
Inverse Reinforcement Learning without Reinforcement Learning

Gokul Swamy 1 David Wu 2 Sanjiban Choudhury 2 3 J. Andrew Bagnell 3 1 Zhiwei Steven Wu 1

Abstract

Inverse Reinforcement Learning (IRL) is a pow-
erful set of techniques for imitation learning that
aims to learn a reward function that rationalizes
expert demonstrations. Unfortunately, traditional
IRL methods suffer from a computational weak-
ness: they require repeatedly solving a hard rein-
forcement learning (RL) problem as a subroutine.
This is counter-intuitive from the viewpoint of
reductions: we have reduced the easier problem
of imitation learning to repeatedly solving the
harder problem of RL. Another thread of work
has proved that access to the side-information of
the distribution of states where a strong policy
spends time can dramatically reduce the sample
and computational complexities of solving an RL
problem. In this work, we demonstrate for the first
time a more informed imitation learning reduction
where we utilize the state distribution of the ex-
pert to alleviate the global exploration component
of the RL subroutine, providing an exponential
speedup in theory. In practice, we find that we
are able to significantly speed up the prior art on
continuous control tasks.

1. Introduction
Inverse Reinforcement Learning (IRL), also known as In-
verse Optimal Control (Kalman, 1964; Bagnell, 2015) or
Structural Estimation (Rust, 1994), is the problem of find-
ing a reward function that rationalizes (i.e. makes opti-
mal) demonstrated behavior. Such approaches build on the
lengthy history of trying to understand intelligent behavior
(Muybridge, 1887) as approximate optimization of some
cost function (Wolpert et al., 1995). While economists (Rust,
1994) and cognitive scientists (Baker et al., 2009) are often
interested in analyzing the recovered reward function, it is
more common in machine learning to view IRL algorithms

1Carnegie Mellon University 2Cornell University 3Aurora Inno-
vation. Correspondence to: Gokul Swamy <gswamy@cmu.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

Inverse RL

r

E E

NRMM

r

E

r

MMDP

t

t+1

t+2

Figure 1: Traditional Inverse RL methods (left) repeatedly
solve RL problems with adversarially chosen rewards in
their inner loop which can be rather computationally expen-
sive. We introduce two exponentially faster methods for
IRL. NRMM (No-Regret Moment Matching, center) resets
the learner to states from the expert demonstrations before
comparing trajectory suffixes. MMDP (Moment Matching
by Dynamic Programming, right) optimizes a sequence of
policies backwards in time. Both methods avoid solving the
global exploration problem inherent in RL.

as methods to imitate (Ziebart et al., 2008a) or forecast
(Kitani et al., 2012) expert behavior.

There are three key benefits to the IRL approach to imita-
tion. The first is policy space structuring: effectively, IRL
reduces our (often large) policy class to just those policies
that are (approximately) optimal under some member of
our (relatively small) reward function class. The second is
transfer across problems: for many practical applications
(e.g. robotics (Silver et al., 2010; Ratliff et al., 2009; Kolter
et al., 2008; Ng et al., 2006; Zucker et al., 2011), computer
vision (Kitani et al., 2012), and human-computer interaction
(Ziebart et al., 2008b; 2012)), one is able to learn a single
reward function across multiple instances and then use it
to forecast or imitate expert behavior in new problems that
arise at test time. As Ng et al. (2000) put it, “the entire
field of reinforcement learning is founded on the presuppo-
sition that the reward function, rather than the policy is the
most succinct, robust, and transferable definition of the task”
(italics ours). The third is robustness to compounding errors:

1

Inverse Reinforcement Learning without Reinforcement Learning

as IRL methods involve the learner performing rollouts in
the environment, they cannot end up in states they didn’t
expect to at test time and therefore will not suffer from
compounding errors (Swamy et al., 2021). Taken together,
these three reasons help explain why IRL methods continue
to provide state-of-the-art results on challenging imitation
learning problems (e.g. in autonomous driving (Bronstein
et al., 2022; Igl et al., 2022; Vinitsky et al., 2022)).

The most widely used approaches to IRL (Ziebart et al.,
2008a; Ho and Ermon, 2016) are fundamentally game-
theoretic. An RL algorithm generates trajectories by op-
timizing (i.e. decoding) the current reward function. In
response, a reward function selector picks a new reward
function that discriminates between learner and expert tra-
jectories. As pointed out by Finn et al. (2016), the IRL
setup generalizes a GAN (Goodfellow et al., 2020) with a
dynamics model in the generation stem. More specifically,
if one looks at the typical structure of an IRL algorithm,
one performs the decoding-via-RL operation repeatedly in
an inner loop, tweaking the current estimate of the reward
function in the outer loop to produce behavior that more
closely resembles that of the expert.

For some problems, highly optimized planners (Ratliff et al.,
2009) or optimal controller synthesis procedures (Levine
and Koltun, 2013) allow an efficient implementation of this
inner loop. More generally however, one might want to
tackle problems that don’t have efficient algorithms to de-
code behavior and therefore be forced to rely on sample-
based RL algorithms. Unfortunately, this can make each
inner loop iteration quite inefficient (both in terms of com-
putational and sample efficiency) as it requires solving the
global exploration problem inherent in RL. From the lens of
reductions (Beygelzimer et al., 2009), such an approach is
counter-intuitive as we’ve turned the relatively easy problem
of imitating an expert into the repeated solving of the hard
problem of RL.

Prior work (Kakade and Langford, 2002; Bagnell et al.,
2003; Ross et al., 2010) has shown that access to a good
exploration distribution (i.e. the states where a strong pol-
icy spends much of its time) can dramatically reduce the
complexity of RL as the learner doesn’t have to explore for
as long: knowing a set of waypoints along the shortest path
through a maze should speed up your attempt to solve it. In
the imitation learning setup, we have access to just such a
distribution: the expert’s visitation distribution. We propose
to use this knowledge to speed up the RL subroutine of IRL.

Our key insight is that expert demonstrations can dramat-
ically improve the efficiency of the policy optimization
subroutine of IRL. Critically, directly applying this insight
to prior IRL algorithms with an RL inner loop provably fails
to learn good behavior, as we discuss further below. Instead,
we derive a new flavor of IRL algorithms that perform

policy synthesis in the outer loop, eliding this concern.

More explicitly, our contributions are as follows:

1. We derive two algorithms that reset the learner to
states from the expert visitation distribution for more
efficient IRL. MMDP (Moment Matching by Dynamic Pro-
gramming) produces a sequence of policies. NRMM (No-
Regret Moment Matching) produces a single, stationary
policy and has best-response and no-regret variants. Further,
we prove that the natural idea to use RL algorithms that
leverage expert resets in the inner loop of game-theoretic
IRL fails to recover a policy competitive with the expert’s.

2. We discuss the statistical complexity of expert resets.
We prove that in the worst case, traditional IRL algorithms
take an exponential number of interactions (in the horizon of
the problem) to learn a policy competitive with the expert. In
contrast, we prove that our algorithms require only polyno-
mial interactions per iteration to learn policies competitive
with the expert.

3. We discuss the performance implications of expert
resets. We show that in the worst case, neither MMDP nor
NRMM can avoid a quadratic compounding of errors with
respect to the horizon.

4. We derive a practical meta-algorithm that achieves
the best of both. We propose FILTER (Fast Inverted Loop
Training via Expert Resets) which interpolates between tra-
ditional IRL and our own approaches via mixing expert
resets with standard resets. This allows use to ease the
exploration burden on the learner while mitigating com-
pounding errors. We implement two variants of FILTER
on continuous control tasks and find it is more efficient than
standard IRL.

We begin with a discussion of related work.

2. Related Work
Both of our algorithms build upon prior work in utilizing
strong exploration distributions in the reinforcement learn-
ing context (Kakade and Langford, 2002). In a sense, we lift
these insights to the imitation learning context. MMDP can
be seen as the moment-matching version of the PSDP (Pol-
icy Search by Dynamic Programming) algorithm of Bagnell
et al. (2003). NRMM calls the NRPI (No-Regret Policy It-
eration) algorithm of Ross et al. (2010) in each iteration.
Recent work by Uchendu et al. (2022) has confirmed that
PSDP and NRPI continue to provide strong computational
benefits with modern training algorithms and architectures,
boding well for their application to IRL.

Our work is also related to recent developments in the theory
of policy gradient algorithms by Agarwal et al. (2021a), in
that we also assume access to a reset distribution that covers

2

Inverse Reinforcement Learning without Reinforcement Learning

Algorithm 1 IRL (Dual Version, Ziebart et al. (2008a))
Input: Demos. DE , Policy class Π, Reward class Fr

Output: Trained policy π
Initialize f1 ∈ Fr

for i in 1 . . . N do
πi ← MaxEntRL(r = −fi)
use any no-regret algo. to pick f
fi+1 ← argmax

f∈Fr

J(πE , f)− J(Unif(π1:i), f) +R(f)

end for
Return πi with the lowest validation error.

the visitation distribution of the policy we compare the
learner’s to. While they compare to the optimal policy, we
compare to the expert, as we are focused IRL.

Swamy et al. (2022) also consider sample efficiency in IRL,
but focus on making the most out of a finite set of expert
demonstrations, rather than solving the moment-matching
problem with as few learner-environment interactions as
possible. Our work is therefore complementary to theirs.

Perhaps the most similar algorithm to MMDP is the FAIL
algorithm of Sun et al. (2019). While both algorithms solve
a sequence of moment-matching games, they differ in sev-
eral key ways. Perhaps most obviously, FAIL is solving the
sequence of games forward in time while MMDP is solving
them backwards in time. This makes it straightforward to
mix MMDP with value-based reinforcement learning (which
also uses backwards-in-time dynamic programming), while
it is not apparent how to do so for FAIL.

An alternative way to use expert demonstrations in policy
optimization is via regularization towards a trained behav-
ioral cloning policy (Jacob et al., 2022). The benefits of
such a technique are quite problem-specific (e.g. such regu-
larization could introduce compounding errors where none
would exist otherwise). However, on problems where such
regularization is helpful, it can easily be combined with the
improved efficiency our techniques provide.

Another line of work attempts to improve the efficiency
of IRL algorithms by learning Q functions and then dif-
ferencing them across sequential states to extract a reward
function, eliding the need for an inner loop (Dvijotham and
Todorov, 2010; Garg et al., 2021). While reward functions
don’t include information about the dynamics of the environ-
ment, Q functions do. This means that Q function-based ap-
proaches to IRL need to spend computation and samples to
learn the environment’s dynamics, only to immediately filter
them out, which seems rather inefficient and can introduce
other errors from the secondary regression. Furthermore,
while one might be able to apply traditional IRL methods
on datasets collected from diverse agents solving tasks with
similar goals

Algorithm 2 IRL (Primal Version, Ho and Ermon (2016))
Input: Demos. DE , Policy class Π, Reward class Fr

Output: Trained policy π
Initialize f1 ∈ Fr

for i in 1 . . . N do
use any no-regret algo. to pick pi
πi ← MaxEntRL(r = − 1

i

∑i
j=1 fj)

fi+1 ← argmax
f∈Fr

J(πE , f)− J(πi, f)

end for
Return πi with the lowest validation error.

(Silver et al., 2010; Ratliff et al., 2009; Kolter et al., 2008;
Ng et al., 2006; Zucker et al., 2011; Ziebart et al., 2008b;
2012), it isn’t clear that Q function-based approaches would
output consistent estimates of the expert’s reward function
if dynamics differ across environments.

3. Expert Resets in Inverse RL
We utilize the moment-matching framework of Swamy et al.
(2021) to prove performance bounds for our algorithms.
Our results allow one to speed up any member of the broad
reward-moment-matching phylum of their taxonomy that
uses RL (e.g. MaxEnt IRL (Ziebart et al., 2008a), GAIL
(Ho and Ermon, 2016), SQIL (Reddy et al., 2019)).

3.1. Inverse RL as (Inefficient) Game Solving

Consider a finite-horizon Markov Decision Process (MDP)
(Puterman, 2014) parameterized by ⟨S,A, T , r, T ⟩ where
S , A are the state and action spaces, T : S ×A → ∆(S) is
the transition operator, r : S × A → [−1, 1] is the reward
function, and T is the horizon. In the inverse RL setup, we
see trajectories generated by an expert policy πE : S →
∆(A), but do not know the reward function. Our goal is
to nevertheless learn a policy that performs as well as the
expert’s, no matter the true reward function.

We solve the IRL problem via equilibrium computation
between a policy player and an adversary that tries to pick
out differences between expert and learner policies along
certain moments (i.e. potential components of the reward
function) (Swamy et al., 2021). More formally, we optimize
over (time-varying) policies π = {π1, . . . , πT }, with πt :
S → ∆(A) ∈ Π and reward functions f : S × A →
[−1, 1] ∈ Fr. For simplicity, we assume that our strategy
spaces (Π andFr) are convex and compact, thatFr is closed
under negation, and that r ∈ Fr, πE ∈ Π. 1 We solve
(i.e. compute an approximate Nash equilibrium) of the two-

1If we do not assume realizability, we would get the analogous
agnostic bounds throughout the following sections.

3

Inverse Reinforcement Learning without Reinforcement Learning

Algorithm 3 MMDP (Moment Matching by Dynamic Programming)
Input: Sequence of expert visitation distributions ρ1E . . . ρTE , Policy class Π, Reward class Fr

Output: Sequence of trained policies π = π1:T

for t in T . . . 1 do
Set Dt = {}
for j = 1 to M do

Sample a random start state st ∼ ρtE .
Execute a random action at ∼ Unif(A) in st.
Follow πt+1:T until the end of the horizon.
Dt ← Dt ∪ {(st, at, st+1:T , at+1:T)}

end for
Approximately solve moment-matching game:

πt ← argmin
π∈Π

max
f∈Fr

1

T

(
E st∼ρt

E ,
at∼π(st)

[
EDt|st,at

[
T∑

τ=t

f(sτ , aτ)

]]
− E st∼ρt

E ,

at∼ρt
E(st)

[
EDt|st,at

[
T∑

τ=t

f(sτ , aτ)

]])
(1)

end for
Return π1:T .

player zero sum game

min
π∈Π

max
f∈Fr

J(πE , f)− J(π, f), (2)

where J(π, f) = Eξ∼π[
∑T

t=0 f(st, at)] denotes the value
of policy π under reward function f .

Swamy et al. (2021) describe two different classes of strate-
gies for equilibrium computation: primal, where the policy
player follows a no-regret strategy against a best-response
discriminative player and dual, where the discriminative
player follows a no-regret strategy against a best-response
policy player. Most IRL algorithms are dual (e.g. MaxEnt
IRL (Ziebart et al., 2008a) or LEARCH (Ratliff et al., 2009))
but there do exist primal approaches (e.g. GAIL (Ho and Er-
mon, 2016)). For both classes of strategies, a best-response
corresponds to an inner loop iteration, while a no-regret step
corresponds to an outer loop iteration.

For the policy player, a best-response consists of solving the
RL problem under the current adversarially chosen reward
function, i.e.

πi+1 = argmax
π∈Π

J(π, fi) +H(π), (3)

while a no-regret step consists of running any no-regret
online learning algorithm over the history of rewards, 2 e.g.

πi+1 = argmax
π∈Π

J(π,
1

i

i∑
j=0

fj) +H(π), (4)

2We write down a specific no-regret algorithm here (Follow
the Regularized Leader) but one could use any other (e.g. Multi-
plicative Weights (Arora et al., 2012) or Online Gradient Descent
(Zinkevich, 2003)) and have similar guarantees.

where H(π) denotes the entropy of the policy. See Algo-
rithms 1 and 2 for psuedocode, with R(f) being a strongly
convex regularizer.

In both cases, one is solving a full RL problem at each
iteration. This means that in the worst case, one pays ex-
ponentially in the horizon at each iteration (Kakade, 2003):

Theorem 3.1. Inverse RL Sample Complexity: For Algo-
rithms 1 and 2, there exists an MDP, πE , Π, andFr such that
returning a policy π which satisfies J(πE , r)− J(π, r) ≤
0.5Vmax requires Ω(|A|T) interactions with the environ-
ment, where Vmax is the value of the optimal policy.

We now discuss how we can utilize the (already known from
the demonstrations) expert’s visitation distribution to solve
RL problems more efficiently.

3.2. Method 1: Dynamic Programming

Dynamic programming in the form of the Bellman Equation
forms the basis of Q-learning based approaches to RL: one
"backs-up" Q values backwards-in-time, selecting actions
based on the sum of the reward at the current timestep
and the already computed value of the next state. More
generally however, one can back-up policies rather than just
Q-values, as in the Policy Search by Dynamic Programming
(PSDP) algorithm of Bagnell et al. (2003). Given some roll-
in distribution ν, the algorithm draws states from timestep
T and selects a policy

πT = argmax
π∈Π

Es∼νT [r(s, π(s))]. (5)

Then, holding this policy fixed, the algorithm draws states
from the roll-in distribution at timestep T − 1 and selects a

4

Inverse Reinforcement Learning without Reinforcement Learning

policy for timestep T − 1 that maximizes reward over the
horizon,

πT−1 = argmax
π∈Π

Es∼νT−1 [r(s, π(s))+r(s′, πT (s
′))], (6)

where s′ denotes a successor state. This induction proceeds
backwards in time until one reaches the first timestep, at
which point a sequence of policies π1:T is output. Notice
that at each step of this algorithm, we are solving a single-
step classification problem. So, instead of the exponential-
in-the-horizon complexity one must pay (in hard instances)
for RL, one pays only quadratically in the horizon.

The careful reader will notice that PSDP requires a reward
function. Two strategies come to mind for adversarially
picking one for IRL. The first is to choose a reward for each
timestep (i.e. each t ∈ [T]) of PSDP. The second is to run
PSDP to completion (i.e. solve for all T policies) and then
pick a new reward in an outer loop. While the latter strategy
is more similar to standard IRL methods, we prove in a
later section that such approaches can provably fail to match
expert behavior. We therefore propose using the former
strategy, for which we can provide strong guarantees. We
call the resulting algorithm MMDP: Moment Matching by Dy-
namic Programming and outline the procedure in Algorithm
3. Throughout our analysis, we define optimization error ϵt
as the value when πt is plugged into Eq. (1). Like PSDP,
MMDP avoids the exponential sample complexity of RL.

Lemma 3.2. MMDP Sample Complexity: Let ϵ > 0. At
iteration t, MMDP requires at most

O

(
log

(|Π||Fr|
δ

)
T 3|A|2

ϵ2

)
interactions with the environment to, w.p. ≥ 1− δ, produce
a policy πt with optimization error ϵt ≤ ϵ (Eq. 1).

MMDP performs T iterations, giving us an overall complexity
that is still polynomial in the relevant quantities. 3 We prove
the following performance bound on the policies produced
by MMDP in Appendix A:

Theorem 3.3. MMDP Upper Bound: Let π denote the se-
quence of policies returned by MMDP and ϵ̄ = 1

T

∑T
t ϵt,

where ϵt denotes the optimization error of πt (Eq. 1). Then,

J(πE)− J(π) ≤ ϵ̄T 2 (7)

This bound tells us how training error ϵ̄ translates to our
policy’s test-time performance. The lower bound matches,
making the above tight.

3For simplicity, we consider finite classes. One could instead
use another complexity measure (e.g. Rademacher) that extends to
classes with infinite elements (Sriperumbudur et al., 2009).

s1

s2

s2

s2

s3

s3

s3

. . .

. . .

. . .

Figure 2: DANTE: A three-row MDP where at each timestep,
the learner can move up, move down, or stay in the same
row. The expert always stays in the center row. The goal is
to stay in the top two rows.

Theorem 3.4. MMDP Lower Bound: There exists an MDP,
πE and sequence of policies π with ϵ̄ = 1

T

∑T
t ϵt, where ϵt

denotes the optimization error of πt (Eq. 1), such that

J(πE)− J(π) ≥ Ω(ϵ̄T 2) (8)

Intuitively, a single mistake early on in an episode can put
the learner in a different part of the state space than the
expert, which can make the learned policy perform poorly.
In short, MMDP is able to find a sequence of policies in
polynomial time that perform at most ϵ̄T 2 worse than πE .

MMDP vs. Behavioral Cloning. A natural question at this
point might be: what benefits does MMDP provide over a be-
havioral cloning baseline? After all, behavioral cloning also
produces policies that do no worse than O(ϵT 2) compared
to the expert and requires no environment interaction.

Consider a simplified variant of MMDP in which one doesn’t
perform rollouts and instead solves a game with a single-
timestep payoff at each iteration. This entirely decouples
the iterations as we no longer account for the actions of the
future policies we have already computed. In effect, this is
what purely offline behavioral cloning is doing.

The core issue with such an approach is that it prevents
the learner from distinguishing between mistakes that com-
pound over the horizon and those that don’t. Consider, for
example, the MDP depicted in Figure 2 where the goal is to
stay in the top two rows. Assume policies π3:T go straight
but π2 goes down w.p. ϵT . Now, let’s think about what
would happen if we used BC or MMDP to pick π1. Behav-
ioral cloning would pick a policy that always goes straight,
as doing so perfectly matches expert actions. This would
lead to a performance gap of

J(πE , r)− J({πBC , π2:T }, r) = ϵT (T − 1).

However, if we instead used MMDP to pick π1, the rollouts
with π2:T would reveal to the learner that it is better to go
up on the first timestep so they still receive reward over
the horizon, no matter what π2 chooses. Thus, the learner

5

Inverse Reinforcement Learning without Reinforcement Learning

Algorithm 4 NRMM(BR) (No-Regret Moment Matching: Best Response Variant)
Input: Sequence of expert visitation distributions ρ1E . . . ρTE , Policy class Π, Reward class Fr

Output: Trained policy π
Set π0 ∈ Π, D = {}
for i = 1 to N do

Set Di−1 = {}
for j = 1 to M do

Sample random time t ∼ Unif([0, T]) and start state st ∼ ρtE .
Execute a random action at ∼ Unif(A) in st.
Follow πi−1 until the end of the horizon.
Di−1 ← Di−1 ∪ {(st, at, t, st+1:T , at+1:T)}

end for
Let

L(πi−1, f) = Eξ∼πi−1

[
T∑

t=0

f(st, at)

]
− Eξ∼ρE

[
T∑

t=0

f(st, at)

]
(9)

Optimize fi−1 ← argmaxf∈Fr
L(πi−1, f). # for NRMM(NR), optimize L(Unif(π1:i−1), ·) instead

D ← D ∪ {(st, at, Q̂t =
∑T

τ=t fi−1(sτ , aτ)|tuple ∈ Di−1}
Run any no-regret algorithm on D1:i−1 to produce new πi, e.g. FTRL:
Optimize

πi ← argmin
π∈Π

Es∼D,a∼π(s)[E[Q̂t|st = s, at = a]]− αH(π). (10)

end for
Return πi with lowest validation error.

would match expert performance, i.e.

J(πE , r)− J({πMMDP, π2:T }, r) = 0.

So, while in the worst case, BC and MMDP might both per-
form poorly (e.g. if the learner falls off a cliff and is stuck for
the rest of the episode), we would expect that for a wide set
of practical problems, knowledge of future choices would
enable better performance over the horizon.

3.3. Method 2: No-Regret Moment Matching

For tasks with long horizons, learning a sequence of policies
may be significantly more burdensome than learning just
one. We now present an algorithm that outputs a single,
stationary policy. Our approach is based on the No-Regret
Policy Iteration (NRPI) algorithm of Ross et al. (2010).
Instead of solving a sequence of optimization problems
backwards in time like PSDP, NRPI picks a time to sample
from the roll-in distribution uniformly at random, takes a
random action, and then follows the previous policy πi−1

for the rest of the episode. This gives it sample estimates
of Qπi−1 on states from the roll-in distribution. To have
a no-regret property, NRPI performs (regularized) greedy
policy improvement using the history of such samples, i.e.

πi = argmin
π∈Π

i−1∑
j=0

Et∼U [0,T],s∼ηt [Qπj (s, π(s))]− αH(π).

Notice that rather than solving a global exploration prob-
lem, NRPI only focuses on picking the best action on states
from the roll-in distribution, avoiding the exponential inter-
action complexity lower bound. NRPI can be seen as an
analog of PSDP for stationary policies (Ross et al., 2010).
As with PSDP, NRPI requires a reward function. We there-
fore choose one adversarially for IRL. We outline the full
procedure in Algorithm 4. Intuitively, this algorithm is per-
forming primal moment-matching with the learner’s start
state distribution being the expert’s stationary distribution
(i.e. Algorithm 2 or GAIL with expert resets).

Let L(π,Di) = Es∼ρE ,a∼π(s)[EDi
[Q̂t|st = s, at = a]]

denote the cost-sensitive classification loss of policy π over
dataset Di. We use the following regret measure in our
analysis:

ϵi = L(πi,Di)− L(π∗,Di), (11)

where π∗ = argminπ∈Π

∑N
i L(π,Di). Like MMDP, NRMM

has polynomial time iterations.

Lemma 3.5. NRMM Sample Complexity: Let ϵ > 0. At
iteration i, NRMM requires at most

O

(
log

(|Π||Fr|
δ

)
T 3|A|2

ϵ2

)
interactions with the environment to, w.p. ≥ 1− δ, produce
a policy πi with instantaneous regret ϵi ≤ ϵ (Eq. 11).

6

Inverse Reinforcement Learning without Reinforcement Learning

r

0

02 0

0 0 0 0 0 0 0 0 0

r̃

0

02 0

1 0 0 0 0 4 0 4 0

Figure 3: FORKED TREE: a tree-structured MDP with two rewards. The number on each node is the reward an agent gets
for arriving at that state. Green nodes and arrows are the states / actions visited / taken by the expert, who always goes left.

However, unlike MMDP which always has T outer-loop it-
erations, NRMM must be run until the average training error
drops below some threshold on ϵ̄. While the particular num-
ber of iterations N is a problem-specific quantity, the fact
that the policy is selected by a no-regret algorithm tells us
that, by definition,

lim
N→∞

1

N

N∑
i=1

ϵi = 0. (12)

Thus, regardless of the desired ϵ̄, the outer loop will even-
tually terminate, with ϵ̄ ∝ 1√

N
or ϵ̄ ∝ log(N)

N for a wide
set of problems (Hazan, 2019), giving us poly-time bounds.
There exist two variations of NRMM: one in which the adver-
sary plays a best-response (i.e. differentiating between the
current policy and expert demos – labeled as NRMM(BR))
and another in which the adversary follows a no-regret strat-
egy (i.e. differentiating between replay buffer D and expert
demos – labeled as NRMM(NR)). Both share similar policy
performance guarantees (Appendix A).
Theorem 3.6. NRMM(BR) Upper Bound: Let π1, . . . , πN

denote the sequence policies computed by NRMM(BR) and
ϵ̄ = 1

N

∑N
i=1 ϵi their average regret (Eq. 11). Then, ∃π ∈

{π1, . . . , πN} s.t.

J(πE)− J(π) ≤ ϵ̄T 2 (13)

When we use a no-regret algorithm to pick fi rather than a
best response, we need to consider the instantaneous regrets
of said algorithm. Let f∗ = argmaxf∈Fr

∑N
i=1 L(πi, f)

and
δi = L(πi, f

∗)− L(πi, fi), (14)

where L is as defined in Eq. (9). We can now give a perfor-
mance guarantee as a function of ϵi and δi.
Theorem 3.7. NRMM(NR) Upper Bound: Let π1, . . . , πN

and f1, . . . , fN denote the sequence policies and rewards
computed by NRMM(NR) and ϵ̄ = 1

N

∑N
i=1 ϵi, δ̄ =

1
N

∑N
i=1 δi their respective average regrets (Eqs. 11, 14).

Then, the uniform mixture over policies π̄ satisfies

J(πE)− J(π̄) ≤ (ϵ̄+ δ̄)T 2 (15)

These bounds are tight, via a similar construction to before.

Theorem 3.8. NRMM Lower Bound: There exists an MDP,
πE and π with average training error ϵ̄ such that

J(πE)− J(π) ≥ Ω(ϵ̄T 2) (16)

As NRMM also performs rollouts in the environment, our
discussion on why MMDP is preferable to behavioral cloning
also applies to NRMM.

We now highlight two nuances related to NRMM.

Dual Algorithm. As the policy is chosen via a no-regret
algorithm, NRMM is a primal algorithm like Algorithm 2.
A natural question at this point might be whether there is
a dual algorithm of NRMM, where one uses NRPI in the
inner loop to compute a best-response against an outer-loop
no-regret adversary, akin to Algorithm 1.

Recall that NRPI only competes with policies that have
similar visitation distributions to the expert (Ross et al.,
2010). This is fine when it is selecting policies in the outer
loop (as the expert policy is an equilibrium strategy), but
not when it is the inner loop (as the expert policy might
be quite far from the optimal policy for the adversarially
chosen reward). We make this point with the example in
Figure 3, which we analyze more formally in Appendix A.

Theorem 3.9. There exists an MDP, πE , Π, and Fr such
that NRMM(BR), NRMM(NR), MMDP, and Algorithms 1 / 2
converge in a finite number of iterations to πE , but the dual
algorithm of NRMM never picks πE on any iteration.

Notice that in Figure 3, the expert policy is not optimal for
distractor reward r̃, even when starting from its own state
distribution. Thus, if NRPI is passed r̃ in the inner loop
of dual version of NRMM, it will perform an incorrect best
response, preventing proper equilibrium computation. We
also note that because the expert policy can be arbitrarily bad
on a single distractor reward, game-solving techniques that
require a uniform best-response approximation guarantee
(Kakade et al., 2007) would have vacuous bounds.

7

Inverse Reinforcement Learning without Reinforcement Learning

Discriminator Training. We prove that the standard
trajectory-level discriminator training usually performed
in IRL (i.e. Eq. 9 in Algorithm 4) is lower variance than
the suffix-level discriminator training one might think to
perform based on the samples in replay buffer D. We prove
this point more formally in Appendix A.

4. Getting the Best of Both Worlds
In the preceding section, we derived two algorithms, MMDP
and NRMM, which can compute policies that match expert
behavior in polynomial time. However, in the worst case,
both can produce policies that suffer from a quadratic com-
pounding of errors with respect to the horizon. Traditional
IRL approaches have complimentary strengths: they can
suffer from exponential computation complexity but pro-
duce policies with a performance gap linear in the horizon.
This begs the question: can we get the best of both worlds?

Consider a variation of NRMM where, with probability α, we
perform an expert reset, otherwise performing a standard
rollout (i.e. st ∼ ρtπi−1

). By setting α = 1, we unsur-
prisingly recover NRMM. However, if we set α = 0, the
per-round loss that is passed to the learner becomes

L(π,Di) = Es∼ρi,a∼π(s)[EDi [Q̂t|st = s, at = a]], (17)

This is strikingly similar to the standard approximate policy
improvement procedure (Sutton and Barto, 2018) with an
adversarially chosen reward. Recall that in NRMM, we select
our discriminator f as in primal IRL (Algorithm 2). Put
together, setting α = 0 is effectively using an off-policy
RL algorithm in the policy optimization component of Al-
gorithm 2. One might therefore reasonably expect such an
approach to inherit the exponential complexity and linear-
in-the-horizon performance gap of standard IRL.

It is natural to consider annealing between these extremes by
decaying α from 1 to 0 over outer-loop iterations. Intuitively,
this allows the learner to quickly find a policy with quadratic
errors before refining it to a policy with error linear in the
horizon. Even more simply, one can interpolate with a fixed
α = 0.5 probability, reducing the exploration burden on the
learner while mitigating compounding errors. We term such
annealed / interpolated approaches FILTER: Fast Inverted
Loop Training via Expert Resets. Defining ϵ̄ as in Eq. (11)
and ϵ̄RL as

ϵ̄RL =
1

NT

N∑
i

(max
fi∈Fr

J(πE , fi)− J(πi, fi)), (18)

(i.e. the errors on the expert and start state distributions) we
can derive a performance bound for FILTER by taking the
minimum over the NRMM and IRL bounds.

Corollary 4.1. FILTER Upper Bound: Consider a set
of policies {π1, . . . , πN} with errors ϵ̄ and ϵ̄RL (Eqs. (11),

(18)). Then, we have that ∃π ∈ {π1, . . . , πN} s.t.

J(πE)− J(π) ≤ min
(
ϵ̄T 2, ϵ̄RLT

)
. (19)

The expert reset probability α controls the trade-off or sched-
ule of minimizing ϵ̄ (α ≈ 1) versus ϵ̄RL (α ≈ 0). Intuitively,
FILTER inherits the transferability of the reward function
across problems of IRL, has better robustness to inaccuracy
in ρE and compounding errors than NRMM, and is better able
to handle recoverable situations than behavioral cloning.

Unfortunately, it is difficult to prove more about FILTER.
This is because a learner’s performance on a mixture of
two distributions doesn’t easily translate to a bound on their
performance on either. Traditional approaches to deriving
such a bound (e.g. as function of the H∆H divergence
(Ben-David et al., 2010)) produce vacuous bounds when
applied to flexible hypothesis classes like neural networks.
Similar difficulties have been encountered by others in the
IRL community without resolution (Chang et al., 2015).

5. Experiments
We conduct experiments with the PyBullet Suite (Coumans
and Bai, 2016). We train experts using RL and then present
all learners with 25 expert demonstrations to remove small-
data concerns. As a simple behavioral cloning baseline
matches expert performance under these conditions (Swamy
et al., 2021), we harden the problem by introducing ran-
domization: with probability ptremble, a random action gets
executed in the environment rather than the one the policy
chose. Our expert data is free from these corruptions. We
also conduct experiments on the antmaze-large tasks
from Fu et al. (2020), but with ptremble = 0.

We compare 4 algorithms: FILTER(BR), FILTER(NR),
MM (i.e. Algorithm 2, or, equivalently, FILTER(NR) with
α = 0), and behavioral cloning. See Appendix B for details.
We do not implement MMDP as these tasks can all last for
T = 1000 timesteps. We plot the performance of the policy
as a function of the number of environment interactions used
for policy optimization. 4 As recommended by Agarwal
et al. (2021b), we plot a robust statistic (i.e. the interquartile
mean). Standard errors are computed across 10 runs.

For our baseline moment-matching algorithm, we use a
significantly improved version of GAIL (Ho and Ermon,
2016). Specifically, we switch from the Jensen-Shannon di-
vergence to an integral probability metric (as recommended
by Swamy et al. (2021)), use the more efficient Soft Actor

4In some implementations of algorithms like GAIL, trajectories
from the policy’s replay buffer are used for training the discrim-
inator rather than trajectories sampled post-policy-update. For
FILTER, as we may only observe suffixes when α > 0, we need
to separately sample whole trajectories post-policy-update. To
make the comparison fair, we do this for MM as well.

8

Inverse Reinforcement Learning without Reinforcement Learning

0 100000 200000 300000 400000 500000
Env. Steps

0

500

1000

1500

2000

IQ
M

of
J(

π
)

HopperBulletEnv-v0, ptremble = 0.01

0 100000 200000 300000 400000 500000
Env. Steps

0

500

1000

1500

IQ
M

of
J(

π
)

Walker2DBulletEnv-v0, ptremble = 0.05

0 100000 200000 300000 400000 500000
Env. Steps

−1000

0

1000

IQ
M

of
J(

π
)

HalfCheetahBulletEnv-v0, ptremble = 0.1

J(πE)

BC

MM

FILTER(NR), α = 0.5
FILTER(BR), α = 0.5

0 100000 200000 300000 400000 500000
Env. Steps

0

20

40
IQ

M
of

J(
π

)

antmaze-large-play-v2, ptremble = 0.0

0 100000 200000 300000 400000 500000
Env. Steps

0

20

40

IQ
M

of
J(

π
)

antmaze-large-diverse-v2, ptremble = 0.0

BC

MM

FILTER(NR), α = 1
FILTER(BR), α = 1

Figure 4: We see that both FILTER(BR) and FILTER(NR) out-performs standard MM and BC on 4 out of the 5
environments considered. Standard errors are computed across 10 seeds.

Critic (Haarnoja et al., 2018) or TD3+BC (Fujimoto and
Gu, 2021) as our policy optimizers, add a gradient penalty
to the discriminator (Gulrajani et al., 2017), and use Opti-
mistic Mirror Descent (Daskalakis et al., 2017) to optimize
both players for fast and last iterate convergence. See the
appendix of Swamy et al. (2022) for an ablation of these
changes. Taken together, these changes make our baseline
a strong point of comparison, over which improvement is
non-trivial.

In Figure 4, we see that FILTER(BR) and FILTER(NR)
perform comparably and are significantly faster at finding
strong policies than MM on 4/5 environments. We would rec-
ommend trying both variants when applying the algorithm
in practice. To the best of our knowledge, the performance
of FILTER on both variants of antmaze is the highest
performance ever achieved by an algorithm that doesn’t use
any reward information. 5

It is also interesting to consider the difference in results
between the environments we consider. In the Bullet loco-
motion environments, we found that α = 0.5 worked better
than α = 1. We hypothesize that this is because the learner
is able to learn to connect their initial state to sampled expert
states more easily. For locomotion tasks, this might corre-
spond to learning to accelerate before matching the expert’s
gait. We tried a more complex annealing strategy but found
that it did not outperform a fixed α = 0.5. However, we
believe that for other problems, the annealing strategy could
perform better than a fixed α.

For the AntMaze environments, we found that α = 1
worked better than lower values. We hypothesize that this
is because of the difficulty of exploration in a maze, for

5We note that the performance we report for behavioral cloning
on these environments is significantly higher than what is usually
reported in the literature – see Appendix B for details.

which expert resets can help a lot. In general, we would
recommend that the harder exploration is in a problem, the
higher α should be set.

We release the code we used for all of our experiments
at https://github.com/gkswamy98/fast_irl.
Of particular interest are the gym wrappers, which should
be easily transferable to other implementations / IRL algo-
rithms.

6. Discussion
In summary, we provide multiple algorithms for more sam-
ple efficient inverse reinforcement learning, both in theory
and practice. Our key insight is speeding up policy op-
timization via resetting the learner to states from expert
demonstrations. We emphasize that due to the reduction-
based analysis we perform, one could apply this technique
to an arbitrary primal inverse reinforcement learning algo-
rithm and not just the GAIL-based approach we use in the
experiments section. One interesting avenue for future work
is developing an algorithm with stronger guarantees in the
interpolated case – for example, one could imagine train-
ing two discriminators (one on trajectories from each start
state distribution) and using the more pessimistic one as the
reward function for the learner.

7. Acknowledgments
We thank Vasilis Syrgkanis for pointing out several typos
in our proofs. ZSW is supported in part by the NSF FAI
Award #1939606, a Google Faculty Research Award, a J.P.
Morgan Faculty Award, a Facebook Research Award, an
Okawa Foundation Research Grant, and a Mozilla Research
Grant. GS is supported computationally by a GPU award
from NVIDIA and emotionally by his family and friends.

9

https://github.com/gkswamy98/fast_irl

Inverse Reinforcement Learning without Reinforcement Learning

References
Rudolf Emil Kalman. When is a linear control system

optimal? 1964.

J Andrew Bagnell. An invitation to imitation. Technical
report, Carnegie-Mellon Univ Pittsburgh Pa Robotics Inst,
2015.

John Rust. Structural estimation of markov decision pro-
cesses. Handbook of econometrics, 4:3081–3143, 1994.

Eadweard Muybridge. Animal locomotion, volume 534. Da
Capo Press, 1887.

Daniel M Wolpert, Zoubin Ghahramani, and Michael I Jor-
dan. An internal model for sensorimotor integration. Sci-
ence, 269(5232):1880–1882, 1995.

Chris L Baker, Rebecca Saxe, and Joshua B Tenenbaum.
Action understanding as inverse planning. Cognition, 113
(3):329–349, 2009.

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell,
Anind K Dey, et al. Maximum entropy inverse rein-
forcement learning. In Aaai, volume 8, pages 1433–1438.
Chicago, IL, USA, 2008a.

Kris M Kitani, Brian D Ziebart, James Andrew Bagnell,
and Martial Hebert. Activity forecasting. In European
conference on computer vision, pages 201–214. Springer,
2012.

David Silver, J Andrew Bagnell, and Anthony Stentz. Learn-
ing from demonstration for autonomous navigation in
complex unstructured terrain. The International Journal
of Robotics Research, 29(12):1565–1592, 2010.

Nathan D Ratliff, David Silver, and J Andrew Bagnell.
Learning to search: Functional gradient techniques for
imitation learning. Autonomous Robots, 27(1):25–53,
2009.

J Zico Kolter, Mike P Rodgers, and Andrew Y Ng. A control
architecture for quadruped locomotion over rough terrain.
In 2008 IEEE International Conference on Robotics and
Automation, pages 811–818. IEEE, 2008.

Andrew Y Ng, Adam Coates, Mark Diel, Varun Ganapathi,
Jamie Schulte, Ben Tse, Eric Berger, and Eric Liang.
Autonomous inverted helicopter flight via reinforcement
learning. In Experimental robotics IX, pages 363–372.
Springer, 2006.

Matt Zucker, Nathan Ratliff, Martin Stolle, Joel Chestnutt,
J Andrew Bagnell, Christopher G Atkeson, and James
Kuffner. Optimization and learning for rough terrain
legged locomotion. The International Journal of Robotics
Research, 30(2):175–191, 2011.

Brian D Ziebart, Andrew L Maas, Anind K Dey, and J An-
drew Bagnell. Navigate like a cabbie: Probabilistic rea-
soning from observed context-aware behavior. In Pro-
ceedings of the 10th international conference on Ubiqui-
tous computing, pages 322–331, 2008b.

Brian Ziebart, Anind Dey, and J Andrew Bagnell. Prob-
abilistic pointing target prediction via inverse optimal
control. In Proceedings of the 2012 ACM international
conference on Intelligent User Interfaces, pages 1–10,
2012.

Andrew Y Ng, Stuart Russell, et al. Algorithms for inverse
reinforcement learning. In Icml, volume 1, page 2, 2000.

Gokul Swamy, Sanjiban Choudhury, J. Andrew Bagnell, and
Zhiwei Steven Wu. Of moments and matching: A game-
theoretic framework for closing the imitation gap, 2021.
URL https://arxiv.org/abs/2103.03236.

Eli Bronstein, Mark Palatucci, Dominik Notz, Brandyn
White, Alex Kuefler, Yiren Lu, Supratik Paul, Payam
Nikdel, Paul Mougin, Hongge Chen, et al. Hierarchi-
cal model-based imitation learning for planning in au-
tonomous driving. In 2022 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), pages
8652–8659. IEEE, 2022.

Maximilian Igl, Daewoo Kim, Alex Kuefler, Paul Mou-
gin, Punit Shah, Kyriacos Shiarlis, Dragomir Anguelov,
Mark Palatucci, Brandyn White, and Shimon White-
son. Symphony: Learning realistic and diverse agents
for autonomous driving simulation. arXiv preprint
arXiv:2205.03195, 2022.

Eugene Vinitsky, Nathan Lichtlé, Xiaomeng Yang, Brandon
Amos, and Jakob Foerster. Nocturne: a scalable driving
benchmark for bringing multi-agent learning one step
closer to the real world. arXiv preprint arXiv:2206.09889,
2022.

Jonathan Ho and Stefano Ermon. Generative adversarial
imitation learning, 2016.

Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided
cost learning: Deep inverse optimal control via policy
optimization. In International conference on machine
learning, pages 49–58. PMLR, 2016.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville,
and Yoshua Bengio. Generative adversarial networks.
Communications of the ACM, 63(11):139–144, 2020.

Sergey Levine and Vladlen Koltun. Guided policy search.
In International conference on machine learning, pages
1–9. PMLR, 2013.

10

https://arxiv.org/abs/2103.03236

Inverse Reinforcement Learning without Reinforcement Learning

Alina Beygelzimer, John Langford, and Bianca Zadrozny.
Tutorial summary: Reductions in machine learning. In
Proceedings of the 26th Annual International Conference
on Machine Learning, pages 1–1, 2009.

Sham Kakade and John Langford. Approximately optimal
approximate reinforcement learning. In In Proc. 19th
International Conference on Machine Learning. Citeseer,
2002.

James Bagnell, Sham M Kakade, Jeff Schneider, and An-
drew Ng. Policy search by dynamic programming. Ad-
vances in neural information processing systems, 16,
2003.

Stephane Ross, Geoffrey J. Gordon, and J. Andrew Bag-
nell. A reduction of imitation learning and structured
prediction to no-regret online learning, 2010. URL
https://arxiv.org/abs/1011.0686.

Ikechukwu Uchendu, Ted Xiao, Yao Lu, Banghua Zhu,
Mengyuan Yan, Joséphine Simon, Matthew Bennice,
Chuyuan Fu, Cong Ma, Jiantao Jiao, et al. Jump-start
reinforcement learning. arXiv preprint arXiv:2204.02372,
2022.

Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav
Mahajan. On the theory of policy gradient methods:
Optimality, approximation, and distribution shift. J. Mach.
Learn. Res., 22(98):1–76, 2021a.

Gokul Swamy, Nived Rajaraman, Matthew Peng, San-
jiban Choudhury, J Andrew Bagnell, Zhiwei Steven Wu,
Jiantao Jiao, and Kannan Ramchandran. Minimax opti-
mal online imitation learning via replay estimation. arXiv
preprint arXiv:2205.15397, 2022.

Wen Sun, Anirudh Vemula, Byron Boots, and Drew Bagnell.
Provably efficient imitation learning from observation
alone. In International conference on machine learning,
pages 6036–6045. PMLR, 2019.

Athul Paul Jacob, David J Wu, Gabriele Farina, Adam Lerer,
Hengyuan Hu, Anton Bakhtin, Jacob Andreas, and Noam
Brown. Modeling strong and human-like gameplay with
kl-regularized search. In International Conference on
Machine Learning, pages 9695–9728. PMLR, 2022.

Krishnamurthy Dvijotham and Emanuel Todorov. Inverse
optimal control with linearly-solvable mdps. In ICML,
2010.

Divyansh Garg, Shuvam Chakraborty, Chris Cundy, Jiaming
Song, and Stefano Ermon. Iq-learn: Inverse soft-q learn-
ing for imitation. Advances in Neural Information Pro-
cessing Systems, 34:4028–4039, 2021.

Siddharth Reddy, Anca D Dragan, and Sergey Levine. Sqil:
Imitation learning via reinforcement learning with sparse
rewards. arXiv preprint arXiv:1905.11108, 2019.

Martin L Puterman. Markov decision processes: discrete
stochastic dynamic programming. John Wiley & Sons,
2014.

Sanjeev Arora, Elad Hazan, and Satyen Kale. The multi-
plicative weights update method: a meta-algorithm and
applications. Theory of computing, 8(1):121–164, 2012.

Martin Zinkevich. Online convex programming and gen-
eralized infinitesimal gradient ascent. In Proceedings of
the 20th international conference on machine learning
(icml-03), pages 928–936, 2003.

Sham Machandranath Kakade. On the sample complexity of
reinforcement learning. University of London, University
College London (United Kingdom), 2003.

Bharath K Sriperumbudur, Kenji Fukumizu, Arthur Gret-
ton, Bernhard Schölkopf, and Gert RG Lanckriet. On
integral probability metrics,\phi-divergences and binary
classification. arXiv preprint arXiv:0901.2698, 2009.

Elad Hazan. Introduction to online convex optimiza-
tion, 2019. URL https://arxiv.org/abs/1909.
05207.

Sham M Kakade, Adam Tauman Kalai, and Katrina Ligett.
Playing games with approximation algorithms. In Pro-
ceedings of the thirty-ninth annual ACM symposium on
Theory of computing, pages 546–555, 2007.

Richard S Sutton and Andrew G Barto. Reinforcement
learning: An introduction. 2018.

Shai Ben-David, John Blitzer, Koby Crammer, Alex
Kulesza, Fernando Pereira, and Jennifer Wortman
Vaughan. A theory of learning from different domains.
Machine learning, 79(1):151–175, 2010.

Kai-Wei Chang, Akshay Krishnamurthy, Alekh Agarwal,
Hal Daumé III, and John Langford. Learning to search
better than your teacher. In International Conference on
Machine Learning, pages 2058–2066. PMLR, 2015.

Erwin Coumans and Yunfei Bai. Pybullet, a python module
for physics simulation for games, robotics and machine
learning. 2016.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and
Sergey Levine. D4rl: Datasets for deep data-driven re-
inforcement learning. arXiv preprint arXiv:2004.07219,
2020.

11

https://arxiv.org/abs/1011.0686
https://arxiv.org/abs/1909.05207
https://arxiv.org/abs/1909.05207

Inverse Reinforcement Learning without Reinforcement Learning

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro,
Aaron Courville, and Marc G Bellemare. Deep reinforce-
ment learning at the edge of the statistical precipice. Ad-
vances in Neural Information Processing Systems, 2021b.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen,
George Tucker, Sehoon Ha, Jie Tan, Vikash Kumar,
Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft
actor-critic algorithms and applications. arXiv preprint
arXiv:1812.05905, 2018.

Scott Fujimoto and Shixiang Shane Gu. A minimalist ap-
proach to offline reinforcement learning. Advances in
neural information processing systems, 34:20132–20145,
2021.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent
Dumoulin, and Aaron C Courville. Improved training
of wasserstein gans. Advances in neural information
processing systems, 30, 2017.

Constantinos Daskalakis, Andrew Ilyas, Vasilis Syrgkanis,
and Haoyang Zeng. Training gans with optimism. arXiv
preprint arXiv:1711.00141, 2017.

Antonin Raffin, Ashley Hill, Maximilian Ernestus, Adam
Gleave, Anssi Kanervisto, and Noah Dormann. Stable
baselines3, 2019.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee,
Aditya Grover, Misha Laskin, Pieter Abbeel, Aravind
Srinivas, and Igor Mordatch. Decision transformer: Rein-
forcement learning via sequence modeling. Advances in
neural information processing systems, 34:15084–15097,
2021.

Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot,
Tom Schaul, Bilal Piot, Dan Horgan, John Quan, Andrew
Sendonaris, Ian Osband, et al. Deep q-learning from
demonstrations. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 32, 2018.

12

Inverse Reinforcement Learning without Reinforcement Learning

A. Proofs
A.1. Sample Complexity Lemma

We follow standard techniques and include the proof here mostly for completeness.

Lemma A.1. Consider C deterministic functions of a random variable, each with range R. If we draw

m ≥ O

(
log

(
C

δ

)
R2

ϵ2

)
(20)

samples, we have that with probability ≥ 1− δ, we will be able to estimate all C population means within ϵ absolute error.

Proof. Consider a bounded random variable X with range R. A standard Hoeffding bound tells us that

P (| 1
m

m∑
i=0

Xi − E[X]| ≥ ϵ) ≤ 2 exp(
−2mϵ2

R2
). (21)

If we have C such variables and want to be within ϵ of the population mean uniformly, a union bound tells us that we will do
so with probability at least

1− 2C exp(
−2mϵ2

R2
). (22)

If we want to satisfy this condition with probability at least 1− δ, simple algebra tells us that we must draw

m ≥ O

(
log

(
C

δ

)
R2

ϵ2

)
(23)

samples.

A.2. Proof of Theorem 3.1

This construction is essentially a slight generalization of that of Kakade (2003) to the case with multiple reward functions.

Proof. Consider a tree-structured MDP with branching factor |A| and deterministic dynamics. The expert always takes the
left-most action and therefore always ends up at the left-most node. Let Fr be the set of sparse reward functions that are 1 at
a single leaf node and 0 everywhere else. Let Π be the full set of deterministic policies (i.e. paths to a leaf node). Note
that |Fr| = |Π| = |A|T . Also note that Vmax = 1 and that only one π ∈ Π achieves nonzero reward under the true reward
function, so one needs to find πE to satisfy the condition in the theorem statement.

Let us first analyze the dual version of IRL (Algorithm 1). At each iteration, the policy player solves a fresh RL problem
with r = −f ∈ Fr. As all f ∈ Fr are sparse, the learner needs to visit all nodes in the tree to find which one provides
reward. As |S| ≥ Ω(|A|T), this must take at least Ω(|A|T) interactions with the environment.

We now analyze the primal version of IRL (Algorithm 2). While for i > 1 there could now exist multiple leaf nodes with
reward under aggregate reward function r = −1

i

∑i
j=1 fj , the learner has to contend with the fact that rewards corresponding

to certain leaf nodes could have been chosen more than once by the adversary, giving reward > 1
i . Thus, the learner still

needs to visit all leaf nodes, which again takes Ω(|A|T) interactions with the environment

A.3. Proof of Lemma 3.2

Proof. At the tth iteration of MMDP, we are solving a two-player zero-sum game over strategy spaces Π and Fr with payoff
given by Equation 1. All interaction with the environment happens during the collection of Dt so we analyze how many
iterations M we must perform to estimate the payoff matrix within ϵt uniformly w.p ≥ 1− δ.

First, note that there are C = |Π||Fr| elements in the matrix. Second, observe that each element of the matrix is within
[−T, T] before the 1

T normalization. Third, notice that the outer expectation in the first half of Equation 1 is taken with
respect to the policy while we collect data by sampling at uniformly at random. Thus, to estimate this term, we use

13

Inverse Reinforcement Learning without Reinforcement Learning

importance weighting between the learner and uniform policies. The maximum value of such a weight (corresponding to a
deterministic learner policy) is 1

|A| . Thus, the overall scale of the random variable corresponding to each element of the
payoff matrix is R = T |A|. Now, applying Lemma A.1, we see that we need

M ≥ O

(
log

(|Π||Fr|
δ

)
(T |A|)2

ϵ2

)
(24)

trajectories, each of which could take O(T) interactions with the environment, giving us an overall interaction complexity
bound of

O

(
log

(|Π||Fr|
δ

)
T 3|A|2

ϵ2

)
≤ poly(T, |A|, 1

ϵ
, log(

1

δ
), log(|Π|), log(|Fr|). (25)

Observe that with this many samples, we are able to estimate all elements of the π and f payoff matrix to within ϵ w.p.
≥ 1− δ. Thus, the error we could accumulate by optimizing over the empirical rather than the population payoff matrix is
bounded by ϵ ≤ ϵt.

A.4. Proof of Theorem 3.3

Proof. Let Qπt...πT

f (s, a) denote the expected cumulative value of f on trajectories generated by rolling out πt through πT

starting from (s, a). Then, via the Performance Difference Lemma (Kakade and Langford, 2002),

J(πE)− J(π) =

T∑
t=0

Eξ∼πE
[Qπt+1...πT

r (st, at)− Ea∼πt [Qπt+1...πT

r (st, a)]] (26)

≤
T∑

t=0

sup
ft∈Fr

Eξ∼πE
[Qπt+1...πT

ft (st, at)− Ea∼πt [Qπt+1...πT

ft (st, a)]] (27)

≤
T∑

t=0

Tϵt = ϵ̄T 2. (28)

A.5. Proof of Theorem 3.4

Proof. We consider the CLIFF MDP of Swamy et al. (2021), which we reproduce here for convenience.

s0 s1 s2 . . .

sx

a1 a1 a1

a2 a2 a2

a1

Assume the expert always takes a1 and r(s, a) = −1sx − 1a2 . Thus, J(πE , r) = 0. Assume that Fr = {r}.
Let πa be the policy that takes a2 with prob. ϵT in s0 and a1 otherwise. Let πb be the policy that always takes a1. Let
π = {πa, πb, . . . } be the sequence of policies returned by MMDP.

For the first T − 1 steps of the algorithm, ϵt = 0 as the learner plays πb. On the last step of the algorithm, the learner picks a
policy πa which makes mistakes for the rest of the horizon w.p. ϵT , giving it a moment matching error of ϵ1 = ϵT . Thus,
overall, π has average moment-matching error ϵ̄ = 1

T (ϵT+
∑T

t=2 0) = ϵ. However, on rollouts, the learner would have an ϵT
chance of paying a cost of 1 for the rest of the horizon, leading to a lower bound of J(πE , r)−J(π, r) = ϵT 2 ≥ Ω(ϵT 2).

14

Inverse Reinforcement Learning without Reinforcement Learning

A.6. Proof of Lemma 3.5

Proof. We proceed similarly to the proof of Theorem 3.2. All interaction with the environment happens during the M
interactions with the environment. As before, we are estimating a payoff matrix with C = |Π||Fr| elements within ϵi
uniformly w.p ≥ 1− δ. Each element has scale R = T |A|. Applying Lemma A.1, we see that we need

M ≥ O

(
log

(|Π||Fr|
δ

)
(T |A|)2

ϵ2i

)
(29)

trajectories, each of which could take O(T) interactions with the environment, giving us an overall interaction complexity
bound of

O

(
log

(|Π||Fr|
δ

)
T 3|A|2

ϵ2

)
≤ poly(T, |A|, 1

ϵ
, log(

1

δ
), log(|Π|), log(|Fr|). (30)

Observe that with this many samples, we are able to estimate all elements of the π and f payoff matrix to within ϵ w.p.
≥ 1− δ. Thus, the error we could accumulate by optimizing over the empirical rather than the population payoff matrix is
bounded by ϵ ≤ ϵi. To complete the proof, observe that this bounds the optimization error (i.e. difference in value between
πi and the per-round best response policy when plugged into Eq. 11) which upper bounds the instantaneous regret (i.e.
difference in value between πi and the best-in-hindsight policy when plugged into Eq. 11).

A.7. Proof of Theorem 3.6

Proof. First, we note that

J(πE)− J(π) =

T∑
t=1

Eξ∼πE
[Qπ

r (st, at)− Ea∼π[Q
π
r (st, a)]] (31)

=

T∑
t=1

Es,a∼ρt
E
[Eξ∼π|s,a[

T∑
τ=t

r(sτ , aτ)]]− Ea′∼π(s)[Eξ∼π|s,a′ [

T∑
τ=t

r(sτ , aτ)]]] (32)

=

T∑
t=1

Est,at∼ρπ
t
[r(st, at)]− Est,at∼ρE

t
[r(st, at)]. (33)

The first equality is via the PDL, the second via the definition of a Q function, and the third by the definition of J . Next, we
set

fi = arg max
f∈Fr

T∑
t=1

Est,at∼ρπ
t
[f(st, at)]− Est,at∼ρE

t
[f(st, at)] (34)

and define

Li(π) =
1

T

T∑
t=0

Es∼ρE
t
[Ea∼π(s)[Eξ∼πi|s,a[

T∑
τ=t

fi(sτ , aτ)]]]. (35)

Note the iteration-indexed "roll-out" policy. We use this sequence of loss functions to define a regret measure,

ϵ̄ =
1

NT

N∑
i=1

Li(πi)−min
π∈Π

1

NT

N∑
i=1

Li(π) ∈ [−1, 1], (36)

15

Inverse Reinforcement Learning without Reinforcement Learning

and π̄ to denote the uniform mixture over policy iterates. Now, by our earlier equalities,

J(πE)− J(π̄) =
1

N

N∑
i=1

J(πE)− J(πi) (37)

=
1

N

N∑
i=1

T∑
t=1

Es,a∼ρt
E
[Eξ∼πi|s,a[

T∑
τ=t

r(sτ , aτ)]]− Ea′∼πi(s)[Eξ∼πi|s,a′ [

T∑
τ=t

r(sτ , aτ)]]] (38)

≤ sup
f∈Fr

1

N

N∑
i=1

T∑
t=1

Es,a∼ρt
E
[Eξ∼πi|s,a[

T∑
τ=t

f(sτ , aτ)]]− Ea′∼πi(s)[Eξ∼πi|s,a′ [

T∑
τ=t

f(sτ , aτ)]]] (39)

≤ 1

N

N∑
i=1

sup
fi∈Fr

T∑
t=1

Es,a∼ρt
E
[Eξ∼πi|s,a[

T∑
τ=t

fi(sτ , aτ)]]− Ea′∼πi(s)[Eξ∼πi|s,a′ [

T∑
τ=t

fi(sτ , aτ)]]] (40)

=
1

N

N∑
i=1

T (Li(πi)− Li(πE)). (41)

Set π∗ = argminπ∈Π

∑N
i=1 Li(π). Continuing,

J(πE)− J(π̄) ≤ 1

N

N∑
i=1

T (Li(πi)− L(π∗)) (42)

= ϵ̄T 2. (43)

Then, because at least one member in a sequence must perform as well as the mixture, we know that J(πE)− J(π) ≤ ϵ̄T 2,
where π ∈ {π1, . . . , πN} is the member with the lowest validation error.

A.8. Proof of Theorem 3.7

Proof. We define Li and ϵ̄ as before, i.e.

Li(π, f) =
1

T

T∑
t=0

Es∼ρE
t
[Ea∼π(s)[Eξ∼πi|s,a[

T∑
τ=t

f(sτ , aτ)]]], (44)

ϵ̄ =
1

NT

N∑
i=1

Li(πi, fi)−min
π∈Π

1

NT

N∑
i=1

Li(π, fi) ∈ [−1, 1]. (45)

Additionally, we define an average regret measure for the adversary:

δ̄ = max
f∈Fr

1

NT

N∑
i=1

Li(πi, f)−
1

NT

N∑
i=1

Li(πi, fi) ∈ [−1, 1]. (46)

Note that

ϵ̄+ δ̄ =
1

NT
(max
f∈Fr

N∑
i=1

Li(πi, f)−min
π∈Π

N∑
i=1

Li(π, fi)). (47)

Proceeding as before,

J(πE)− J(π̄) ≤ max
f∈Fr

1

N

N∑
i=1

T (Li(πi, f)− L(π∗, f)) (48)

=
1

N

N∑
i=1

T (ϵ̄T + δ̄T) (49)

= (ϵ̄+ δ̄)T 2. (50)

16

Inverse Reinforcement Learning without Reinforcement Learning

A.9. Proof of Theorem 3.8

Proof. We again consider the CLIFF MDP. As before, assume that the expert always takes a1, r(s, a) = −1sx − 1a2 , and
that Fr = {r}.
Let π be a policy that takes a2 in s0 with prob. ϵT and a1 with prob. 1 everywhere else. Thus, on a T−1

T fraction of the
rollouts, there is no difference between the learner on the expert. On the 1

T fraction of rollouts that start from s0, the learner
diverges from the expert for the entire horizon with probability ϵT , so the discriminator can penalize it ϵT 2 on average.
Putting it all together, ϵ̄ = 1

T [
T−1
T (0) + 1

T (ϵT)] = ϵ. The outer 1
T comes from the average over timesteps in the payoff.

On rollouts, the learner would have an ϵT chance of paying a cost of 1 for the rest of the horizon (as they always start at s0),
leading to a lower bound of J(πE , r)− J(π, r) = ϵT 2 ≥ Ω(ϵT 2).

We note that if we started on the true start-state distribution (α = 0), we would instead get an ϵ̄ = ϵT and therefore a bound
linear in the horizon, recovering the lower bound results in Swamy et al. (2021).

A.10. Proof of Theorem 3.9

Proof. Consider the following MDP with one of two rewards depicted in Figure 3.
Example 1 (Forked Tree MDP). The learner always starts at the top of the tree and continues until they reach the bottom
(i.e. T = 2). They are allowed to choose between three policies: πE , π1, and π2, which correspond to always going left,
center, or right, respectively. The adversary chooses between true reward function r and r̃. The learner always starts at π1

and the adversary at r̃.

Let Jk
E(π, f) =

1
T

∑T
t Es∼ρt

E
[f(s, π(s)) + V πk,f (s′)], where V πk,f (s′) is the value function of πk under f evaluated at

successor state s′. We now compute the payoff matrices the different algorithms will utilize.

J(π, f)− J(πE , f)

r r̃

πE 0 0
π1 −2 −3
π2 −2 −3

J1
E(π, f)

r r̃

πE 1 1.5
π1 0 0
π2 0 2

J2
E(π, f)

r r̃

πE 1 1.5
π1 0 2
π2 0 0

JE
E (π, f)

r r̃

πE 1 2
π1 0 0
π2 0 0

We first compare the four algorithms that produce stationary policies: NRMM (both best-response and no-regret variants),
DUAL (no-regret discriminator against a best response via NRPI), and MM (Algorithms 1 / 2). The discriminator always
plays a no-regret or best response strategy using the first payoff matrix. MM also uses the first for policy search. NRMM(BR)
and NRMM(NR) both use the other three payoff matrices for policy search in a no-regret fashion – the difference between
these two approaches is whether the discriminator follows a no-regret or best-response strategy. DUAL also uses the other
three payoff matrices for policy search but does so in a best-response fashion (i.e only using the matrix that corresponds to
rollouts with the previous policy).

FILTER(BR)

π f

1 π1 r̃
2 π2 r̃
3 πE r/r̃
4 ↓ ↓

✓

FILTER(NR)

π f

1 π1 r̃
2 π2 r̃
3 πE r̃
4 ↓ ↓

✓

DUAL

π f

1 π1 r̃
2 π2 r̃
3 π1 r̃
4 π2 r̃

✗

Algorithms 1 / 2

π f

1 π1 r̃
2 πE r/r̃
3 ↓ ↓
4

✓

We see that all algorithms that produce stationary policies other than DUAL eventually converge to the expert policy. We
next consider MMDP and compute the relevant quantities:

17

Inverse Reinforcement Learning without Reinforcement Learning

J([πa, πb], f)− J([πE , πE], f)

r r̃

[πE , πE] 0 0
[πE , π1] 0 0
[πE , π2] 0 0
[π1, πE] −2 −3
[π1, π1] −2 −3
[π1, π2] −2 1
[π2, πE] −2 −3
[π2, π1] −2 1
[π2, π2] −2 −3

We first consider t = T = 2, where the first policy is fixed to be πE . Notice that no matter what policy the learner picks,
they receive the same payoff under any strategy the adversary chooses. We therefore consider all three cases for the next
game (t = 1). For simplicity, we assume both players follow a no-regret strategy.

MMDP (πE Suffix)

π f

1 [π1, πE] r̃
2 [πE , πE] r̃/r
3 ↓ ↓

MMDP (π1 Suffix)

π f

1 [π1, π1] r̃
2 [π2, π1] r
3 [πE , π1] r
4 ↓ ↓

MMDP (π2 Suffix)

π f

1 [π1, π2] r
2 [πE , π2] r̃/r
3 ↓ ↓

In all three cases, MMDP converges to a policy sequence that is value equivalent to the expert under all reward functions.

Theorem A.2. The trajectory-based sampling procedure implied by Equation 33 is lower variance than the suffix-based
sampling procedure implied by Equation 32.

A.11. Proof of Theorem A.2

Proof. First, let us explicitly define the sampling procedure implied by each of the above. At step t:

• Equation (32): Sample a state-action pair from the expert visitation distribution at timestep t. Reset the learner to this
state. Execute the sampled action and then roll out the learner for T − t timesteps, adding up the reward function along
this suffix. Sample a state-action pair from the expert visitation distribution at timestep t. Reset the learner to this state.
Roll out the learner for T − t+ 1 timesteps, adding up the reward function along this suffix. Record the difference of
these two suffix sums.

• Equation (33): Roll out the current learner policy for t timesteps. Use the sample at timestep t for evaluating the reward
function. Sample a state-action pair from the expert visitation distribution at timestep t. Use this sample for evaluating
the reward function. Record the difference of these two single-step evaluations.

We consider two settings:

1. Total independence between timesteps: ∀t ∈ [T], Var(r(st, at)) = σ2.

2. Total dependence (determinism) between timesteps: Var(r(s0, a0)) = σ2, ∀t ∈ [1, T], r(st, at) = r(s0, a0).

Let’s begin with Case 1. Equation (32) has variance

T∑
t

(T − t)σ2 + (T − t)σ2 = T (T − 1)σ2, (51)

18

Inverse Reinforcement Learning without Reinforcement Learning

while Equation (33) has variance
T∑
t

σ2 + σ2 = 2Tσ2. (52)

Observe that 2Tσ2 < T (T − 1)σ2 to complete this case. Similarly, for Case 2, Equation (32) has variance

T∑
t

(T − t)2σ2 + (T − t)2σ2 =
σ2(T)(T + 1)(2T + 1)

3
, (53)

and Equation (33) has variance
T∑
t

σ2 + σ2 = 2Tσ2. (54)

The former variance is again greater than the latter, completing this case and the proof.

19

Inverse Reinforcement Learning without Reinforcement Learning

B. Experiments
We use Optimistic Adam (Daskalakis et al., 2017) for all policy and discriminator optimization, taking advantage of its
speed and last-iterate convergence properties. We use gradient penalties (Gulrajani et al., 2017) to stabilize our discriminator
training for all algorithms. Our policies, value functions, and discriminators are all 2-layer ReLu networks with a hidden
size of 256. Each outer loop iteration lasts for 5000 steps of environment interaction. We sample 4 trajectories to use in the
discriminator update at the end of each outer-loop iteration.

B.1. PyBullet Tasks

For the PyBullet tasks (Walker, Hopper, HalfCheetah), we use the Soft Actor Critic (Haarnoja et al., 2018) implementation
provided by Raffin et al. (2019) for policy optimization for both the expert and the learner. We use the hyperparameters in
Table 4 for all experiments. We train behavioral cloning for 100,000 steps.

PARAMETER VALUE

BUFFER SIZE 300000
BATCH SIZE 256
γ 0.98
τ 0.02
TRAINING FREQ. 64
GRADIENT STEPS 64
LEARNING RATE LIN. SCHED. 7.3E-4
POLICY ARCHITECTURE 256 X 2
STATE-DEPENDENT EXPLORATION TRUE
TRAINING TIMESTEPS 1E6

Table 4: Expert and learner hyperparameters for SAC.

We use α = 0.5 for both variants of FILTER as we found it to perform better than α = 1.

For our discriminator, we start with a learning rate of 8e− 3 and decay it linearly over outer-loop iterations.

B.2. D4RL Tasks

For the D4RL tasks (both large antmazes), we use the data provided by Fu et al. (2020) as our expert demonstrations. We
give all algorithms access to goal information by appending it to the observation. This helps explain why our behavioral
cloning baseline significantly out-performs previously published results and might be of independent interest to the Offline
RL community. 6 Importantly, we did not filter the data down whatsoever as in the "%-BC" approach of Chen et al. (2021),
so our algorithms are all truly reward-free.

For our policy optimizer, we build upon the TD3+BC implementation of Fujimoto and Gu (2021) with the default
hyperparameters. For behavioral cloning, we run the optimizer for 500k steps while zeroing out the component of the actor
update that depends on rewards.

For MM and FILTER, we pre-train the policy with 10,000 steps of behavioral cloning. We use a dual replay buffer strategy,
similar to that of Hester et al. (2018); Reddy et al. (2019); Swamy et al. (2021). One buffer contains expert demonstrations
while the other contains learner rollouts. We sample a batch from one with equal probability for each policy update. For
samples from the expert buffer, we use the current discriminator to impute rewards and use the BC regularizer term. For
samples from the learner’s buffer, we use the recorded discriminator values and turn off the BC regularizer. We use α = 1
for FILTER (i.e. NRMM).

For our discriminator, we start with a learning rate of 8e− 4 and decay it linearly over outer-loop iterations.

6We found that on the small and medium mazes, a properly tuned implementation of BC was able to achieve scores upwards of 70.

20

	Introduction
	Related Work
	Expert Resets in Inverse RL
	Inverse RL as (Inefficient) Game Solving
	Method 1: Dynamic Programming
	Method 2: No-Regret Moment Matching

	Getting the Best of Both Worlds
	Experiments
	Discussion
	Acknowledgments
	Proofs
	Sample Complexity Lemma
	Proof of Theorem 3.1
	Proof of Lemma 3.2
	Proof of Theorem 3.3
	Proof of Theorem 3.4
	Proof of Lemma 3.5
	Proof of Theorem 3.6
	Proof of Theorem 3.7
	Proof of Theorem 3.8
	Proof of Theorem 3.9
	Proof of Theorem A.2

	Experiments
	PyBullet Tasks
	D4RL Tasks

