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ABSTRACT

Without cross-sensory interaction, a key aspect of multisensory emotion recogni-
tion, traditional deep learning methods exhibit inferior performance in this task.
On the contrary, the human brain possesses an inherent and remarkable capacity
for multisensory recognition. Its diverse neurons exhibit distinct responses to sen-
sory inputs, thus facilitating cross-sensory interaction. Leveraging this superiority,
we propose the Neuronal Diversity Inspired Model (NDIM), which incorporates
both unisensory and multisensory neurons, aligning with the human brain. To
mirror the diverse response characteristics exhibited by various neurons, we intro-
duce innovative connection constraints to regulate feature transmission between
neurons. Drawing inspiration from this novel concept of neuronal diversity, our
model exhibits biological plausibility, facilitating more effective emotion recog-
nition of multisensory information. Experiments on the RAVDESS and eNTER-
FAVE’05 datasets show that the NDIM achieves the best accuracy of 99.63% and
98.45%, respectively, demonstrating the potential of neuronal-diversity-inspired
approaches in advancing multisensory interaction and emotion recognition.

1 INTRODUCTION

Multisensory emotion recognition is an emerging technique that demonstrates superior performance
compared to unisensory recognition due to its ability to mitigate non-robustness observed in unisen-
sory recognition (Sun et al., 2008). Thus this technique has gained significant attention across di-
verse fields such as human-computer interaction (Abdullah et al., 2021), emotion regulation (Liu
et al., 2019), and the diagnosis of emotion-related diseases (Widge et al., 2018). To further enhance
emotion recognition performance, multisensory fusion is a crucial approach that effectively exploits
complementary information and accentuates the most relevant details (Ranganathan et al., 2016).

With the advancements in deep learning, an increasing number of methods have been employed
for fusing multisensory information. Diverse approaches, including Convolutional Neural Network
(CNN) based, Recurrent Neural Network (RNN) based, and hybrids with other algorithms, have
been employed to accomplish fusion, yielding promising outcomes in multisensory emotion recog-
nition tasks (Zhang et al., 2017; Tzirakis et al., 2017; Tang et al., 2017; Huan et al., 2021). Further-
more, deep generative models, such as variational autoencoders (VAEs) (Zhou et al., 2018; Wang
et al., 2022), and generative adversarial networks (GAN) (Luo et al., 2019; Ma et al., 2022), exhibit
outstanding performance due to their superior feature representation capabilities (Suzuki & Matsuo,
2022). Nevertheless, the majority of these methods fail to consider the interaction between different
senses, a crucial aspect in multisensory fusion and recognition (Mansouri-Benssassi & Ye, 2020b).

In contrast to the aforementioned approaches, large language models like MulT (Tsai et al., 2019),
which are based on Transformer architecture, facilitate cross-sensory interaction through diverse
attention mechanisms. However, concerns persist regarding their dependence on extensive com-
putation and large datasets, resulting in diminished computational efficiency and elevated training
costs (Shin et al., 2022). Given the limitations of prior methods, there is an urgent need for a
multisensory recognition model that enables intricate cross-sensory interaction while minimizing
computation and data requirements.

The human brain possesses an innate and remarkable ability to perceive and recognize the external
environment by efficiently utilizing multisensory information, including vision and hearing (Mc-
Donald et al., 2001; Ohshiro et al., 2011). To provide machines with similar advantages, the
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Convergence and the Enhancement model are proposed for effective emotion recognition from
multisensory information. However, these models have been shown to be inadequate in achieving
cross-sensory interaction. The superior multisensory emotion recognition abilities of the human
brain are underpinned by the cross-sensory interaction, as evidenced by cognitive neuroscience
research (Alvarado et al., 2007). During this interaction, information from different senses can
complement and mutually influence one another, facilitating efficient and comprehensive recog-
nition (Holmes, 2007). Specifically, the multisensory interaction of the human brain is attributed
to diverse neurons, including both unisensory and multisensory neurons (Stevenson et al., 2014).
These neurons exhibit distinct responses to sensory inputs, with unisensory neurons specifically re-
sponding to single sensory information, while multisensory neurons respond to inputs from multiple
senses (Stein & Stanford, 2008). The human brain effectively captures cross-sensory interaction due
to these neurons’ distinct response characteristics, thereby enabling superior multisensory emotion
recognition abilities (Laurienti et al., 2005).

Based on the facilitation of diverse neurons, including unisensory and multisensory neurons, in
multisensory emotion recognition of the human brain, we propose the Neuronal Diversity Inspired
Model(NDIM) for multisensory emotion recognition through Spiking Neural Networks (SNN). Our
model incorporates the novel concept of neuronal diversity, making it biologically plausible and en-
abling more effective multisensory emotion recognition. This research presents several significant
contributions, summarized as follows. Firstly, in alignment with the observed neuronal diversity in
the human brain, the NDIM incorporates both unisensory and multisensory neurons to effectively
model and learn cross-sensory interaction. Secondly, pioneering special connection constraints are
designed to regulate feature transmission within the NDIM, reflecting the different response charac-
teristics of diverse neurons. Thirdly, we evaluate the NDIM on the RAVDESS and eNTERFAVE’05
datasets, showing that the NDIM achieves the best accuracy of 99.63% and 98.45%, respectively,
consistently outperforming state-of-the-art brain-inspired approaches.

2 RELATED WORK

In the context of multisensory emotion recognition, some brain-inspired models have been proposed
to effectively recognize the information from multiple senses. The Convergence model (Benssassi
& Ye, 2023) draws inspiration from the convergence theory, which posits that information from
distinct senses converges in higher-order brain regions where it is fused and recognized (Stein &
Meredith, 1993). In this model, a convergence layer is built to recognize the concatenated features
extracted from the visual and auditory senses, serving as the higher-order region. Before the con-
vergence layer, two separate layers extract sense-specific features. Unfortunately, this model lacks
interaction between the individual sensory inputs, leading to suboptimal performance.

The Enhancement model (Benssassi & Ye, 2023) is inspired by the enhancement theory that high-
lights the impact of visual information on auditory cortex activity (Molholm et al., 2002; Jessen &
Kotz, 2013). In this model, the auditory feature extraction layer receives inputs not only from the
auditory input layer but also from the visual layer. Regrettably, the model solely accounts for uni-
directional connections from the visual sense to the auditory sense, thus falling short of achieving
comprehensive interaction between the visual and auditory senses.

The Synch-Graph model (Mansouri-Benssassi & Ye, 2020a) considers the interaction, incorporat-
ing the concept of neural synchrony. Neural synchrony refers to the simultaneous neural oscillations
of distinct groups of neurons connected by synapses, and it is considered a facilitator of multisensory
interaction (Stein, 2012). In the Synch-Graph model, bidirectional connections are established be-
tween visual and auditory neurons, and a graph is employed to represent the neural synchrony among
these neurons. Graph Convolutional Networks (GCN) are utilized to classify the graphs. However,
this model exhibits limited robustness in the presence of noise.

In summary, the first two brain-inspired models have proven inadequate in achieving multisensory
interaction. Although the Synch-Graph model enables interaction, it comes at the expense of
limited robustness. Consequently, there is a pressing need to explore novel brain mechanisms to
serve as inspiration for developing a model capable of effectively achieving interaction and emotion
recognition.
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3 NEURONAL DIVERSITY OF THE HUMAN BRAIN

In the human brain, efficient processing and recognition of multisensory emotion rely on diverse
neurons that exhibit distinct responses to sensory inputs. This section provides an introduction to
these neurons, their response characteristics, and their role in facilitating cross-sensory interaction.

Superior Colliculus (SC) (Cuppini et al., 2011b), the posterior Superior Temporal Sulcus and Gyrus
(STS/STG) (Engel et al., 2012; Chabrol et al., 2015), are responsible for multisensory emotion
recognition. Within these regions, a variety of neurons, including multisensory neurons and unisen-
sory neurons, are prevalent. Multisensory neurons are defined as neurons that respond to stimuli
from more than one sense, while unisensory neurons respond exclusively to a single sense (Fetsch
et al., 2013). Unisensory neurons can be further categorized into visual-specific and auditory-
specific neurons (Stevenson et al., 2014). Multisensory neurons demonstrate significantly greater
responses to multisensory stimuli that share a common source compared to any single sense stim-
uli (Cuppini et al., 2011a). On the other hand, unisensory neurons exhibit no significant changes
in response when presented with multisensory stimuli versus single-sensory stimuli. Due to these
response characteristics, unisensory neurons and multisensory neurons exhibit different levels of
activation when the human brain receives multisensory input (Stein & Stanford, 2008). Moreover,
When a neuron receives and activates in response to information, it selectively transmits this in-
formation to target neurons based on its type. As a result, information from different senses can be
directionally transmitted between these neurons, influencing and complementing each other, thereby
achieving cross-sensory interaction and facilitating multisensory emotion recognition (Allman et al.,
2009).

4 PROPOSED NDIM MODEL

Building upon the advantages of neuronal diversity in cross-sensory interaction, we present our
model in Figure 1. The NDIM consists of three modules: the Unisensory Processing Module, the
Neuronal Diversity Module, and the Interaction Module. The Neuronal Diversity Module deter-
mines neuron types based on their spiking patterns and devises unique connection constraints to
facilitate multisensory interaction and emotion recognition in the Interaction Module.

In the subsequent sections, we present the overarching framework of our model (Section 4.1), fol-
lowed by the introduction of its key components: the Neuronal Diversity Module (Section 4.2) and
the Interaction Module (Section 4.3).

4.1 OVERALL ARCHITECTURE

In this model, we initially process the unisensory data in the Unisensory Processing Module to
extract semantic features. These extracted features then converge in the Interaction Module for
interaction and emotion recognition. To closely emulate the neuronal diversity in the human brain,
we design the Neuronal Diversity Module to enable comprehensive interaction through various types
of neurons and specific connection constraints.

We investigate two sensory modalities in this study: visual (denoted by the superscript ’(v)’)
and auditory (denoted by the superscript ’(a)’). The input data for each sense is denoted as

X(v) ∈ Rt
(v) × d(v) and X(a) ∈ Rt

(a) × d(a) for every sample. Here, t(∗) and d(∗) represent
the time dimension and feature dimension, respectively. Initially, the input data undergoes prepro-
cessing and feature extraction, resulting in the primary features of each modality, denoted as F (v)

p ,
and F (a)

p . These primary features are then further processed as semantic features, denoted as F (v)
s

and F (a)
s , through a spiking convolution layer and a pooling layer. Subsequently, the multisen-

sory features F (m)
s are formed by concatenating the semantic features from the visual and auditory

senses. The multisensory features are then passed through the Interaction Module for further recog-
nition. The Interaction Module consists of two hidden layers and a readout layer. The hidden layers
comprise three types of neurons: unisensory neurons for the visual sense, unisensory neurons for
the auditory sense, and multisensory neurons. Specific constraints are designed to govern the con-
nections between different types of neurons, regulating the transmission of features across these
layers.
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Figure 1: The overall architecture of the proposed NDIM model that is inspired by the neuronal di-
versity. Three modules are included in the NDIM: the Unisensory Processing Module, the Neuronal
Diversity Module, and the Interaction Module. The gray rectangular area accommodates two net-
works responsible for unisensory emotion recognition. Once trained, the Neuronal Diversity Module
receives the spiking patterns of the internal neurons from these networks. The Neuronal Diversity
Module determines the neuronal types based on their spiking patterns and designs unique connection
constraints to enable the Interaction Module to achieve multisensory interaction and emotion recog-
nition. Notably, each layer of the Interaction Module comprises distinct neuron types. To achieve
a unique transmission of sensory information between these neurons, the weights and connection
constraints undergo Hadamard product computations.

The neuron model employed in the NDIM architecture is the classical leaky integrated-and-fire
(LIF) model. To enhance the learning capacity of the network, neuronal plasticity (Jia et al., 2021)
is considered. In this regard, the neuron model incorporates an adaptive firing threshold determined
by an ordinary differential equation. For instance, the update of the membrane potential for the i-th
neuron in the l-th hidden layer can be illustrated as follows:

C dVi(t)
dt = g (Vi(t)− V1) (1− Si(t)) +

nl∑
j=1

(
W

(l)
i,j

)
F (m)
s − γai(t) (1)

if (Vi(t) = Vth) ,

{
Vi(t) = V2,
Si(t) = 1,

(2)

dai(t)

dt
= (α− 1) ai(t) + βSi(t) (3)

where C is the capacitance parameter, g is the conductance value, Vi(t) is the membrane potential
of neuron i at timing t, Si(t) is the firing flag, V1 is the resting potential, V2 is the reset membrane
potentials, Vth is the firing threshold. nl is the number of neurons in the l-th hidden layer. W

(l)
i,j

is the synaptic weight from the neuron i to the neuron j in the l-th layer. The dynamic threshold
ai(t) is accumulated during the period from the resetting to the membrane potential firing, and as
the frequency of firing increases, the threshold also increases, and vice versa.

4



Under review as a conference paper at ICLR 2024

4.2 NEURONAL DIVERSITY MODULE

In Section 3, we have explained the significance of different types of neurons and synaptic connec-
tions in achieving effective multisensory interaction and emotion recognition. Drawing inspiration
from this, our model incorporates diverse neurons and special weight constraints to facilitate com-
prehensive interaction among multisensory information. To extract this information, we propose
the Neuronal Diversity Module, as illustrated in Figure 2. This subsection details the process of
determining diverse neurons and establishing two connection constraints based on them. These
constraints aim to facilitate multisensory interaction by enforcing specific weight configurations.

To identify diverse neurons and establish connection constraints, additional unisensory emotion
recognition networks (Re(v) , Re(a)) are designed, as shown in the gray rectangular area of Figure
1. These networks consist of two fully connected layers and one readout layer, serving to classify
the unisensory features F (v)

p , and F (a)
p . The ensemble comprising the unisensory processing and

recognition network for each single sense can be trained separately. Subsequently, the spiking pat-
terns of neurons from the trained recognition networks Re(v) and Re(a) are recorded and utilized by
the Neuronal Diversity Module to identify the diverse neurons and establish connection constraints.

Figure 2: The detailed diagram of the Neuronal Diversity Module. M represents the multisensory
neurons and U represents the unisensory neurons.

4.2.1 DETERMINING DIVERSE NEURONS

To elaborate on our ideas of these modules, we explain how the NDIM correlates with multisensory
emotion recognition mechanisms in the human brain. Unisensory information is processed through
feature extraction and recognition processes that result in a final classification. This process cor-
responds to the unisensory information recognition circuit in the human brain, with the visual and
auditory processing streams corresponding to the ventral visual and auditory pathways, respectively.
The architectures of Re(v), Re(a), and the Interaction Module are identical since they mimic higher-
order regions. However, the difference lies in the populations of neurons they mimic. Unisensory
neurons for vision and multisensory neurons respond to visual stimuli, which corresponds to the
neurons that Re(v) mimics, while Re(a) involves unisensory neurons for audio and multisensory
neurons. Therefore, different activation patterns of neurons can differentiate between unisensory
and multisensory neurons in higher-order regions.

The Neuronal Diversity Module identifies different types of neurons in a layer-by-layer fashion.
In particular, the spiking patterns of neurons in the first layer of Re(v), Re(a) are used to identify
neurons in the first layer of the Neuronal Diversity Module, and this process is repeated for each
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subsequent layer. To represent spike patterns, Sl,(v)
i ,S

l,(a)
i ∈ Rnl×t′ denote the spikes of all neurons

in the l-th layer, for each sample of visual and auditory senses. Spike patterns, denoted as P l,(v) and
P l,(a), are obtained by averaging spikes on a timing scale and samples, which are formulated as:

P l,(v) =
1

nl

nl∑
i=1

Meant

(
S

l,(v)
i

)
,P l,(a) =

1

nl

nl∑
i=1

Meant

(
S

l,(a)
i

)
(4)

where Meant(·) represents the average value on timing scale. Then, the multisensory neurons are
determined by,

Ml = Top
(
P l,(v), ρ

)
∩ Top

(
P l,(a), ρ

)
(5)

where Top(·, ρ) is used to identify neurons with the highest spiking level based on their spike pat-
terns. Here, ρ is a hyperparameter ranging from 0 to 1, indicating the percentage of neurons with the
top ρ highest spikes that are considered to have the strongest spiking level. Multisensory neurons in
the l-th layer, denoted as Ml, are found by intersecting the visual neurons with the strongest spiking
level and the neurons associated with auditory modality. Unisensory neurons, on the other hand, are
obtained by taking the difference between all neurons and the multisensory neurons in the l-th layer,
which is identified by,

Ul,(v) = Al,(v)\Ml,Ul,(a) = Al,(a)\Ml (6)

where the Ul,(v) and Ul,(a) represent unisensory neurons in the l-th layer, Al,(v) and Al,(a) represent
all neurons in the l-th layer.

4.2.2 ESTABLISHING WEIGHT CONSTRAINTS

Inspired by the response characteristics of different neurons, we establish connection constraints,
denoted as matrices Cl ∈ Rn′l−1×n′l

, where n′l represents the number of neurons in the l-th layer
of the Neuronal Diversity Module. These matrices facilitate the interaction between neurons of
different senses. They are filled with 1 or 0, representing connected and disconnected weights,
respectively. The function D(i, j) determines the connection constraint from the i-th neuron in the
l − 1th layer (source neuron) to the j-th neuron in the l − 1th layer (target neuron).

The function value of D(i, j) is determined by the following rules. Firstly, if the source neuron
is unisensory and the target neuron is either unisensory of the same modality or multisensory, the
function value is set to 1. Secondly, if the source neuron is multisensory and the target neuron is
unisensory, the function value is set to 1. Thirdly, In all other cases, the function value is set to 0.
These rules define the masks for both layers. The weight constraints, along with the diverse neurons,
are then projected to the Interaction Module for multisensory emotion recognition.

4.3 INTERACTION MODULE

The Interaction Module aims to enhance multisensory emotion recognition by leveraging diverse
neurons and connection constraints introduced earlier. This subsection provides a detailed explana-
tion of how the module achieves interaction and emotion recognition based on these diverse neurons
and weight constraints.

Diverse neurons and weight constraints are determined and established to guide the Interaction Mod-
ule for further recognition. The diverse neurons facilitate the identification of multisensory and
unisensory neurons within the module. Meanwhile, the weight constraints restrict the connections
between neurons through the Hadamard product with Cl. This approach aligns with the response
characteristics of neuronal diversity, where multisensory neurons in higher-order regions respond to
stimuli from multiple senses, while unisensory neurons only respond to stimuli from the same sense.

Through these neurons and constraints, interactions between different senses are achieved. Specif-
ically, the auditory features F (a)

s are connected to the multisensory neurons of the first layer M1,
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which, connect to the visual neurons in the second layer U2,(v). This configuration enables a unidi-
rectional projection from the auditory sense to the visual sense, as well as vice versa. Consequently,
the interaction between the visual and auditory senses is achieved.

5 EXPERIMENTS

5.1 EXPERIMENTS SETUP

5.1.1 DATASETS.

Two datasets were used to evaluate our model. The first dataset is the Ryerson Audio-Visual
Database of Emotional Speech and Song (RAVDESS) (Martin et al., 2006). It includes record-
ings from 24 participants, with a balanced gender distribution. The participants read a sentence in
eight different emotional states: neutral, calm, happy, sad, angry, fearful, disgust, and surprised. For
this study, we focused solely on the speech and video modalities within this dataset. The second
dataset, eNTERFACE’05 (Livingstone & Russo, 2018), consists of recordings from 42 participants.
The participants comprise 81% male and 19% female. The audio recordings have a sampling rate
of 48000Hz in 16-bit format, while the videos have a frame rate of 25 frames per second. Each
participant expressed six different emotions: anger, disgust, fear, happiness, sadness, and surprise.

5.1.2 FEATURE EXTRACTION.

The primary features of each sense, denoted as F (v)
p , and F (a)

p , are obtained by feature extraction.
For the visual modality, 15 frames are extracted at equal intervals from each video. Facial contours
are then extracted from these frames and downscaled to a size of 28x28 pixels, serving as visual
features for each frame. Consequently, the final dimension of the visual feature F (v)

p for each video
is R15∗784. Regarding the auditory modality, we extract Mel-scale Frequency Cepstral Coefficients
(MFCC) as auditory features F (a)

p for each speech sample. MFCC is a widely used feature in
speech recognition. The average number of frames across all speech samples is 280, with a feature
dimension of 12 per frame. Therefore, the final dimension of the auditory feature is R12∗280.

5.2 OVERALL PERFORMANCE

We focus on evaluating the performance of the NDIM modal in multisensory emotion recognition by
conducting a series of experiments on two datasets. We compare our proposed model with state-of-
the-art techniques and analyze its interpretability. Tables 1 and 2 show the performance comparison
between the NDIM modal and the state-of-the-art baselines on the two datasets.

Table 1: Comparison of accuracy for multisensory emotion recognition on RAVDESS dataset. ∗

represents that the performance of this model is obtained from the relevant paper.

Model Neutral Clam Happy Sad Angry Fearful Disgust Surprised Acc

Convergence∗ - - - - - - - - 0.8130
Enhancement∗ - - - - - - - - 0.7330
Synch-Graph∗ 1.0000 1.0000 1.0000 0.9550 0.9310 0.9290 0.9830
MR-SNN 0.9655 0.9825 1.0000 0.9355 0.9310 0.9091 0.9474 0.9655 0.9537
MulT ∗ - - - - - - - 0.7416
NDIM 1.0000 1.0000 1.0000 0.9933 1.0000 0.9871 1.0000 0.9931 0.9963

Our model achieves the best performance on both datasets, with an accuracy of 99.63% on the
RAVDESS dataset and 98.45% on the eNTERFACE’05 dataset. Notably, these outcomes outper-
form the state-of-the-art multisensory emotion recognition method employed on the same datasets.

Among the baselines, the Synch-Graph model performs best on the two datasets, achieving ac-
curacies of 98.30% and 96.82% respectively. This model learns synchrony patterns between audio
and visual neuron groups. In comparison, our model recognizes concatenated features, drawing
inspiration from neuronal diversity. Interaction is achieved through special connections between
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Table 2: Comparison of accuracy for multisensory emotion recognition on eNTERFACE’05 dataset.
∗ represents that the performance of this model is obtained from the relevant paper.

Model Angry Disgust Fear Happy Sad Surprised Acc

Convergence∗ - - - - - - 0.8330
Enhancement∗ - - - - - - 0.8330
Synch-Graph∗ 0.9470 0.9550 1.0000 1.0000 0.9200 1.0000 0.9682
MR-SNN 0.9231 0.9180 0.9032 0.9118 0.9231 0.8955 0.9124

NDIM 0.9524 1.0000 1.0000 1.0000 0.9524 1.0000 0.9845

unisensory neurons and multisensory neurons. The Neuronal Diversity Module determines neuron
diversity and establishes connection constraints, enabling the Interaction Module to interact and rec-
ognize multisensory information. Owing to these advantages, our model achieves an accuracy of
99.63% with eight classes on the RAVDESS dataset, while the Synch-Graph achieves 98.30% ac-
curacy with six classes. The two classes not considered by the Synch-Graph model are neutral and
calm. In these two classes, the ND-MRM model achieves 100% accuracy. Furthermore, our model
outperforms the Synch-Graph by 1.63% on the eNTERFACE’05 dataset. Compared with other
brain-inspired methods such as the Convergence, Enhancement, and M -SNN , our model out-
performs them by 18.33%, 26.33%, 4.26% on the RAVDESS dataset and 15.15%, 15.15%, 7.21%
on the eNTERFACE’05 dataset respectively.

In addition to these brain-inspired methods, we also compare the performance of the MulT model
with our model on the RAVDESS dataset. The accuracy of the MulT model on seven classes is
74.16%, while our model outperforms MulT by 25.47% (Chumachenko et al., 2022).

In summary, our model demonstrates superior performance on both datasets for the task of multisen-
sory emotion recognition. The NDIM model captures the interaction between different senses using
diverse neurons and special connection constraints, outperforming the other brain-inspired methods
and the MulT model’s pairwise cross-modal attention approach.

5.3 ABLATION STUDY

In this subsection, we conduct two ablation experiments to further investigate the impact of neuronal
diversity on multisensory emotion recognition. Firstly, we examine the influence of neuronal type on
emotion recognition in the hidden layers of the Interaction Module. We compare models with either
all unisensory neurons or all multisensory neurons to understand whether a model with multiple
types of neurons working together outperforms a model with a single type of neurons when the total
number of neurons remains constant. Secondly, we study the effect of varying the hyperparameter
ρ, which determines the number of neurons, on multisensory emotion recognition.

Figure 3: Accuracy comparison of the ablation experiments on neuronal diversity. From left to right:
(a) Accuracy comparison of neuronal types on the RAVDESS dataset. (b) Accuracy comparison
about neuronal types on the eNTERFACE’05 dataset. (c) Accuracy comparison of neuronal numbers
on the two datasets.
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5.3.1 ABLATION STUDY ON NEURONAL TYPES

Both multisensory neurons and unisensory neurons are components of the NDIM model, which
aims to achieve cross-sensory interaction. Therefore, this ablation experiment investigates the per-
formance of models that contain either only multisensory neurons or only unisensory neurons in the
two hidden layers. The performance comparison is shown in Figure 3(a)(b).

Compared with the other two types of models, the model containing only unisensory neurons ex-
hibits the worst performance, achieving 91.94% on the RAVDESS dataset and 95.97% on the eN-
TERFACE’05 datasets. This is evident because unisensory neurons solely respond to a single sen-
sory stimulus, preventing the model from achieving cross-modal interaction and resulting in its in-
ferior performance. Additionally, the model containing only multisensory neurons surpasses those
with unisensory neurons but is still outperformed by the model with multiple types of neurons.
Unlike the NDIM, which achieves regular interaction of multisensory information through neuron
diversity and connection constraints, the hidden layers in the model that contain only multisensory
neurons are fully connected. This distinction accounts for our model’s superiority.

5.3.2 ABLATION STUDY ON THE NUMBER OF NEURONS

As mentioned in Section 4, the interaction between different senses is facilitated by distinct types
of neurons and their synaptic connections, which are determined by the hyperparameter ρ. Figure
3(c) presents the values of three parameters: ρ, the proportion (p) of multisensory neurons among
all neurons, and the weighted accuracy on the RAVDESS and eNTERFACE’05 datasets.

As shown in the figure, as the hyperparameter ρ approaches 0, the number of multisensory neurons
decreases. When ρ is 0.1, the number of multisensory neurons becomes almost zero, leading to a
near disappearance of the interaction between multiple senses. In this condition, the model achieves
a weighted accuracy of 93.61% and 91.25% on the two datasets, respectively, which is significantly
lower than the accuracy achieved in other conditions. Moreover, when ρ is set to 0.9, the number of
multisensory neurons accounts for over 67% of the total number of neurons. The performance in this
condition is lower than that in conditions where the number of multisensory neurons accounts for
approximately 33%. We attribute this to an imbalance between the number of unisensory neurons for
auditory and visual senses and the number of multisensory neurons. When ρ is 0.9, the model overly
emphasizes the interaction between different senses while neglecting the extraction of higher-level
features from the individual senses. Therefore, when ρ is 0.7, the number of multisensory neurons
accounts for approximately 33%, and the number of different types of neurons reaches a relative
equilibrium, resulting in the best performance of our model.

6 CONCLUSION

This study aims to develop a novel multisensory emotion recognition model called NDIM, drawing
inspiration from the neuronal diversity observed in the human brain. By incorporating both unisen-
sory and multisensory neurons, our model effectively captures cross-sensory interactions, facilitat-
ing multisensory emotion recognition. Additionally, we implement special connection constraints
to regulate feature transmission, which aligns with the distinctive response characteristics exhib-
ited by diverse neurons. The performance of the NDIM on the RAVDESS and eNTERFAVE’05
datasets is 99.63% and 98.45%, respectively, revealing its superiority over alternative brain-inspired
approaches.

For future research, we plan to extend the application of our method to multiple other sensory
modalities, exploring its effectiveness and adaptability in various tasks. Additionally, we aim to
explore the development of an end-to-end model that integrates all stages of information processing
within a unified framework.
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A BASELINES.

We select a set of brain-inspired methods as our baselines, and they are known for their superior
performance. (1) The Convergence (Benssassi & Ye, 2023) model is inspired by the convergence
theory with a convergence layer to integrate concatenated features of different senses. In this model,
there is no interaction between the visual and auditory senses. (2) The Enhancement (Benssassi
& Ye, 2023) model is inspired by the enhancement theory with unidirectional connection from vi-
sual neurons to auditory neurons. In this model, the interaction between the senses has not been
achieved. (3) The Synch-Graph (Mansouri-Benssassi & Ye, 2020a) model realizes the interaction,
inspired by neural synchrony. The synchrony is captured by a graph network and then recognized
by GCN. (4) The MR-SNN (Jia et al., 2022) model is proposed to recognize digits in MNIST and
TIDigits datasets. It’s based on the motifs which are weight connections between neurons and are
extracted from pre-trained networks used in unisensory tasks. (5) The MulT (Tsai et al., 2019)
adopts directional pairwise cross-modal attention, which attends to the interaction between multi-
modal sequences, to recognize information in an end-to-end manner.

B CONFIGURATIONS

In the spiking convolution layer, the number of channels is 4 and the kernel size is 5 ∗ 5. Followed
by an average pooling layer. The Re(v) and Re(v) are composed of two fully connected layers (nl

is 200), and an output layer with the same number of labels of each dataset. After the determination
of neuronal types, the number of the l-th hidden layer in the Interaction Module is the sum of three
components: multisensory neurons in the l-th layer Ml, unisensory neurons Ul,(v) and Ul,(a).

The hyperparameter ρ is initially set to 0.7. The capacitance C is 1µF/cm2, conductivity g is
0.2nS, time constant is 1ms, resting potential V1 is equal to reset potential V2 with 0mV . The firing
threshold is 0.5mV in the beginning. For the adaptive threshold, we set α=0.9, β=0.1, and γ=1.
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