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ABSTRACT

Denoising diffusion models construct a Markov denoising process to learn the
transport from Gaussian noise distribution to the data distribution, however re-
quire thousands of denoising steps to achieve the SOTA generative performance.
Denoising diffusion implicit models (DDIMs) introduce non-Markovian process
to largely reduce the required steps, but its performance degenerates as the sam-
pling steps further reducing. In this work, we show that DDIMs belong to our
ensemble denoising implicit models which heavily rely on the convex ensemble of
obtained denoising predictions. We propose improved DDIM (iDDIM) to demon-
strate DDIMs adopt sub-optimal ensemble coefficients. The iDDIM can largely
improve on DDIMs, but still deteriorates in the case of a few sampling steps. Thus
we further propose generalized denoising implicit model (GDIM) that replace the
ensemble prediction with a probabilistic inference conditioned on the obtained
states. Then a specific instance t-GDIM that only depends on the latest state
is parameterized by the conditional energy-based model (EBM) and variational
sampler. The models are jointly trained with variational maximum likelihood.
Extensive experiments show t-GDIM can reduces the sampling steps to only 4
and remains comparable generative quality to other generative models.

1 INTRODUCTION

Modern deep generative modelling focuses on learning transport from a tractable reference distri-
bution (e.g. Gaussian) to the target distribution, and the learned transport is applied on reference
samples to generate new data on the sampling stage. Among them, implicit generative model (IGM,
Mohamed & Lakshminarayanan 2016) is the simplest one that directly mapping the reference sam-
ples to data through neural network. Sampling from IGMs requires only once forward evaluation
of network. However, commonly used training algorithms for IGMs like generative adversarial
networks (GANs, Goodfellow et al. 2014) meet the challenges of poor mode coverage and unsta-
ble optimization. The reason may be that, training the direct mapping to characterize the complex
transport is difficult, since they lack of intermediate structural assumptions.

Recently, researchers focus on diffusion probabilistic model (DPM, Sohl-Dickstein et al. 2015; Ho
et al. 2020), a well-specified probabilistic transport that constructs a generative Markov chain with
its marginal distribution evolving from the Gaussian noise distribution into the data distribution.
To accomplish it, DPM first gradually imposes Gaussian noise into the data samples with fixed
noise scales, producing a Markov forward diffusion process. And the reversal of which, a Markov
reverse process, is regarded as the learning target. DPM assumes the variance scale of each Gaussian
forward kernel is small enough, leading to a Gaussian reverse process that is tractable for generative
denoising process to learn. DPMs achieve impressive image generative quality even comparable
with SOTA GANs (Dhariwal & Nichol, 2021). Nevertheless, the small noise scale assumption
incurs quite long diffusion chains, resulting in far less efficient sampling process than IGMs.

To circumvent the small noise scale assumption, Song et al. (2021a) generalize the forward process
in DPM to a non-Markovian one. The new forward process is represented by an inference process
that, first infers the terminal state given data sample and then gradually infers the rest states along
the reverse direction conditioned on data sample. A corresponding generative process is then con-
structed by replacing the conditional data sample with denoising predictions. The general process is
proved to be an alternative sampling scheme for DPM. Song et al. (2021a) thus propose denoising
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diffusion implicit model (DDIM), an implicit variant of the general process, that can speed up 20×
over DPM with similar generative quality. However, it remains inferior with fewer sampling steps.

In this work, we introduce a novel perspective on DDIM that the generative process relies heavily on
the convex combination of obtained denoising predictions. Thus DDIM belongs to a general class of
ensemble denoising implicit models whose convex coefficients can be adjusted flexibly (Sec. 3.1). It
reveals the nature of each denoising step in ensemble models is predicting the denoising target with
ensemble denoising prediction. Further we introduce iDDIM, an intuition guided ensemble model
that allocates more trust on the latest denoising prediction based on DDIM (Sec. 3.2). Experiments
on CIFAR10 indicate iDDIM largely improves on baseline DDIM especially in the case of fewer
generative iterations, and convince that DDIM adopts sub-optimal convex coefficients.

However iDDIM still fails to generate realistic samples when further reducing the sampling steps.
We find the reason is that the parameterization in iDDIM is unable to obtain good denoising targets
with just a few denoising steps. To obtain better denoising targets, we instead propose general-
ized denoising implicit model (GDIM), a general probabilistic extension to the ensemble model that
replaces the ensemble denoising prediction with a probabilistic inference conditioned on obtained
states (Sec. 4). Finally we provide a specific choice that only relies on the current state radically,
termed t-GDIM (Sec. 4.1). Conditional energy-based models (EBM, LeCun et al. 2006) and IGMs
are used to construct t-GDIM, and are jointly trained with variational maximum likelihood (Grath-
wohl et al., 2021) (Sec. 4.2). Moreover, the iDDIM can be regarded as an ensemble augmenta-
tion trick which leverages predictions at previous steps. Experiments on various resolution image
datasets show our t-GDIM+iDDIM can largely reduce the number of sampling steps to only 4, and
still achieves high generative quality comparable to diffusion models or other generative models.

2 BACKGROUND

DPM (Sohl-Dickstein et al., 2015) typically specifies a Markov forward diffusion process convert-
ing the data distribution q(x0) into a terminal state q(xT ) that is closed to tractable prior p(xT ) =
N (xT ;0, I). It is achieved by repeated application of a Gaussian diffusion kernel q(xt|xt−1) =
N (xt;

√
1− βtxt−1, βtI), i.e., gradually imposing noise into data samples with fixed variance

scales βi, i = 1, . . . , T . Then DPM defines a generative denoising process to simulate the reverse
of the forward process with Gaussian denoising kernel pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σ

2
t I).

However, the feasibility of approximation comes up against commonly non-Gaussian reverse kernel
q(xt−1|xt), unless the noise scale βt is small enough. To keep noise scale small, DPM requires
pretty long diffusion chain (∼1K steps), largely degenerating the training and sampling efficiency.
To reduce the length of sampling chain, Song et al. (2021a) introduce a class of non-Markovian
forward processes indexed by σ ∈ RT≥0, characterized by the following inference process :

qσ(x1:T |x0) = qσ(xT |x0)

T∏
t=2

qσ(xt−1|xt,x0), qσ(xT |x0) = N (xT ;
√
αTx0, (1− αT )I),

qσ(xt−1|xt,x0) = N (xt−1;
√
αt−1x0 +

√
1− αt−1 − σ2

t ·
xt −

√
αtx0√

1− αt
, σ2
t I),

(1)

where the Gaussian form of qσ(xt−1|xt,x0) free the forward process from Gaussian assumption.
It’s proved the marginal posteriors are the same as that in DPMs: qσ(xt|x0) = N (

√
αtx0, (1−αt)I),

where αt =
∏t
i=1 1− βi. Then a corresponding generative process is defined as1:

pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt), pθ(xt−1|xt) = qσ(xt−1|xt,xt0), (2)

where xt0 = fθ(xt, t) denotes the denoising prediction of x0 from xt to meet with Eq. (1). Song
et al. (2021a) find that training Eq. (2) with variational inference (Kingma & Welling, 2014) objec-
tive is equivalent to optimizing that of DPMs, from the perspective of global optimal solution. So
Eq. (2) becomes a class of alternative sampling scheme to DPMs.

1Different from Song et al. (2021a), we set σ1 = 0 to obtain Dirac distribution pθ(x0|x1) = δ(x0 − xt
0).
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Specifically, Song et al. (2021a) focus on DDIM, an implicit generative process composed of de-
terministic transformations pθ(xt−1|xt) in the case of σt = 0. Then DDIM is trained to fit a
deterministic path from x0 to xT characterized by the Dirac distributions (set σt = 0 in Eq. (1)):

q(xt−1|xt,x0) = δ(xt−1 −
[
√
αt−1x0 +

√
1− αt−1 ·

xt −
√
αtx0√

1− αt

]
). (3)

Please see Appendix A for more detailed review and discussion.

3 ENSEMBLE OF DENOISING PREDICTIONS

Thanks to the non-Markovian inference process, DDIM can speed up 20× over denoising DPM
(DDPM, Ho et al. 2020) with similar high performance, it nevertheless degenerates when the num-
ber of sampling steps is no more than 20. In order to mitigate it, in this section, we explore how the
denoising predictions x1:T

0 are leveraged to accomplish the generative process, as xt0 = fθ(xt, t) is
the key for implementing pθ(xt−1|xt). Our key observation is that each xt−1 along the generative
process in DDIM depends on a specific convex combination of xt:T0 . This leads to a general denois-
ing implicit model which is an ensemble of the denoising predictions x1:T

0 . Then the experiments
on CIFAR10 indicate the coefficients used in DDIM are not optimal especially when T is small.

3.1 ENSEMBLE DENOISING IMPLICIT MODELS

To show our novel perspective, let us define the ensemble denoising implicit models indexed by ωt =
[ωtt , . . . , ω

T
t ] ∈ RT−t+1

≥0 , characterized by the deterministic transformation qω(xt−1|xt:T0 ,xT ):

xt−1 = Bt−1 ·
T∑
k=t

ωkt∑T
k=t ω

k
t

xk0 + Ct−1xT = Bt−1x̄
t
0 + Ct−1xT , (4)

where x̄t0 denotes the convex ensemble of denoising predictions xt:T0 , and Bt−1, Ct−1 are set to:

Bt−1 =
√
αt−1 −

√
1− αt−1

√
αT√

1− αT
, Ct−1 =

√
1− αt−1√
1− αT

(5)

to match up with the inference process (3) as shown later. We find the DDIM denoising kernel
represented by the deterministic transformation q(xt−1|xt,xt0) (in the case of σt = 0 in Eq. (2)):

xt−1 =
√
αt−1x

t
0 +

√
1− αt−1 ·

xt −
√
αtx

t
0√

1− αt
, (6)

is a linear combination of xt and xt0. Since xt is also a combination of xt+1 and xt+1
0 , we can

recursively expand the particles xk along t → T and obtain the following result:
Proposition 1. Denoising diffusion implicit model (6) can be reformulated as q(xt−1|xt:T0 ,xT ):

xt−1 =
√

1− αt−1 ·
T∑
k=t

(Ak−1 −Ak)x
k
0 +

√
1− αt−1√
1− αT

xT , Ak =

√
αk√

1− αk
, (7)

and is a specific instance of ensemble denoising implicit models (4) with ωkt = Ak−1 −Ak.

We include a general proof in Appendix B.1. Proposition 1 demonstrates that the ensemble de-
noising implicit models are generalized DDIMs, and they are all first computing x̄t0 with a convex
combination of xt:T0 and then using linear combination with xT to obtain xt−1. But which x̄t0 is the
best for the general ensemble models? To answer this, we notice in DDIM, the denoising predictions
xt:T0 are trained to approximate the same real sample x0 ∼ q(x0|xT ) given xt:T . So that if we let
xt:T0 = x0 in the ensemble denoising model (4), it turns into q(xt−1|x0,xT ):

xt−1 = Bt−1x0 + Ct−1xT =
√
αt−1x0 +

√
1− αt−1 ·

xT −√
αTx0√

1− αT
. (8)

Equation (8) forms a deterministic path between x0 and xT , which is exactly the inference process
in DDIM (3), but is rewritten into a more proper equivalent form:

q(x1:T |x0) = q(xT |x0)

T∏
t=2

q(xt−1|x0,xT ). (9)
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Figure 1: Design intuition (left) and graphical description (right) for improved DDIM. The ensemble
model (yellow line) uses linear combination of x̄t+1

0 and xT to obtain xt. Then, DDIM (blue line)
takes a denoising step along the deterministic path from xt to xt0, while radical ensemble model (red
line) along the path from xT to xt0. If xt0 is closer to some real x0 than x̄t+1

0 , the current denoising
step of radical ensemble model (red line) becomes closer to the real path.

So in other words, the ensemble denoising implicit models are trained to fit the same target process
as in DDIM, providing a class of alternative sampling schemes. And what’s more, ensemble models
(include DDIM) are essentially predicting the real sample x0 with x̄t0 at each denoising step, by
means of leveraging the convex ensemble of the denoising predictions xt:T0 . However in practice,
xt:T0 are commonly different, let alone be equal to x0 ∼ q(x0|xT ). This leads to the ensemble
denoising prediction x̄t0 not always be like some x0. In this work, the proposed ensemble denoising
implicit model provides a flexible way to combine xt:T0 for better ensemble prediction x̄t0, potentially
results in a generative process closer to the target inference process.

3.2 SUB-OPTIMAL COEFFICIENTS IN DDIM

However, finding out the optimal coefficients in ensemble models is intractable as we know noth-
ing about how the performance of xt:T0 contributes to the additive ensemble prediction x̄t0. Since
denoising xk becomes more difficult along k → T , the latest denoising prediction xt0 is intuitively
more precise than xt+1:T

0 and thus more precise than x̄t+1
0 . If we let ωt = [1, 0, . . . , 0], the en-

semble model (4) will only trust the latest xt0 radically, and the resulting radical ensemble model is
presented as q(xt−1|xt0,xT ):

xt−1 = Bt−1x
t
0 + Ct−1xT =

√
αt−1x

t
0 +

√
1− αt−1 ·

xT −√
αTx

t
0√

1− αT
. (10)

Inspired by the intuition (Fig. 1, left) that trusting more on xt0 may bring about a generative process
closer to a real one, we introduce an improved DDIM (iDDIM) where yt−1 and zt−1 are computed
with Eqs. (6) and (10) respectively (Fig. 1, right):

xt−1 = (1−mt)yt−1 +mtzt−1. (11)

Equation (11) actually comes from replacing mt ∈ [0, 1] proportion of xt+1:T
0 with xt0 in DDIM,

so it is still an ensemble denoising implicit model. We include derivations in Appendix B.2. The
iDDIM behaves as an interpolation between DDIM (6) and radical ensemble model (10). And as
mt → 1, it allocates more trust on xt0 as expected.

In Sec. 6.1, we conduct experiments on CIFAR10 to explore how the performance of iDDIM in-
fluenced by varying mt. The results demonstrates that, DDIM adopts sub-optimal coefficients and
allocating higher proportion (ωtt) on xt0 achieves prominent improvement especially as T decreasing.

4 GENERALIZED DENOISING IMPLICIT MODELS

As we emphasized in the previous section, in order to fit the deterministic inference process char-
acterized by Eq. (9), the ensemble denoising implicit models (4) are actually predicting x0 with the
ensemble prediction x̄t0 at each step. Thus the performance of generative process largely rests with
the alignment between x̄t0 and x0. We have verified that carefully selecting the coefficients ωt does
produce better x̄t0, however, the misalignment between x̄t0 and x0 still remains and is exacerbated
when T further reducing (see Fig. 4). It is because xt0 = fθ(xt, t) is a Dirac approximation of

4



Under review as a conference paper at ICLR 2023

Figure 2: Denoising target x̄t0 in the ensemble denoising implicit model and the generalized denois-
ing implicit model. Ensemble model uses convex combination of potentially inferior xt:T0 to obtain
blurry x̄t0, while GDIM leverages probabilistic inference pθ(x̄

t
0|xt:T ) to get better x̄t0 directly.

q(xt0|xt), i.e., pθ(xt0|xt) = δ(xt0 − fθ(xt, t)). As shown in Xiao et al. (2022), this deterministic
parameterization struggles with the commonly multimodal q(xt0|xt) as t → T , brings about po-
tentially inferior xt0 (see Fig. 2 for instance). As a result, ensemble models require more steps and
carefully coefficients seeking to get gradually better x̄t0 along the generative process. In order to
obtain more realistic x̄t0 at each denoising step, we propose to replace the convex ensemble of xt:T0
with probabilistic inference conditioned on xt:T , i.e., pθ(x̄t0|xt:T ). This leads to the generalized
denoising implicit model (GDIM):

pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt:T ), pθ(xt−1|xt:T ) =
∫

pθ(x̄
t
0|xt:T )q(xt−1|x̄t0,xT )dx̄t0. (12)

The GDIM is a general extension to the ensemble models as they share the same spirit that, first
predicting a current denoising target x̄t0 given obtained states xt:T and then taking one denoising
step to xt−1 via deterministic transform (8). See Fig. 2 for comparison. While the benefit is that
GDIM can directly predicts x̄t0 via pθ(x̄t0|xt:T ) represented by some expressive probabilistic models,
and thus the dependence on xt:T (corresponding to the coefficients in ensemble models) is learned
adaptively. More importantly, if pθ(x̄t0|xt:T ) is properly trained to generate good x̄t0, the denoising
process will no longer need many steps as that in ensemble models.

4.1 RADICAL GDIM

Notice the GDIM is autoregressive and enables us to flexible choose which xt:T does pθ(x̄t0|xt:T )
conditioned on. We next discuss a specific choice that only relies on xt radically, i.e., pθ(xt0|xt). It
seems to be a probabilistic counterpart to the radical ensemble model (10) and is termed t-GDIM:

pθ(xt−1|xt,xT ) =
∫

pθ(x
t
0|xt)q(xt−1|xt0,xT )dxt0, (13)

We adopt expressive conditional energy-based model (EBM) to represent the denoising distribution:

pθ(x
t
0|xt) =

exp(−Eθ(x
t
0,xt))∫

exp(−Eθ(xt0,xt))dx
t
0

=
exp(−Eθ(x

t
0,xt))

Z(θ,xt)
, (14)

where Eθ : X × X × R → R denotes the joint energy over xt0 and xt, and the dependence on t is
not displayed for brevity. The same inference process as that in ensemble models (9) is regarded as
the learning target for t-GDIM. Then we again optimize θ with the variational inference (Kingma
& Welling, 2014) objective:

− Eq(x0)[log pθ(x0)] ≤ Eq(x0:T )

[
log

q(x1:T |x0)

pθ(x0:T )

]
.
=

T∑
t=1

Eq(x0,xt−1,xt,xT )

[
Eθ(T

−1(xt−1;xT ),xt) + logZ(θ,xt)
]
,

(15)

where the diffeomorphism T (x0;xT ) = xt−1 stands for the deterministic transform q(xt−1|x0,xT ).
For convenience, we use J (θ, t) to represent the energy objective at each time step t. However, com-
puting Z(θ,xt) requires intractable integral over the whole space, and fortunately, a more efficient
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alternate is to estimate the optimizing gradients:

∇θJ (θ, t) = Eq(x0)q(xt|x0)pθ(xt
0|xt)

[
∇θEθ(x0,xt)−∇θEθ(x

t
0,xt)

]
. (16)

Notice it resembles the gradient of maximum likelihood objective for learning EBMs (LeCun et al.,
2006), and an unbiased Monte Carlo gradient estimator can be accomplished by sampling a batch of
(x0,xt,x

t
0) at each training iteration. See Appendix C.1 for derivations.

4.2 SAMPLING FROM ENERGY-BASED DENOISING DISTRIBUTION

The gradient estimator commonly suffers from sampling from unnormalized distributions, e.g.
Eq. (14). Recent attempts (Du & Mordatch, 2019; Nijkamp et al., 2020b) resort to dynamic-based
Markov chain Monte Carlo (MCMC), but fall into the trouble of mixing and again requires lots of
sampling steps. Here we amortize the MCMC sampling into training conditional IGMs constructed
by xt0 = Gϕ(u;xt, t),u ∼ N (0, I). In other word, the expressive conditional IGMs are used as
approximate samplers pϕ(xt0|xt) =

∫
δ(xt0 −Gϕ(u;xt, t))N (u;0, I)du, and are trained by mini-

mizing the following KL divergence with respect to ϕ (see Appendix C.2 for derivations):

DKL(pϕ(x
t
0|xt)||pθ(xt0|xt))

.
= EN (u;0,I) [Eθ(Gϕ(u;xt),xt)]−H(pϕ(x

t
0|xt)). (17)

This variational approximation can be incorporated in J (θ, t) as an additional inner optimization
which is similar to the variational maximum likelihood (Grathwohl et al., 2021). And the resulting
nested objective is commonly handled with alternating optimization. Notice that H(pϕ(x

t
0|xt)) is

the entropy of sampler and is typically difficult to optimize. If we ignore this entropy term, the
nested optimization becomes similar to WGAN (Arjovsky et al., 2017):

min
θ

max
ϕ

{
Eq(x0,xt)N (u;0,I)

[
Eθ
(
x0,xt

)
− Eθ

(
Gϕ(u;xt),xt

)]}
. (18)

Therefore, we can borrow the proven optimizing technique from GANs for jointly training the con-
ditional EBM pθ(x

t
0|xt) and its variational sampler pϕ(xt0|xt).

5 RELATED WORK AND DISCUSSION

Score-based generative model (SGM). As shown to have interesting connection with denoising
score matching (Vincent, 2011), DPMs as well as noise conditional score networks (NCSN, Song
& Ermon 2019; 2020) are usually referred to together as SGMs. Song et al. (2021c) further pro-
pose a unified forward-reverse stochastic differential equation (SDE) framework that treats them as
discretizations of specific SDEs. After that, lots of works explore the intrinsic properties or numeri-
cal approximations of different SDEs to improve the generative quality and the sampling efficiency
(Dockhorn et al., 2022; Jolicoeur-Martineau et al., 2021a; Lu et al., 2022; Liu et al., 2022). However,
they still generate inferior samples when further reduce the number of sampling steps. It is possibly
because the numerical simulation for SDEs always assumes the discretization steps are small, and
the case of only few sampling iterations violates the assumption.

Accelerate sampling. Besides, there are lots of other studies focusing on accelerating the sampling
process for DPMs (Kong & Ping, 2021; Watson et al., 2021; Lyu et al., 2022; Nachmani et al., 2021;
Zheng et al., 2022). They are all basically orthogonal to us since they do not involve the inherent
understanding of how DPMs (or DDIMs) leverage the denoising predictions xt:T0 . Watson et al.
(2022) propose a similar method to our ensemble model, which use a combination of obtained state
xt:T to represent DPMs, and learn the coefficients by differentiating through the sample quality. But
we point out that the denoising predictions rather than obtained states are the keys in nature.

Discussion. Notice the objective for t-GDIM (18) does not depend on xT , and pθ(x
t
0|xt) at dif-

ferent step t are trained to approximate corresponding q(x0|xt) rather than the same q(x0|xT ). It
implies that t-GDIM may be not always going to fit the deterministic inference process (9) as GDIM
supposed to. Notice the same case can also be found in DDIM, so iDDIM can be useful in t-GDIM
as an ensemble augmentation for denoising targets. A potential solution to the missing dependence
on xT is to incorporate explicit condition, i.e., pθ(xt0|xt,xT ), but may incur additional input for
networks. Or we can force the training of pθ(xt0|xt) to depend on xT implicitly. Furthermore, we
find the models used by Gao et al. (2021); Xiao et al. (2022) have similar spirit to t-GDIM, but ours
follows a distinct theoretical route. Inspired by them, we explore feasible methods to introduce the
dependence explicitly or implicitly. Please see Appendices D and F for more discussions.
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T 4 10 20 50 100 1000

m

0.0 37.82 13.74 7.55 4.78 4.14 3.88
0.1 37.50 12.03 6.12 3.82 3.55 3.59
0.2 37.02 10.74 5.29 3.82 4.05 4.68
0.3 36.50 9.71 5.05 4.97 6.04 -
0.4 36.56 8.84 5.51 8.16 10.74 -
1.0 35.72 11.99 56.60 112.23 - -

DDPM - - 137.77 35.29 10.61 3.19

Table 1: CIFAR10 image generation measured in FID↓. m de-
notes the replacing ratio in iDDIM. m = 0.0 and m = 1.0 rep-
resent DDIM and radical ensemble model respectively. Sam-
pling process uses the self-trained DDPM score predictor.

Figure 3: Samples of iDDIM with
T = 10, 20, 50, 100 and best m∗.

6 EXPERIMENTS

In this section, we conduct experiments to verify our two claims: 1). The DDIMs are ensemble
denoising implicit models with sub-optimal convex coefficients. With the intuition that the latest
denoising prediction xt0 is more precise, our iDDIM provides a simple but effective way to seek
better coefficients. 2). Our t-GDIM can largely reduce the number of denoising steps to just a few,
but still achieve comparable generative quality to more expensive diffusion-based models.

Datasets and metrics. For our iDDIMs, we conduct extensive experrments on CIFAR10
(Krizhevsky, 2009) for comparison. For our t-GDIMs which are trained similarly to conditional
GAN, we additionally consider CelebA (Liu et al., 2015) and CelebAHQ (Karras et al., 2018) with
higher resolutions. We resize the images in CelebA to 64 × 64 and 128 × 128, termed CelebA-64
and CelebA-128 respectively. Besides, we resize the CelebAHQ to 256× 256. For all datasets, only
the random horizontal flipping is used for pre-processing. We use the image generation quality to
characterize the performance of different methods. The image generation quality on CIFAR10 is
evaluated by Frechet inception distance (FID, Heusel et al. 2017) and Inception Score (IS, Salimans
et al. 2016). For higher resolutions, only FID is reported since IS is not proper.

Generative process. For all experiments, we use 1000-step linear noise schedule in DDPM to con-
struct the complete diffusion process. Following Song et al. (2021a), quadratic timesteps selection
is used to construct the generative sub-sequence. We consider various T for iDDIM experiments,
while only adopt T = 4 for the t-GDIM part to evaluate its performance on few sampling steps.
Please see Appendix E.1 for the architecture of models or complementary experimental details.

6.1 SEEKING BETTER COEFFICIENTS

For simplicity, we choose mt = m for all t in iDDIM. In Tab. 1, we show the generation quality
of our iDDIM trained on CIFAR10. We find that DDIM (m = 0.0) performs worse than iDDIM
consistently for each T , if the ratio m is properly increased. More interestingly, the sample quality
further becomes better when we choose higher m as T decreasing, but overly trusting the latest xt0
(m → 1.0) leads to worse quality and the radical ensemble model (m = 1.0) performs bad.

In Fig. 4, we display the ensemble denoising prediction x̄t0 at each sampling step of the 20-step
and 4-step iDDIM generative processes for CIFAR10 image. It shows that, though x̄t0 are becoming
more realistic as t decreasing, the final prediction of DDIM (m = 0.0) is still blurry. With increasing
m, the ensemble prediction at each step becomes much clearer, but with too high m, especially
when m = 1.0 (the radical ensemble model), the predictions becomes distorted. Besides, in 4-
step sampling process, all the ensemble predictions x̄1:T

0 are blurry regardless of m. These results
suggest the coefficients used by DDIM is sub-optimal, and our iDDIM with proper m leads to better
generative quality, nevertheless still fails when T is too small.

In Tab. 2, we report the generation quality of iDDIM with best tuned m∗, and compare iDDIM with
recent proposed impressive methods for accelerating sampling. For a fair comparison, we report the
results of other methods that have similar settings to ours. It demonstrates that our iDDIM achieves
the best result among baseline methods in the case of T = 10 and T = 20, though iDDIM is much
simpler than others. When T is larger, iDDIM is slightly worse than FastDPM. It indicates that we
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Figure 4: Ensemble denoising predictions x̄1:T
0 in 20-step (left) and 4-step (right) iDDIM sampling

process with varying m.

T 10 20 50 100

m∗ 0.6 0.3 0.15 0.1
IS↑ FID↓ 8.85 8.24 9.09 5.05 9.27 3.61 9.21 3.55

DDIM (Song et al., 2021a) 8.28 13.74 8.81 7.55 8.98 4.78 9.11 4.14
DDPM (Ho et al., 2020) - 3.98 137.77 8.53 35.29 9.45 10.61
GGDM (Watson et al., 2022) 8.84 8.23 9.18 5.57 - -
FastDPM (Kong & Ping, 2021) - 9.90 - 5.22 8.98 3.41 - 3.01
Analytic-DDIM (Bao et al., 2022) - 14.00 - 5.81 - 4.04 - 3.55

Table 2: The best m∗ for iDDIM on CIFAR10, searched by traversing [0, 1] with 0.05 intervals.

require more complexly coefficients seeking since more denoising predictions are involved. Figure 3
presents some randomly generated CIFAR10 samples by our iDDIM with the best m∗.

6.2 SAMPLE QUALITY IN GDIM

For an overall evaluation of the proposed t-GDIM, Figs. 5 and 6 presents the qualitative samples
which are generated with only 4 sampling steps. These images are of high fidelity consistently.

In Tab. 3, we present our quantitative results on CIFAR10. Here we report the FID of our t-GDIM,
with iDDIM as an ensemble augmentation technique for the prediction of denoising target x̄t0. As
discussed in Sec. 5, iDDIM can improve the quality of t-GDIM marginally. We provide related
studies in Appendix E.2. When comparing with score-based models, our t-GDIM can largely re-
duce the number of function evaluations (NFE) to only 4, while achieve comparable quality. When
comparing with GANs, we find our models surpass most of SOTA GANs, though we do not use
any data augmentation technique. Notice DDGAN is superior to ours. We suggest the reason is
that: the optimization method of t-GDIM is similar to GAN which ignores the entropy term of vari-
ational sampler in variational maximum likelihood (17) in theory, leading to poor mode coverage
in practice. Please see Appendix E.2 for qualitative results. While DDGAN is based on the DPM
framework, and as a result, additional noises are introduced during training, which is an important
data augmentation method for GAN-based optimization (see Appendix F.2). These imply the proven
augmentation techniques for GAN-based optimization are useful for our t-GDIM and potentially
improve the generation quality. But here we report the pure version of the proposed t-GDIM, and

Figure 5: Qualitative samples of t-GDIM. Left: CIFAR10. Middle: CelebA-64. Right: CelebA-128.
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Method IS↑ FID↓ NFE↓

Improved DDPM (Nichol & Dhariwal, 2021) - 2.90 4000
UDM (Kim et al., 2021) 10.1 2.33 2000
Likelihood SDE (Song et al., 2021b) - 2.87 2000
Score SDE (VE) (Song et al., 2021c) 9.89 2.20 2000
DDPM (Ho et al., 2020) 9.47 3.19 1000
NCSN (Song & Ermon, 2019) 8.87 25.3 1000
Adversarial DSM (Jolicoeur-Martineau et al., 2021b) - 6.10 1000
VDM (Kingma et al., 2021) - 4.00 1000

Recovery EBM, T6 (Gao et al., 2021) 8.30 9.58 180
Gotta Go Fast (Jolicoeur-Martineau et al., 2021a) - 2.44 180
LSGM (Vahdat et al., 2021) 9.87 2.10 147
CLD-SGM (Prob. Flow) (Dockhorn et al., 2022) - 2.71 147
Probability Flow (VP) (Song et al., 2021c) 9.83 3.08 140
DiffuseVAE, T = 100 (Pandey et al., 2022) 8.27 11.71 100

FastDPM, T = 50 (Kong & Ping, 2021) 8.98 3.41 50
F-PNDM, T = 50 (Liu et al., 2022) - 3.68 50
gDDIM, T = 50 (Zhang et al., 2022) - 2.28 50
SNGAN+DGflow (Ansari et al., 2021) 9.35 9.62 25

DDGAN, T = 4 (Xiao et al., 2022) 9.63 3.75 4
DDPM Distillation (Luhman & Luhman, 2021) 8.36 9.36 1
AutoGAN (Gong et al., 2019) 8.60 12.4 1
TransGAN (fan Jiang et al., 2021) 9.02 9.26 1
StyleGAN2 w/o ADA (Karras et al., 2020a) 9.18 8.32 1
StyleGAN2 w/ ADA (Karras et al., 2020a) 9.83 2.92 1
StyleGAN2 w/ Diffaug (Zhao et al., 2020) 9.40 5.79 1

t-GDIM (ours) 9.55 5.51 4
t-GDIM+iDDIM,m = 0.7 (ours) 9.50 5.24 4

Table 3: CIFAR10 image generation measured in IS↑ and FID↓.

Figure 6: Qualitative samples of
t-GDIM on CelebAHQ-256.

Method CelebA-64 CelebA-128

DDPM (Ho et al., 2020) 3.26 5.65
Recovery EBM, T6 (Gao et al., 2021) 5.98 -
F-PNDM, T = 10 (Liu et al., 2022) 7.71 -
StyleGAN2+ES-DDPM (Lyu et al., 2022) 9.15 6.15
TDPM-GAN, T = 4 (Zheng et al., 2022) 3.96 -
COCO-GAN (Lin et al., 2019) 4.00 5.74
t-GDIM+iDDIM,m = 0.6 (ours) 2.93 4.04

Table 4: CelebA-64 and CelebA-128 image generation
measured in FID↓.

Method FID↓

Score SDE (Song et al., 2021c) 7.23
LSGM (Vahdat et al., 2021) 7.22
UDM (Kim et al., 2021) 7.16
VAEBM (Xiao et al., 2021) 20.4
PGGAN (Karras et al., 2018) 8.03
VQ-GAN (Esser et al., 2021) 10.2
DDGAN (Xiao et al., 2022) 7.64
t-GDIM+iDDIM,m = 0.4 (ours) 7.26

Table 5: CelebAHQ-256 image genera-
tion measured in FID↓.

leave them for future work. Table 4 presents the quantitative results on CelebA-64 and CelebA-128.
When comparing our model with recent few-step diffusion-based models, we find t-GDIM achieve
the best quality among baseline methods with similar NFE. Surprisingly, it even surpass 1000-step
DDPM especially on 128 × 128 resolution. Besides, we report FID on CelebAHQ-256 in Tab. 5.
We find our model can still achieve competitive generative performance among SOTA models, and
performs marginally better than DDGAN. The results show the potential to apply t-GDIM on more
complex and higher resolutions.

7 CONCLUSION

We have provided an insightful perspective that DDIM is a specific instance of our ensemble denois-
ing implicit model with sub-optimal convex coefficients. This explains why DDIM fails to achieve
good generation quality with fewer sampling steps. Our iDDIM is an intuition guided modification
on DDIM which simply allocates more trust on the latest denoising prediction, but can improve on
DDIM largely. To further decrease the sampling steps, we propose GDIM, a general extension to
ensemble model, that replaces the additive ensemble of denoising predictions to a principled prob-
abilistic inference. Then the variational maximum likelihood is used to train t-GDIM, a specific
GDIM only conditioned on the latest state at each step, and derivates more favorable GAN-based
optimization methods. Extensive experiments demonstrate t-GDIM can reduce the number of sam-
pling steps to only 4 while achieve comparable performance to other generative models. It also
shows the potential to apply t-GDIM on higher resolutions, where we leave it for future work.
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A REVIEW OF DIFFUSION PROBABILISTIC MODELS

In this section, we present the formulations of diffusion probabilistic model (DPM) and denoising
diffusion implicit model (DDIM) for completeness.

A.1 DIFFUSION PROBABILISTIC MODELS

DPM defines a Markov forward diffusion process represented by an inference process (x1:T are
latent variables):

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1), q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI), (19)

that converting the data distribution q(x0) into the terminal state q(xT ) closed to tractable prior
p(xT ) = N (xT ;0, I). The noise variance scale βt at each time step is fixed and the resulting
posteriors only conditioned on x0 are of Gaussian form

q(xt|x0) = N (xt;
√
αtx0, (1− αt)I), αt =

t∏
i=1

1− βi, (20)

allowing us to directly obtain xt by ancestral sampling trick xt =
√
αtx0+

√
1− αtϵ, ϵ ∼ N (0, I).

Although the forward diffusion process has analytically tractable inference distributions and is pretty
convenient to obtain latent variables at each noise step, its reversal is typically hard to handle due to
the unknown reverse kernel q(xt−1|xt)

q(xt−1|xt) =
q(xt|xt−1)q(xt−1)

q(xt)
=

q(xt|xt−1)
∫
q(xt−1|x0)q(x0)dx0∫

q(xt|x0)q(x0)dx0
. (21)

Computing the exact q(xt−1|xt) requires intractable integrals over the whole data space, and fur-
thermore, we even know nothing about its form. In fact, q(xt−1|xt) is commonly multimodal,
except the case that the noise scale βt is small, on which the denoising distribution over xt−1 is
approximately unimodal Gaussian near xt. Corresponding to the small noise scale, however, the
diffusion chain is required to be long enough, which is exactly the assumption made in DPMs.

Under the Gaussian assumption, DPM adopts parametric Gaussian denosing kernel pθ(xt−1|xt) to
approximate q(xt−1|xt), leading to a Gaussian denoising process started from the tractable prior
p(xT ):

pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt), pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σ
2
t I). (22)

The variance σ2
t is commonly fixed.

From the perspective of variational inference (Kingma & Welling, 2014), the forward diffusion pro-
cess acts as the inference distribution (law) of the denoising process, so the processes in opposite
directions actually form a process-based VAE. But unlike traditional VAE, DPM has unlearnable
inference side. Therefore, the widely adopted evidence lower bound (ELBO) of negative log likeli-
hood is used for training such models

− Eq(x0)[log pθ(x0)] ≤ Eq(x0:T )

[
log

q(x1:T |x0)

pθ(x0:T )

]
= Eq

[
− log q(x0) +

T∑
t=1

DKL(q(xt−1|xt)||pθ(xt−1|xt)) +DKL(q(xT )||p(xT ))

]
.

(23)

But the middle KL terms are still intractable. Fortunately, the variational bound can be rewritten
into a more favorable form (see Ho et al. (2020); Sohl-Dickstein et al. (2015) for details)

= Eq

[
− log pθ(x0|x1) +

T∑
t=2

DKL(q(xt−1|xt,x0)||pθ(xt−1|xt)) +DKL(q(xT |x0)||p(xT ))

]
.

(24)

14



Under review as a conference paper at ICLR 2023

Thanks to the observation that the reverse kernel conditioned on x0 has a special form

q(xt−1|xt,x0) =
q(xt|xt−1)q(xt−1|x0)

q(xt|x0)
= N (xt−1; µ̃t(xt,x0), β̃tI)

µ̃t(xt,x0) =

√
1− βt(1− αt−1)

1− αt
xt +

√
αt−1βt

1− αt
x0, β̃t =

1− αt−1

1− αt
βt,

(25)

DPM can matches up the parameterization of pθ(xt−1|xt) with q(xt−1|xt,x0)

µθ(xt, t) =

√
1− βt(1− αt−1)

1− αt
xt +

√
αt−1βt

1− αt
fθ(xt, t) =

1√
1− βt

(xt −
βt√
1− αt

ϵθ(xt, t))

(26)
where fθ(xt, t) predicts x0 in nature. The RHS is derived from x0 = xt−

√
1−αtϵ√
αt

, which means that
ϵθ(xt, t) actually predicts the noise ϵ imposed to data sample x0 at step t.

A.2 DENOISING DIFFUSION IMPLICIT MODELS

To avoid the Gaussian assumption (small noise scales) made in DPMs, Song et al. (2021a) explore a
class of non-Markovian forward process with Gaussian reverse kernel conditioned on x0 but whose
marginal distributions still match up with the DPM forward process. Song et al. (2021a) present it
as an inference distribution (1)

qσ(x0:T ) = q(x0)qσ(xT |x0)

T∏
t=2

qσ(xt−1|xt,x0), qσ(xT |x0) = N (xT ;
√
αTx0, (1− αT )I),

qσ(xt−1|xt,x0) = N (xt−1;
√
αt−1x0 +

√
1− αt−1 − σ2

t ·
xt −

√
αtx0√

1− αt
, σ2
t I).

Then a learnable generative model is denoted as Eq. (2)

pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt), pθ(xt−1|xt) = qσ(xt−1|xt,fθ(xt, t))

where fθ(xt, t) are also used to predict x0. Song et al. (2021a) show that the optimal solution of the
variational inference objective for training generative process is the same as that of DPM. So that
the class of generative models are alternative sampling schemes for DPM. But this time, we do not
need to assume that the noise scales are small, since the learning targets qσ(xt−1|xt,x0) are already
Gaussian.

Specifically, when σt =
√

1−αt−1

1−αt

√
1− αt

αt−1
the generative process recovers to that in DDPM,

when σt = 0 the generative process is termed DDIM. DDIM removes all the randomness in the
generative process, except that in the generative starting point xT . Therefore, DDIM is an implicit
generative model characterized by the deterministic path from xT to x0. Correspondingly, the in-
ference process of DDIM is a deterministic path from x0 to xT , whose randomness totally comes
from q(xT |x0):

q(x1:T |x0) = q(xT |x0)

T∏
t=2

q(xt−1|xt,x0), q(xT |x0) = N (xT ;
√
αTx0, (1− αT )I),

q(xt−1|xt,x0) = δ(xt−1 −
[
√
αt−1x0 +

√
1− αt−1 ·

xt −
√
αtx0√

1− αt

]
).

(27)
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B DETAILS FOR ENSEMBLE DENOISING IMPLICIT MODELS

B.1 DERIVATION FOR ENSEMBLE DENOISING IMPLICIT MODELS

Proof of Proposition 1. Given the general pθ(xt−1|xt) (σt ≥ 0) presented as the sampling proce-
dure of qσ(xt−1|xt,xt0):

xt−1 =
√
αt−1x

t
0 +

√
1− αt−1 − σ2

t ·
xt −

√
αtx

t
0√

1− αt
+ σtϵt, (28)

we provide a derivation for the general ensemble denoising implicit models qσ(xt−1|xt:T0 ,xT ) (σ ≥
0) by recursively expanding the particles xk in Eq. (28) along t → T :

xt−1 =
√
αt−1x

t
0 +

√
1− αt−1 − σ2

t ·
xt −

√
αtx

t
0√

1− αt
+ σtϵt

=

(
√
αt−1 −

√
1− αt−1 − σ2

t

√
αt√

1− αt

)
xt0 +

√
1− αt−1 − σ2

t√
1− αt

xt + σtϵt

=

√
αt−1

√
1− αt −

√
1− αt−1 − σ2

t

√
αt√

1− αt
xt0

+

√
1− αt−1 − σ2

t√
1− αt

√
αt
√
1− αt+1 −

√
1− αt − σ2

t+1
√
αt+1

√
1− αt+1

xt+1
0

+

√
1− αt−1 − σ2

t√
1− αt

√
1− αt − σ2

t+1
√
1− αt+1

xt+1 +

√
1− αt−1 − σ2

t√
1− αt

σt+1ϵt+1 + σtϵt

· · ·
· · ·

=

T∑
k=t

[(
k−1∏
m=t

√
1− αm−1 − σ2

m√
1− αm

) √
αk−1

√
1− αk −

√
1− αk−1 − σ2

k

√
αk√

1− αk
xk0

]
︸ ︷︷ ︸

linear combination of xt:T
0

+

T∏
m=t

√
1− αm−1 − σ2

m√
1− αm

xT︸ ︷︷ ︸
dependence on xT

+

T∑
k=t

[(
k−1∏
m=t

√
1− αm−1 − σ2

m√
1− αm

)
σkϵk

]
︸ ︷︷ ︸

combination of Gaussian noise ϵt:T

.

(29)

Note that ϵt:T are sampled from N (0, I), we may replace the combination term of ϵt:T with

ϵt ∼ N

0,

T∑
k=t

(k−1∏
m=t

√
1− αm−1 − σ2

m√
1− αm

)2

σ2
k

 I

 , (30)

and as a result, qσ(xt−1|xt:T0 ,xT ) is still Gaussian.

In the case of DDIM (σ = 0) which this paper mainly concern, q(xt−1|xt:T0 ,xT ):

xt−1 =

T∑
k=t

[(
k−1∏
m=t

√
1− αm−1√
1− αm

) √
αk−1

√
1− αk −

√
1− αk−1

√
αk√

1− αk
xk0

]
+

T∏
m=t

√
1− αm−1√
1− αm

xT

=
√

1− αt−1 ·
T∑
k=t

( √
αk−1√

1− αk−1
−

√
αk√

1− αk

)
xk0︸ ︷︷ ︸

linear combination of xt:T
0

+

√
1− αt−1√
1− αT

xT︸ ︷︷ ︸
dependence on xT

=
√

1− αt−1 ·
T∑
k=t

(Ak−1 −Ak)x
k
0 +

√
1− αt−1√
1− αT

xT , Ak =

√
αk√

1− αk
,

becomes a Dirac distribution. We can easily find the unrolled DDIM denoising kernel
q(xt−1|xt:T0 ,xT ) is a specific instance of the ensemble denoising implicit model (4) with ωkt =
Ak−1 −Ak.
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B.2 DERIVATION FOR IMPROVED DDIM

Given the unrolled DDIM denoising kernel (7):

yt−1 =
√
1− αt−1 ·

T∑
k=t

(Ak−1 −Ak)x
k
0 +

√
1− αt−1√
1− αT

xT , Ak =

√
αk√

1− αk
, (31)

where yt−1 is introduced to distinguish from xk used in xk0 = fθ(xk, k), we have

T∑
k=t+1

(Ak−1 −Ak)x
k
0 =

yt√
1− αt

− xT√
1− αT

. (32)

Then we introduce mt to control the replacement proportion of xt+1:T
0 → xt0, resulting in

xt−1 =
√
1− αt−1(At−1 −At)x

t
0 +

√
1− αt−1√
1− αT

xT

+
√
1− αt−1

T∑
k=t+1

(Ak−1 −Ak)
[
mtx

t
0 + (1−mt)x

k
0

]
=

√
αt−1x

t
0 −

√
1− αt−1Atx

t
0 +

√
1− αt−1√
1− αT

xT

+
√
1− αt−1

T∑
k=t+1

(Ak−1 −Ak)mtx
t
0 +

√
1− αt−1

T∑
k=t+1

(Ak−1 −Ak) (1−mt)x
k
0

=
√
αt−1x

t
0 −

√
1− αt−1Atx

t
0 +

√
1− αt−1√
1− αT

xT

+
√
1− αt−1(At −AT )mtx

t
0 +

√
1− αt−1(1−mt)

(
yt√
1− αt

− xT√
1− αT

)
︸ ︷︷ ︸

by Eq. (32)

=
√
αt−1x

t
0 −

√
1− αt−1At(1−mt)x

t
0 +

√
1− αt−1(1−mt)

yt√
1− αt

−
√
1− αt−1ATmtx

t
0 +

√
1− αt−1√
1− αT

mtxT

= (1−mt)

[
√
αt−1x

t
0 +

√
1− αt−1 ·

yt −
√
αtx

t
0√

1− αt

]
︸ ︷︷ ︸

yt−1 computed by Eq. (6)

+mt

[
√
αt−1x

t
0 +

√
1− αt−1 ·

xT −√
αTx

t
0√

1− αT

]
︸ ︷︷ ︸

zt−1 computed by Eq. (10)

.

(33)
Since we are replacing the former denoising predictions xt+1:T

0 with the latest denoising prediction
xt0, Eq. (33) is still a specific instance of the proposed ensemble denoising implicit models (4) with

ωtt = Ak−1 −Ak +mt ·
T∑

k=t+1

(Ak−1 −Ak)

ωkt = (1−mt) · (Ak−1 −Ak), k = t+ 1, . . . , T

(34)

for all t.
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C DETAILS FOR GENERALIZED DENOISING IMPLICIT MODELS

C.1 LEARNING OBJECTIVES AND OPTIMIZING GRADIENTS

Preparations.

Lemma 1 (Change of variables, Papamakarios et al. (2021)). Given a diffeomorphism T that
transforms a real vector z sampled from the base distribution pz(z) into x ∼ px(x), i.e., x = T (z),
then we have:

pz(z) = px(T (z))

∣∣∣∣det ∂T (z)∂z

∣∣∣∣ , (35)

px(x) = pz(T
−1(x))

∣∣∣∣det ∂T−1(x)

∂x

∣∣∣∣ , (36)

where ∂T (z)
∂z and ∂T−1(x)

∂x denotes the Jacobian of T and T−1 respectively.

Note that Eq. (13) is exactly to transform the base distribution pθ(x
t
0|xt) to the target distribution

pθ(xt−1|xt,xT ) with xt−1 = T (xt0;xT ) =
√
αt−1x

t
0+

√
1− αt−1

xT−√
αTxt

0√
1−αT

, since the transform
kernel is a Dirac distribution q(xt−1|xt0,xT ) = δ(xt−1−T (xt0;xT )). Because T (xt0;xT ) is invert-
ible and differentiable with respect to xt0, i.e., a diffeomorphism, we can apply Lemma 1 on them to
obtain:

pθ(xt−1|xt,xT ) = pθ(T
−1(xt−1;xT )|xt)

∣∣∣∣det ∂T−1(xt−1;xT )

∂xt−1

∣∣∣∣ . (37)

Besides, we also provide a more inherent derivation for Eq. (37):

pθ(xt−1|xt,xT ) =
∫

q(xt−1|xt0,xT )pθ(xt0|xt)dxt0

=

∫
δ(xt−1 − T (xt0;xT ))pθ(x

t
0|xt)dxt0

=

∫
δ(xt−1 − x̂t−1)pθ(T

−1(x̂t−1;xT )|xt)
∣∣∣∣det ∂T−1(x̂t−1;xT )

∂x̂t−1

∣∣∣∣dx̂t−1

= pθ(T
−1(xt−1;xT )|xt)

∣∣∣∣det ∂T−1(xt−1;xT )

∂xt−1

∣∣∣∣ .
(38)

Then we present the forward (inference) process and the generative process of t-GDIM for com-
pleteness:

Forward q(x0:T ) = q(x0)q(xT |x0)

T∏
t=2

q(xt−1|x0,xT ) (39)

Generative pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt,xT ). (40)
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Derivation for Equation (15).

− Eq(x0)[log pθ(x0)] =

∫
q(x0:T ) log

pθ(x1:T |x0)

pθ(x0:T )
dx0:T

=

∫
q(x0:T ) log

q(x1:T |x0)

pθ(x0:T )

pθ(x1:T |x0)

q(x1:T |x0)
dx0:T

= Eq(x0:T )

[
log

q(x1:T |x0)

pθ(x0:T )

]
− Eq(x0) [DKL(q(x1:T |x0)||pθ(x1:T |x0))]︸ ︷︷ ︸

≥0

≤ Eq(x0:T )

[
log

q(x1:T |x0)

pθ(x0:T )

]
= Eq(x0:T )

[
log

q(x1:T |x0)

p(xT )
∏T
t=1 pθ(xt−1|xt,xT )

]
.
= − Eq(x0:T )

[
log

T∏
t=1

pθ(xt−1|xt,xT )

]
= −

T∑
t=1

Eq(x0:T ) [log pθ(xt−1|xt,xT )]

by Eq. (37)

= −
T∑
t=1

Eq(x0:T )

[
log

[
pθ(T

−1(xt−1;xT )|xt)
∣∣∣∣det ∂T−1(xt−1;xT )

∂xt−1

∣∣∣∣]]
.
= −

T∑
t=1

Eq(x0:T )

[
log

exp(−Eθ(T
−1(xt−1;xT ),xt))

Z(θ,xt)

]

=

T∑
t=1

Eq(x0,xt−1,xt,xT )

[
Eθ(T

−1(xt−1;xT ),xt)) + logZ(θ,xt)
]︸ ︷︷ ︸

J (θ,t)

,

(41)

where .
= denotes the equivalence with respect to optimizing θ.

Derivation for Equation (16).

∇θJ (θ, t) = Eq(x0,xt−1,xt,xT )

[
∇θEθ(T

−1(xt−1;xT ),xt)) +∇θ logZ(θ,xt)
]

= Eq(x0,xt−1,xt,xT )

[
∇θEθ(x0,xt) +

∇θ

∫
exp(−Eθ(x

t
0,xt))dx

t
0∫

exp(−Eθ(xt0,xt))dx
t
0

]
= Eq(x0,xt−1,xt,xT )

[
∇θEθ(x0,xt)−

∫
exp(−Eθ(x

t
0,xt))∇θEθ(x

t
0,xt)∫

exp(−Eθ(xt0,xt))dx
t
0

dxt0

]
= Eq(x0,xt−1,xt,xT )

[
∇θEθ(x0,xt)− Epθ(xt

0|xt)

[
∇θEθ(x

t
0,xt)

]]
= Eq(x0)q(xt|x0)pθ(xt

0|xt)

[
∇θEθ(x0,xt)−∇θEθ(x

t
0,xt)

]
.

(42)

C.2 APPROXIMATE SAMPLING WITH IGMS

Dynamic-based sampling methods. In general, sampling from an unnormalized distribution, e.g.
the proposed energy-based denoising distribution, is still an open problem. Recent works (Du &
Mordatch, 2019; Nijkamp et al., 2020a) on studying generative EBMs typically adopt dynamic-
based sampling methods for classic maximum likelihood training. Specifically, Langevin dynamic
MCMC is accomplished by simulating K step Langevin stochastic dynamic which treats the Gibbs
distribution induced by energy as the invariant distribution (Welling & Teh, 2011):

y0 ∼ N (0, I), yk+1 = yk −
η

2
∇yk

Eθ(yk,xt) +
√
ηwk, wk ∼ N (0, I), (43)

where η denotes the step size and the resulting yK is regarded as the denoising prediction xt0.
However, running Langevin dynamic in data space is very slow and expensive, while also getting in
trouble of mixing (Nijkamp et al., 2020b). So we introduce IGMs as the approximate sampler for
faster inference.
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Derivation for Equation (17). Recall pϕ(x
t
0|xt) is represented by xt0 = Gϕ(u;xt, t),u ∼

N (0, I), then we have (do not display the dependence on t):

DKL(pϕ(x
t
0|xt)||pθ(xt0|xt)) = Epϕ(xt

0|xt)

[
log

pϕ(x
t
0|xt)

pθ(xt0|xt)

]
= Epϕ(xt

0|xt)

[
log pϕ(x

t
0|xt)

]
− Epϕ(xt

0|xt)

[
log pθ(x

t
0|xt)

]
= −H(pϕ(x

t
0|xt))− Epϕ(xt

0|xt)

[
log

exp(−Eθ(x
t
0,xt))

Z(θ,xt)

]
.
= −H(pϕ(x

t
0|xt)) + Epϕ(xt

0|xt)

[
Eθ(x

t
0,xt)

]
by reparameterize trick

.
= −H(pϕ(x

t
0|xt)) + EN (u;0,I) [Eθ(Gϕ(u;xt),xt)] .

(44)

Reinterpretation of approximate sampler. In this part, we demonstrate that, training the sam-
pler pϕ(xt0|xt) to approximate the energy-based denoising distribution pθ(x

t
0|xt) with forward KL

divergence is equivalent to the inner optimization for the variational formulation of J (θ, t). The
derivation is similar to variational maximum likelihood (Grathwohl et al., 2021).

First we express logZ(θ,xt) with a variational dual formulation:

logZ(θ,xt) = max
ϕ

{
logZ(θ,xt)−DKL(pϕ(x

t
0|xt)||pθ(xt0|xt))

}
= max

ϕ

{
logZ(θ,xt) +

∫
pϕ(x

t
0|xt) log

pθ(x
t
0|xt)

pϕ(xt0|xt)
dxt0

}
= max

ϕ

{
logZ(θ,xt) +H(pϕ(x

t
0|xt)) +

∫
pϕ(x

t
0|xt) log

exp(−Eθ(x
t
0,xt))

Z(θ,xt)
dxt0

}
= max

ϕ

{
H(pϕ(x

t
0|xt))− Epϕ(xt

0|xt)

[
Eθ(x

t
0,xt)

]}
= max

ϕ

{
H(pϕ(x

t
0|xt))− EN (u;0,I) [Eθ(Gϕ(u;xt),xt)]

}
.

(45)

Then we plug it into the optimization for J (θ, t):

min
θ

{J (θ, t)} = min
θ

{
Eq(x0,xt−1,xt,xT )

[
Eθ(T

−1(xt−1;xT ),xt) + logZ(θ,xt)
]}

= min
θ

{
Eq
[
Eθ(x0,xt) + max

ϕ

{
H(pϕ(x

t
0|xt))− EN (u;0,I) [Eθ(Gϕ(u;xt),xt)]

}]}
= min

θ
max
ϕ

{
Eq
[
Eθ(x0,xt) +H(pϕ(x

t
0|xt))− EN (u;0,I) [Eθ(Gϕ(u;xt),xt)]

]}
.

(46)

In other word, the minimization of original J (θ, t) is transformed to a nested optimization problem.
This nested optimization is actually a bi-level optimization problem, however, alternating optimiza-
tion scheme that commonly adopted in GANs or Actor-Critic is used in this work.
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D MORE DETAILED RELATIONS

Connection to recovery EBM. Inspired by diffusion models, Gao et al. (2021) propose diffusion
recovery likelihood to learn a sequence of conditional EBMs:

pθ(yt−1|xt) =
1

Z̃(θ,xt)
exp

(
−Eθ(yt−1)−

∥xt − yt−1∥2

2β2
t

)
, (47)

where yt−1 =
√
1− β2

t−1xt−1, and we do not display the dependence on t for brevity. The corre-

sponding joint energy is denoted by Eθ(yt−1) +
∥xt−yt−1∥2

2β2
t

. It implies that the distribution repre-
sented by the marginal EBM pθ(yt−1) ∝ exp(−Eθ(yt−1)) is constrained to close to the condition
xt in the Euclidean distance, which stands for recovery.

In the case of t-GDIM, we parameterize the denoising prediction with conditional EBM (14):

pθ(x
t
0|xt) =

exp(−Eθ(x
t
0,xt))

Z(θ,xt)
,

which can represent the conditional distribution pθ(xt−1|xt,xT ) via deterministic transform (37).

Although both recovery EBM and t-GDIM are using conditional EBMs to learn q(xt−1|xt) or
q(xt−1|xt,xT ), our parameterization, modelling the joint energy rather than the marginal energy, is
more flexible than that used in recovery EBMs if the diffusion scale is large (corresponding to few
diffusion steps). This is because, the quadratic Euclidean distance is not a good measure if yt−1 is
not close to xt in high-dimensional space. But recovery EBM provides us an insightful way to bring
t-GDIM explicit dependence on xT :

pθ(x
t
0|xt,xT ) ∝ exp

(
−Eθ(x

t
0,xt)− γ∥xt0 − xT0 ∥2

)
, (48)

where γ denotes the strength of Euclidean distance constraints. The additional Euclidean distance
term constrains the joint energy to be close to the denoising target at step T , xT0 ∼ pθ(x

T
0 |xT ). It

forces the current denoising prediction xt0 to lie in the same mode as that of xT0 , thus the generative
process is able to fit the deterministic inference path (9). However, this conditional EBM requires
dynamic-based MCMC for training and sampling, just like that in Gao et al. (2021). We leave this
for future work.

Connections to DDGAN. Xiao et al. (2022) propose a GAN-based diffusion model:

pθ(xt−1|xt) =
∫

pθ(x0|xt)q(xt−1|xt,x0)dx0 =

∫
N (u;0, I)q(xt−1|xt, Gθ(u;xt))du, (49)

named denoising diffusion GAN (DDGAN). DDGAN shares a similar spirit to our t-GDIM. How-
ever, the GDIM is based on denoising implicit model which has deterministic q(xt−1|xt,x0), while
DDGAN is based on DPM. Since the DPM is a special instance of Eq. (2), and by Eqs. (29) and (30)
we know the DPM generative process is also an ensemble of denoising predictions, so DDGAN is
an ensemble denoising diffusion model. Our GDIM is a more general framework that replace the
ensemble denoising prediction with probabilistic inference. And the t-GDIM specifics the proba-
bilistic ensemble denoising prediction to a radical one that only conditioned on xt.

Notice DDGAN use a conditional discriminator Dψ(xt−1|xt) to guide the training of generator, we
may derive a variant of t-GDIM similar to DDGAN (termed T -GDIM):

min
θ

max
ϕ

{
Eq(x0,xt−1,xt,xT )N (u;0,I)

[
Eθ
(
xt−1,xt

)
− Eθ

(
T (Gϕ(u;xt);xT ),xt

)]}
, (50)

where Eθ(xt−1,xt) denotes the joint energy over xt−1 and xt. Now the new conditional EBM is
used to directly represent the denoising kernel:

pθ(xt−1|xt) =
exp(−Eθ(xt−1,xt))

Z̃(θ,xt)
. (51)

T -GDIM can be regarded as a denoising implicit model counterpart of Xiao et al. (2022). Since the
complete denoising kernel ought to be pθ(xt−1|xt,xT ), T -GDIM is still missing the dependence
on xT . However, the optimizing objective (50) indicates that the dependence on xT is incorporated
implicitly in the training procedure. Besides, the T -GDIM denoising kernel pθ(xt−1|xT ) is typically
more unimodal than pθ(x

t
0|xt) in t-GDIM, so is easier to be trained. We provide some additional

studies on T -GDIM in Appendix E.
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E EXPERIMENTAL DETAILS

E.1 EXPERIMENTAL SETTINGS

Model architecture. Since iDDIMs are modifications on DDIM, and thus are alternative sampling
methods for DDPM, we use our self-trained DDPM score predictor ϵθ for computing the denoising
prediction xt0 = xt−

√
1−αtϵθ(xt,t)√

αt
in iDDIM experiments. The architecture of ϵθ follows the U-Net

(Ronneberger et al., 2015) designed in Ho et al. (2020). Please see Ho et al. (2020) for details.

Since the entropy ignored variational maximum likelihood framework used for the conditional EBM
and variational sampler in t-GDIM and T -GDIM is much similar to GAN-based optimization, we
largely follow the architecture design in Xiao et al. (2022) which use GAN to accomplish DDPM.
Our conditional EBM is adapted from the discriminator used in Karras et al. (2020b), and the vari-
ational sampler is adapted from the NCSN++ proposed in Song et al. (2021c). For CIFAR10 and
CelebAHQ-256, we partially borrow the structure and hyper-parameters from Xiao et al. (2022),
while for CelebA-64 and CelebA-128 that they do not consider, we provide a similar design scheme
in Tab. 6 and Tab. 7.

CIFAR10 CelebA-64 CelebA-128 CelebAHQ-256

# of ResNet blocks per scale 2 2 2 2
Initial # of channels 128 64 64 64
Channel multiplier for each scale (1,2,2,2) (1,2,3,4) (1,1,2,3,4) (1,1,2,2,4,4)
Scale of attention block 16 16 16 16
Latent dimension 100 100 100 100
# of latent mapping layers 4 3 3 3
Latent embedding dimension 256 256 256 256

Table 6: Hyper-parameters for the variational sampler.

CIFAR10

1× 1 conv2d, 128
ResBlock, 128

ResBlock down, 256
ResBlock down, 512
ResBlock down, 512
minibatch std layer

Global Sum Pooling
FC layer → scalar

CelebA-64

1× 1 conv2d, 128
ResBlock, 128

ResBlock down, 256
ResBlock down, 512
ResBlock down, 512
ResBlock down, 512
minibatch std layer

Global Sum Pooling
FC layer → scalar

CelebA-128

1× 1 conv2d, 128
ResBlock down, 128
ResBlock down, 256
ResBlock down, 512
ResBlock down, 512
ResBlock down, 512
minibatch std layer

Global Sum Pooling
FC layer → scalar

CelebAHQ-256

1× 1 conv2d, 128
ResBlock down, 128
ResBlock down, 256
ResBlock down, 512
ResBlock down, 512
ResBlock down, 512
ResBlock down, 512
minibatch std layer

Global Sum Pooling
FC layer → scalar

Table 7: Structure for the conditional EBM.

Training. As described in the main paper, we adopt the 1000 step linear noise schedule from
β1 = 10−4 to β1000 = 0.02 to build the complete diffusion process as in Ho et al. (2020). To build
the generative sub-sequence, we follow the quadratic timesteps selection in Song et al. (2021a), i.e.,
τi = Ceil(ci2) such that cT 2 = 1000. Different from Song et al. (2021a), the quadratic selection is
used for all datasets in this work.

For iDDIM, we use the self-trained DDPM score predictor. The score predictor is trained with the
same objective in DDIM or DDPM. Our pre-trained DDPM model gets 3.19 FID and is slightly
worse than 3.17 reported in Ho et al. (2020). For the t-GDIM, we use the following GAN-based
optimization:

max
θ

EU(t)q(x0)q(xt|x0)N (u;0,I)

[
log
(
− Eθ(x0,xt)

)
+ log

(
1 + Eθ(Gϕ(u;xt),xt)

)]
(52)

max
ϕ

EU(t)q(x0)q(xt|x0)N (u;0,I)

[
log
(
− Eθ(Gϕ(u;xt),xt)

)]
, (53)
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where t ∼ U(t) denotes randomly selecting a t from 1, . . . , T . For the T -GDIM (50), we use:

max
θ

EU(t)q(x0)q(xt−1,xt,xT |x0)N (u;0,I)

[
log
(
− Eθ(xt−1,xt)

)
(54)

+ log
(
1 + Eθ(T (Gϕ(u;xt);xT ),xt)

)]
(55)

max
ϕ

EU(t)q(x0)q(xt−1,xt,xT |x0)N (u;0,I)

[
log
(
− Eθ(T (Gϕ(u;xt);xT ),xt)

)]
, (56)

where q(xt−1,xt,xT |x0) = q(xT |x0)q(xt−1,xt|x0,xT ) denotes the deterministic path between
x0 and xT ∼ q(xT |x0), computed by xt−1 = T (x0;xT , t− 1). Correspondingly, the fake x̂t−1 is
computed by x̂t−1 = T (Gϕ(u;xt);xT , t− 1).

The optimization hyper-parameters is partially following that in Xiao et al. (2022), we summarize
them in Tab. 8. We trained our models on CIFAR10 and CelebA-64 using 4 RTX2080Ti GPUs. On
CelebA-128 and CelebAHQ-256, we use 4 A100 GPUs.

CIFAR10 CelebA-64 CelebA-128 CelebAHQ-256

Initial learning rate for sampler 1.6× 10−4 1.6× 10−4 1.8× 10−4 2.0× 10−4

Initial learning rate for EBM 1.25× 10−4 10−4 10−4 10−4

Adam optimizer β1 0.5 0.5 0.5 0.5
Adam optimizer β2 0.9 0.9 0.9 0.9
EMA 0.9999 0.9999 0.9999 0.9999
Batch size 256 128 128 32
# of training iterations 400k 400k 500k 700k
# of GPUs 4 4 4 4

Table 8: Optimization hyper-parameters.

E.2 ADDITIONAL STUDIES

Using iDDIM to improve GDIMs. In Tab. 9, we using iDDIM sampler on 4-step t-GDIM and T -
GDIM on CIFAR10 image generation measured by FID. Thanks to the implicit dependence on xT ,
T -GDIM performs slightly better than t-GDIM. Besides, iDDIM sampler can marginally improve
the generation performance on t-GDIM, but weaken that of T -GDIM. In Tab. 10, we show the
results on CelebA-64 and CelebA-128, where only the influence of iDDIM on t-GDIM is presented.
Figure 7 shows the CelebA-128 generation samples of t-GDIM+iDDIM with varying m. We find the
performance with different m is hard to tell with human eyes, it confirms that the denoising targets
xt0 ∼ pθ(x

t
0|xt) in t-GDIM are almost the same, which is compatible with the target deterministic

inference process. So that in the case of 4 sampling steps, the t-GDIM is able to fit the deterministic
inference process even though without the dependence on xT .

m 1.0 0.9 0.8 0.7 0.6 0.0

t-GDIM 5.51 6.36 5.34 5.24 5.31 5.57
T -GDIM 4.90 5.04 5.15 5.20 - 6.15

Table 9: CIFAR10 image generation of t-GDIM+iDDIM and T -GDIM+iDDIM, measured by FID↓.

m 1.0 0.9 0.8 0.7 0.6 0.5

CelebA-64 3.28 3.14 3.14 3.04 2.93 2.95
CelebA-128 4.45 4.29 4.17 4.11 4.04 4.07

Table 10: CelebA-64 and CelebA-128 image generation of t-GDIM+iDDIM, measured by FID↓.

Mode coverage of t-GDIM sampler. As we discussed in the main paper, the GAN-based opti-
mization for t-GDIM is similar to the entropy ignored variational maximum likelihood in theory.
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Figure 7: CelebA-128 samples of t-GDIM+iDDIM with varying m. From left to right: m =
1.0, 0.8, 0.6, 0.4, 0.2, 0.0.

Since the entropy term compels the variational sampler to be smoother, the absence of entropy leads
to poor mode coverage of sampler. In Fig. 8, we show groups of (x0,x

t
0,xt) in the training proce-

dure of t-GDIM. We find given the largest noise scale xT , the sampler tend to give predictions xT0
with poor mode coverage. In fact, since xT are almost pure noises, the case at step T is similar to the
pure GANs that directly mapping the reference distribution to the data distribution (as we discussed
in Sec. 1). Pure GANs have suffered from the poor mode coverage a lot, while data augmentation
or other methods to compel the samplers to cover more modes is critical for GAN training. For ex-
ample, DDGANs use DDPM framework and thus introduce additional noises as data augmentation,
leading to better generation performance than us. Nevertheless, our t-GDIM can still generate sam-
ples with high diversity, that is because in the multi-step generative process, intermediate structural
assumptions are introduced, and the ut ∼ N (ut;0, I) in sampler bring about more randomness to
mitigate the influence of poor mode coverage at step T . Therefore, we may leverage proven opti-
mization techniques in GANs to further improve our t-GDIM, but we only report the pure version
of our model in this work, as it already achieves comparable generation quality to other generative
models.

Figure 8: Denoising predictions of t-GDIM. Left: x0. Middle: xt0. Right: xt.
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F CONNECTION AND COMPARISON WITH DDGAN

In this section, we provide a deeper comparison with DDGAN (Xiao et al., 2022).

F.1 MOTIVATION

DDGAN follows the basic framework of DDPM that constructs Markovian generative process to
approximate the fixed reverse process:

q(x0:T ) = q(xT )

T∏
t=1

q(xt−1|xt), (57)

where q(xt−1|xt) is multi-modal if T is small. The central idea of DDGAN is predicting x0 by
the generator with latent variable u, xt0 = Gθ(u;xt, t), and then approximates Eq. (57) with the
following generative process:

pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt), pθ(xt−1|xt) =
∫

pθ(x
t
0|xt)q(xt−1|xt0,xt)dxt0, (58)

where pθ(x
t
0|xt) is the implicit distribution imposed by the generator. Thanks to the flexibility of

pθ(x
t
0|xt), pθ(xt−1|xt) is able to approximate the multi-modal q(xt−1|xt).

Since the idea that predicting x0 with stronger stochastic mapping (instead of deterministic mapping
xt0 = fθ(xt, t)) is quit simple and natural, and the well-trained generator can provide good denoising
predictions as expected. We use the same generator Gθ(z;xt, t) to accomplish the probabilistic
inference pθ(x

t
0|xt) in our t-GDIM. However there are some basic differences and we will explain

them along the theoretical route of t-GDIM.

Most obviously, DDGAN is based on DDPM, while our GDIM is based on DDIM. The frameworks
of DDPM and DDIM are presented in Appendix A. In addition to the difference about the stochastic
path (based on DDPM) versus the deterministic path (based on DDIM), the most important differ-
ence is the learning target (or target inference process). Different from Eq. (57) in DDGAN, the
learning target of GDIM is exactly the same one of the ensemble models, (9) or (39):

q(x0:T ) = q(x0)q(xT |x0)

T∏
t=2

q(xt−1|x0,xT ). (59)

The special explicit dependence on xT and x0 implies that, at each denoising step, we should first
predict x0 and then combine it with xT to obtain the next state xt−1. For the ensemble denoising
implicit models (4) (include DDIM (6), radical ensemble model (10) and iDDIM (11)), we use the
convex ensemble of denoising predictions xt:T0 to predict x0. For the general GDIMs (12):

pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt:T ), pθ(xt−1|xt:T ) =
∫

pθ(x̄
t
0|xt:T )q(xt−1|x̄t0,xT )dx̄t0, (60)

we use probabilistic inference pθ(x̄
t
0|xt:T ) to sample a prediction x̄t0. By comparing the general

GDIM generative process (60) with that of DDGAN (58), one can find two differences: 1) the proba-
bilistic inference in Eq. (60) depends on additional states xt+1:T ; 2) the denoising kernel in Eq. (60),
q(xt−1|x̄t0,xT ), is a deterministic transform depending on xT , while in Eq. (58), q(xt−1|xt0,xt) is
stochastic and depends on xt.

In 1), the additional dependence allow the general GDIM to consider more information in previous
states xt+1:T to perform inference of x̄t0. To explain the difference 2), we first consider the stochas-
tic version of ensemble denoising models discussed in Eqs. (29) and (30). Since q(xt−1|xt0,xt) (also
used in DDPM) is a special instance of Eq. (28), the generative process in DDGAN is actually an en-
semble denoising diffusion model q(xt−1|xt:T0 ,xT ) (see Eq. (29)), which consists of the ensemble
of obtained denoising predictions xt:T0 , the xT term and the ensemble of noises ϵt:T . Then we back
to the GDIM, the deterministic denoising kernel q(xt−1|x̄t0,xT ) gets rid of the dependence on all
the noises ϵt:T , and moreover, gets rid of the dependence on the previously obtained denoising
predictions xt+1:T

0 . Now the general GDIM only trusts the most recent denoising prediction x̄t0 in
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theory. And the x̄t0, sampled from the probabilistic model in 1), seems like a probabilistic exten-
sion to the ensemble of denoising predictions (see Fig. 2). So we think GDIM as a more general
framework than that in DDGAN.

However, it is difficult to implement the probabilistic model pθ(x̄t0|xt:T ) with recent strong but
efficient generative models, because of the explicit dependence on more than one state. To derive a
tractable implementation, we introduce t-GDIM, the simplest GDIM whose probabilistic inference
only depends on the most recent state xt:

pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt,xT ), pθ(xt−1|xt,xT ) =
∫

pθ(x
t
0|xt)q(xt−1|xt0,xT )dxt0.

(61)
This eliminates the difference 1) but will not damage the performance as long as pθ(x

t
0|xt) can

provide good denoising predictions. Indeed, experiments in Sec. 6.2 have shown t-GDIM can get
good denoising predictions as expected. On the other hand, 2) still remains, which implies the basic
difference between t-GDIM and DDGAN in theory.

F.2 IMPLEMENTATION AND LIMITATIONS

The discussion above shows both DDGAN and t-GDIM use generator Gθ(u;xt, t) to obtain xt0, but
they leverage xt0 in distinct ways to construct the generative denoising process. In this section, we
show the differences about training methods and limitations.

First we discuss the training method from the perspective of GAN-based optimization. Note in
DDGAN, the Markovian denoising kernels pθ(xt−1|xt) (58) are trained to approximate q(xt−1|xt)
(57). So DDGAN advocates to leverage a discriminator D(xt−1,xt, t) to guide the training of
pθ(x

t
0|xt). In practice, they use generator Gθ(u;xt, t) to get a denoising prediction xt0 and then use

Gaussian kernel q(xt−1|xt0,xt) to sample a fake x̂t−1. On the other hand, the real xt−1 is sampled
from the forward process q(x0)q(xt−1|x0)q(xt|xt−1). Then the discriminator D(xt−1,xt, t) is
trained to distinguish the real xt−1 and the fake x̂t−1 depending on xt.

But in our t-GDIM, the GAN-based optimization leverages a distinct discriminator that is trained to
distinguish the real x0 and the denoising prediction xt0 depending on xt. We denote it as the joint
energy E(x0,xt, t) in the main paper. Of course, the tuple used in t-GDIM training is sampled
by (x0,xt,x

t
0) ∼ q(x0)q(xt|x0)pθ(x

t
0|xt), and is also different from that in DDGAN. In fact, the

training differences comes from the distinct learning targets. Given the learning target Eq. (59),
our GAN-based optimization is derived totally from the perspective of variational maximum like-
lihood (see Sec. 4.2 and related appendix). In addition to t-GDIM, we introduce T -GDIM in Ap-
pendix D whose discriminator is similar to that in DDGAN. However, unfortunately, both T -GDIM
and DDGAN can not be easily interpreted from the perspective of variational maximum likelihood.
So in principle we only consider the t-GDIM in our main paper.

As shown in Sec. 4.2 and Appendix E.2, the GAN-based optimization used in t-GDIM is an entropy-
ignored variational maximum likelihood. So t-GDIM behaves like a pure unconditional GAN at
step T since xT are almost pure noises, and thus the sampler performs poor mode coverage (see the
middle image of Fig. 8, there are very similar denoising predictions though denoised from different
xT ). We believe the mode coverage will damage the performance of t-GDIM, but we still report the
pure version of t-GDIM as it is good enough. Generally speaking, DDGAN also does not involve the
entropy of sampler. But notice the discriminator of DDGAN D(xt−1,xt, t) is defined over the space
of xt−1. Since xt−1 is a noisy version of x0 which is closer to xt, the D(xt−1,xt, t) is smoother
than the discriminator of t-GDIM E(x0,xt, t). In GAN training, adding noises to the samples x0

is an efficient data augmentation used to compel the sampler to be smoother. As a result, DDGAN
performs good mode coverage and thus gets better FID than our t-GDIM on CIFAR10 experiments
(see Tab. 3). However, our t-GDIM achieves better performance than DDGAN on CelebAHQ-256
(see Tab. 5).
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