propose to first enhance user interest in multimodal features
and then deploy an interest consistency maintenance module. To
enhance the user interest, we design a contrastive learning module
on embeddings of users and items as follows:

L𝑢𝑖 =
∑︁

𝑟𝑢,𝑖=1,𝑟𝑢,𝑖 ∈R
−log exp(𝑒𝑢 · 𝑒𝑖/𝜏)∑

𝑟�̂�,𝑖 ∈R exp(𝑒�̂� · 𝑒𝑖/𝜏)

+
∑︁

𝑟𝑢,𝑖=1,𝑟𝑢,𝑖 ∈R
−log exp(𝑒𝑢 · 𝑒𝑖/𝜏)∑

𝑟�̂�,𝑖 ∈R exp(𝑒�̂� · 𝑒𝑖/𝜏)
,

(15)

where 𝑒𝑢 is user representation derived from embedding matrix
𝐸 = 𝐸𝑢𝑖 + 𝐸𝑢𝑖 , 𝑒𝑖 and 𝑒𝑖 are item representations derived from
embedding matrices 𝐸𝑢𝑖 and 𝐸𝑢𝑖 , and 𝜏 is the temperature factor.

To maintain the consistency of user interest between user-item
embeddings and multimodal embeddings, we propose to deploy a
contrastive learning module on embeddings of user-item graph and
item-item graph as follows:

L𝑖𝑖 =
∑︁
𝑖∈I

−log exp(𝑒𝑖 · 𝑒𝑖/𝜏)∑
𝑖∈I exp(𝑒𝑖 · 𝑒𝑖/𝜏)

+
∑︁
𝑢∈U

−log exp(𝑒𝑢 · 𝑒𝑢/𝜏)∑
�̂�∈U exp(𝑒�̂� · 𝑒�̂�/𝜏)

,

(16)

where 𝑒𝑖 and 𝑒𝑖 are item representations derived from embedding
matrices 𝐸𝑢𝑖 and 𝐸𝑢𝑖 , 𝑒𝑢 and ˜𝑒𝑢 are user representations, and 𝜏 is
the temperature factor.

3.5 Overall Optimization Strategy
In our work, we first construct a second-order interaction graph to
learn second-order interest, and then construct interest-aware item-
item graphs for visual and textual modalities. We perform graph
convolutional learning on each of the three graphs and obtain a
embedding matrix 𝐸𝑢𝑖 for the user-item graph, and an embedding
matrix 𝐸𝑢𝑖 for the item-item graph. Following the widely used

Table 1: Statistics of evaluation datasets.

Dataset # Interactions # Users # Items Sparsity
Baby 160,792 19,445 7,050 99.88%
Sports 296,337 35,598 18,357 99.95%
Clothing 278,677 39,387 23,033 99.97%

setting [4, 23, 28], we optimize the prediction model by minimizing
the Bayesian personalized ranking loss as follows:

LBPR = −
∑︁

(𝑢,𝑖+,𝑖− ) ∈R
log𝜎

(
𝑟𝑢,𝑖+ − 𝑟𝑢,𝑖−

)
, (17)

where R = {(𝑢, 𝑖+, 𝑖−) |𝑟𝑢,𝑖+ = 1, 𝑟𝑢,𝑖− = 0, 𝑟𝑢,𝑖+ ∈ R, 𝑟𝑢,𝑖− ∈ R}.
𝑟𝑢,𝑖+ = 𝑒𝑢 · 𝑒T

𝑖+ refers to the interaction score of a positive sample,
where 𝑒𝑢 and 𝑒𝑖+ are user representation and item representation
derived from embedding matrix 𝐸 = 𝐸𝑢𝑖 + 𝐸𝑢𝑖 .

Finally, we optimize the whole model by minimizing the follow-
ing loss function:

L = LBPR + 𝜆𝑢𝑖L𝑢𝑖 + 𝜆𝑖𝑖L𝑖𝑖 , (18)

where 𝜆𝑢𝑖 and 𝜆𝑖𝑖 are hyper-parameters that control the contribu-
tion of two contrastive learning modules.

In the model inference, the interaction score between user 𝑢 and
item 𝑖 is computed as follows:

𝑝𝑟𝑒𝑑𝑠 (𝑢, 𝑖) = 𝑒𝑢 · 𝑒T𝑖 , (19)

where 𝑒𝑢 and 𝑒𝑖 are user representation and item representation
derived from embedding matrix 𝐸 = 𝐸𝑢𝑖 + 𝐸𝑢𝑖 .

4 EXPERIMENTS
In this section, we conduct extensive experiments on three public
datasets to study the following research questions:
RQ1: Does the SOIL improve recommendation performance?
RQ2: What is the contribution of the three graphs and contrastive
learning modules in improving performance?
RQ3:What is the effect of different hyper-parameters on the model
performance?
RQ4: Does the second-order interest identify the items with which
a user would like to interact?
RQ5: Do contrastive learning modules improve consistency be-
tween user-item embeddings and multimodal embeddings?

4.1 Datasets
To evaluate our method, we conduct extensive experiments on
three widely used Amazon review datasets [5, 13]. Following [4, 23,
28], we choose the following categories: (a) Baby, (b) Sports and
Outdoors, and (c) Clothing, Shoes and Jewelry. They are commonly
referred to as Baby, Sports, and Clothing. All three datasets contain
visual images and textual descriptions of the items. Following the
widely used setting [4, 23, 26, 28], we use pre-extracted features:
4,096-dimensional for visual data and 384-dimensional for textual
data. In our work, all items and users are filtered using the 5-core
setting, and the statistics of datasets are reported in Table 1.

4.2 Experimental Protocols
Evaluation Metric. Following [4, 24, 29], we adopt the all-ranking
protocol with two widely used metrics to evaluate the performance
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Table 2: The performance comparison of different models. All results are reported in terms of Recall (R@𝐾) and NDCG (N@𝐾).
The best and second results are marked with Bold and Underline. The improvement (Improv.) is calculated by comparing it
with the best baseline on each dataset.

Dataset Metric BPR LightGCN VBPR LATTICE SLMRec BM3 FREEDOM MGCN LGMRec SIOL Improv.
UAI’09 SIGIR’20 AAAI’16 MM’21 TMM’22 WWW’23 MM’23 MM’23 AAAI’24 Ours

Baby

R@10 0.0357 0.0479 0.0423 0.0536 0.0540 0.0564 0.0627 0.0620 0.0644 0.0680 5.59%
R@20 0.0575 0.0754 0.0663 0.0858 0.0810 0.0883 0.0992 0.0964 0.1002 0.1028 2.59%
N@10 0.0192 0.0257 0.0223 0.0287 0.0285 0.0301 0.0330 0.0339 0.0349 0.0365 4.58%
N@20 0.0249 0.0328 0.0284 0.0370 0.0357 0.0383 0.0424 0.0427 0.0440 0.0454 3.18%

Sports

R@10 0.0432 0.0569 0.0558 0.0618 0.0676 0.0656 0.0717 0.0729 0.0720 0.0786 7.82%
R@20 0.0653 0.0864 0.0856 0.0950 0.1017 0.0980 0.1089 0.1106 0.1068 0.1155 4.43%
N@10 0.0241 0.0311 0.0307 0.0337 0.0374 0.0355 0.0385 0.0397 0.0390 0.0435 9.57%
N@20 0.0298 0.0387 0.0384 0.0423 0.0462 0.0438 0.0481 0.0496 0.0480 0.0530 6.85%

Clothing

R@10 0.0206 0.0361 0.0281 0.0459 0.0452 0.0450 0.0629 0.0641 0.0555 0.0687 7.18%
R@20 0.0303 0.0544 0.0415 0.0702 0.0675 0.0669 0.0941 0.0945 0.0828 0.0998 5.60%
N@10 0.0114 0.0197 0.0158 0.0253 0.0247 0.0243 0.0341 0.0347 0.0302 0.0377 8.64%
N@20 0.0138 0.0243 0.0192 0.0306 0.0303 0.0295 0.0420 0.0428 0.0371 0.0456 6.54%

of top-𝐾 recommendations: Recall (Recall@𝐾) and Normalized
Discounted Cumulative Gain (NDCG@𝐾). We report the average
performance of all users with 𝐾 set to 10 and 20. In our research,
we randomly divided the historical interactions of each user into
training, validation, and testing sets with ratios of 8:1:1.

Implementation Details. In our work, we implement all com-
pared methods and the proposed method with the MMRec frame-
work [27]. For a fair comparison, we follow the experimental set-
tings and pre-extracted visual and textual features in the MMRec
framework. We use Recall@20 on the validation set as the indi-
cator for early stopping. The embedding size for both users and
items is set to 64 for all models. The number of GCN layers for
the user-item graph is set to 2, and for item-item graphs, it is
set to 1. We initialize all embedding parameters with the Xavier
method [3], and optimize all models with the Adam optimizer [8].
Our method is implemented by Pytorch 1.12 and is trained on
a single NVIDIA RTX 2080TI. Hyper-parameters 𝜆𝑢𝑖 and 𝜆𝑖𝑖 are
chosen from {0.001, 0.01, 0.1, 1.0}. The 𝑘 for the 𝑘NN sparsifica-
tion in Eq.(7) and Eq.(9) are chosen from {5, 10, 15, 20}. The 𝑘 for
top-𝑘 second-order interest in Eq.(2) is chosen from 1 to 10. The
code will be released on our website, and we also provide
the model structure and the test code at the anonymous web-
site (URL: https://anonymous.4open.science/r/soil-B1C3) for
validation during the review phase.

Compared Methods. In our work, we validate our approach
by comparing it with the following traditional methods and multi-
modal recommendation methods:

(1) BPR [14] is a traditional method presenting a Bayesian per-
sonalized ranking optimization criterion to optimize the
ranking models directly.

(2) LightGCN [7] is a traditional method that simplifies the GCN
to make it more appropriate for recommendation.

(3) VBPR [6] is a multimodal method that incorporates visual
signals into the collaborative filtering model and optimizes
the model with Bayesian personalized ranking loss.

(4) LATTICE [24] is amultimodal method to construct item-item
relationship graphs from multimodal features directly.

(5) SLMRec [16] is a multimodal method that performs data aug-
mentation on multimodal features and deploys contrastive
learning modules to optimize the model.

(6) BM3 [29] is a self-supervised multimodal recommendation
method that reconstructs the user-item interaction graph
and aligns multimodal features.

(7) FREEDOM [28] is amultimodal denoisingmethod that freezes
the item-item graph in LATTICE [24] and denoises the user-
item graph to improve recommendation performance.

(8) MGCN [23] is a multimodal approach that reduces the effect
of modal noise by treating user-item interactions and modal
features as different views and performing graph convolu-
tional learning in each of them separately.

(9) LGMRec [4] is a multimodal approach that learns representa-
tions from local and global graphs to model local and global
user interest jointly.

4.3 Experimental Results
RQ1: The ability to improve recommendation performance.
To evaluate the effect of our approach, we perform extensive ex-
periments on three datasets and compare the results with several
multimodal methods. We report the results of our method and other
multimodal methods in Table 2. According to Table 2, our method
is able to surpass the previous methods by a wide margin in all eval-
uation metrics. From the results, our method outperforms previous
state-of-the-art methods by 5.59%, 7.82%, and 7.18% on Baby, Sports,
and Clothing in terms of Recall@10. Similarly, our method is able
to surpass previous state-of-the-art methods by 4.58%, 9.57%, and
8.64% on Baby, Sports, and Clothing in terms of NDCG@10. For the
results of Recall@20, our method is able to achieve the improvement
of 2.59%, 4.43%, and 5.60% compared to previous state-of-the-art
methods on Baby, Sports, and Clothing. Furthermore, our method
surpasses other methods by 3.18%, 6.85%, and 6.54% on Baby, Sports,
and Clothing in terms of NDCG@20.

Among all the compared methods, MGCN has a similar network
structure to our approach. According to the comparison in Table 2,
our method is able to achieve the improvement of 9.68%, 7.82%, and

https://anonymous.4open.science/r/soil-B1C3
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Table 3: Results of the ablation study. SOI is short for the second-order interaction graph without first-order interest. IA is
short for the interest-aware graph without the similarity graph. The ✓ indicates that the corresponding component is included.

Variants Baby Sports Clothing
SOI IA L𝑢𝑖 L𝑖𝑖 R@10 R@20 N@10 N@20 R@10 R@20 N@10 N@20 R@10 R@20 N@10 N@20

0.0556 0.0884 0.0303 0.0387 0.0650 0.0996 0.0354 0.0443 0.0509 0.0768 0.0279 0.0344
✓ ✓ 0.0634 0.0984 0.0351 0.0441 0.0722 0.1071 0.0400 0.0490 0.0665 0.0976 0.0364 0.0442

✓ ✓ 0.0609 0.0962 0.0327 0.0417 0.0667 0.1008 0.0361 0.0449 0.0597 0.0860 0.0324 0.0391
✓ ✓ ✓ 0.0642 0.1002 0.0348 0.0440 0.0722 0.1092 0.0400 0.0495 0.0602 0.0880 0.0330 0.0401
✓ ✓ ✓ 0.0658 0.0984 0.0357 0.0441 0.0749 0.1112 0.0410 0.0504 0.0675 0.0989 0.0369 0.0448

✓ ✓ ✓ 0.0674 0.1011 0.0367 0.0453 0.0759 0.1139 0.0413 0.0511 0.0680 0.0997 0.0377 0.0457
✓ ✓ ✓ ✓ 0.0680 0.1028 0.0365 0.0454 0.0786 0.1155 0.0435 0.0530 0.0687 0.0998 0.0377 0.0456

7.18%when compared with MGCN on Baby, Sports, and Clothing in
terms of Recall@10. In addition, our method is able to outperform
MGCN by 7.67%, 9.57%, and 8.64% on Baby, Sports, and Clothing
in terms of NDCG@10. From Table 2, we have an observation that
both our method and MGCN are able to outperform other meth-
ods. This observation indicates that the construction of separate
graphs for historical user-item interactions and different modal-
ities is beneficial for improving the performance of multimodal
recommendations. Based on the comparison between traditional
collaborative filtering methods and multimodal methods, we have
another observation that most multimodal recommendation meth-
ods are able to exceed traditional collaborative filtering methods by
a large margin in all evaluation metrics. This observation verifies
that incorporating multimodal information into traditional models
can significantly improve recommendation performance.

4.4 Modal Analysis
RQ2: The contribution of different components. To validate
the contribution of each component in our work, we perform the
ablation study on all evaluation datasets and report the experimen-
tal results in Table 3. In the ablation study, we focus on the effects
of the second-order interaction graph, the interest-aware graph,
the user-item contrastive learning module, and the item-item con-
trastive learning module in our framework. The first line in Table 3
indicates the baseline model without the above four components.
From Table 3, our method is able to surpass the baseline model by
22.3%, 20.9%, and 35.0% on Baby, Sports, and Clothing in terms of
Recall@10. Furthermore, our method is able to achieve the improve-
ment of 20.4%, 22.9%, and 35.1% on Baby, Sports, and Clothing in
terms of NDCG@10.

From Table 3, the second-order interaction graph and interest-
aware graph are able to achieve the improvement of 9.53%, 2.6%
and 17.2% compared to the baseline model on Baby, Sports, and
Clothing in terms of Recall@10. The two contrastive learning mod-
ules are able to surpass the baseline model by 14.0%, 11.0%, and
30.6% on Baby, Sports, and Clothing in terms of Recall@10. From
the last four lines in Table 3, both the interest-aware graph and the
second-order interest graph contribute significantly to improving
the performance of the recommender systems. This observation
verifies that integrating second-order interest into the item-item
graph is effective in improving recommendation performance. The
comparison of all the results in Table 3 suggests that the primary
contributors to performance improvement are the two contrastive

learning modules, while the second-order interaction graph and
interest-aware graphs are secondary contributors.

RQ3: The effect of hyper-parameters in our approach.
Effect of hyper-parameters 𝜆𝑢𝑖 and 𝜆𝑖𝑖 . The hyper-parameter
𝜆𝑢𝑖 controls the contribution of the loss function L𝑢𝑖 that is uti-
lized to optimize the contrastive learning module of the user-item
level. The hyper-parameter 𝜆𝑖𝑖 controls the contribution of the loss
function L𝑖𝑖 , which is utilized to optimize the contrastive learning
module at the item level. We conduct experiments with different
combinations of the two hyper-parameters and report the results
in Figure 4(a). From the results, the performance of the model first
increases and then gradually declines when 𝜆𝑖𝑖 increases. For the
hyper-parameter 𝜆𝑢𝑖 , the performance of the model shows a similar
trend when 𝜆𝑢𝑖 increases. As 𝜆𝑢𝑖 decreases, the performance of the
model decreases faster as 𝜆𝑖𝑖 increases. Our method is prone to
achieve better prediction performance with smaller 𝜆𝑢𝑖 and 𝜆𝑖𝑖 .

Effect of 𝑘 in interest-aware item-item graphs. In our work,
we adopt different 𝑘 values in the top-𝑘 operations of Eq.(7) and
Eq.(9). The 𝑘 for interest in Eq.(7) controls the number of samples
when selecting interest-aware samples. The 𝑘 for similarity in Eq.(9)
controls the number of samples in selecting similar samples for
each item. We conduct experiments with different combinations
of the two 𝑘s and report the results in Figure 4(b). Note that the
results are reported with all other parameters fixed and without
tuning. From the results, the performance on Baby slowly grows up
when 𝑘 for similarity increases, while the performance on Clothing
fluctuates when 𝑘 for similarity increases. According to the results
of 𝑘 for interest, the performance on Baby first grows up and then
slowly decreases when 𝑘 increases. In our work, 𝑘 for similarity is
set to 10 for all datasets. The 𝑘 for interest is set to 10 for Baby and
5 for both Sports and Clothing.

Effect of 𝑘 when selecting second-order interest. In our
work, we adopt different 𝑘 values in the top-𝑘 operations of Eq.(2).
The 𝑘 in Eq.(2) controls the number of samples when selecting
second-order interest samples. We conduct experiments on Baby
and Sports and report the results in Figure 5. Note that the results
are reported with all other parameters fixed and without tuning.
From the results of Recall@10 in Figure 5, the performance on
Sports slowly grows as 𝑘 increases, while the performance on Baby
first increases and then slowly decreases as 𝑘 increases. The results
of NDCG@10 show similar trends to the results of Reacall@10.
According to the ablation study in Table 3, the second-order in-
teraction graph is undoubtedly capable of improving the model
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Figure 4: Parameter sensitivity analysis on Baby and Clothing.
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Figure 5: Effect of 𝑘 in selecting second-order samples. SOI is
short for the second-order interest.
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User Second-Order Interest Interactions in Test

Figure 6: Case study of the second-order interest on Sports.
The orange circles indicate that the item is present in both
the second-order interest and test set interactions, i.e., the
second-order interest is valid.

performance. The observation in Figure 4 indicates that the 𝑘 for
selecting second-order interest depends on the dataset and varies
widely across datasets. In our work, to achieve better performance,
the 𝑘 for second-order interest is set to 2 for Baby, 6 for Sports and
3 for Clothing.

RQ4: The effectiveness of second-order interest. In ourwork,
we propose to exploit the second-order interest of each user to
retrieve the items in the candidate list. To qualitatively verify that
the proposed second-order interest is practical in selecting potential
interaction candidates, we compare the items on the second-order
interest list with those on the interaction list of the test set and
present the comparison results in Figure 6. Note that second-order
interest is generated with the training data. From the results, our
method is able to select two potential interaction candidates for
user 2465 and user 13979. For users 289 and 1472, our method is
able to select one potential interaction candidate. This observation
verifies that the proposed second-order interest is able to retrieve
potential interaction candidates.

RQ5: The effect of contrastive learning modules. In our
work, we design contrastive learning modules at both the user-item

(a) W/O Contrastive Learning Module (b) With Contrastive Learning Module
0.0

0.2

0.4

0.6

0.8

1.0

Figure 7: Comparison of cosine similarity between user-item
embeddings andmultimodal embeddings. High diagonal sim-
ilarity and low similarity in other areas indicate consistency
between user-item embeddings and multimodal embeddings.
W/O is short for without.

and item-item levels to maintain user interest consistency between
user-item embeddings and multimodal embeddings. To verify the
ability to enhance the consistency of interest, we randomly selected
user-item embeddings and multimodal embeddings and calculated
the cosine similarity between them. The results are illustrated in
Figure 7. In Figure 7, the vertical axis represents user-item embed-
dings, and the horizontal axis represents multimodal embeddings.
The results indicate that in the method employing comparative
learning modules, the multimodal embeddings and user-item em-
beddings of the same interaction are more closely aligned, whereas
the similarity among different interactions is reduced. This observa-
tion verifies that contrastive learning modules in our work are able
to enhance the feature consistency between user-item embeddings
and multimodal embeddings.

5 CONCLUSION
This work presents a Second-Order Interest Learning framework
to exploit the second-order interest from unrecorded candidate
items. In this framework, we exploit candidate items from the per-
spective of constructing interest-aware graphs and self-supervised
optimization. To construct interest-aware graphs, we first design
an augmented user-item interaction graph that contains both first-
order and second-order interest, and then we integrate the user
interest with multimodal features to construct the interest-aware
item-item graph for each modality. In self-supervised optimization,
we design a user-item level contrastive learning module and an
item-item level contrastive learning module to enhance the user
interest between user-item embeddings and multimodal embed-
dings. Extensive experiments verify that our method is capable of
significantly improving the recommendation performance.
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