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ABSTRACT

Implicit Neural Representations (INRs) employ neural networks to represent con-
tinuous functions by mapping coordinates to the corresponding values of the target
function, with applications e.g., inverse graphics. However, INRs face a chal-
lenge known as spectral bias when dealing with scenes containing varying fre-
quencies. To overcome spectral bias, the most common approach is the Fourier
features-based methods such as positional encoding. However, Fourier features-
based methods will introduce noise to output, which degrades their performances
when applied to downstream tasks. In response, this paper addresses this prob-
lem by first investigating the underlying causes through the lens of the Neural
Tangent Kernel. Through theoretical analysis, we propose that using Fourier fea-
tures embedding can be interpreted as fitting Fourier series expansion of the target
function, from which we find that it is the insufficiency in the finitely sampled fre-
quencies that causes the generation of noisy outputs. Leveraging these insights,
we introduce bias-free MLPs as an adaptive linear filter to locally suppress unnec-
essary frequencies while amplifying essential ones by adjusting the coefficients at
the coordinate level. Additionally, we propose a line-search-based algorithm to
adjust the filter’s learning rate dynamically, achieving Pareto efficiency between
the adaptive linear filter module and the INRs. Extensive experiments demonstrate
that our proposed method consistently improves the performance of INRs on typ-
ical tasks, including image regression, 3D shape regression, and inverse graphics.
The full code will be publicly available.

1 INTRODUCTION

Implicit Neural Representations (INRs), which fit the target function using only input coordinates,
have recently gained significant attention. By leveraging the powerful fitting capability of Multilayer
Perceptrons (MLPs), INRs can implicitly represent the target function without requiring their ana-
lytical expressions. The versatility of MLPs allows INRs to be applied in various fields, including
inverse graphics (Mildenhall et al., 2021; Barron et al., 2023} Martin-Brualla et al.l |2021), image
super-resolution (Chen et al.| [2021b} [Yuan et al.| [2022; |Gao et al 2023)), image generation (Sko-
rokhodov et al.,[2021)), and more (Chen et al., 2021a; |Striimpler et al., 2022; Shue et al., 2023).

However, MLPs face a significant challenge known as the spectral bias, where low-frequency sig-
nals are typically favored during training (Rahaman et al.,|2019). A common solution is to project
coordinates into the frequency domain using Fourier features, such as Random Fourier Features and
Positional Encoding, which can be understood as manually set high-frequency correspondence prior
to accelerating the learning of high-frequency targets. (Tancik et al.,2020)). This projection is widely
applied in the INRs for novel view synthesis (Mildenhall et al., 2021} |Barron et al., [2021]), dynamic
scene reconstruction (Pumarola et al.,[202 1)), object tracking (Wang et al.l[2023), and medical imag-
ing (Corona-Figueroa et al.| [2022). Although many INRs’ downstream application scenarios use
this encoding type, it has certain limitations when applied to specific tasks. It depends heavily on
two key hyperparameters: the sampling variance/scale (available sampling range of frequencies)
and the number of samples. Varying the sampling variance/scale may lead to degradation results,
as shown in Even with a proper choice of sampling variance/scale, the output remains
unsatisfactory, as shown in[Figure 2} Noisy low-frequency regions and degraded high-frequency re-
gions persist with well chosen sampling variance/scale with the grid-searched variance/scale, which
may potentially affect the performance of the downstream applications resulting in noisy or coarse
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Figure 1: We test the performance of MLPs with Random Fourier Features (RFF) and MLPs with
Positional Encoding (PE) on a 1024-resolution image to better distinguish between high- and low-
frequency regions, as demonstrated on the left-hand side of this figure. We find that the performance
of MLPs+RFF degrades rapidly with increasing variance, while MLPs+PE, although it doesn’t de-
grade with increased scale, struggles to capture high-frequency details effectively.

output. However, limited research has contributed to explaining the reason and finding a proper
frequency projection for input (Landgraf et al., 2022} [Yiice et al.,[2022).

In this paper, we aim to
provide both a theoretical Oversmooth @ Well Chosen© Noisy ®
explanation and a proper
solution to the inherent
drawbacks of Fourier fea-
tures embedding for INRs
to prevent oversmoothness
or noisy outputs. Firstly,
a theoretical explanation is
provided for the noisy out-
put by examining the rela-
tionship between the eigen-
functions of MLPs with
Fourier features and the
Fourier series expansion of
the target function. It is
revealed by the analysis
that high-frequency noise
arises from finite sam-
pling, indicating that high-
frequency inputs accelerate
the learning speed of a se-
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Inspired by the analysis of Figure 2: From the circled blue regions and green regions, it can be
noisy output and the prop- observed that even with well-chosen variance/scale, as experimented
erties of Fourier series ex- in the results are still unsatisfactory. However, using our
pansion, one approach to proposed method, the noise is significantly alleviated while further
address this issue is to en- enhancing the high-frequency details (Zoom in for a better view).
able INRs to adaptively fil-

ter out unnecessary high-frequency components in low-frequency regions. Therefore, bias-free
MLPs are employed, where bias-free means no biased terms are involved in any layer, function-
ing as an adaptive linear filter due to their scale-invariant property (Mohan et al.l 2019) that ensures
that the input pattern is maintained through each activation layer. Moreover, by viewing the learning
rate of the proposed filter and INRs as a Pareto efficiency problem, a custom line-search algorithm
is introduced to adjust the learning rate during training by solving an optimization problem and
approximating a global minimum solution. By integrating these approaches, the performance in
both low-frequency and high-frequency regions improved significantly, as shown in the comparison
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in Finally, to evaluate the performance of the proposed method, we test it on various
INRs tasks and compare it with state-of-the-art models, including BACON (Lindell et al., 2022) and
SIREN (Sitzmann et al., |2020). The experimental results prove that our approach enables MLPs to
capture finer details via Fourier Features while effectively reducing high-frequency noise without
causing oversmoothness. To summarize, the followings are the main contributions of this work:

* From the Neural Tangent Kernel perspective, we provide a theoretical analysis of the noisy
output issue caused by Fourier features embedding. This analysis further guides the design
of our solution to this problem.

* We propose a method that applies a bias-free MLP as an adaptive linear filter to suppress
unnecessary high frequencies. Additionally, a custom line-search algorithm is introduced
to dynamically optimize the learning rate, achieving Pareto efficiency between the filter
and INRs modules.

* To validate our approach, we conduct extensive experiments across a variety of tasks, in-
cluding image regression, 3D shape regression, and Neural Radiance Field. These experi-
ments demonstrate the effectiveness of our method in significantly reducing noisy outputs
while avoiding the common issue of excessive smoothing, maintaining a balance between
reducing noise and preserving high-frequency details.

2 RELATED WORKS

2.1 IMPLICIT NEURAL REPRESENTATIONS

Implicit Neural Representations are designed to learn a continuous representations of target func-
tions by taking advantages of the approximation power of neural networks. Their inherent contin-
uous property can beneficial in many cases like video compression (Chen et al., [2021a}; [Striimpler,
et al.,[2022)), 3D modeling (Park et al.,[2019;|Atzmon & Lipman, |2020; Michalkiewicz et al., 2019;
Gropp et al., 2020} |Sitzmann et al, [2019) and volume rendering (Pumarola et al.l 2021} |Barron
et al., |2021; [Martin-Brualla et al., 2021} Barron et al., |2023). However, simply employing MLPs
may result in spectral bias, where oversmoothed outputs are generated due to the inherent tendency
of MLPs to prioritize learning low-frequency components first. Consequently, many studies have
focused on these drawbacks and explored various methods to address this issue. The most straight-
forward way to address this issue is by projecting the coordinates into the higher dimension (Tancik
et al.l 2020; |Wang et al.|, [2021). However, these methods can lead to noisy outputs if there is a
mismatch in the projection variance. To address this, [Landgraf et al.| (2022) propose dividing the
Random Fourier Features into multiple levels of detail, allowing the MLPs to disregard unnecessary
high-frequency components. Another type of approach to mitigating the spectral bias introduced by
the ReLLU activation function, as proposed by [Sitzmann et al.| (2020), |Saragadam et al.| (2023)), and
Shenouda et al.|[(2024), is to modify the activation function itself by using alternatives such as the
Sine function, Wavelets, or a combination of ReLU with other functions. There are also efforts to
modify network structures to mitigate spectral bias (Mujkanovic et al., [2024). [Lindell et al.| (2022}
introduce a network design that treats MLPs as filters applied to the input of the next layer, known as
Multiplicative Filter Networks (MFNs). Additionally, based on the discrete nature of signals like im-
ages and videos, grid-based approaches (e.g., Grid Tangent Kernel (Zhao et al., [2024)), DINER (Xie
et al.,2023), and Fourier Filter Bank (Wu et al.,|2023))) have been proposed to address spectral bias,
as the grid property allows for sharp changes in features, which facilitates learning fine details.

2.2 NEURAL TANGENT KERNEL

Deep neural networks are powerful across various domains but remain a black box that lacks in-
terpretability. Therefore, many researchers have dived into explaining the mechanism of the neural
networks in recent years. |[Lee et al|(2020) propose a Neural Network Gaussian Process (NNGP),
modeling a two-layer neural network using a frozen first layer as the kernel, transforming it into
kernel regression. [Jacot et al.| (2018)); |Arora et al.| (2019b) introduce Neural Tangent Kernel (NTK)
by linearizing the MLPs, extendable to multiple layers via induction, offering insights like spec-
tral bias (Bietti & Mairal, [2019) and data distribution effects (Basri et al., [2020). Convolutional
Neural Tangent Kernel (CNTK) (Arora et al., 2019b) generalizes these ideas to CNNs, enhancing
researchers’ understanding of different phenomena in deep learning (Tachella et al., 2021} |[Ulyanov
et al.L|2018;|Cao & Gu, 2019; |Advani et al.,[2020).
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3 PRELIMINARY OF FOURIER FEATURES

Fourier features are common embedding methods to alleviate spectral bias. As a type of embedding
that maps inputs into the frequency domain, they can be expressed by the function y(-) : X € R? —
RY, where d is the input coordinate dimension and N is the embedding dimension. The two most
common types are Random Fourier Features (RFF) and Positional Encoding (PE), which can both
be represented by a single formula with slight variations in their implementation.

Definition 1 (Fourier features). Fourier features can be generally defined as a function such
that v(-) : X € R4 — RV

v(x) = [sin(?wbjx),cos(27rb;rx)]i€[N], [N]={1,2,3,--- ,N}, b; € RE*1 (D

Positional Encoding: v(x) = [Sin(Qﬂ'U%TX), COS(Q?TO'%TX)]Z'G[N], [N]={1,2,3,--- ,N}. It
applies log-linearly spaced frequencies for each dimension, with the scale o and size of embedding
N as hyperparameters, and includes only on-axis frequencies.

Random Fourier Features: b; ~ N (0, X). Typically, this is an isotropic Gaussian distribution,
meaning that 3 has only diagonal entries. Other distributions, such as the Uniform distribution, can
also be used, though the Gaussian distribution remains the most common choice.

4 THEORETICAL ANALYSIS OF FOURIER FEATURES

In this section, we examine why Fourier features can introduce high-frequency noise, from the
persepctive of the Neural Tangent Kernel (NTK) derived from two-layer MLPs with a frozen second
layer for simplicity as in [Arora et al| (2019a). Our experiments in [Figure 1| and [Figure 2| confirm
that the conclusion also stands in multi-layer MLPs. This analysis also helps explain why Positional
Encoding might be more stable than Random Fourier Features in certain cases. By decomposing
the target function as its Fourier series, we observe that MLPs primarily learn the given frequency
components globally, leaving high-frequency components remain in smoother regions. Proofs for
all theorems can be found in Appendix

The two following theorems, based on NTK (please check Appendix [A.2]for the detailed formula),
demonstrate that two-layer MLPs incorporated with Fourier Features essentially fit the target func-
tion by leveraging sampled frequencies and their combinations. If the sampled frequencies are in-
tegers, the unsampled frequencies impose a lower bound on the minimum achievable loss, meaning
that finite sampling introduces noise primarily driven by these unsampled frequencies.

Theorem 1. For a two-layer Multilayer-perceptrons (MLPs) denoted as f(x; W), where x € R?
as input and W as the parameters of the MLPs. Then the order-N approximation of eigenvectors
of the Neural Tangent Kernel (Eq[5)) when using Fourier features embedding, as defined in Def[I} to
project the input to the frequency space can be presented as,

Nt Nt
k(v(x),v(z)) = Z M cos(b*x)cos(b*z) + Z Msin(b*x)sin(b*z), where NT < 4ANk™km?
i=1 i=1
2
where
b* € Lspanis,} = 4 b* = chbj Z lcj| < N 4 k™km +m (3)
j=1 j=1

and \;s are eigenvalues for each eigenfunctions sin(b*x) and cos(b*x).

Theorem 2. For a d-dimensional target function y(x) = > _;a gjne“‘TX, where ), are the cor-
responding coefficients of the Fourier series expansion of the y(x). Given a pre-sampled frequency
set B, = {b; € Z%},c|n) and the Ly loss function as ¢(y, f(x; W)) = || f(x; W) — y||2.Let the
projection of y(x) onto the spanned space of frequency set B,, be denoted by yg and the projection
onto the orthogonal complement of this spanned space by le3 such that'y = y;[3 + yB. Then, with
probability at least 1 — 9, for all k = 0,1,2,--- (iteration numbers), the lower bound of the loss
function can be represented as:

yhllz — /(10— nA)? (v, ym)? £ € < 6(y, S W) 4)

4
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Figure 3: The pipeline of our method introduces two additional modules compared to the original
approach. The first module, an adaptive linear filter, removes unnecessary frequency components at
the pixel level, reducing high-frequency noise during regression. The second module dynamically
adjusts the learning rate during training to optimize the approximated loss for the next step, achieving
Pareto efficiency. Together, these modules result in cleaner and more detailed images.

To extend the analysis, we also examine the continuous frequencies sampled from R?. The next
result demonstrates that the decay rate for integer frequencies close to the eigenfunctions is larger,
aligning with and extending Theorem 2.

Theorem 3. For a d-dimensional target function y(X) = Y 74 yne““‘, where y, are the cor-
responding coefficients of the Fourier series expansion of the y(x). Given a pre-sampled frequency
set B, = {b; € R%},c(n] and the Ly loss function as ¢(y, f(x; W)) = ||f(x; W) — y||2. Then,
for the frequency component n € 7%, and a sampled frequency b € B, and its decomposition
into the integer, b, and residual part, b, € [0 1), the decreasing rate of the loss function for
specific frequency n from the target function using two-layers MLPs with second layer frozen is

O + Tes=5.7 )

The last lemma explains why Positional Encoding is more stable than Random Fourier Features
in 2D case. Positional Encoding struggles with tilted high-frequency components, while Random
Fourier Features, due to their high variance, mix high- and low-frequency signals, making it sim-
ilarly difficult to capture low-frequency components. Intuitively, with Random Fourier Features,
if the closest sampled frequency to a target’s low-frequency component contains high-frequency
elements, the noise gets introduced into the fitting result.

Lemma 1. Considering two different Fourier features, Positional Encoding, and Random Fourier
Features as in Def. |Z| For two sampled frequencies using two embedding, by,. from Positional En-
coding and b,y y from Random Fourier Features, assume b, s has two components with [b, ;1 >
[brfflo, and by has only one non-zero component, [byc|s, equal to [bysslo. Let b, be the closest
integer frequency to b,y and [brs¢la = [b.]a. Then the decay rate of b, for Positional Encoding,
bye, is equal to [b]s for Random Fourier Features.

5 METHODS

In this section, to tackle the noisy output, we present our solution grounded in the analysis of the
cause. The proposed method has two main components: (i) an Adaptive Linear Filter that blocks
irrelevant input frequencies during the forward pass, and (ii) a Learning-rate Adjustor that uses the
line-search method during backpropagation to dynamically adjust the filter’s learning rate. The full

pipeline is illustrated in [Figure 3]
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Figure 4: Finitely sampled Fourier series may introduce high-frequency noise in flat regions. If
MLPs fail to capture sufficient frequencies, high-frequency noise persists in low-frequency regions.

5.1 BIAS-FREE MLPS AS ADAPTIVE LINEAR FILTER

Building on this analysis, MLPs can be viewed as a linear combination of eigenfunction frequen-
cies, where MLPs utilize these frequencies as a prior to fit the Fourier series expansion of the target
function. However, since the eigenfunctions’ frequencies cannot represent all m € Z<, noise may
arise in the low-frequency regions. This is demonstrated in a 1-dimensional toy example
that with a limited number of frequency components, the fitted function struggles to suppress
high-frequency components in low-frequency regions. Inspired by this observation, constraining the
low-frequency regions to contain only low-frequency elements can significantly mitigate the issue.

Adaptive Linear F ilt_ef Therefore, we propose using bias-free MLPs as an adaptive band-limited

-
7 y®faye) "N coordinate-level linear filter for continuous representations as shown in

/
1 ‘: Bias-free MLPs act as a linear filter that their output matches
i 1 the size of the input Fourier features embedding and is then used to per-
H &)— ! form a coordinate-wise Hadamard product to filter the embedding. The
H : bias-free network is chosen for its scale-invariance (Mohan et al., [2019)),
H FrRr—— : which preserves input frequency patterns when using ReLLU activation.
! fa i This ensures that if scaling the embedding by a constant, MLPs main-
I 1 tain the same amplitude and keep it at O for O inputs. Additionally, its
N /' local linearity enables the network to function as an adaptive linear filter,
applying different linear terms to each coordinate, to selectively atten-
Ye) uate unnecessary components. Furthermore, This approach can also be
) : Hadamard Product extended to continuous-space tasks, such as 3D shape regression and

inverse graphics, where the input of INRs is continuous rather than dis-
crete, like image coordinates, benefiting from the continuity of MLPs. To
verify the performance of this filter, we also visualized the filtered results
in Appendix[A.6] This visualization confirms that the proposed module
effectively filters high-frequency inputs, preventing noisy outputs.

Figure 5: Illustration of
the adaptive linear filter.

5.2 LINE-SEARCHED BASED OPTIMIZATION
During experiments with the adaptive filter, we observe that different initial learning rates for the

adaptive linear filter and INRs led to varying performance outcomes as shown in This
reflects a Pareto efficiency issue, where balancing the performance between the INRs and adaptive

T.Em in Filtered Embedding Filtered Embedding Filtered Embedding
G bedding with Large LR with Proper LR  withLowLR G.T. Image

Figure 6: Both high- and low-learning rates result in unsatisfactory outcomes, where high-frequency
components aren’t suppressed in low-frequency regions (LR in this figure stands for learning rate).

6
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linear filter is essential for optimal results. If the INRs learn significantly faster than the linear
filter, the entire system may fall into local minima, where the adaptive linear filter fails to perform
optimally. Conversely, if the adaptive linear filter’s learning rate is too large, the input to the INR
may fluctuate excessively, making it difficult for the INR to converge.

Inspired by (2021)), we aim to optimize the learning rate of the adaptive linear filter. By
optimizing the loss function f(64,0;) as ¢(aa) = f(04,0;) during training (where 6 4 represents
the parameters of the adaptive linear filter, 6; represents the parameters of the INRs, a4 and a;j
represent the learning rates for the adaptive filter and INR, respectively), we calculate the learning
rate aiy for the adaptive linear filter at each iteration. By applying the Taylor expansion of the loss
function, this optimization problem can be approximated as a linear optimization problem.
provides an overview of how the proposed algorithm finds an optimal learning rate (derivation and
algorithm are presented in Appendix [A.3] Algorithm 3] and Algorithm [).

¢(ay) d(aq)|, ) ¢(an)l, ! $(aq) ! |
| #@) 3 kas+b : : | (@) = kaq +b
| : | pla) = kay +b : ‘
0 g il
asec %X'sec | au M@c | ay | | ay
—b‘ Amin ' Qmax ! Omnin Cmax ‘@min ‘@max
asec = T+e k= —VfTph b=[(046)—a,Vf p}

Figure 7: The blue line is the optimization target, while the orange lines indicate the predefined
learning rate bounds, denoted as aupi, and Qpax- pf4 and p§ are the update directions for the filter
and INRs, respectively. o* is the optimal value and € is a constant for robustness, usually set to
1 x 1076,

6 EXPERIMENTS

To validate the proposed method, we test it across various tasks, including image regression, 3D
shape regression, and inverse graphics. All experiments are performed on a single RTX 4090 GPU,
using an adaptive linear filter with 3 layers, each with the same width as the number of channels in
the Fourier features embedding.

6.1 IMAGE REGRESSION

Setup and Implementation Details: Following prior research, we use the validation split of the
DIV2K dataset (Agustsson & Timofte, 2017)), which consists of 100 natural images at 2K resolu-
tion, featuring a diverse range of content. The experiments are conducted under a resolution of
256 x 256. The models are trained using the mean squared error (MSE) loss. We compared our pro-
posed method with several baselines: Multi-Layer Perceptron (MLP) with Positional Encoding (96
sampled frequencies per dimension), MLP with Random Fourier Features (384 sampled frequen-
cies), SIREN (Sitzmann et al.}[2020), and BACON (Lindell et al.] 2022). Each model is trained for
10,000 iterations to ensure convergence, with the learning rate 1 x 10~°. For the custom line-search
algorithm, we set the maximum learning rate as 1 x 102, with a minimum of 0. To provide a
more comprehensive comparison, we evaluate the performance on three metrics: PSNR, SSIM, and

LPIPS (Zhang et al, [2018)

G.T. MLP+PE MLP+RFF BACON

MLP+PE+Ours  MLP+RFF+Ours

&

Figure 8: The absolute error map between the ground truth image and the fitted result. The closer to
red, the larger the error; the closer to blue, the smaller the error.

SIREN

7
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Experiment Results: As shown in [Figure 8| our method outperforms not only baseline MLPs with
Fourier features but also the other two models when visualizing using the error map. In
both MLP+RFF+Ours and MLP+PE+Ours demonstrate superior performance in PSNR, SSIM, and
LPIPS. Specifically, MLP+RFF+Ours achieves the highest PSNR of 53.38 and an SSIM of 0.9967.
MLP+PE+OQurs excels in noise reduction with a low LPIPS of 0.0002. Overall, our method signifi-
cantly improves image regression in detail reconstruction.

Table 1: Performance comparison of image regression tasks across different methods. We highlight
the best results in bold and underline the second-best results.

MLP+PE  MLP+RFF BACON SIREN MLP+PE+Ours MLP+RFF+Ours

PSNR?T 36.49 36.86 36.36 47.78 49.14 53.38
SSIM7T 0.9594 0.9604 0.9750  0.9944 0.9967 0.9908
LPIPS|  0.0173 0.0164 0.0012  0.0005 0.0002 0.0075

6.2 3D-SHAPE REGRESSION

Setup and Implementation Details: We evaluate our method on the Signed-Distance-Function
(SDF) regression task, aiming to learn a function that maps 3D coordinates to their signed distance
values. Positive values indicate points outside an object, and negative values are inside. The objec-
tive is precise 3D shape reconstruction. We follow the experimental setup from Lindell et al.|(2022),
training each model for 200,000 iterations with a learning rate starting at 1 x 103, The learning rate
for line-search was capped at 1 x 1073, Performance is evaluated using Chamfer Distance and IOU
(Intersection over Union), evaluating four Stanford 3D Scanning Repository scenes B Armadillo,
Dragon, Lucy, and Thai, each with 10,000 sampled points. To calculate the IOU score, we evaluate
the intersection and union of occupancy values between the ground truth and predicted meshes on
a 1282 grid of points centered around the object following the idea from BACON (Lindell et al.}
2022). And using the ground truth sampled 10000 points from the object’s surface for the Chamfer
Distance. Our comparisons include the following baselines: Multi-Layer Perceptron (MLP) with
Fourier Features (including Random Fourier Features and Positional Encoding with 64 sampled
frequencies per dimension), SIREN(Sitzmann et al., [2020), and BACON.

MLP+PE MLP+RFF BACON
)¢ s J e

M‘Ll"+l'li+\0urs M{_P+RFF\+Uurs
~ - o) J

Figure 9: Visualization of the 3D shape regression task results (Zoom in for a better view).

Experiment Results: From quantification results shown in the Fourier Features+our
method achieves the lowest Chamfer Distance and highest IOU score, demonstrating su-
perior accuracy in shape reconstruction.  Illustrations of results can be found at
and Appendix [A77.1] where it can be found that the proposed method, to some ex-
tent, smoothed the surface while reconstructing more details compared with other baselines.

6.3 NEURAL RADIANCE FIELD

Setup and Implementation Details: This section discusses BACON MLP+PE  MLP+PEOus
fitting 3D scenes using Neural Radiance Fields (NeRF), aim-  “psnry 28014 3087 3137
1 3 1t 3 SSIM?T 0.9291 0.9486 0.9544
ing at reconstructing scenes by predicting color and density PP L 00136 0001 e

based on 3D coordinates and viewing direction. The models
use an MSE loss and are trained for 1,000,000 iterations with Table 3: The quantification result
an initial learning rate of 5 x 10~*. Performance is evaluated of NeRF task for baselines.

with PSNR, SSIM, and LPIPS.

'http://graphics.stanford.edu/data/3Dscanrep/
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Table 2: 3D shape regression metrics across baseline methods. We highlight the best results in bold
and underline the second-best results.

Metric MLP+PE  MLP+RFF  BACON SIREN MLP+PE+Ours  MLP+RFF+Ours
Chamfer Distance (/) 1.8413e-06 1.8525¢-06 1.9535e-06 1.8313e-06 1.7919¢-06 1.7947¢-06
10U (1) 0.96189 0.96226 0.96168 0.96217 0.96245 0.96247

We applied line-search (from 1 x 10~ to 0) to minimize overfitting, evaluating at the NeRF Blender
dataset (Martin-Brualla et al.| [2021), which consists of diverse synthetic scenes. Training used
cropped 400x400 images with a white background for consistency. Our comparisons involved a
baseline MLP with Positional Encoding (64 sampled frequencies per dimension), BACON
2022), and our full method. RFF and SIREN was excluded due to their instability in higher-
dimensional space and making it less suitable for this task.

Experiment Results: The results in show that our proposed method surpasses both the
vanilla NeRF and the BACON-based NeRF. As depicted in[Figure 10} our approach enables NeRF
to capture finer details, such as the caterpillar tracks and the Phillips head on the Lego model.

BACON MLP+PE MLP+PE+Ours

AL

Figure 10: Comparison of visual results of NeRF task with baselines (Zoom in for a better view).
More visualization results are available at Appendix

6.4 ABLATION STUDY

In this section, we evaluate the line-search method’s performance, finding it achieves a better result
compared to using only the adaptive linear filter, especially for image regression tasks. This abla-
tion study confirms that the proposed line-search algorithm is more effective at finding an optimal
minimum. The results are shown in [Table 4

Image Regression 3D Shape Regression NeRF
PSNRT SSIMtT LPIPS] Chamfer Distance]  IOU{T  PSNRT SSIMT LPIPS|
MLP + PE + Ours w/o L 45.02  0.9860 0.0080 1.8058e-6 0.96240 31.24  0.9534 0.0254
MLP + PE + Ours w/L 49.14  0.9967 0.00019 1.7919e-6 0.96245  31.37 09544 0.0241
MLP + RFF + Ours w/o L~ 50.36  0.9898  0.0076 1.8159%-6 0.96234 ~ ~ ~
MLP + RFF + Ours w/L 53.38 09908 0.0075 1.7947e-6 0.96247 ~ ~ ~

Table 4: Performance comparison of various methods for Image Regression, 3D Shape Regression,
and NeRF tasks. ”w/0” stands for ”without,” ”w/” stands for ”with,” and ”L” refers to our custom
line-search algorithm.

6.4.1 CONVERGENCE OF MODIFIED LINE-SEARCH ALGORITHM

To address concerns about potential divergence, we validate the convergence of the modified line-
search algorithm through experiments on the DIV2K validation split, including both RFF and PE.
The results demonstrate that the algorithm converges for both embeddings. As illustrated in
the learning rates of the adaptive linear filter for both embeddings consistently decrease
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throughout training and ultimately converge to 0. This steady reduction in learning rates confirms
the stability and convergence of the algorithm by the end of the training process.

PSNR over lterations Learning Rate over Iterations
- - — 0.010 —— LR Mean
50 LR Range (Min-Max)
0.008
40 13
s
& 0.006
o
z g
2 30 é
© 0.004
Q
—~
20
0.002
—— PSNR Mean
0 = PSNR Range (Min-Max) 0,000
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Iterations Iterations

Figure 11: We demonstrate the convergence of the modified line-search algorithm through image
regression experiments for RFF and PE. During training, both the PSNR and the learning rate con-
sistently converge, confirming the effectiveness of our proposed line-search-based approach.

6.4.2 VARYING VARIANCE

We also evaluate the impact of varying variance on the same image regression task as in [Figure

using our proposed method. As shown in unlike the results presented in[Figure 1| perfor-
mance remains stable even with high sampling variance when our method is applied. This highlights

the robustness of our approach under high sampling variance.

Random Fourier Features Positional Encoding
3 A & e 350 - »
< A
~ A X i & & = =
32 ke - o & - = - 328 = - - -
50 - - « 8- .
e & 7 ® e - ® e o d * 275 = &
o
, 25 =
» 200 =
- -
2 ’ 175 -
o 15.0
K ® » © B & - ® & ~ v . ® - E @ & K &
Variance Scale
Low-freq region = Whole region *— High-freq region

Figure 12: We evaluated whether our proposed method could mitigate the high-frequency phe-
nomenon associated with varying variances in two Fourier features embedding methods. The results
indicate that our method successfully prevents model degradation even under conditions of high
variance for RFF, where traditional embeddings fail to perform effectively.

7 CONCLUSION AND LIMITATIONS

Building on insights from the Neural Tangent Kernel (NTK), we analyze the high-frequency noise
in Fourier Features, which arises due to limited frequency sampling. This understanding motivates
the development of our proposed method, which incorporates a line-search algorithm to achieve a
Pareto-efficient balance between frequency learning and noise reduction. By applying our method
to a range of tasks, including image regression, 3D shape regression, and Neural Radiance Fields
(NeRF), we consistently outperform baseline models. Our approach excels at capturing high-
frequency details while effectively mitigating noise, leading to more accurate reconstructions. The
method demonstrates robust performance in both low- and high-frequency regions, ensuring more
precise and stable outputs in complex tasks.

Limitations: Despite the improvements, our method does not completely resolve finite sampling
issues from the root. Additionally, while the line-search algorithm enhances the performance of the
adaptive linear filter, it may lead to slower convergence and occasional instability during the early
stage of training. Addressing these challenges is part of our future work.

10
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A APPENDIX

A.1 DEFINITION OF HIGH-DIMENSIONAL FOURIER SERIES

For a d-dimensional periodic function f(x) with input X = [x1, 29, ,24] ' be a 27 period func-
tion with respect to each components. Then the function f(x) can be expanded as:

F) =Y fme™'

meZd

where fm is the coefficient of different frequency component.

A.2 NEURAL TANGENT KERNEL

The Neural Tangent Kernel (NTK), a prominent tool for neural network analysis, has attracted con-
siderable attention since its introduction. To simplify the analysis, this section will focus specifically
on the NTK for two-layer MLPs, as the subsequent analysis also relies on the two-layer assumption.
The two-layer MLP, f(x; w), with activation function () and input x € RY, can be expressed as
follows:

fx;w) = % Z aro(w,x +b,)
r=1

where m is the width of the layer and ||x|| = 1 (also can be written as x € S%~1, where S~ =
{x € R?: ||x|| = 1}). The term \/% is used to assist the analysis of the network. Based on this

MLP, the kernel is defined as the following:

k(xi,x3) = Ewnr {<af(§éw) : af(gj; it >}

This formula enables the exact expression of the NTK to better analyze the behavior and dynamics
of MLP. For a two-layer MLP with a rectified linear unit (ReLU) activation function where only the
first layer weights are trained and the second layer is frozen, the NTK of this network can be written
as the following (Xie et al.,[2017):

k(xi,x;) = i((xi,xj) + 1)(7m — arccos({xi,x;))) (5)

This expression can help us to determine the eigenfunction and eigenvalue of kernel and therefore
provide a more insightful analysis of the network.

A.3 PROOF OF THEOREMS
A.3.1 PRELIMINARY LEMMAS

Lemma 2. Let {bgl) € R}e(n) and {b;g) € R} j¢1n be two sets of frequency vectors and N
and M are integers that represent the size for each set, x € R® is the coordinates in d-dimensional
space. Then,

N M T
(Z cgl)cos(bgl)—rx)> Z cj(?)cos(bf)—rx) = (Z chos(bZTx)> ,whereT <2NM
i=1 k=1
(6)

Jj=1

where,

b* & {b* =b{" ibf)‘z' € [N], j e [M]} 7)

14
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Proof.

T
= Z cicos(b} x), whereT < 2N M

051) §2) (cos((b(l) + b(2)) x) + cos((bgl) - ng))Tx))

®)

€))

(10)

Y

O

Lemma 3. Ler {b; € Rd}ie[n] be a set of frequency vectors and N is an integer that represents the

size, x € R% is the coordinates in d-dimensional space. Then,

n k N
(Z cos(bjx)) = (Z cos(bz—rx)> ,where N < k"nk
i=1 k=1
where,

b* € {b* :Zn:cibi ¢ €7, zn:|01| Skj}
% %

Proof. Proof by induction:

when k=1

This is a special case proved by Lemma

Assuming the claim of this Lemma is true for k=m, then when k=m+1

n m+1
<Z cos(b; x)>
i=1

= (Z cos(biTX)> (Z COS(biTX)>

By the assumption on k=m

n’ n
Z cos(bLTx) <Z cos(bjx)) ,wheren’ < m™nm
k=1 i=1

whereb' € {bT = Zcibi c; €7, Z lei] < m}

15

(12)

13)

(14)

15)

(16)

a7

(18)

19)
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By Lemma 2]
N
= (Z cos(b}:Tx)> ,where N < (m + 1)"n(m + 1) (20)
k=1
n n
whereb;” € {b* => ebitbjlc; €2, |ei| <m, Vi, j} (21)
i i
:,b;fe{b*:zc;bi cieZ,Z|Ci<m+l} (22)
O

Lemma 4. Given a pre-sampled frequency set B, = {b; € Nd}ie[N] and the Fourier fea-
tures projection, 7(+), as y(x) = [sin(27b] x), cos(2mb] x)];e(n], [N] = 1,2,3,--- , N. Then,

+(x) T 2(2) = sum(y(x - 2)).
Proof.
N
v(x) T y(z) = Z cos(2mb; x)cos(2nb] z) + sin(27b, x)sin(2rb, z) (23)
z]:Vl
= Z cos(2mb; (x — z)) = sum(y(x — z)) (24)

O

Theorem 1. For a two-layer Multilayer-perceptrons (MLPs) denoted as f(x; W), where x € R?
as input and W as the parameters of the MLPs. Then the order-N approximation of eigenvectors
of the Neural Tangent Kernel (Eq[5) when using Fourier features embedding, as defined in Def[I} to
project the input to the frequency space can be presented as,

NT Nt
k(v(x),v(z)) = Z M cos(b*x)cos(b*z) + Z M\sin(b*x)sin(b*z), where NT < 4Nk™km?
i=1 i=1
(25
where
b* € Lspan(n;; =4 b =D _e;b;| D> lej| < N+ k™km +m (26)
j=1 j=1

and \;s are eigenvalues for each eigenfunctions sin(b*x) and cos(b*x).

Proof. By [Xie et al.|(2017)), the two-layer MLLP’s NTK has the form as the following:

(x,2z)(m — arccos((x,z))
2m

k(z,z) =
If we use Fourier features mapping, y(x), before inputting to the Neural Network with a randomly
sampled frequency set {b;}7 .

By the Lemma [4] in order to ensure that the vector dot product still be a valid dot prod-
uct in S971, the dot product of two embedded input can be written as y(x)'y(z) =
WM Yot cos(2wb;(z — x)) to make sure the dot product is bounded by 1.
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k('y(x), ’V(Z)) — <’Y(X)7 ’V(Z)>(7T — C;:TCCOS“’Y(X)v V(Z») (27)
Denoting [|y(x)][[|v(z)[| as R (28)
Yt cos(2mby(z — X)) (m — arccos( Yoi | cos(2mbi(z — X)) 29
B 21N
By N-order approximation Taylor Expansion of arccos(-) (30)
0 cos(2mby(z — X))(5 + Yisy ey (L1, keos(2mbi(z — x)))*) an
B 27rN
By Lemma[d] (32)
Yot cos(2mby(z — x))(5 + Xpy Soin, B cos(2mb; (z — X))

= , where M< k" km
27N

(33)

whereb} € {b* = Zcibi ¢ €7, Z lei] < k} (34)

m ™ N* * *
_ iz 082mbi(z = X))(§ F 2uimy HleosPrbi(e = X)) oo ne<onm 3)

27X
whereb] € {b* = Zcibi c; €7, Z lei] < N + M} (36)
_ EE cos2rbi(a — %)) + S, cos(2nbita - x)) S freos(abi(a - x)) o
o 271N
By Lemma 3] (38)
x m Nt ot ]
_ 3 Yoo cos(2mbi(z —x)) + ), Bl cos(2mb](z — x))) “where NT < 2m N (39)
27N
m n
wherebl € {bT = Zcibi ci €7, Z lei] < N—!—M—i—m} (40)
1 & 1 X
= Z cos(2mb;(z — x)) + IR Zﬂgcos(Qﬁbj(z —x))), where NT < ANE™km?(41)
i=1 i=1
(42)

Furthermore, to do the eigendecomposition, we need further to split this into the product of two
orthogonal functions by cos(a — b) = cos(a)cos(b) + sin(a)sin(b)

1 m
= Z cos(2mb;x))cos(2nb;z)) + sin(2wb;x)sin(27b;z) (43)
i=1
Nt
2 IR ZﬂTcos 27rbT ))cos(?ﬂ'b;rz)) + sin(Zﬂ'b;rX)sin(Zﬂ'b;fz) (44)
i
O

Theorem 2. For a d-dimensional target function y(x) = > _;a g)ne“‘Tx, where iy, are the cor-
responding coefficients of the Fourier series expansion of the y(x). Given a pre-sampled frequency
set B, = {b; € Z%};c(n) and the Ly loss function as ¢(y, f(x; W)) = || f(x; W) — y||2.Let the
projection of y(x) onto the spanned space of frequency set B,, be denoted by yg and the projection

onto the orthogonal complement of this spanned space by yg such thaty = y}; + yB. Then, with

probability at least 1 — 6, forall k = 0,1,2,--- (iteration numbers), the lower bound of the loss
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function can be represented as:

ybllz — /S0 = A2 (v, )2 £ e < oly. fix W) (45)

Proof. Given B,, = {b; € N%},y, this can be spanned as a subspace (by Theorem EI),
{cos(2ﬂbTx),sin(Zﬂ'bTx)\bz e{bl =37 ¢bilei € Z, 37 |ai| < NT}}, in L4 space, where

each item are orthogonal with each other. Therefore, by Orthogonal Decomposition Theorem, L,
can be decomposed into the space spanned by B,, and the space orthogonal to this spanned space
(or the space spanned by the rest frequencies component).

By using the Fourier series to expand the y, this can be decomposed into y = yTB +yp by orthogonal
decomposition theorem mentioned before.

oy, fx W) = lly = f(x W)l (46)
= Ik + ¥ — f(x W)l2 (47)
By using triangular inequality:||z + y|| — ||z|| < ||y]| (48)
= llyhlle = 11£ (6 W) — ysllz (49)

By Theorem 4.1 in (Arora et al, [2019a), with probability 1 — ¢, &(y,f(x;W)) =

V(1 —nX)2k{v;, y)2 &+ €. We can only decompose the latter part and obtain the proposed
result. O

Lemma 5. For two frequencies o € RY and 8 € N9, the dot product between the trigonometric
Sunctions of two frequencies cos(2max), sin(2rax) and sin(27fx), cos(2mw0x) can be written as
either:

1
@2m) [T L8 + az) + aq s
- Zsm 2 Y ((BHoz) Fonl) + o+ (1) sin@a[(B+az) +arl;) (5D

(—1)El=( (sin(2m D _[(8 +az) + o)) (50)

N | =

ic[d]/j J
1
+ sin(2mw B —a,)— al; (52)
I —an) i ;K )T
— Z sin(2m Z [(B—ay) —ar]i)+--+ (—1)? ZSin(QW[(ﬁ —az) = arly)) (53)
i€[d]/j J

L !
2" 2m) [T, (8 + az) + au s

— Zcos (27 Z [(B+az)+ar]i)+--+ (—l)d 2008(271'[(6 + ;) + arly) (55)

= (—1)e]

(cos(2m Z[(ﬁ +az) + i) (54)

i€ld]/j J
1
T3 o) ), 720 00—l oY
— Zcos (2m Z [(B—a.)— o)+ ZCOS 27[(B — az) — ar];)) (57)
i€ld]/j

Depending on the odd or even of d and the combination of cosine and sine functions.
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Proof. Since « is in RY, we can decompose it into o = o, + . where a, € Z% and . € [0,1)?

1 1 1 1
/0 /0 cos(2rax)sin(2mwfx)dx :/0 /0 cos(2m(a,x + a,x))sin(2npx)dx  (58)

1 1
= % / .. / sin(2m(Bx + a.x + a,x)) + sin(2m(Bx — a.x — a,x))dx (59)
0 0
1 1
= % / . / sin(2r((B + az)x + arx)) + sin(2n((8 — az)x — arx))dx (60)
0 0
if d is odd 61

L !
22 2m) [T, (B + az) + arl;
—Zcos 2 Z (54—042;)+ar}i)+'--+(—1)chos(27r[(ﬁ+az)—&-ar]j) (63)

= (_1)f%1

(cos(2m Z[(ﬁ +az) + ki) (62)

i€ld]/j j
1
+ cos(2m B8 —a,) — apl; (64)
e I )~ ;[( Jmeld
— Zcos (2w Z [(B—as) —api) + -+ (—=1)¢ Zcos(Q?T[(ﬁ —az) —oly)) (65)
i€ld]/j j
if d is even (66)

L !
27 2m) [T (B + az) + ol
- ZSZ” @2r D> (B4 ) +apli) + -+ (D)) sin(2n[(B + o2) + ;) (68)

= (,1)[%1

(sin(2m Z[(ﬁ + o) + o) (67)

icld]/j 7
1
+ in(2m B—oay) —ayl; 69
T (5 — o) —a, @ 20 — ) el
=2 sin@m 30 [(B-0z)—ark) +o+ (C)TY oim(anl(f — 00) —an)y) 70
ield]/j 7
And similar for other cases. -

Theorem 3. For a d-dimensional target function y(x) = > 74 yne“‘TX, where ¥, are the cor-
responding coefficients of the Fourier series expansion of the y(x). Given a pre-sampled frequency
set B, = {b; € R%},¢(n) and the Ly loss function as §(y, f(x; W)) = || f(x; W) — y||2. Then,
for the frequency component n € 7%, and a sampled frequency b € B, and its decomposition
into the integer, b,, and residual part, b, € [0,1), the decreasing rate of the loss function for
specific frequency n from the mrget function using two-layers MLPs with second layer frozen is

O(H?:1[<n+bz>+b] [T, [(n— bz) b,J; )

Proof. Again by Theorem 4.1 from (Arora et al| [20194), we know that with probability 1 — ¢
V(=) (v, y)2 £ e = ¢(y, f(x; W)). By Lemma we know that the inner product be-
tween the eigenfunctions of NTK and each integer frequency of the component of the decomposition
of y is proportional to

1 1 ,
(b b T b b

where ¢(b,.) is the sine/cosine function introduced in Lemma 5, and the integer terms, b, and n,
can be ignored as they only contribute 27rn to the sine and cosine functions, which does not affect
values of these periodic functions.

Since b, is in [0,1) and is independent of the integer frequencies and we would like investigate
how much will these non-integer frequencies activate each integer frequencies that consist in the

Fourier series expansion of the target function. Therefore, we can consider the < (b,.) and ¢(b,.) as
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a constant term and only investigate the coefficient terms, which implies the result that decreasing

. 1 1
rate is O( T [ntb) T, + ;Ll[(n—bz)—br]i)'

> 1 >1j = =
W.Lo.g. we can assume that n + b, > 0, therefore, 7 [ib )b = liff n = b, 0 and

W > 1liff n = b,. And since 8 and «, are integers, the difference is also integer.
i=1 z rli
Therefore, if the difference is not zero, then it is bigger than 1 and leads to a large coefficient.

This implies the closer between the two frequencies, the larger the inner product. Further, we can
deduce that the closer between two frequencies, the larger the decrease rate of the loss. O

Lemma 1. Considering two different Fourier features, Positional Encoding, and Random Fourier
Features as in Def.|l| For two sampled frequencies using two embedding, b,. from Positional En-
coding and b,y ; from Random Fourier Features, assume b,y ¢ has two components with b, ¥ f] 1>
[b,frl2, and by has only one non-zero component, [by.|2, equal to [b,ssla. Let b, be the closest
integer frequency to b, sy and [byssla = [b.]o. Then the decay rate of b, for Positional Encoding,
bye, is equal to [b,)2 for Random Fourier Features.

Proof. By Theorem 3] we know that the decreasing rate for any integer frequency component b, is
proportional to O(Hd i J:b T T T 1b ] ). Denoting the [v]; as the i*" component
i 1l(n+b; r)i i_1l(n=b.)—b.];

of the vector v.

For positional encoding, b,. to learn the integer frequency b., the decreasing rate is
. Since the [b,.]2 is zero and [bpel1 = [brf ]2

053 o + BT BT BB
2Jitbpe]it[bzlat[bpel2 T [b2]i—[bpe]i+[bz]2—[bpe]2
Then the decreasing rate can be considered as O( [bz]1+[br;f]2+[b2]2 + [bz]l—[b,,‘;f]zﬂbz]z)

For Random Fourier Features, b,;; to learn [b,]s, the decreasing rate is also
Since b, f¢]; equals to b.];, this proofs the

1 1
O BBy T B b )

lemma.
O
A.4 LINE-SEARCH METHOD
Considering a minimization problem as the following:
0" = min f(X; 6
min f (X;0) (1)

In the context of machine learning f(-) usually denotes the loss function, é represents the parameters
of the machine learning algorithms that belong to parameter space © and X denotes the training
dataset. One common method to find the * € O that minimizes f(-) is to use the gradient descent
method as shown in the Algorithm|[I]

Algorithm 1 Gradient Descent Algorithm

1: Initialize: variables 6y, max iteration [V, learning rate o

2: fori < 1to N do

3 Calculate the derivative of f(6;_1) about 6;_ as direction denotes as p;
4. Gt < Ht_l + Qapy

5: end for

Based on this Gradient Descent method, the line-search method is to find the proper learning rate
a¢ at each iteration by optimization to solve the approximate learning rate or exact learning rate if
possible. The algorithm can be shown as the Algorithm 2]

A.5 DETAILS OF CUSTORM LINE-SEARCH ALGORITHM

In this section, we will explain the derivation of the modified line-search algorithm used to determine
the learning rate of the adaptive filter.
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Algorithm 2 Line-search Method

1: Initialize: variables 6, max iteration N

2: fori < 1to N do

3 Calculate the derivative of f(6;_1) about #;_; as direction denotes as p;
4 a=argming, f(0i—1 + ap:)
5

6

0 < 01 + oupy
: end for

Let f(0Y, 0%) denote the loss function at iteration ¢, p’, as the update direction for the adaptive filter,
and p} as the update direction for the INRs. We can then perform a Taylor expansion around the

parameters (6% ', 057 1), expressed as follows:

PO, 07) = FOL,077) = Vo 05,077 T (0% = 0571 = Vg f(05 07 )T (07 — 077

1 _ IR _ Z1 ppe _ _
+5 [(92—92 D2 FOLT 07 4 (07 — 07 ) D (057,07 1) [+O((07=071)%, (05-034)%)

Using the gradient descent method, we have # = 0~ +ap’~!. Since the ReLLU activation function
results in the second and higher-order derivatives being zero, the equation simplifies to:

F(04,07) = FO5,0771) = Ve f(O5,07 ) T (aaply ') — Vor F(05 71,07 T (arpi ™)
d(aa) = f(0%,07) = kaa +b
wherek = Vo f(057",077) 'ply tandb = £(057",6077) — Vo f(05 1,07 ") T (arpi™")

Since the learning rate of the INRs part is known, this can be simplified as a linear optimization
problem with only an order 1 unknown parameter o;.

argmin f(03, 07) ~ argmin f (05, 077")=Vr, (057, 0,71) T (@apls )=V f(047,0171)  (crp] ™)

Furthermore, to prevent the impact of a small denominator, we add a constant ¢ = 1 x 107° to
ensure the robustness of the algorithm. The solution to this optimization problem can be determined
through case analysis by examining the sign of the slope and intercept, as illustrated in

The overall algorithm pipeline is shown in the following Algorithm 3]

To ensure sufficient decrease, we also apply a similar derivation based on the Armijo condition,
which is commonly used in line-search algorithms to guarantee sufficient decrease. The Armijo
condition is typically expressed as follows:

flay + arpr) < flag) + crawpy Vf(zr),

Where c; typically takes the value 1 x 1073, By assuming the current step is ¢ (which is equal to
the previous derivation’s ¢t — 1, but we denote it as ¢ for simplicity), this can be written as:

(0% + aaph, 0t +arph) < f(04,0%) + claApgvgrlprtA + 1o Vs T}

Therefore, using a similar Taylor expansion on the loss function with respect to the parameters and
algorithm is shown in Algorithm {4}

F(0%,00)—Ver £(04,07) T (apy)—Vor £(04,07) " (arph) < £(04,07)+craapy Vo [ ph+eiarVe fTp}

(1 = DarV [Pl > (1= 1)V f ]
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Algorithm 3 Line-search Method-Relative Learning Rate

1: Initialize: variables 6y, max iteration NV, a4, &1, Qmaxs ¥min, € C1
2: fori < 1to N do
3:  Calculate the update direction as p’; and p}

4:  Calculate the partial derivative of f (t‘)tA_l) about 02‘1 as direction denotes as Vei;l f

5:  Calculate the partial derivative of f (9371) about 9371 as direction denotes as Vgé—l f
. _ t—1 gt—1\T _t—1

6: k< Vei;lf(@A 07 7)) Py te

T b fO4,07Y) — Ve fTpj

8: ifa > 0,b <0 then

9: QA — Qmin

10 Armijo Condition Check(cy, Vi P4, L fph)

11: elseifa > 0,6 > 00R a < 0,b < 0 then

12: ap Cllp [|_Tb|7 Qmin, amam]

13: Armijo Condition Check(c, Vei;lprfm V(’;—l fph)

14:  else

15: QA S Qmin

16: Armijo Condition Check(cy, o P4, A fph)

17:  end if

18: 04 « 0" + aaply
19: 0« 671 + asph
20: end for

Algorithm 4 Armijo Condition Check

Initialize: variables c1,V g f Tply, Ve fTpf, current step t
if (c1 —1)Vg fTpYy > (1 —1)Vy [} then
if V(,?f—rpt] X Vet[lf—rpfq > 0 then

Vi £ TP}
return o A m
else
return a4 < Qpmin
end if
else
return None
end if
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A.6  VISUALIZATION OF THE FINAL OUTPUT OF FILTERS

In this section, we further present the results of the filtered Positional Encoding embedding. Com-
pared to Random Fourier Features, which involve more complex combinations of frequency com-
ponents, Positional Encoding displays more regular frequency patterns, making it better suited for
visualization. These visualizations demonstrate that in low-frequency regions, the high-frequency
embeddings are effectively suppressed by the filter, in line with our expectations of the adaptive
linear filter’s behavior. Additionally, for low-frequency embeddings, the filter can also emphasize
high-frequency components, enabling more fine-grained outputs.

Filtered Embedding

G.T. Image G.T. Embedding

I

| Channel=8

Channel=150 - Hlu

—
Channel=22¢ WEEE_—_—— .
——— -

Figure 13: Visualization of the filtered embedding for image 804 in the DIV2K validation split.
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Figure 14: Visualization of the filtered embedding for image 814 in the DIV2K validation split.
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Figure 15: Visualization of the filtered embedding for image 818 in the DIV2K validation split.
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A.7 FURTHER EXPERIMENT VISUALIZATION

A.7.1 3D SHAPE REGRESSION

In this section, we further provide some visualizations of the fitted result of 3D shape regression to
provide a more detailed idea of the performance of our proposed method.

MLP+PE

Figure 16: Visualization of the Mesh of Armadillo in the Stanford 3D Scanning Repository.

MLP{PE MLP+RFF BA»CON
’ 7 ‘ / -~ .

J '
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MLP+RFF
1

\\_ \ N
| )

Figure 17: Visualization of the Mesh of Dragon in the Stanford 3D Scanning Repository.
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MLP+PE+Ours  MLP+RFF+Ours

G.T. MLP+PE MLP+RFF

CCe

MLP+PE+Ours  MLP+RFF+Ours

e

Figure 18: Visualization of the Mesh of Lucy in the Stanford 3D Scanning Repository.

MLP+PE MLP+RFF BACON

G.T. MLP+PE MLP+RFF
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Figure 19: Visualization of the Mesh of Thai in the Stanford 3D Scanning Repository.
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A.7.2 NEURAL RADIANCE FIELD

G.T. BACON MLP+PE MLP+PE+Ours

Figure 20: Further Visualization of the NeRF task.
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MLP+PE MLP+PE+Ours

Figure 21: Further Visualization of the NeRF task.
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